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Eye-In-Hand Robotic Tasks In

Uncalibrated Environments

ABSTRACT
Flexible operation of a robotic agent in an uncalibrated environment requires the ability to recover
unknown or partially known parameters of the workspace through sensing. Of the sensors avail-
able to a robotic agent, visual sensors provide information that is richer and more complete than
other sensors. In this paper we present robust techniques for the derivation of depth from feature
points on a target’s surface and for the accurate and high-speed tracking of moving targets. We use
these techniques in a system that operates with little or noa priori knowledge of object- and cam-
era-related parameters to robustly determine such object-related parameters as velocity and depth.
Such determination of extrinsic environmental parameters is essential for performing higher level
tasks such as inspection, exploration, tracking, grasping, and collision-free motion planning. For
both applications, we use the Minnesota Robotic Visual Tracker (a single visual sensor mounted
on the end-effector of a robotic manipulator combined with a real-time vision system) to automat-
ically select feature points on surfaces, to derive an estimate of the environmental parameter in
question, and to supply a control vector based upon these estimates to guide the manipulator.

Keywords: Active and real-time vision; Experimental computer vision; Systems and applica-
tions; Vision-guided robotics.
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1 Introduction

In order to be effective, robotic agents in uncalibrated environments must operate in a flexi-

ble and robust manner. The computation of unknown parameters (e.g., the velocity of objects and

the depth of object feature points) is essential information for the accurate execution of many

robotic tasks, such as manipulation, inspection, and exploration. The determination of such

parameters has traditionally relied upon the accurate knowledge of other related environmental

parameters. For instance, early efforts in depth recovery concentrated upon stereo camera pairs

with known geometries to derive an estimate of the depth of a feature based upon its projection in

each image plane and triangulation [24]. Much of this work owes its origins to the field of photo-

grammetry [44].

Other methods used what is commonly referred to asshape-from-X or structure-from-X

where “X” may be shading, texture, or motion. These techniques typically rely upon stringent

lighting models (single source, orthogonal sources, etc.), surfaces that possess a known quality

(ideal Lambertian surfaces, spherical objects, prior knowledge of texture maps, etc.), or multiple,

known viewpoints. Prior work inshape-from-motion [18] often relied upon the incidental motion

of the object or the manipulator to provide the disparity needed for triangulation and depth extrac-

tion [25][33][38]. Many traditional approaches to the problem of depth recovery [11][25] have

assumed that extremely accurate measurements of the camera parameters and the camera system

geometry are provideda priori, making these methods useful in only a limited number of situa-

tions.

Similarly, previous approaches to visual tracking assumed known and accurate measures of

camera parameters, camera positioning, manipulator positioning, target depth, target orientation,

and environmental conditions [5][14][21][22][40]. The initial research efforts in this area

assumed a static camera (as opposed to one mounted on the robot itself) [2][14][19] and some

performed only simulations [41]. Virtually no work took into account the dynamics of the robot in

computing the control signal. Since then, various researchers have expanded the problem to incor-

porate robot dynamics, moving camera models, or both, and several have focused on using vision
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information in the dynamic feedback loop [8][39]. Robotic visual tracking techniques applicable

to slow-moving objects were developed wherein the centroid of the object is determined [17].

Several others researchers [15][28] attempted to apply neural networks to the problem of robotic

visual tracking while others [11][12][13] concentrated on the control aspects of the problem. In

many of these cases, explicit knowledge of camera, manipulator and environmental parameters

were assumed.

This type of detailed information is not always available or, when it is available, not always

accurate. Inaccuracies are introduced by positioning, path constraints, changes in the robotic sys-

tem, and changes in the operational environment. In addition, camera calibration and the determi-

nation of camera parameters can be computationally expensive, time consuming, and error prone.

To be effective in uncalibrated environments, the robotic agent must perform under a variety of

situations when only simple estimates of parameters (e.g., depth, focal length, pixel size, etc.) are

used and with little or noa priori knowledge about the target, the camera, or the environment.

