
Exploring the Bounds of Web Latency Reduction from
Caching and Prefetching

Thomas M. Kroegery

Department of Computer Engineering
University of California, Santa Cruz

Darrell D. E. Longz

Department of Computer Science
University of California, Santa Cruz

Jeffrey C. Mogulx

Digital Equipment Corporation
Western Research Laboratory

Abstract

Prefetching and caching are techniques commonly
used in I/O systems to reduce latency. Many researchers
have advocated the use of caching and prefetching to re-
duce latency in the Web. We derive several bounds on the
performance improvements seen from these techniques,
and then use traces of Web proxy activity taken at Digital
Equipment Corporation to quantify these bounds.

We found that for these traces, local proxy caching
could reduce latency by at best 26%, prefetching could
reduce latency by at best 57%, and a combined caching
and prefetching proxy could provide at best a 60% la-
tency reduction. Furthermore, we found that how far in
advance a prefetching algorithm was able to prefetch an
object was a significant factor in its ability to reduce la-
tency. We note that the latency reduction from caching
is significantly limited by the rapid changes of objects
in the Web. We conclude that for the workload studied
caching offers moderate assistance in reducing latency.
Prefetching can offer more than twice the improvement
of caching but is still limited in its ability to reduce la-
tency.

1 Introduction

The growth of the Web over the past few years has in-
spired researchers to investigate prefetching and caching
as techniques to reduce latency [1, 12, 15]. While such
techniques have seen significant success reducing la-
tency in storage systems [7, 8, 9, 14] and in processor

y tmk@cse.ucsc.edu. Supported in part by Digital Equipment Cor-
poration and the Office of Naval Research under Grant N00014–92–J–
1807.

zdarrell@cse.ucsc.edu. Supported in part by the Office of Naval
Research under Grant N00014–92–J–1807.

xmogul@pa.dec.com.

memory hierarchies [13], it remains to be seen how ef-
fective such techniques can be within the World Wide
Web.

We classify caching and prefetching into four differ-
ent methods and then derive bounds on these methods.
Using traces taken over a three week period at Digital
Equipment Corporation, we quantify these bounds.

We assume the use of a proxy server as an interme-
diary between the client (browser) and the web server.
This proxy server accepts requests from clients and sat-
isfies them using data that has been prefetched, cached
or retrieved directly from an appropriate web server.
This configuration is quite common in the Web today.
Whether a proxy is used or not, this model serves to par-
tition the latency of Web retrievals into two components:
external latency, caused by network and web server la-
tencies that are external to an organization, andinternal
latency, caused by networks and computers within the
bounds of an organization. Figure 1 illustrates a com-
mon configuration.

Because the proxies are normally located on the or-
ganization’s network, the communication between the
client and proxy is normally a small portion of the over-
all latency. On the other side, the proxy-server commu-
nication normally accounts for a significant majority of
the total event latency. The primary goal of proxy-based
caching and prefetching is to reduce the amount of time
the client waits for data by reducing or removing exter-
nal latency. In our traces, external latency accounts for
77% of the latency seen in our entire trace set and 88%
of the latency seen by subset of clients geographically
close to the proxy.

With this potential for such a significant performance
gain, the best improvement we saw from caching and
prefetching reduced total latency by 60%. Additionally,
we saw that the prefetching lead time, the amount of
time between when prefetching begins and when the ob-
ject is needed, significantly affects the amount of latency

Latency

Proxy

Internal

Latency

Clients Servers

External

Figure 1: Typical proxy configuration

reduction. We found that when we limited our simulator
to providing only a three-minute warning, the latency re-
duction dropped to 43%. Additionally, we observe that
the latency reduction from caching was half of what it
would have been for a data set with data objects that did
not change. This observation agrees with several stud-
ies that show a high rate of change for objects in the
web [11, 6, 3]. Comparing our results with the exter-
nal latency we observe that, for the workload examined,
Web latency consists of 23% internal latency, 20% exter-
nal latency that cannot becached or prefetched and 57%
external latency that can be removed through prefetch-
ing and caching. The key point that we take from these
results is that while caching and prefetching are help-
ful, under the current conditions there is a limit to their
ability to reduce latency.

The rest of this article is organized as follows: sec-
tion 2 categorizes caching and prefetching and presents
four methods for using these techniques. We then
present bounds foreach method. In x3 we discuss the
methodology used to quantify these bounds. Inx4 we
present the results of our simulations. Related work is
then addressed inx5, and we present our conclusions
in x6.

