
The Design and Implementation of AQuA: An Adaptive Quality of Service
Aware Object-Based Storage Device

Joel C. Wu Scott A. Brandt

Department of Computer Science
University of California, Santa Cruz

{jwu,sbrandt}@cs.ucsc.edu

Abstract

As storage systems are becoming larger and more com-
plicated, they must handle an increasing variety of data
storage needs. Storage system Quality of Service (QoS)
has therefore become an important issue. Storage sys-
tems must be able to deliver satisfactory performance un-
der both expected and unexpected workloads and, increas-
ingly, must handle data (such as multimedia data) with real
timeliness requirements. We are developing a petascale
high-performance distributed object-based storage system
called Ceph. Ceph’s object storage architecture and other
unique features have given rise to new QoS issues that re-
quire new solutions. In this paper, we first discuss the is-
sues involved with the design of the overall QoS framework,
we then present the design and implementation of AQuA,
an adaptive QoS-aware object-based storage device (OSD)
suitable for use as the fundamental building block in an
overall QoS-capable object-based storage system.

1. Introduction

With the explosive growth of digital information, stor-
age systems are becoming larger and more complicated in
order to store the ever-increasing amount and increasingly
diverse types of data. The performance of the storage sys-
tem is crucial to meeting the needs of both applications and
users. To satisfy the performance requirements, in addi-
tion to developing higher-performing storage systems, the
ability to ensureperformance (provide Quality of Service
(QoS) support) has become essential.

To provide consistent and usable performance, the stor-
age system must be able to deliver satisfactory perfor-
mance under expected (and unexpected) workloads. Many
storage-bound applications such as multimedia, scientific,
or visualization applications have timing constraints asso-
ciated with their storage access [8]. These types of soft

real-time applications can benefit from performance assur-
ances. In addition, large storage systems are also likely
to serve different groups of users and different workloads
that have different characteristics and priorities. In such
environments, it would be useful to have the ability to al-
locate performance (bandwidth) dynamically according to
the needs of the current applications and users.

Without QoS support, different and unrelated workloads
sharing the same storage system may interfere with each
other’s performance. To ensure Quality of Service, the
storage must be provisioned in such a way as to ensure
that it can meet the performance requirement of all ex-
pected workloads. However, storage workloads are dy-
namic and transient in nature, and provisioning for the
worst case scenario is prohibitively expensive. Ensuring
performance isolation by over-provisioning can be twice as
expensive [18, 2]. Although automated design tools exist
that can assist designers in provisioning the system [2, 3],
they require detailed knowledge of the expected workload
and system configuration, and are slow to adapt to changes.
Adequate provisioning is essential but, in addition, it is
highly desirable to have the ability to assure performance
under different load conditions.

The object-based storage model [19] is a distributed
storage architecture that overcomes many of the limita-
tions of traditional distributed storage. It achieves high
capacity, throughput, reliability, availability, and scalabil-
ity. We are currently developingCeph, a petabyte dis-
tributed object-based storage system optimized for high
performance computing environments [26]. The three ma-
jor components of Ceph are shown in Figure 1. The Client
Interface (CI) provides file system API to applications on
the client nodes. The Metadata Server (MDS) cluster is re-
sponsible for metadata operations such as namespace and
directory management and authentication [28]. The Stor-
age Managers (SMs) encapsulate low-level storage alloca-
tion, scheduling, and management within each OSD.

A design goal of Ceph is to have QoS capability that can
provide performance assurances. Toward this end, there

101

Client Client Client

OSD OSD OSD OSD

MDS MDS

High Speed

Metadata

Server
Cluster

Networks

Figure 1. Ceph’s object-based architecture

are two main aspects of Ceph’s QoS architecture. First,
each of the OSDs must be QoS-aware, and second, there
must be an overall framework aggregates the performance
assurances provided by the individual OSDs into an overall
QoS architecture. In this paper, we first discuss the issues
of the overall QoS framework. We then present the design
and implementation of our adaptive QoS-aware OSDs, or
AQuAs.

2. Storage QoS Architecture

The desire to build multimedia storage systems capa-
ble of video streaming [11] has generated considerable in-
terest in distributed storage QoS. Generally, the goals of
these systems are to ensure jitter-free delivery of continu-
ous media data. In this context, the assurances provided are
relatively fine-grained and at the transactional level, such
as per disk request, per movie/file, or per client job (as in
Swift [16]). One such example is the MARS project [5, 6].
To attain parallelism, many of these systems stripe data
across different storage nodes. However, they are designed
with homogeneous continuous media data in mind, and
the storage architecture and the techniques they employ to
achieve QoS often exploit the nature of video delivery and
properties of continuous media data (mostly sequential ac-
cess with identifiable frame rate) and can not be readily
applied to systems with heterogeneous data or access pat-
terns.