In this paper, we present the proposed techniques for performing eye-in-hand robotic tasks

in uncalibrated environments. We first discuss the equations for visual measurements, including

an enhanced SSD surface construction strategy, optimizations, and an alternative search tech-

nique, and we present the feature point selection scheme. Next, we present the control and mea-

surement equations used in the adaptive controller and elaborate on the selection of the features’

trajectories for the application of depth recovery. Finally, we discuss results from experiments in

both of the selected applications using the Minnesota Robotic Visual Tracker (MRVT).

2 Proposed Solution

One solution to the problems that arise from relying heavily ona priori information can be

found under the Controlled Active Vision framework [30][31]. This framework provides the flex-

ibility necessary to operate under dynamic conditions when many environmental and target-

related factors are unknown and possibly changing. The framework is based upon adaptive con-

trollers that utilize Sum-of-Squared Differences (SSD) optical flow measurements [3] as inputs to

the control loop. The SSD algorithm is used to measure the displacements of feature points in a
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sequence of images where the displacements may be induced by manipulator motion, target

motion, or both. The measured displacements are compared to predicted displacements that are

derived using the current parameter estimates in the adaptive controller. The errors from these

comparisons are then used, in conjunction with previous measured displacements, to update

parameter estimates and to produce the next control input. The control input is derived such that

the amount of the error in the next iteration will be minimized given environmental- and manipu-

lator-specific constraints. This technique is useful under a variety of situations, including the

application areas we have selected: depth recovery and robotic visual tracking.

We propose a controlled exploratory motion that provides identifiability of the depth param-

eter rather than an accidental motion of the eye-in-hand system commonly used in depth extrac-

tion techniques [25][33][38]. To reduce the influence of workspace-, camera-, and manipulator-

specific inaccuracies, an adaptive controller is utilized to provide accurate and reliable informa-

tion regarding the depth of an object’s feature points. This information may then be used to guide

operations such as tracking, inspection, and manipulation [11][30].

Additionally, we propose a visual tracking system that does not rely upon accurate measures

of environmental and target parameters. An adaptive controller is used to track feature points on a

target’s surface in spite of the unconstrained motion of the target, possible occlusion of feature

points, and changing target and environmental conditions. High-speed targets are tracked with

only rough operating parameter estimates and no explicit target models. Tracking speeds are

nearly twelve times faster and have similar accuracy to those reported by Papanikolopoulos [30].

While this work is based upon that in [30][31], it is different in several significant ways.

First, the method for the derivation of depth is a unique formulation under the Controlled Active

Vision framework. Second, a new technique for automatic feature selection is presented that

addresses the aperture problem in a direct and purposeful way. Third, optimizations to the vision

processing are introduced that enhance overall performance by at least one order of magnitude.

Additionally, the vision processing includes a dynamic pyramiding technique to resolve speed/

accuracy trade-offs. Finally, all the presented work is implemented on the Minnesota Robotic
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Visual Tracker (MRVT), an active vision testbed that integrates a traditional robotic manipulator

(a Puma 560) with a state-of-the-art vision system to provide a unique and flexible sensor based

robotic system.

3 Visual Measurements

Our depth recovery and robotic visual tracking applications both use the same basic visual

measurements that are based upon a simple camera model and the measure of optical flow in a

temporal sequence of images. The visual measurements are combined with search-specific opti-

mizations and a dynamic pyramiding technique in order to enhance the visual processing from

frame to frame and to optimize the performance of the system in our selected applications.

3.1 Camera Model and Optical Flow

We assume a pinhole camera model with a world frame, RW, centered on the optical axis.