2 Bounding Caching and Prefetching

Our goal is to determine an upper bound on the ef-
fectiveness of proxy-basedcaching and prefetching for
reducing latency in the Web. We classify caching and
prefetching algorithms into different categories. We then
construct models for bounding the performance ofeach
category of algorithm. In order to ensure that our bounds
are widely applicable, we do not present any specific al-
gorithms and attempt to keep our analysis as general as
possible.

2.1 Categories of Caching and Prefetching

We distinguish betweencaching algorithms based on
whether a cache will remainpassive, taking action only

as a result of requests or if it isactive, prefetching data in
anticipation of future requests. We distinguish between
prefetching algorithms based on where the information
used to determine what to prefetch originates.

Traditionally, caching is thought of as a system that
only reacts to requests. We define apassivecache as one
that only loads a data object as a result of a client’s re-
quest to access that object. In contrast, we use the term
activecache to refer to caches that employ some mech-
anism to prefetch data. We note that passive caching
systems also serve to reduce network traffic. However,
for this work we focus on the use of passive caching for
latency reduction.

We categorize prefetching into two categories,lo-
cal and server-hint, based on where the information
for determining which objects to prefetch is generated.
In local prefetching, the agent doing the prefetching
(e.g.a browser-client or a proxy) uses local information
(e.g. reference patterns) to determine which objects to
prefetch. Prefetching algorithms that do not make use
of information from the server, whether employed at a
client or at a proxy, would be considered local prefetch-
ing.

In server-hintbased prefetching, the server is able
to use its content specific knowledge of the objects re-
quested, as well as the reference patterns from a far
greater number of clients to determine which objects
should be prefetched. The actual prefetching, however,
must be done by an agent closer to the client. Therefore,
the server provides hints that assist this agent (either a
proxy or client) in prefetching. Implementation of this
model is complicated by the requirement for modifica-
tions at both the client or proxy side as well as the server
side.

Given these options for caching and prefetching, we
examine four different methods: passive proxycaching
with unlimited storage; an active cache with local
prefetching and unlimited storage; server-hint based
prefetching alone; and an active cache with server-hint
based prefetching and unlimited storage.

2.2 Bounding Analysis of Prefetching and
Caching

We set upper bounds foreach model by basing our
simulations on some best-case assumptions. We as-
sume that each method works with full knowledge of
future events. Then we place certain restrictions on each
method.

For passive caching, we assume that a previously ac-
cessed object that has not been changed is still available
from the cache.

For local prefetching, since an object must be seen at
least once before it can be predicted for prefetching, we

assume that only the first access to an object will not be
prefetched, and that all subsequent accesses will be suc-
cessfully prefetched. We do not assume the use of addi-
tional information, outside the traced reference stream,
that would allow the prediction of a future reference to a
URL that has never been seen in the trace.

For server-hint based prefetching, we assume that
prefetching can only begin after the client’s first con-
tact with that server. Because we assume a system with
full knowledge of future events, without this restriction
each server would schedule the transfer of each object to
complete just before the object was requested. Provided
there is enough bandwidth, this model would eliminate
all communication latency. In such a system servers
would suddenly transfer objects to clients with which
they had never before been in contact. To provide a more
realistic and useful bound on the performance of server-
hint based prefetching, we assume that in order for a
server to provide prefetch hints for a client, it must have
been accessed by that client. In thisfirst-contactmodel,
upon the first contact from a client, a proxy will simulta-
neously prefetch all of that client’s future requests from
that server. So, for example, if you contactwww.cnn.com
on Tuesday, this model would assume that all of your re-
quests towww.cnn.comfor Wednesday, Thursday, and
Friday would have been prefetched on Tuesday.

Even this first-contact model may be somewhat un-
realistic. We investigated the effects of placing lim-
its on the prefetching lead time, and on the amount of
data prefetched simultaneously. To limit the amount of
data prefetched simultaneously we place a threshold on
the bandwidth that can be used for prefetching. Af-
ter the first contact, subsequent requests are scheduled
for immediate prefetch until this bandwidth threshold
is reached or exceeded. The next request is then only
scheduled to begin once some current prefetches have
completed and the bandwidth being used has gone be-
low the threshold. We varied, bandwidth and lead time
independently and in combination.

Finally, to bound the performance of activecaching
using server-hint based prefetching and unlimited stor-
age, we test if an object could be found in a passive
cache. If this is not the case, we test if this object could
have been successfully prefetched under the first-contact
model.