The type of QoS-capable distributed storage systems
that we are interested are those designed for general pur-
pose use (not multimedia-specific). The goal of the QoS
mechanism in this context is to allocate bandwidth among
different workloads. The assurance provided is often at
a coarser grain, such as per workload or per initiator-
target stream. While many distributed storage systems
stripe data across different storage nodes, most QoS-aware
non-multimedia specific distributed storage systems are not
striped. They utilize a collection ofper devicemechanisms
(a devicein this context is a logical storage node). Al-
though the file system spans multiple storage nodes, the
QoS assurance are provided individually for each storage
node (or for streams starting or terminating at a node). For
example, Facade [18], Zygaria [29], and the GRIO [22] in

XFS have a QoS mechanism for each node. The system
described by Sundaram [24] associates QoS mechanism
with a logical volume. Stonehenge [13] associates QoS
attributes with a logical volume at volume creation time.
SLEDS [7] has special gateways between client and stor-
age nodes that associate each initiator-target streams with a
QoS property (per-stream).

The use of per-device (or per-stream) QoS mechanisms
is natural because traditional distributed storage systems
store related data (such as a single large file) on the same
storage node. However, on Ceph, files are broken up into
objects and striped across different OSDs for load bal-
ancing and parallelism [12, 28]. The object distribution
is expected to distribute the objects evenly across all of
the OSDs [25] and a very large file may have its contents
spread across the entire OSD cluster. Because of this fea-
ture, the locality of data as seen by the file system is de-
stroyed above the device level. Therefore, for Ceph, it is
not sufficient to have a collection of per-device QoS mecha-
nisms, as multiple devices may be involved in even a single
transfer request.

The difference in QoS mechanisms and data flow is de-
picted in Figure 2. Figure 2(a) shows a QoS framework
with a collection of per-device QoS mechanisms. The per-
stream mechanism for SLED is shown in Figure 2(b). Fig-
ure 2(c) shows the flow of data in Ceph, where a read or
write stream between a client and a file can be broken up
into multiple streams going between the client and differ-
ent OSDs. In addition to the flow of data between clients
and OSDs, there are also flows of data between OSDs. The
OSDs in Ceph are intelligent and autonomous devices that
have peer-to-peer capability and can independently per-
form data management functions such as replication and
recovery.

Storage QoS is complicated by the stateful nature of disk
scheduling, caused by the physical and mechanical proper-
ties of the disks themselves. The time it takes to serve a re-
quest not only depends on the location of that request, but
also depends on the current location of the disk head as the
result of the previous request. Consequently, the through-
put of a disk depends on both its workload and data layout.
True isolation of performance at the level of a shared disk
arm is not possible, as different workloads sharing the same
disk arm may interfere with each other. Thus, unlike net-
work bandwidth, the amount of available disk bandwidth
is not fixed. Storage QoS must contend with the issue of
assuring resource allocation when the total amount of re-
source varies. The way different QoS mechanisms deal
with the stateful nature of the disk provides us with another
way to characterize the QoS mechanisms.

There are three ways to address this issue. The first
method is proportional sharing. In proportional sharing of
disk, each allocation gets a fraction of the disk’s bandwidth.

102

diskdisk diskdiskdisk disk

stream stream
streamstream

Interconnect
Network

QoS QoS QoS QoS QoS QoS

(a) Per-device QoS mechanism

diskdisk diskdiskdisk disk

Interconnect
Network

QoS QoS

stream

stream

streamstream

(b) Per-stream QoS mechanism (SLEDS)

OSDOSD OSDOSDOSD OSD

stream

stream
streamstream

Interconnect
Network stream

stream

stream

MDS

(c) Data flow in Ceph

Figure 2. Per-device and per-stream QoS mechanisms and thei r data flows vs. data flows in Ceph.

The system described by Sundaram [24] uses the Cello [23]
disk scheduler as the per-device mechanism. Cello al-
locates portions of the total disk bandwidth to different
classes proportionally. YFQ [4] is another disk scheduler
that uses proportional sharing. As the total disk bandwidth
varies, the actual bandwidth received by each reserved por-
tion also varies. Because proportional sharing can’t make
assurance in terms of the actual data rate, its usefulness is
limited.

The second method is to use an estimated value as the
total bandwidth for a disk. Admission control and perfor-
mance assurance are made based on treating this value as
the amount of the total resource, in the same way that net-
work QoS is achieved over a link with fixed bandwidth.
Typically, a profiling program is used to determine a fixed
average bandwidth of the disk. DFS [1] and Zygaria [29]
uses this approach, as well as the GRIOv2 [22] in XFS,
which refers to this value as the ”qualified bandwidth.”
The choice of this value is usually a trade-off between the
”tightness” of the QoS assurance and the total throughput

The third way in which QoS mechanisms deal with the
stateful nature of the disk is by adaptation. This method
attempts to adapt to the changing total bandwidth. Regard-
less of the actual techniques implemented, it can be gen-
eralized into athrottling model. We present this throttling
model in more detail, as it simplifies the overall storage
QoS framework. There is actually a fourth approach for
dealing with the stateful nature of the disk, by carefully
profiling and extracting the disk parameters such as seek
time, rotational latency, and access time. With these pa-
rameters, a disk model can be constructed in which the disk
scheduler will try to calculate the exact service time of a
request and schedule it accordingly. The disk scheduler is
expected to anticipate and control every movement of the
disk drive. This method is used by real-time disk sched-
ulers [21] and is largely limited to special-purpose systems.
Increasingly intelligent disk drives with increasingly many
layers of intelligence and interface make this approach in-
feasible in our system [30] and we do not consider it fur-
ther.