We also assume a focal lengthf. A point  in , projects to a point  in

the image plane with coordinates . We can define two scale factors,  and , to account

for camera sampling and pixel size, and include the center of the image coordinate system

given in frame FA [30]. The derived model is precisely the same as the model presented by Papan-

ikolopoulos [30] and results in the following equations (assuming camera motion where

 are the components of the translational velocity and  are the components of

the rotational velocity):

(1)

. (2)

To measure displacements of  we use a matching-based technique known as the Sum-of-

Squared Differences (SSD) optical flow [3]. For the point  in

the image  where  denotes the th image in a sequences of images, we want to find the

point . This point  is the new position of the projec-
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v ẏ y
Tz

ZW
-------- f

Ty

ZW sy
-------------– f

sy
---- y

2sy

f
----+

 
 
 

Rx x y
sx

f
---- Ry– x

sx

sy
----Rz–+= =

p

p k 1–( ) x k 1–( ) y k 1–( ),( )T
=

k 1–( ) k( ) k

p k( ) x k 1–( ) u+ y k 1–( ) v+,( )T
= p k( )



6

tion of the feature point  in image . Thus, for the point , the SSD algorithm selects the

displacement  that minimizes the SSD measure

(3)

where  is the neighborhood of ,  and  are indices for pixels in , and  and

 are the intensity functions in images  and .

The size of the neighborhood  must be carefully selected to ensure proper system perfor-

mance. Too small an  fails to capture large displacements while too large an  increases the

associated computational overhead and enhances the background. In either case, an algorithm

based upon the SSD technique may fail due to inaccurate displacements. An algorithm based

upon the SSD technique may also fail due to too large a latency in the system or displacements

resulting from motions of the object that are too large for the method to capture accurately. We

introduce search optimizations and a dynamic pyramiding technique to counter these concerns.

3.2 Search Optimizations

The primary source of latency in a vision system that uses the SSD measure is the time

needed to identify  in equation (3). To find the true minimum, the SSD measure must be

calculated over each possible . The time required to produce an SSD surface and to find

the minimum can be greatly reduced by employing three schemes that, when combined, divide the

search time significantly in the expected case.

The first optimization used is loop short-circuiting. During the search for the minimum on

the SSD surface (the search for  and ), the SSD measure must be calculated according

to equation (3). This requires nested loops for them andn indices. During the execution of these

loops, the SSD measure is calculated as the running sum of the squared pixel value differences. If

the current SSD minimum is checked against the running sum as a condition on these loops, the

execution of the loops can be short-circuited as soon as the running sum exceeds the current min-

imum. This optimization has a worst-case performance equivalent to the original algorithm plus
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the time required for the additional condition tests. This worst case occurs when the SSD surface

minimum lies at the last  position searched. On average, this short-circuit realizes a

decrease in execution time by a factor of two.

The second optimization is based upon the heuristic that the best place to begin the search

for the minimum is at the point where the minimum was last found on the surface and to expand

the search radially from this point. Under this heuristic, the search pattern in the  image is

altered to begin at the point on the SSD surface where the minimum was located for the

image. The search pattern then spirals out from this point, searching over the extent of  and , in

contrast to the typical indexed search pattern (see Figure 1).

Since the structure that implements the spiral search pattern contains no more overhead than

the loop structures of the traditional search, worst-case performance is identical. In the general

case, search time is approximately halved when combined with the loop short-circuiting.

The third optimization arose from the observation that search times for feature points varied

significantly — by as much as 100 percent — depending upon the shape/orientation of the fea-

ture. Applying the spiral image traversal pattern to the calculation of the SSD measure simulta-

neously fixes the problem and achieves additional performance improvements. Spiraling the

calculation of the SSD measure yields a best-case performance that is independent of target orien-

tation by changing the order of the SSD calculations to no longer favor one portion of the image

over another. Additional speed gains are achieved because the area of greatest change in the SSD

measure calculations typically occurs near the center of the feature window, which generally coin-

u v,( )T

k( )

k 1–( )

u v

Figure 1: Traditional and spiral search patterns
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cides with an edge or a corner of the target, resulting in fewer calculations before the loop is ter-

minated in non-matching cases. Speed gains from this optimization are approximately 40 percent.

When combined, these three optimizations (the loop short-circuiting and the spiral pattern

for both the search loop and the SSD calculation loop) interact cooperatively to find the minimum

of the SSD surface as much as 17 times faster on average than the unmodified search.