3 Quantifying Bounds

We used trace-based simulation to quantify these
bounds. To obtain traces, we modified the firewall Web
proxy used by Digital Equipment Corporation to record
all HTTP requests from clients within Digital to servers
on the Internet. The traces ran from from 29 August to

22 September 1996. Each event in this trace stream rep-
resents one Web request-response interaction for a to-
tal of 24,659,182 events from 17,354 clients connecting
to 140,506 servers. This proxy provided nocaching or
prefetching; it simply served as a method for crossing
the corporate firewall.

To provide separate samples for comparison, we ex-
tracted three mid-week segments from the traces, each
covering a Monday through Friday. We labeled these
samplesWeek 1throughWeek 3for each work week and
all for the entire trace stream. We also examined a subset
of the trace data consisting only of clients in Palo Alto,
CA, where the proxy was located. These samples are la-
beledPA 1throughPA 3andPA all. The workload from
this subset would be more representative of a smaller,
more localized organization.

Since our main concern is the latency seen when re-
trieving a Web page, our simulations focus on requests
that use the HTTP protocol and theGET method. We
ignored events that failed for any reason (e.g. the con-
nection to the server failed during data transfer). For all
of our analyses, we assumed that query events and events
with cgi-bin in their URL cannot be either prefetched or
cached. This convention is used by most proxy caches.

In our simulations, we use the observed total and ex-
ternal latencies to estimate total (t), external (e) and in-
ternal (i = t�e) event latencies that would be seen if this
request were to occur again. If our model says that a re-
quest could have been successfully prefetched or cached,
then we use the internal latency as our estimate for the
modeled event’s new duration (n = i). Otherwise, we
use the previously observed total latency (n = t). Given
these values, we then quantify the fraction of the latency
reduced as(t � n)=t. This approximation ignores the
possibility that the proxy was transferring information
to the client during its communication with the server.
However, since we are looking for a lower bound on
the latency of this event, which is the same as an up-
per bound on the latency reduction, we can ignore this
possibility.

Using these approximations and the bounding models
described inx2, our simulation steps througheach event
in the trace stream and determines whether it could have
been cached or prefetched. We compare the distribu-
tion of event latencies seen under these bounding mod-
els with those in the original trace (measured without
caching or prefetching), in order to compute the average
latency reduction, for the workload represented in these
traces.

3.1 Sources of Inaccuracy

We note several possible sources of inaccuracy for
the results presented here. Our assumption that URLs

Table 1: Passive caching with unlimited storage.

Measurement Week 1 Week 2 Week 3 All PA 1 PA 2 PA 3 PA All
Total latencyt 4.6 4.7 4.3 4.1 2.8 2.4 2.7 2.4
External latencye 3.6 3.6 3.2 3.2 2.6 2.2 2.4 2.1
New latencyn 3.5 3.6 3.4 3.0 2.5 2.2 2.4 2.0
Percentage external latencye=t 79% 77% 75% 77% 90% 90% 88% 88%
Total latency reduction 24% 22% 22% 26% 12% 11% 11% 15%
Hit ratio 48% 47% 48% 52% 19% 20% 20% 28%
Cache size (GB) 23 26 27 88 1.3 1.2 1.1 4.5

Latencies are averages in seconds.PA 1–3andPA all represent work week 1
through work week 3 and the entire trace stream for the Palo Alto subset.

Table 2: Bounds on latency reductions from local prefetching.

Measurement Week 1 Week 2 Week 3 All PA 1 PA 2 PA 3 PA All
Percentage external latency 79% 77% 75% 77% 90% 90% 88% 88%
Total latency reduction 41% 38% 36% 45% 26% 22% 24% 33%

with queries andcgi-bincannot be prefetched orcached
might cause our upper bound on latency reduction to be
less than the best possible latency reduction. An algo-
rithm that is able to cache or prefetch such items could
see greater latency reductions then those presented here.

Our traces lack last-modified timestamps for about
half of the entries because many servers do not provide
this information. This left us to use changes in response
size as the only indicator of stale data for these requests.
The result is a simulation that in some cases would sim-
ulate a cache hit when one should not occur, causing us
to overestimate the potential for latency reduction.

Our models assume that the latency for retrieving a
successfully prefetched or cached item from the proxy is
the time of the original event minus the time for proxy-
server communications (t � e). This assumes that there
is little or no overlap between the server-to-proxy data
transfer and the proxy-to-client data transfer. When this
assumption is wrong, as it is for the larger responses and
more distant clients, our simulation will overestimate the
possible latency reduction.