We now describe a generalized throttling approach that
works by throttling workload streams. Generally, QoS can
be abstracted and viewed as redistributing resource among
consumers of the resource to meet certain criteria. The
throttling approach is essentially a feedback-based tech-
nique that allocates bandwidth based on a comparison of
the current loading condition with the desired loading con-
dition. The rate of a stream is ensured by throttling the
rate of competing streams. This throttling approach can be
simplified and generalized into a generic model with four
major components.

Specification—The Specificationmechanism allows
the declaration of the desired quality level that a particular
entity (client, group of clients, class of applications, etc.) is
to receive, and the system attempts to assures that the entity
receives this minimum level of service. SLED [7] uses av-
erage response time (IOPS, bytes/sec) as its specification.
Facade [18] uses a pair of curves specifying read and write
latency as a function of request rate.

Monitor —TheMonitor is the component that monitors
the rate at which different entities are receiving service.
Different parameters of the system can be monitored (and
the values compared to the specification) to extract the sta-
tus of the system and derive the actions to be taken. Status
such as queue length, average completion time, response
time, as well as throughput can be monitored. SLEDS mon-
itors I/O service time; Facade monitors a number of statis-
tics including I/O arrival and completions, average latency,
and read/write request arrival rates.

Enforcer—TheEnforcer is the mechanism that shapes
bandwidth by throttling resource consumption. To manage
bandwidth by rate-limiting, the system must have the abil-
ity to place caps on over-demanding clients. Facade uses
an I/O scheduler, and SLED uses leaky buckets to control
the rate that SCSI commands can be issued.

Controlling Technique—The Controlling Technique
decides how much and when to throttle the bandwidth of
over-limit clients as well as how much and when to re-
lease the throttling. Triage [14] uses a control-theoreticap-
proach; Facade and SLED uses heuristic-based approaches.

103

Storage
Devices

Monitor

Enforcer

Controlling
Technique

Specification

Workloads

Figure 3. The throttling approach

Figure 3 shows the components of this throttling-based
approach. These systems work by allowing specifications
to be associated with workload streams. The actual per-
formance is monitored. If some entities are not receiv-
ing their desired bandwidth, the enforcer throttles back the
bandwidth of competing over-limit entities’ streams in or-
der to boost the bandwidth of the under-limit entities. The
details of the throttling are determined by the controlling
technique.

3. Ceph Global QoS Objective

Most traditional QoS mechanisms allow the partition-
ing of performance of one single storage node at a time. In
Ceph, the traditional association between a file and storage
node is destroyed because objects are expected to spread
evenly across OSDs. Any object can potentially end up on
any OSD, and a large file will have its content spread across
many OSDs. This property of Ceph requires that the QoS
framework move beyond the local per-device QoS mech-
anisms; global coordination is required. This section de-
scribes the global QoS framework that provides the context
for our AQuA QoS-aware OSDs. The design and imple-
mentation of AQuA is described in the next section.

¡¡¡¡¡¡¡ msst06-qos.tex The QoS objective for Ceph is
global performance partitioning. The Ceph QoS frame-
work is intended to allow the storage system to be par-
titioned into different performanceclasses. A class is
an aggregate of storage traffic sharing the same QoS at-
tribute, analogous to a traffic class in DiffServ for network
QoS. The semantics and granularity of the classification is
administrator-defined. It can be applications, groups of ap-
plications, groups of users, type of task, etc. Regardless of
the scheme, each request to the underlying storage is tagged
by its class identifier. The tagging of request class is done
by the client component.

Consider the scenario where the storage system is used
in a storage-intensive high priority distributed scientific ap-
plication. While the scientific application is running, there
are other less important background tasks that must be per-
formed such as backup or copying the results to another
system. However, these less important tasks may nega-

tively impact the performance of the scientific application.
The current practice is to suspend all other tasks while im-
portant high-performance applications are running. The
Ceph QoS architecture allows the administrator to assure
the bandwidth for the scientific application at the global
level, without going to each storage device individually
for resource allocation. Other tasks can proceed at the
same time without negatively impacting the performance of
the scientific application ======= The QoS objective for
Ceph is global performance partitioning. The Ceph QoS
framework is intended to allow the storage system to be
partitioned into different performanceclasses. A class is
an aggregate of storage traffic sharing the same QoS at-
tribute, analogous to a traffic class in DiffServ [9] for net-
work QoS. The semantics and granularity of the classifica-
tion is administrator-defined. It can be applications, groups
of applications, groups of users, type of task, etc. Regard-
less of the scheme, each request to the underlying storage
is tagged by its class identifier. The tagging of request class
is done by the client component.