Experimentally, the search times for the unmodified algorithm averaged 136 msec over 5000

frames under a variety of relative feature point motions. The modified algorithm with the search-

loop short-circuiting alone averaged 60-72 msec search times over several thousand frames with

arbitrary relative feature point motion. The combined short-circuit/spiral search algorithm pro-

duced search times that averaged 13 msec under similar tests, and the combined short-circuit,

dual-spiral algorithm produced search times that averaged 8 msec. Together these optimizations

allow the vision system described in Section 6.1 to track three to four features at video rates (33

msec per frame) without video under-sampling.

3.3 Dynamic Pyramiding

Dynamic pyramiding is a heuristic technique that attempts to resolve the conflict between

accurate positioning of a manipulator and high-speed tracking when the displacements of the fea-

ture points are large. Previous applications have typically depended upon one preset level of pyra-

miding to enhance either the top tracking speed of the manipulator or the positioning accuracy of

the end-effector above the target [30].

In contrast, dynamic pyramiding uses multiple levels of pyramiding. The level of the pyra-

miding is selected based upon the observed displacements of the target’s feature points. If the dis-

placements are small relative to the search area, the pyramiding level is reduced; if the measured

displacements are large compared to the search area, then the pyramiding level is increased. The

result is a system that enhances the tracking speed when required, but always biases in favor of the

maximum accuracy achievable. The dynamic level switching thus allows the tracker to adjust to

accelerations of the target (when displacements increase) and then to increase accuracy when the

tracking adapts to the new, higher speed or when the target is at rest.
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During the search process, the SSD measurements are centered upon particular pixels in the

pyramided search area. Which pixel positions are selected (  in equation (3)) is

dependent upon which of the four levels of pyramiding is currently active. The lowest level

searches every pixel a square  pixel patch of the current frame. The second level searches

every other pixel in a  patch, and the third, every third pixel in a  patch. The

fourth and highest level searches every fourth pixel in a  patch.

4 Feature Point Selection

In addition to failures due to system latency, the effect of large displacements, or technique-

specific problems, an algorithm based upon the SSD technique may fail due to repeated patterns

in the intensity function of the image or due to large areas of uniform intensity in the image. Both

cases can provide multiple matches within a feature point’s neighborhood, resulting in spurious

displacement measures. In order to avoid this problem, our system automatically evaluates and

selects feature points.

Feature points are selected based upon a confidence measure derived using the SSD measure

and an auto-correlation technique. The neighborhood , centered upon a prospective feature

point in image , is used to collect SSD measures at offsets belonging to the area , also in

[3][30]. This produces a surface of SSD measures over the area . Several possible confidence

measures can be applied to the surface to measure the suitability of the potential feature point.

The selection of a confidence measure is critical since many such measures lack the robust-

ness required by changes in illumination, intensity, etc. We utilize a two-dimensional displace-

ment parabolic fit that attempts to fit a parabola  to a cross-section of

the SSD surface in several predefined directions, producing a measure of the goodness of the fit.

Papanikolopoulos [30] selected a feature point if the minimum directional measure was suffi-

ciently high, as measured by equation (3). For instance, a corner point produces an SSD surface

with very good parabolic fits in all directions. Such a point is selected since the minimal direc-

tional measure will be high. A point belonging to an edge would not be selected since the fit in the

direction along the edge would be poor due to multiple matches for the prospective feature point.

∆x u v,( )T=
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For the purpose of depth extraction (where a large set of feature points is desired), we extend

this approach in response to the aperture problem [23]. Briefly stated, the aperture problem refers

to the motion of points that lie on a feature such as an edge. Any sufficiently small local measure

of motion can only retrieve the component of motion orthogonal to the edge. Any component of

motion other than that perpendicular to the edge is unrecoverable due to multiple matches for any

given feature point [23].

The improved confidence measure for feature points permits the selection of a feature if it

has a sufficiently high correlation with the parabola in a particular direction. For instance, a fea-

ture point corresponding to an edge will be selected due to the high parabolic-fit measurement in

the direction perpendicular to the edge.