4 Results

The goal of our simulations was to use the workload
traced to quantify the fourbounding models presented
in x2.2. We first present the latency reductions for pas-
sive caching and active caching with local prefetching.
We then examine thefirst-contactmodel with and with-
out unlimited storage caching. We address the variation
in latency reduction by examining the distribution for la-
tency reduction for each event and for the different types
of objects that were requested.

4.1 Passive Proxy Caching Performance

First, we simulated a passive caching proxy with un-
limited storage. Table 1 shows the results. The first
three rows show the averages for original total latency,
external latency and the simulated latency for a passive
caching proxy. The next row shows what fraction of the
original total latency was contributed by the external la-
tency. This ratio serves as a limit: if we could remove all
external latency, then our average event latency would
be reduced by this percentage. The last three rows show
the percent of latency reduced by the simulated caching
proxy, the cache hit ratio and the size of the cache that
would be required to hold all cached data.

From this table we can see that passive caching is
only able to reduce latency from 22%–26% (15% for a
smaller organization), a far cry from the 77% (or even
88%) of external latency seen in the traces. Also, while
the cache hit ratio ranges from 47%–52%(19%–28%),
the latency reduction is only half of that. This implies
that the majority of the requests that saw a cache hit are
for objects smaller than the average event, which con-
firms a similar observation made by Williamset al.[15].
That study showed a weak inverse relationship between
the likely number of accesses per unchanged response
and the response size.

In Table 1, the latency reduction, hit ratio and cache
size are larger for the entire-trace columns than for the
single-week columns. This occurs because with the
longer traces, there is a higher chance that given object
will be referenced.

4.2 Local Prefetching

Next, we simulated prefetching based on locally-
available information. Here, we assume that an object

Table 3: Results of server hint-based prefetching for an unlimited first-contact model.

Measurement Week 1 Week 2 Week 3 All PA 1 PA 2 PA 3 PA All
% external latency 79% 77% 75% 77% 90% 90% 88% 88%
Total latency reduction without caching 53% 51% 50% 53% 57% 56% 56% 58%
Total latency reduction with caching 58% 56% 54% 57% 59% 58% 57% 60%

0

10

20

30

40

50

60

70

1 10 100 1000 10000 100000 1e+06

 P
er

ce
nt

 o
f

or
ig

in
al

 la
te

nc
y

av
oi

de
d

 Time (seconds)

 Latency improvement versus time

Week 1
Week 2
Week 3

All

(a) All clients in Digital

0

10

20

30

40

50

60

70

1 10 100 1000 10000 100000 1e+06

 P
er

ce
nt

 o
f

or
ig

in
al

 la
te

nc
y

av
oi

de
d

 Time (seconds)

 Latency improvement versus time

Week 1
Week 2
Week 3

All

(b) Digital Palo Alto clients

Figure 2: Percentage of latency reduced versus how far in advance requests may be prefetched.

may be prefetched if and only if it has been seen before
in the reference stream. This model provides a bound
on active caching with local prefetching and unlimited
storage. This model differs from the passive-caching
model in that even if an object has changed (as indicated
by a change in either the size or the last-modified time-
stamp), a subsequent access to that object can still be
prefetched.

Table 2 shows that the latency reduction bound for lo-
cal prefetching is almost double that for passivecaching
(see Table 1). The two results differ because the passive
cache pays for a miss when an object changes; the high
observed rate of change [3, 11] is what causes much of
the poor performance of passivecaching.

4.3 Bounds on Prefetching with Server Based
Hints

To simulate server-hint based prefetching, we assume
that prefetching can only begin after the client has con-
tacted the server for the first time. To simulate a com-
bination of caching and prefetching, our simulator first
checks if an object is in the cache. If not, then the sim-
ulator uses the server-hint based model to determine if
this object could have been successfully prefetched. Ta-
ble 3 shows that this first-contact model, where all future
requests are simultaneously prefetched upon first con-
tact, will reduce the latency by a little more than half.

For a smaller, more centralized organization (as repre-
sented by the Palo Alto subsets), even though the ex-
ternal latency increases to 88% of the total latency, the
improvement from server-hint based prefetching is only
slightly better. In combination with an unlimited storage
caching, server-hint based prefetching provides at best a
60% latency reduction.