Consider the scenario where the storage system is used
in a storage-intensive high priority distributed scientific ap-
plication. While the scientific application is running, there
are other less important background tasks that must be per-
formed such as backup or copying the results to another
system. However, these less important tasks may nega-
tively impact the performance of the scientific application.
The current practice is to suspend all other tasks while im-
portant high-performance applications are running. The
Ceph QoS architecture allows the administrator to assure
the bandwidth for the scientific application at the global
level, without going to each storage device individually for
resource allocation. Other tasks can proceed at the same
time without negatively impacting the performance of the
scientific application ¿¿¿¿¿¿¿ 1.33

While the potential total throughput of the system can
be determined under ideal situations, in reality it is diffi-
cult to assure a specific bandwidth to a class by just using
the throttling of the QoS mechanism alone. Although ob-
jects are expected to be distributed evenly across all OSDs,
in heterogeneous workloads the popularity of objects will
vary and at times only a subset of the total OSDs will be
involved in data transfer. As a result, the total throughput
will vary and be determined by workload of the subset of
OSDs involved. Because of this property, the per-class as-
surances are administrator configured, and we expect the
administrator to tune the system to obtain optimal results.

Figure 4 shows the proposed QoS architecture of Ceph.
As viewed from the client at the file system level, the QoS
layer encapsulates the complexity of the striping with the
enforcement done at the OSDs.

104

diskdisk diskdiskdisk disk

Interconnect
Network

ENF

MDS

QoS

spec

administrator

ENFENFENFENFENF

Figure 4. The global QoS framework encap-
sulates the striping and the bandwidth shar-
ing is enforced at the OSDs.

4. Ceph QoS-Aware OSD

The basic building blocks of the Ceph system are the
object-based storage devices (OSDs). Each OSD is an in-
telligent and autonomous storage device that offloads disk
block allocation and scheduling functions from the tradi-
tional storage server and provides an abstract data object
interface to the client system software. All local storage
issues are managed within the OSDs. The QoS capabili-
ties of the OSDs are used to support the overall global QoS
framework. Ceph’s OSDs are built with commodity block-
based hard drives; each OSD consists of a CPU, network
interface, local cache, and storage device (disk or small
RAID configuration).

The block-based hard disk in the OSD is managed by
Object-Based File System (OBFS) [25], a small and ef-
ficient file system designed to optimize disk layout (and
thereby performance) based on the expected workloads of
Ceph. OBFS manages all low-level storage functions and
presents an object interface to the clients. OBFS is imple-
mented in the Linux 2.6 user space and manages the raw
block-device directly. The initial implementation of OBFS
uses a simple elevator scheduler for disk request schedul-
ing.

The fundamental capability provided by the AQuA is to
throttle traffic. Regardless of the higher-level QoS goals,
eventually they can all be decomposed into why, when,
how, which, and how much to shape the disk traffic. The
underlying QoS framework simply shapes the traffic to sup-
port the higher level QoS goals.

All requests arriving at the OSD are associated with a
class ID. Requests with invalid or no class ID are put into
a default best-effort class. The determination of the class
ID for the requests are done outside of the OSD. To add the
traffic shaping capability, we replaced the elevator sched-
uler in OBFS with a QoS-aware scheduler ODIS (Object

API

ODIS

OBFS

Linux kernel

Block device driver

Block-based disk

User space

OSD

Object interface

Figure 5. Internal Structure of an AQuA OSD
with the Object Disk I/O Scheduler (ODIS)

Disk I/O Scheduler). The internal structure of the OSD is
shown in Figure 5.

5. The OSD I/O Scheduler

The QoS-assuring capability of OBFS is provided by
ODIS (Object Disk I/O Scheduler). ODIS enables the
OSD’s ability to allocate bandwidth between different
classes of traffics. This section describes the design and
implementation details of ODIS.

5.1. Reservation

The generic termclassis used to represent a collection
of requests with the same QoS requirements (a QoS en-
tity). This classification of requests allows the differenti-
ated handling of disk traffic. ODIS allows reservations to
be made. A reservation request includes a class identifier,
the requested bandwidth, and an optional duration param-
eter. When an OSD receives a reservation request, admis-
sion control is performed to determine if it can support this
new reservation. The admission control is a simple linear
additive admission control based on a pre-determined value
of the total disk bandwidth. The choice of this value is dis-
cussed further in Section 5.4.

ODIS maintains the reservation information. For each
admitted reservation, ODIS creates the associated data
structure and thread. Taking advantage of the computing
power available at the OSD, the ODIS scheduler utilizes
multi-threading to increase parallelism. ODIS maintains a
QoS queue and a thread for each class reservation. The
functionsquofs reserve() andquofs release()
are used to explicitly setup and remove the reservations.
Reservations can also be removed automatically if an expi-
ration time is supplied.

At the top level, data on an OSD is accessed through
OBFS’s quofs read() and quofs write() calls.
The calls contain a parameter indicating the QoS class of
the request.

105

Dispatch queue
(elevator order)

QoS
queue 1

disk

Best-effort
queue

QoS
queue 2

QoS
queue n

Worker
threads

Figure 6. ODIS structure

5.2. Queueing Structure

Requests going to the disk are sorted into different QoS
queues according to their class ID. A default best-effort
class with an ID of 0 aelways exist for best-effort requests
(and any requests with invalid class IDs). For an OSD with
n class reservations, there will be(n+1) QoS queues. The
bandwidth requirement information is maintained for each
queue. In addition to the QoS queues, there is a sorted
queue (dispatch queue). Figure 6 shows the internal struc-
ture of ODIS.