This directional information is then used during the depth recovery process to constrain the

motion of the manipulator. A corner feature would therefore allow manipulator motion in any

direction while an edge feature would constrain motion to the direction perpendicular to the edge.

This ensures that the only component of resulting motion is precisely the component that can be

recovered under consideration of the aperture problem. This ideal motion is not always achiev-

able; therefore, matches that lie closer to the ideal manipulator motion will be preferred, if multi-

ple matches are detected by the SSD search.

Directionally constrained features are not used during the tracking of moving objects since

the motion of such objects cannot be characterized until after the selection of tracking features. If

used, such directional features potentially leave large portions of the motion of objects unrecover-

able unless the motion at multiple points with dissimilar directional measures are used. Since this

would increase overhead by at least a factor of two, only features that are determined to be omni-

directional (e.g., a corner point) should be used for tracking applications.

5 Modeling and Controller Design

Modeling of the system in question is critical to the design of a controller to perform the

task at hand. In our application areas, the modeling and controller designs are similar; however

they are also distinct. We have presented the depth recovery modeling and controller design previ-
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ously in [36]. Papanikolopouloset al. [31] provide an in-depth treatment of the modeling and con-

troller design for robotic visual tracking applications.

Previous work in depth recovery using active vision relied upon random camera displace-

ments to provide displacement changes in thep(k)’s [18][26][33][38][42]. In our system, we

select feature points automatically, produce feature trajectories (a different trajectory for every

feature), and predict future displacements using the depth estimate [34][36]. The errors in these

predicted displacements, in conjunction with the estimated depth, are included as inputs in the

control loop of the system. Thus, the next calculated movement of the system produces a camera

movement that will eliminate the largest possible portion of the observed error while adhering to

various environmental- and manipulator-specific constraints. This purposeful movement of the

visual sensor provides more accurate depth estimates and a faster convergence of the depth mea-

sures over a sequence of estimates.

For depth recovery, we use the SSD optical flow to measure displacements of feature points

in the image plane. For a single feature point,p, we assume that the optical flow at time instantkT

is , whereT is the time between two successive frames. In order to simplify the

notation, the indexk will be used instead ofkT. By taking delays into account, eliminating the

flow components due to object motion, including the inaccuracies of the model (e.g., neglected

accelerations, inaccurate robot control) as white noise, and utilizing the relations

(4)

the the optical flow is given by:

(5)

(6)

wherev1(k) andv2(k) are white noise terms with variancesσ1
2 andσ2

2, respectively.

The above equations may be written in state-space form as

(7)
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where ,  and , and . The vector

 is the state vector,

 is the control input vector (only movement in the x-y

plane of the end-effector frame is used), and  is the white noise vec-

tor. The term,  can be simplified to

(8)

sinceZW does not vary over time and only the  and  control inputs

are used. By substitution into equation (7) and simplification, we derive the following:

(9)

The previous equation is used under the assumption that the optical flow induced by the

motion of the camera does not change significantly in the time intervalT. Additionally, the inter-

val T should be as small as possible so that the relations that provide  and

 are as accurate as possible. The parameterT has as its lower bound 16 msec (the

sampling rate of standard video equipment). If the upper bound onT can be reduced below the

sampling rate of the manipulator controller (in our case, 28 msec for the PUMA 560), then the

system will no longer be constrained by the speed of the vision hardware.