4.3.1 Limiting the First-Contact Model

We modified our first-contact model to provide a more
realistic bound by placing a limit on how far in advance
of a request the data could be prefetched, also known as
prefetch lead time. We then further modified our model
to limit the amount of data prefetched simultaneously.

In order to examine the effects of limitingprefetch
lead time, we modified our simulation to forget about
contacts between client-server pairs that have been in-
active for longer than a specified interval. This means
that any subsequent request from the given client to the
given server will be treated as a first contact. Figure 2
shows the results of varying prefetch lead times from
one second to1 (represented in the figures as one mil-
lion seconds). We note that for lead times below a few
hundred seconds, the available reduction in latency is
significantly less impressive.

To limit the amount of overlap between prefetch re-
quests, we set a threshold on the bandwidth that can

0

10

20

30

40

50

60

1 10 100 1000 10000 100000

 P
er

ce
nt

 o
f

or
ig

in
al

 la
te

nc
y

av
oi

de
d

 Prefetch bandwidth threshold (kbits/sec)

 Latency improvement versus prefetch bandwidth threshold

Week 1
Week 2
Week 3

All

(a) All clients in Digital

0

10

20

30

40

50

60

1 10 100 1000 10000 100000

 P
er

ce
nt

 o
f

or
ig

in
al

 la
te

nc
y

av
oi

de
d

 Prefetch bandwidth threshold (kbits/sec)

 Latency improvement versus prefetch bandwidth threshold

Week 1
Week 2
Week 3

All

(b) Digital Palo Alto clients

Figure 3: Percentage of latency reduced versus bandwidth threshold.

used for prefetching. Figure 3 shows how this bandwidth
limit affects the amount of latency reduction. At the left
end of the graph, a small increase in the amount of band-
width limiting prefetching significantly improves the re-
duction in latency. However, the total difference be-
tween unlimited simultaneous prefetching and sequen-
tial prefetching is no greater than 11%.

Figure 4 and Table 4 show the effects of varying both
limits. The slope in Figure 4 along the axis for prefetch
lead time shows that this parameter is the dominant fac-
tor. The relatively consistent slopes in the surface graphs
imply the two parameters are relatively independent in
their effects on latency. Therefore, the curves in Fig-
ures 2 and 3 are representative of the behavior of this
model over variations in both parameters.

Table 5 shows the latency reduction seen by a server-
hint based prefetching model with unlimited cache stor-
age, for representative values of prefetch time and band-
width available for prefetching. Comparing Table 5 with
Table 4, we note that for a weak or moderately capable
prefetching algorithm, the use of caching is especially
important. For example, for a prefetching algorithm that
can predict requests up to 3 minutes in advance, and
has bandwidth threshold of 8 kbits/sec, caching will still
offer an increase of approximately 11%. On the other
hand, for an unbounded prefetching model,caching only
offers an improvement of approximately 4%.

4.4 Reductions for Different Object Types

We examined how the type of object requested affects
the latency reduced (object types were determined by an
extension and if any, at the end of the URL path). Table 6

shows the results from caching and prefetching listed by
object type. The categoryNONErepresents URLs that
had no extension, and the categoryOTHERrepresents
objects with extensions other than those listed. The first
two rows show the average for original total latency and
the simulated latency. Rows 3 and 4 show the percent-
age of the total event stream that each type accounts for
by event count and event duration, respectively. Rows
5 through 8 show the percentage of latency reduced by
type for passive caching, local prefetching with unlim-
ited cache storage, server-hint based prefetching without
caching and server-hint based prefetching with unlim-
ited storage caching.

This table shows that for the most part, the com-
mon types (GIF, HTML, JPEG, CLASS, DATA) all of-
fer slightly above average latency reductions, while the
less common or type-ambiguous requests offer signifi-
cant less benefit. This result suggests that acache which
only kept objects of common types might make more
effective use of its storage resources.

4.5 Variation in Latency Reduction

To examine the variation of latency reduction across
separate events, Figure 5 shows histograms of the per-
cent of latency reduced at each event for passive caching,
local prefetching, server-hint based prefetching and
server-hint based with unlimited storage caching. These
graphs show a bi-modal distribution where an event ei-
ther sees significant latency reductions (the peaks around
95% and 100%) or little to no reduction (the peak at 0%).
What these distributions show is that under the models
we have simulated one can expect a web request to ei-
ther see minimal to no latency reduction or a significant

Latency Improvement

1
10

100 100
300

500
700

900
0

10
20
30
40

Bandwidth limit (kbits/sec)

Lead time
(seconds)

Latency reduction

(a) All clients in Digital

Latency Improvement

1
10

100 100
300

500
700

900
0

10
20
30
40

Bandwidth limit (kbits/sec)

Lead time
(seconds)

Latency reduction

(b) Digital Palo Alto clients

Figure 4: Reduction in latency for prefetching (bandwidth in kbits/sec, time in seconds). Note: the scale for the X
axis is logarithmic.