As requests arrive, they are sorted into their respective
QoS queues. The best-effort queue is also considered a
QoS queue since it has a minimal bandwidth requirement
for starvation prevention. Each QoS queue has a worker
thread that moves the request from the QoS queue to the
dispatch queue. The QoS requirement is enforced by con-
trolling the rate at which requests are moved from each of
the QoS queues to the dispatch queue. Requests are in-
serted into the dispatch queue in elevator order. The re-
quest at the head of the dispatch queue is removed and sent
to the disk as fast as the disk allows. This is done by a
worker thread associated with the dispatch queue. The sort-
ing of incoming requests into different queues by class ID
and the controlling of how fast requests from each of the
QoS queue are moved to the dispatch queue forms the ba-
sis of the bandwidth assurance framework.

5.3. Token Bucket Implementation

Conceptually, the queueing structure slices up the to-
tal bandwidth of the disk and assigns them to different
classes. The QoS queues rate-limit the bandwidth each
class can obtain according to its reservation, preserving the
desired sharing and preventing interference between differ-
ent classes of traffic. However, under realistic usage, not
all reserved bandwidth will be used. ODIS must be able
to reclaim reserved but unused bandwidth, as well as un-
reserved bandwidth. This is accomplished by using hier-
archical token bucket filter (HTB). The principle of hierar-

chical sharing [10] allows a class to receive more than its
reserved share if there is unused bandwidth available.

¡¡¡¡¡¡¡ msst06-qos.tex Using HTB, a disk’s bandwidth is
divided between classes. Each leaf node is associated with
a class and represents a point of control for accessing the
disk. In our implementation a leaf node corresponds to a
QoS queue. When a reservation for a class is first made,
a QoS queue (leaf node) is created and added to the tree
structure. When the reservation expires or is deleted, its
QoS queue (and its corresponding place in the tree) is re-
moved.

The token bucket filters serve to regulate disk band-
width. In order to move a request from a QoS queue to the
dispatch queue, the class associated with the queue must
possess enough tokens. In ODIS, each token represents
1 KB of data, meaning a request for 256 KB of data re-
quires 256 tokens. Each leaf node in the tree has an asso-
ciated bucket, which may hold up to a maximum number
of client request is serviced, tokens are removed from its
bucket. Tokens are replenished at a rate corresponding to
the client’s reservation. The root (global) token rate rep-
resents the entire bandwidth of a disk. For example, if a
disk supports an average throughput of 30 MB/second, the
root token rateT0 = 30K tokens/second. ======= Using
HTB, a disk’s bandwidth is divided between classes. Each
leaf node is associated with a class and represents a point of
control for accessing the disk. In our implementation a leaf
node corresponds to a QoS queue. When a reservation for
a class is first made, a QoS queue (leaf node) is created and
added to the tree structure. When the reservation expires
or is deleted, its QoS queue (and its corresponding place in
the tree) is removed.

The token bucket filters serve to regulate disk band-
width. In order to move a request from a QoS queue to the
dispatch queue, the class associated with the queue must
possess enough tokens. In ODIS, each token represents
1 KB of data, meaning a request for 256 KB of data requires
256 tokens. Each leaf node in the tree has an associated
bucket, which may hold up to a maximum number of to-
kens. When a client request is serviced, tokens are removed
from its bucket. Tokens are replenished at a rate corre-
sponding to the client’s reservation. The root (global) token
rate represents the entire bandwidth of a disk. For example,
if a disk supports an average throughput of 30 MB/second,
the root token rate would be 30K tokens/second. ¿¿¿¿¿¿¿
1.33

Since every class has its own supply of tokens, ODIS
guarantees that every class is always able to freely request
up to its reservation in disk requests. The sharing of un-
used bandwidth is facilitated by the token bucket of the
root node. In addition to its own tokens, a class can con-
sume any extra bandwidth by using tokens from the root.

106

The effect is that unused bandwidth is shared among the
classes.

When a class drains tokens from its own bucket, it also
drains from the root bucket. The result is that when a class
makes disk requests, the root tokens will be drained as well.
If some of the classes are not fully using their reservation,
the root will have surplus tokens. These tokens are avail-
able to other classes when their own supply runs out, so that
a class that has exceeded its reservation may still be able
to proceed. This hierarchical structure provides a method
for a class to use unreserved bandwidth, as well as reclaim
bandwidth that is reserved, but not used, by others.

5.4. Trade off between QoS assurance and total
throughput

The throughput of a disk during overload depends on the
workload. Since the totality of resource may vary, propor-
tional sharing is often used to reserve and allocate a fraction
of the bandwidth to different shares [23, 4]. However, be-
cause the total disk bandwidth varies, these fractional guar-
antees do not result in fixed data rate. In many circum-
stances it would be more useful to have assurances in terms
of data rates, and not in terms of a fixed fraction of a dy-
namically changing total bandwidth.