The objective is to design a specific trajectory (a set of desired

 for successivek’s) for every individual feature in order to identify

the depth parameterZW. Thus, we have to design a control law that forces the eye-in-hand system

to track the desired trajectory for every feature. Based on the information from the automatic fea-

ture selection procedure, we select a trajectory for the feature. For example, the ideal trajectory
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for a corner feature is depicted in Figure 2. If the feature belongs to an edge parallel to the y axis,

then  is held constant at . Then, the control objective function is selected to be

(10)

where denotes the expected value of the random variableY,  is the measured state

vector, and Q, Ld are control weighting matrices. Based on the equation (9) and the minimization

of the control objective function  (with respect to the vector ), we can derive the

following control law:

(11)

where is the estimated value of the matrix . The matrix  depends on the estimated

value of the depth . The estimation of the depth parameter is performed by using the proce-

dure described in [30]. In order to use this procedure, we must rewrite equation (9) as follows (for

one feature point):

(12)
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Figure 2: Desired trajectories of the features
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The objective of the estimation scheme is to estimate the parameter  for each individual

feature. When this computation is completed, it is trivial to compute the parameter  that is

needed for the construction of the depth maps. It is assumed that the matrix  is constant

( ). We use the estimation scheme described in [25][27] (for one feature point):

(13)

(14)

(15)

(16)

(17)

where the superscriptp denotes the predicted value of a variable, the superscriptu denotes the

updated value of a variable, and s (k) is a covariance scalar. The initial conditions are described in

[30]. The term  can be viewed as a confidence measure for the initial estimate .

The depth recovery process does not require camera calibration nor precisely known envi-

ronmental parameters. Camera parameters are taken directly from the manufacturer’s documenta-

tion for both the CCD array and the lens. Experimental results under this process do not suffer

significantly due to these estimates, as shown in the following sections.

6 Experimental Design and Results

6.1 The Minnesota Robotic Visual Tracker

We have implemented the depth recovery and the visual tracking on the Minnesota Robotic

Visual Tracker (MRVT) [6][7] system. The MRVT is a multi-architectural system consisting of

two parts: the Robot/Control Subsystem (RCS) and the Vision Processing Subsystem (VPS).

The RCS consists of a PUMA 560 manipulator, its Unimate Computer/Controller, and a

VME-based Single Board Computer (SBC). The manipulator’s trajectory is controlled via the
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Unimate controller’s Alter line and requires path control updates once every 28 msec. Those

updates are provided by an Ironics 68030 VME SBC running Carnegie Mellon University’s CHI-

MERA [37] real-time robotic environment. A Sun SparcStation 330 serves as the CHIMERA host

and shares its VME bus with the Ironics SBC via BIT-3 VME-to-VME bus extenders.

The VPS receives input from a Panasonic GP-KS102 miniature camera that is mounted par-

allel to the end-effector of the PUMA and provides a video signal to a Datacube system for pro-

cessing. The camera uses a 7.5 mm focal length lens and the camera scale factors in  and  are

mm/pixel and mm/pixel respectively. These parameters are derived from the

documentation for the camera and the Datacube system and are not calibrated. The Datacube is

the main component of the VPS and consists of a Motorola MVME-147 SBC, a Datacube

MaxVideo20 video processor, a Max860 vector processor, and a BIT-3 VME-to-VME bus

extender. The VPS performs the optical flow, calculates the desired control input, and supplies the

input vector to the Ironics processor for inclusion as an input into the control software.

6.2 Derivation of Depth

The initial experimental runs were conducted with a soda can wrapped in a checkerboard

surface, placed such that the leading edge of the curved surface was 53 cm from the nodal point of

the camera (see Figure 3 (a)). The initial depth estimate was set to 1 meter in depth. The camera

x y

0.01333 0.00952

Figure 3: Single can target and surface
(a) (b)
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scaling factors and focal length were taken directly from the documentation provided by the man-

ufacturer and controller gains were set to match the specifications of the RCS. Neither camera cal-

ibration nor gain adjustment was performed for these experiments.

The error in the recovered depth of the majority of feature points was less than the error cal-

culated for a displacement error of one pixel. The reconstructed surface of the single soda appears

in Figure 3 (b) and clearly shows that the process has recovered the curvature of the soda can.