Table 4: Selected latency reduction percentages for prefetching (bandwidth in kbits/sec, time in seconds).

b/w Time Week 1 Week 2 Week 3 All PA 1 PA 2 PA 3 PA All
1 10 4.2% 3.9% 4.2% 4.3% 4.0% 5.1% 3.7% 5.6%
8 10 5.3% 4.9% 5.2% 5.3% 5.5% 6.6% 5.1% 7.0%
1 10 9.8% 9.3% 9.6% 9.9% 13.8% 14.9% 12.9% 15.3%

1 60 16.1% 15.3% 14.9% 15.6% 18.7% 19.0% 16.7% 20.0%
8 60 20.8% 19.6% 19.1% 20.0% 24.7% 23.8% 21.4% 24.9%
1 60 27.7% 26.1% 25.2% 26.5% 34.6% 33.2% 30.0% 33.9%

1 180 25.6% 24.0% 23.5% 24.4% 29.6% 27.7% 27.5% 29.5%
8 180 31.5% 29.4% 28.8% 29.8% 35.3% 33.0% 33.3% 34.7%
1 180 37.4% 35.2% 34.2% 35.6% 43.6% 41.1% 41.7% 42.7%

1 1 46.2% 44.3% 43.1% 46.7% 47.9% 46.3% 47.2% 50.1%
8 1 50.4% 48.1% 47.0% 50.2% 51.7% 50.1% 51.2% 53.3%
1 1 53.4% 51.3% 49.9% 53.0% 57.1% 55.5% 55.8% 57.8%

reduction in the total latency.

5 Related Work

Many researchers have looked for ways to improve
current caching techniques.

Padmanabhan and Mogul [12] described a server hint-
based predictive model. In this model, the server ob-
serves the incoming reference stream to create a Markov
model predicting the probability that a reference to some
objectA will be followed, within the nextn requests, by
a reference to some other objectB (n is a parameter of
the algorithm). On each reference, the server uses this
model to generate a prediction of one or more subse-
quent references and sends this prediction as a hint to
the client, including it in the response to the current ref-
erence. The client may then use this hint to prefetch an

object if the object is not already in the client’s cache. In
their simulations, they estimated reductions of as much
as 45%, but note that such techniques will also double
the network traffic. Nevertheless, they show that a rea-
sonable balance of latency reduction and network traffic
increase can be found.

Bestavroset al. [1] have presented a model for the
speculative dissemination of World Wide Web data. This
work shows that reference patterns from a Web server
can be used as an effective source of information to drive
prefetching. They observed a latency reduction of as
much as 50%, but only at the cost of a significant in-
crease in the bandwidth used.

Williams et al. [15] presented a taxonomy of replace-
ment policies for caching within the Web. Their ex-
periment examined the hit rates for various workloads.
The observed hit rates that range from 20% to as high
as 98%, with the majority ranging around 50%. The

Table 5: Latency reduction percentages for both prefetching and caching (bandwidth in kbits/sec, time in seconds).

b/w Time Week 1 Week 2 Week 3 All PA 1 PA 2 PA 3 PA All
1 10 26.2% 23.9% 23.5% 27.7% 15.0% 15.1% 13.6% 18.9%
8 10 26.8% 24.5% 24.0% 28.2% 16.2% 16.3% 14.7% 19.9%
1 10 29.1% 26.8% 26.3% 30.2% 22.9% 23.0% 21.1% 26.0%

1 60 32.8% 30.6% 29.9% 33.6% 27.5% 27.4% 25.1% 30.6%
8 60 35.3% 33.1% 32.3% 35.8% 32.5% 31.4% 28.9% 34.4%
1 60 38.9% 36.7% 35.7% 38.8% 40.8% 39.1% 36.0% 41.2%

1 180 39.3% 36.8% 35.9% 39.3% 36.8% 35.1% 35.0% 38.5%
8 180 42.4% 40.0% 38.8% 42.0% 41.4% 39.6% 39.7% 42.6%
1 180 45.7% 43.4% 42.0% 44.9% 48.3% 46.2% 46.6% 48.6%

1 1 53.5% 51.3% 50.0% 54.0% 50.2% 50.0% 49.9% 53.4%
8 1 55.9% 53.6% 52.3% 55.9% 53.5% 53.3% 53.4% 56.1%
1 1 57.7% 55.5% 54.0% 57.4% 58.5% 58.1% 57.4% 59.9%

Table 6: Latency reduction for prefetching and caching by type of data requested (times in seconds).