ODIS is able to provide assurance in terms of data rates
with absolutereservations and knowledge of the root node
bandwidth. However, the unpredictable nature of storage
also presents a problem for ODIS. Thus far we have as-
sumed that the disk bandwidth is fixed. Although con-
venient, this assumption is not true; the throughput of a
disk during overload depends on the workload. ODIS uses
a conservative estimate of total bandwidth. This under-
utilizes the disk, but allows ODIS to provide the reserved
bandwidth. The more aggressively ODIS utilizes the disk,
the less effective it is at providing isolation and sharing.
Trade-offs must be made between ”tightness” of the QoS
assurance and total throughput.

The GRIOv2 (Guaranteed Rate I/O version 2) [22]
mechanism of XFS also allows applications to reserve a
specific bandwidth from the file system in terms of actual
data rates. Similar in concept to our global token rate,
GRIOv2 requires the specification of a ”qualified band-
width,” which is defined as ”the maximum I/O load that it
(file system) can sustain while still satisfying requirements
for delivered bandwidth and I/O service time.” This value
is to be set by the administrator and it is suggested that this
value be determined iteratively from running realistic test
workloads, monitoring the performance, and refining the
value. In a large storage system with varying workloads,
this is unlikely to be optimal.

5.5. Bandwidth Maximizer

¡¡¡¡¡¡¡ msst06-qos.tex We seek to address this problem
through the use of abandwidth maximizer. The object dis-
tribution causes objects in each OSD to have little inter-
object locality. The workload variation experienced within
a single OSD would be less as locality in data is destroyed
intentionally for system-wide load-balancing purposes, and
small accesses are absorbed by caching at the client. Given
these properties, the approach taken by AQuA is a combi-
nation of: (1) Conservative estimate of the global token rate
to ensure stringent QoS assurance; and (2) Minimizdinge
underutilization of disk with adaptive heuristics. A conser-
vative estimate of the global token rate is used for admis-
sion control and bandwidth assurance. However, the total
throughput of the disk is not limited by this value. The
bandwidth maximizer will attempt to increase the aggre-
gate throughput as long as the QoS assurance are not vio-
lated. ======= We seek to address this problem through
the use of abandwidth maximizer. The object distribution
causes objects in each OSD to have little inter-object lo-
cality. The workload variation experienced within a sin-
gle OSD would be less as locality in data is destroyed in-
tentionally for system-wide load-balancing purposes, and
small accesses are absorbed by caching at the client. Given
these properties, the approach taken by AQuA is a com-
bination of: (1) Conservative estimate of the global token
rate to ensure stringent QoS assurance; and (2) Minimizing
underutilization of disk with adaptive heuristics. A con-
servative estimate of the global token rate is used for ad-
mission control and bandwidth assurance. However, the
total throughput of the disk is not limited by this value.
The bandwidth maximizer will attempt to increase the ag-
gregate throughput as long as the QoS assurance are not
violated. ¿¿¿¿¿¿¿ 1.33

To derive an estimate of global token rate, we use a small
program that profiles the disk to determine a conservative
global token rate. The profiling program simulates the type
of expected workloads and determines a conservative es-
timate of the disk throughput. The workload it simulates
is tunable by the system administrator and the global token
rate for ODIS can be modified by distributing the new value
to the OSDs.

As already stated, the maximum achievable throughput
of a disk at any given time is dependent on the workload.
The global token rate represents a conservative estimate of
this value. The hypothetical maximum achievable through-
put at any given time may be higher or lower than the global
token rate. LetG denote the maximum total throughput as
specified (and limited) by the global token rate, and letA
denote the hypothetical maximum achievable total through-
put under a given workload. Figure 7 depicts a hypothetical
scenario showing the relationship betweenG andA. With

107

G

A

T
o

ta
l T

h
ro

u
g

h
p

u
t

Time

G: Global Token RateA: Achievable Throughput

Potential for bandwidth
maximization

Figure 7. Global token rate and the hypothet-
ical maximum achievable rate

a conservative estimate ofG, we expectG < A most of the
time.

Let O be the actual total throughput experienced by the
disk (the observed rate). Its upper bound will be limited
by the value ofG andA: O ≤ min(G,A). There are three
scenarios of interest:

1. When the demand is not capped by eitherA or G. O<

A andO < G

2. When the demand is capped byA, andA < G

3. When the demand is capped byG, G < A.

In the first scenario, when the demand on disk band-
width is less than the supply, no throttling is needed and all
requests are able to proceed at disk speed. Even if one or
more class is demanding more than their reservation, there
is sufficient spare bandwidth available (at the root node)
to satisfy the extra demands. In this case,(O ≤ G) and
(O≤ A). The value ofG does not result in underutilization
of the disk given the demand.

In the second scenario, the actual maximum achievable
throughput under the given workload is less than the global
token rate, and the actual total throughput is limited by
this value. In this scenario, the reservation mechanism has
over-committed, and the QoS assurance may or may not
hold. For example, if all the reservations are demanding
their maximum reserved rate, there is simply not enough
resource (tokens) to go around. But it may be possible that
one reservation is using less than its reserved share, and the
other reservation is using more than its reserved share (un-
used share from the first reservation is reclaimed). In this
case the QoS assurance would still be met. In either case,
the total throughput of the disk is limited byA. Although
the QoS assurance may be compromised, the disk is not
underutilized.