A second set of experiments was conducted using two checkerboard-surfaced soda cans as

targets. The leading edges of the cans were placed at 53 cm and 41 cm in depth (see Figure 4 (a))

to demonstrate the ability of the system to find depths over a wide range. Again, the majority of

the errors in the calculated depths were sub-pixel. For these runs, the initial depth estimate was an

underestimate of 25 cm, in contrast to 1 meter for the previous set of experiments. The recon-

structed surfaces of the dual can experiment are shown in Figure 4 (b). Again, the reconstructed

surfaces show that the process has captured the curvature of both cans in this experiment.

We duplicated the first two sets of experiments without the checkerboard surfaces. Instead,

we used the actual surfaces of the soda cans under normal lighting conditions. This reduced the

number of suitable feature points as well as producing a non-uniform distribution of feature points

across the surface of the cans. Additionally, the surfaces of the cans exhibited specularities and

reflections that added noise to the displacement measures. The target and the result of the single

Figure 4: Two can target and surface
(a) (b)
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can experiment is shown in Figure 5. The surface reconstruction does not exhibit the pronounced

curvature found in the earlier experiments on the artificial, high-contrast matte surfaces; however,

the errors in the depth measures were typically on the order of a single pixel in nature.

The second set of experiments using the real surfaces of two cans at different depths pro-

duced results similar to the single can experiment. In this set of experiments, one can was placed

at an angle to the image plane to determine that the method was not sensitive to specific orienta-

tions. The targets and the results, shown in Figure 6,  demonstrate that the additional noise and the

distribution of suitable feature points affected the recovery of the curvature on the two surfaces.

Figure 5: Single can with real texture and reconstructed surface

(a) (b)

Figure 6: Dual cans with real texture and reconstructed surface
(a) (b)
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6.3 Visual Tracking under X-Y Translation

We conducted multiple experimental runs for the tracking of objects that exhibited unknown

two-dimensional, translational motion with a coarse estimate of the depth of the objects. The tar-

gets for these runs included books, batons, and a computer-generated target displayed on a large

video monitor. During the experiments, we tested the system using targets with linear and curved

trajectories.

The first experiments were conducted using a book and a baton (see Figure 7) as targets in

order to test the performance of the system both with and without the dynamic pyramiding. These

initial experiments served to confirm the feasibility of performing real-time pyramid level switch-

ing and to collect data on the performance of the system under the pyramiding and search opti-

mizing schemes. Figure 8 shows the target trajectory and manipulator path from one of these

Figure 7: Example targets
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experiments. With the pyramiding and search optimizations, the system was able to track the cor-

ner of a book that was moving along a linear trajectory at 80 cm/sec at a depth of approximately

500 cm (see the right plot in Figure 8). In contrast, the maximum speed reported by Papanikol-

opoulos [30] was 7 cm/sec, representing an order of magnitude increase in tracking speed.

The dashed line in the left plot is the target trajectory and the solid line represents the manip-

ulator trajectory. The start of the experiment is in the upper left corner and the end is where the

target and manipulator trajectories come together in the lower right. The oscillation at the begin-

ning is due to the switch to higher pyramiding levels as the system compensates for the speed of

the target. The oscillations at the end are produced when the target slows to a stop and the pyra-

miding drops down to the lowest level and a possible interaction with the pyramiding and an

observed controller overshoot in non-pyramided experiments. This results in the manipulator cen-

tering above the feature accurately due to the higher resolution available at the lowest pyramid

level.

Once system performance met our minimal requirements, testing proceeded to a computer-

generated target where the trajectory and speed could be accurately controlled. For these experi-

ments, the setup of the PUMA and the video monitor to display the targets is shown in Figure 9.

Figure 9: Experimental setup
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The target (the white box) traced either a square or a circle on the video monitor while the PUMA

tracked the target.

The first experiments traced a square and demonstrated robust tracking in spite of the target

exhibiting infinite accelerations (at initial start-up) and discontinuities in the velocity curves (at

the corners of the square). The results in Figure 10 clearly show the oscillatory nature of the

manipulator trajectory at the points where the velocity curve of the target is discontinuous. The

speed of the target in these experiments approached 15 cm/sec.