Type NONE HTML GIF DATA CLASS JPEG MPEG OTHER
New latency 1.3 2.4 1.6 0.3 1.6 3.9 110.8 12.9
Original latency 2.5 4.3 3.3 1.5 3.8 7.2 151.7 17.0
Percentage by count 29.5% 12.1% 42.4% 0.2% 0.3% 11.1% 0.0% 5.4%
Percentage by time 17.8% 12.5% 34.3% 0.1% 0.3% 19.4% 0.4% 15.2%
Passive caching 26.7% 21.8% 34.5% 73.0% 40.4% 27.1% 4.5% 8.8%
Local prefetching 48.3% 43.7% 52.7% 79.9% 58.2% 45.8% 26.9% 24.3%
Server-hints without caching 49.3% 61.6% 62.5% 66.8% 64.4% 62.7% 27.5% 27.9%
Server-hints with caching 51.1% 61.5% 60.1% 79.9% 65.0% 58.4% 26.4% 27.6%

workload with the hit rate of 98% comes from a cache
that is placed close to the server, rather than close to the
clients, with the purpose of reducing internal bandwidth
consumed by external HTTP requests. This workload
addresses a different problem than that examined here.
For their other workloads, our cache hit rates are reason-
ably comparable.

Several of the results found by other studies are close
to or higher than the bounds resulting from our simula-
tions. We note that these results are highly dependent
on the workload, and on the environment modeled. One
should take care in applying the results of any of these
simulation studies, ours included, to a specific situation.

6 Summary and Conclusions

Using trace driven simulations we have explored the
potential latency reductions from caching and prefetch-
ing. For the workload studied passive caching, with
an unlimited cache storage, can reduce latency by ap-
proximately 26%. This disappointing result for passive
caching is in part because data in the Web continually
changes. On the other hand prefetching based on local
information offers, saw a bound of approximately 41%
reduction in latency. Adding server-hints increased this
bound to approximately 57%.

We observed that prefetch lead time is an important
factor in the performance of prefetching. Under more

realistic constraints (prefetch bandwidth threshold of 8
kbits/sec, lead time of 3 minutes), the best we could hope
for is a 35% reduction in latency. We also saw that the
uncommon types of objects provided significantly less
then average latency reduction.

Finally, we can make some observations based on
comparing the results from these models with the to-
tal external latency. In the workload studied, 57% of
the total latency is external latency that can be removed
by caching or prefetching; 20% is external latency that
cannot be removed, from events such as first contacts or
queries and 23% is internal latency.

The results we present here serve to illustrate two con-
clusions. First, caching and prefetching can be effective
in reducing latency in the Web. Second, the effective-
ness of these techniques does have limits. The bounds
produced by our simulations are for off-line algorithms
that have full knowledge of the future. One would ex-
pect any on-line algorithm to be less effective. Again,
we caution that these results are highly dependent on the
workload and environment modeled. They should be ap-
plied with care. Nevertheless these results emphasize
the need for improved prefetching techniques as well
as additional techniques beyondcaching and prefetch-
ing. These techniques might include wide-area replica-
tion [5], delta encoding [2, 11] and persistent TCP con-
nections [10] which has been included in the HTTP/1.1
protocol [4].

0

1

2

3

4

5

6

7

0 20 40 60 80 100

N
um

be
r

of
 r

eq
ue

st
s

(m
ill

io
ns

)

Percent of original latency avoided

(a) Passive Caching

0

1

2

3

4

5

6

7

0 20 40 60 80 100

N
um

be
r

of
 r

eq
ue

st
s

(m
ill

io
ns

)

Percent of original latency avoided

(b) Local Prefetching

0

1

2

3

4

5

6

7

0 20 40 60 80 100

N
um

be
r

of
 r

eq
ue

st
s

(m
ill

io
ns

)

Percent of original latency avoided

(c) Server-Hint Based without Caching

0

1

2

3

4

5

6

7

0 20 40 60 80 100

N
um

be
r

of
 r

eq
ue

st
s

(m
ill

io
ns

)

Percent of original latency avoided

(d) Server-Hint Based with Caching

Figure 5: Histograms of the percentage of latency reduced at each event.