The last scenario occurs whenG< A andO is capped by
G. In this case, the actual throughput of the disk is limited
by the value of the global token rate. Some requests are

throttled to maintain the QoS assurance, but the possible
maximum achievable throughput is higher than that spec-
ified by the global token rate. In this case it is desirable
to overcome the limit ofG and maximize the throughput.
This potential is depicted as the center area in in Figure 7.
To maximize disk throughput without violating the QoS
goals, the bandwidth maximizer—an adaptive heuristic—
is used. The bandwidth maximizer attempts to maximize
the throughput by dynamically increasing the global token
rate. By increasing the global token rate, nodes that have
demands beyond their allocated tokens can borrow from the
root token bucket, increasing the total throughput. This is
desirable as long as the QoS goals are not violated. The ex-
tra tokens are available for use by any classes that have de-
mands beyond their reservation on a first-come-first-serve
basis.

The heuristic adjustsG by monitoring the status: If disk
throughput is capped byG and no QoS commitments are
violated, it increaseG. If disk throughput is capped byG,
G has been increased to greater than its original value, and
some QoS commitments are violated, decreaseG. G will
not drop below its original value.

6. Experimental Results

Our test system uses a 1.5 GHz AMD Sempron 2200+
CPU with 512MB of RAM. It runs Linux kernel 2.6.11.
The test disk is a Maxtor DiamondMax 6Y080P0. It is a
7200 RPM IDE drive with a capacity of 80GB and 8 MB
of onboard buffer. The disk is divided into two equal par-
titions, the experiments are run using one of the partitions
(placed under control of OBFS). The experiments are con-
ducted using a synthetic workload generator that we de-
veloped (no real object workloads are currently available).
The purpose of these experiments is to highlight the ca-
pabilities of our AQuA OSDs rather than to demonstrate
exhaustively that the mechanisms work in all cases, and
we therefore focus on a few illustrative examples. For
the experiments, we use the large block size (512 KB) of
OBFS because most small accesses are absorbed by the
buffer at the client, and streaming and other applications
that need bandwidth assurance typically access large files
(which have large blocks).

We show the ability of ODIS to provide performance
isolation by allocating portions of the disk to different
classes of traffic. In this experiment, we have three separate
threads all generating write requests to the OSD. The global
token rate is set at 40 MB/s. Figure 8 shows the perfor-
mance of OBFS without QoS assurance. The X-axis is the
passage of time in seconds, and the Y-axis is the measured
throughput by the synthetic application program. All the
workloads attempt to write as much as possible and start at
30 second interval. As more workloads are introduced, we

108

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 20 40 60 80 100 120

T
hr

ou
gh

pu
t (

M
B

/s
)

Time (s)

Workload 1 (0-120)
Workload 2 (30-120)
Workload 3 (60-120)

Figure 8. No QoS reservation

can see that they interfere with each other’s performance.
The throughputs received by each of the workloads are ap-
proximately equal. There is little loss of total throughput
as we move from one stream to three, this is due to the fact
that the writes are at 512KB each, and with more streams,
the disk interleaves requests from different streams.

In the next experiment shown in Figure 9, we make
reservation for the three classes (workloads) at 5 MB/s, 15
MB/s, and 20 MB/s. From time 0 to time 30, workload 1
is the only workload experienced by ODIS, and although it
only has a reservation of 5 MB/s, it is able to consume the
unused bandwidth, resulting in a throughput of 40 MB/s,
equal to the global token rate. At time 30, the second work-
load is introduced. They each receive more than their re-
served share because there are unused tokens available. At
time 60, the third workload is introduced. Under this condi-
tion, all tokens are being used up, and all three workloads
are capped at their reserved rate and there is no interfer-
ence.

Figure 10 shows the same experiment again, but this
time with the bandwidth maximizer at work. We see that
all QoS assurances are met, and the aggregate throughput
of the entire disk is increased.

7. Related Work

The importance of storage QoS has been recognized.
Our work builds and extends upon the contributions of
many previous works. The hierarchical token bucket filter
used in ODIS is based on the concept of hierarchical link
sharing [10] from the networking field. However, the total
available bandwidth for a network link is constant, while it
varies for a disk according to the workload. Hence many
QoS solutions developed for networking cannot be applied
directly to disk. ODIS mitigates this issue with the band-
width maximizer adaptation technique.

Disk schedulers are often used to manage the disk band-
width in order to provide QoS assurance. These sched-

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 20 40 60 80 100 120

T
hr

ou
gh

pu
t (

M
B

/s
)

Time (s)

Workload 1 (0-120)
Workload 2 (30-120)
Workload 3 (60-120)

Figure 9. With QoS reservation at 5 MB/s, 15
MB/s, and 20 MB/s for workloads 1, 2, and 3.