The next set of experiments was performed using a target that traced a circular path on the

video monitor. This path produces a smoothly varying velocity curve while retaining the infinite

acceleration of the target at start-up. We allowed the experiments to continue for many circuits of

the target in order to determine the response of the system over time. The results demonstrated an

initial oscillation due to the acceleration at start-up followed by smooth tracking once the control-

ler compensated for the extreme initial disturbances. The results of the circular tracking are shown

in Figure 11. The multiple manipulator paths demonstrate the repeatability achieved using the

controller, algorithms, and optimizations. The target in this experiment moved with a speed of 35

cm/sec. The oval-shaped manipulator trajectory visible in the figure is caused by start-up condi-
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tions in the system. The last three loops of the manipulator plotted in Figure 12 show the nearly

circular trajectory achieved once the system has stabilized.

6.4 Visual Tracking under X-Y Translation and Z Rotation

Further tracking experiments were conducted using the video target and the experimental

arrangement previously described (see Figure 9). These experiments introduced a Z-axis rotation

of the target while the manipulator is guided using an appropriate system model and controller to

tracking the rotational motion [30].
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The translational speed of the target was set at approximately 20 cm/sec as the target traced

a roughly circular trajectory (see Figure 13 and Figure 14). The rotational speed of the target dur-

ing these experiments was set to approximately 11 deg/sec (see Figure 15). To avoid the problems

with large discontinuities in accelerations during start-up previously encountered with this experi-

mental configuration, the target completes three circuits of the path at one fourth, one third, and
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Figure 13: X-component of motion
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one half of the final speed of the target, respectively. During this velocity “wind-up” the rotational

component of the target is held constant at zero (see Figure 15).

In all of the data plots the horizontal axis has a unit of cycles that corresponds to the period

of the Puma controller. Each cycle is 28 msec in length. Therefore, the experiment from which

this data is taken lasted approximately 82 seconds. The dashed line in the plots is the target trajec-

tory and the solid line represents the manipulator trajectory.

The errors observed in the tracking are due to the latency of the vision system and the cou-

pling of the rotation and translation. This effect is clearly demonstrated by the degradation of the

translational tracking accuracy at the point when the target rotation is introduced.

7 Conclusion

This paper presents robust techniques for the operation of robotic agents in uncalibrated

environments. The techniques provide ways of recovering unknown workspace parameters using

the Controlled Active Vision framework [30]. In particular, this paper discusses novel techniques

for computing depth maps and for visual tracking in uncalibrated environments.

For the computation of depth maps, we propose a new scheme that is based on the automatic

selection of features and the design of specific trajectories on the image plane for each individual
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feature. Unlike similar approaches [20][25][26][33][38], this approach aids the design of trajecto-

ries that provide maximum identifiability of the depth parameter. During the execution of the spe-

cific trajectory, the depth parameter is computed with a simple estimation scheme that takes into

consideration the previous movements of the camera and the computational delays. We have

tested the approach and have presented several experimental results.

For the problem of visual tracking, we propose a technique based upon earlier work in

visual servoing [30] that achieves superior speed and accuracy through the introduction of several

performance-enhancing techniques. Specifically, the dynamic pyramiding technique provides a

satisfactory compromise to the speed/accuracy trade-off inherent in static pyramiding techniques.

The method-specific optimizations presented also enhance overall system performance without

affecting worst-case execution times. These optimizations apply to various region-based vision

processing applications (such as blind search and gradient-based descent), and in our application

they provide the speedup required to increase the effectiveness of the real-time vision system.

The results we present in this paper demonstrate the effectiveness of the new enhancements

to the SSD optical flow calculations and the feasibility of performing real-time visual pyramiding.

These enhancements are used in both robotic visual tracking and a new method for the derivation

of depth based upon purposeful camera movement and adaptive control. In addition, the tech-

niques presented are easily adapted to other applications, as demonstrated by the preliminary

results of two transportation related applications presented in [35]. All of the work presented in

this paper has been implemented on the MRVT developed at the University of Minnesota, demon-

strating the flexibility of the algorithms that have been presented.
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