Acknowledgments

We are grateful to Digital Equipment Corporation
for their support of this work and the use of their fa-
cilities, the Office of Naval Research for their sup-
port, Prof. Mary G. Baker for her kind guidance,
Dr. Richard A. Golding for his insightful comments
and enthusiasm, Prof. Pei Cao for her comments and
input on this work, Carlos Maltzahn and Dr. Kathy
Richardson for their work with the Squid proxy,
Dr. Lawrence Brakmo for his input and comments
on early portions of this work, Randal Burns, Tracey
Sconyers and the other members of the concurrent sys-
tems group that provided comments on this work, and
Suzan Fry.

Availability

Additional details on these traces, and the traces, are
available from:

ftp://ftp.digital.com/pub/DEC/traces/proxy/webtraces.html

References

[1] A. Bestavros and C. Cunha, “A prefetching proto-
col using client speculation for the WWW,” Tech.
Rep. TR-95-011, Boston University, Department
of Computer Science, Boston, MA 02215, Apr.
1995.

[2] R. C. Burns and D. D. E. Long, “Efficient dis-
tributed backup with delta c1ompression,” inPro-
ceedings of the1997 I/O in Parallel and Dis-
tributed Systems (IOPADS’97), San Jose, CA,
USA, Nov. 1997.

[3] F. Douglis, A. Feldmann, B. Krishnamurthy, and
J. Mogul, “Rate of change and other metrics: A live
study of the world wide web,” inProceedings of

First USENIX Symposium on Internet Technologies
and Systems, Dec. 1997.

[4] R. T. Fielding, J. Gettys, J. C. Mogul, H. F. Nielsen,
and T. Berners-Lee, “Hypertext transfer protocol
– HTTP/1.1,” RFC 2068, HTTP Working Group,
Jan. 1997.

[5] J. Gwertzman and M. Seltzer, “The case for geo-
graphical push caching,” inFifth Annual Workshop
on Hot Operating Systems, (Orcas Island, WA),
pp. 51–55, IEEE Computer Society, May 1995.

[6] J. Gwertzman and M. Seltzer, “World wide web
cache consistency,” inProceedings of the USENIX
1996 Annual Technical Conference, (San Diego,
CA), pp. 141–152, USENIX, Jan. 1996.

[7] T. Kimbrel, A. Tomkins, R. H. Patterson, B. Ber-
shad, P. Cao, E. W. Felton, G. A. Gibson, A. Kar-
lin, and K. Li, “A trace-driven comparison of algo-
rithm for parallel prefetching and caching,” inPro-
ceedings of Second USENIX Symposium on Oper-
ating Systems Design and Implementation, pp. 19–
34, USENIX, October 1996.

[8] T. M. Kroeger and D. D. E. Long, “Predicting file-
system actions from prior events,” inProceedings
of the USENIX 1996 Annual Technical Conference,
USENIX, January 1996.

[9] H. Lei and D. Duchamp, “An analytical approach
to file prefetching,” inProceedings of USENIX
1997 Annual Technical Conference, USENIX, Jan-
uary 1997.

[10] J. C. Mogul, “The case for persistent-connection
HTTP,” in Proceedings of the1995 SIGCOMM,
pp. 299–313, ACM, Sept. 1995.

[11] J. C. Mogul, F. Douglis, A. Feldmann, , and B. Kr-
ishnamurthy, “Potential benefits of delta encod-
ing and data compression for HTTP,” inProceed-
ings of the 1997 SIGCOMM, (Cannes, France),
pp. 181–194, ACM, Sept. 1997.

[12] V. N. Padmanabhan and J. C. Mogul, “Using
predictive prefetching to improve world wide
web latency,”Computer Communications Review,
vol. 26, pp. 22–36, July 1996.

[13] A. J. Smith, “Cache memories,”ACM Computing
Surveys, vol. 14, pp. 473–530, Sept. 1982.

[14] J. S. Vitter and P. Krishnan, “Optimal prefetch-
ing via data compression,”Journal of the ACM,
vol. 43, pp. 771–793, September 1996.

[15] S. Williams, M. Abrams, C. R. Standridge, C. Ab-
dulla, and E. A. Fox, “Removal policies in net-
work caches for world-wide web documents,” in
Proceedings of the1996 SIGCOMM, pp. 293–305,
ACM, July 1996.