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 0 20 40 60 80 100 120

T
hr

ou
gh

pu
t (

M
B

/s
)

Time (s)

Workload 1 (0-120)
Workload 2 (30-120)
Workload 3 (60-120)

Figure 10. Same experiment as depicted in
Figure 9, but with bandwidth maximizer at
work.

ulers must satisfy QoS assurance in addition to mini-
mize response time and maximize throughput. They range
from special purpose real-time disk schedulers [20, 21] to
mixed-workload disk schedulers that can allocate band-
width among different classes of applications. It is gen-
erally accepted that there is a trade-off between QoS assur-
ance and total throughput. The pure real-time disk sched-
ulers assume that all requests have an associated deadline.
The requests are typically ordered based on some combina-
tion of real-time scheduling techniques and disk seek opti-
mization schemes (e.g. SCAN-EDF). They are more suit-
able for specialized systems such as multimedia server with
homogeneous request types. The mixed workload sched-
ulers such as Cello [23] and YFQ [4] use proportional shar-
ing of the disk bandwidth, which can be an issue of assur-
ance in data rate is required. Cello supports a limited and
static numbers of classes, while YFQ allows for dynamic
creation and deletion of classes.

109

A number of QoS-capable distributed storage systems
have been developed. Systems such as Facade [18],
SLED [7], Stonehenge [13], Zygaria [29], DFS [1], and
GRIO [22] have already been mentioned and compared to
our system in earlier sections of the paper, we will not de-
scribe them again in this section. Of these systems, Zy-
garia [29] is most similar to our work. It is a object-based
storage system that uses the concept of a storage bricks.
The Zygaria mechanism allows hierarchical sharing of in-
dividual bricks enforced with token buckets. It is a per de-
vice (brick) mechanism that assumes a fixed value for total
disk throughput.

Lu et al. [17] presented a three level QoS specification
for OSD and proposed extensions to the iSCSI specification
to support the OSD QoS framework. Studies have also been
done on how to communicate the QoS requirements to the
OSD [15].

8. Conclusion and Future Work

¡¡¡¡¡¡¡ msst06-qos.tex Quality of Service is an impor-
tant issue for large distributed storage systems. We first
discussed the issues in achieving QoS on our Ceph dis-
tributed object-based storage system. We then presented
the design and implementation of AQuA, an adaptive QoS-
aware OSD, and present proof-of-concept results demon-
strating the effectiveness of AQuA’s mechanisms. AQuA
combines the ODIS disk scheduler with the OBFS file sys-
tem, enabling the differentiated handling of disk traffic be-
longing to different classes. The ODIS disk scheduler is
implemented with hierarchical token buckets. It is able to
rate-limit disk requests and reclaim unused bandwidth. The
total disk throughput can be increased by the use of the
bandwidth maximizer, a heuristic algorithm that attempts
to maximize total disk throughput without violating the
QoS goals. Ultimately, AQuA OSDs are intended to serve
as the basic building blocks in an overall QoS framework
for the Ceph object-based storage system.

Future work on AQuA will shift from utilizing OBFS to
EBOFS (Extend-Based Object File System) [27]. EBOFS
is a new object-based file system that will form the main-
stay of future Ceph OSD. With EBOFS, more testing will
be conducted and analyzed to better understand the char-
acteristics of an AQuA OSD. In addition, the global QoS
framework presented in the first part of the paper will be
implemented.

The per-class assurance currently implemented by
AQuA allows performance to be partitioned among differ-
ent classes of traffic. However, if a class is sufficiently gen-
eral, overloading within a class is possible and there may
be times in which it is desirable to assure a particular traf-
fic flow within a class. To provide more flexibility, we will
investigate the benefit of adding finer-grained transaction-

style QoS assurance to AQuA. A transaction is a particular
sequence of read or write request issued by a client (similar
to aclient job in Swift [16]). It is associated with a class
and uses the resource of that class. Because of the use of
hierarchical sharing, the mechanism enablingper-classand
per-transactionassurance should fit together seamlessly as
a two layered hierarchical sharing. ======= Quality of
Service is an important issue for large distributed storage
systems. We first discussed the issues in achieving QoS
on our Ceph distributed object-based storage system. We
then presented the design and implementation of AQuA,
an adaptive QoS-aware OSD, and present proof-of-concept
results demonstrating the effectiveness of AQuA’s mecha-
nisms. AQuA combines the ODIS disk scheduler with the
OBFS file system, enabling the differentiated handling of
disk traffic belonging to different classes. The ODIS disk
scheduler is implemented with hierarchical token buckets.
It is able to rate-limit disk requests and reclaim unused
bandwidth. The total disk throughput can be increased by
the use of the bandwidth maximizer, a heuristic algorithm
that attempts to maximize total disk throughput without vi-
olating the QoS goals. Ultimately, AQuA OSDs are in-
tended to serve as the basic building blocks in an overall
QoS framework for the Ceph object-based storage system.

Future work on AQuA will shift from utilizing OBFS to
EBOFS (Extend-Based Object File System) [27]. EBOFS
is a new object-based file system that will form the main-
stay of future Ceph OSD. With EBOFS, more testing will
be conducted to better understand the characteristics of an
AQuA OSD. In addition, the global QoS framework pre-
sented in the first part of the paper will be implemented.

The per-class assurance currently implemented by
AQuA allows performance to be partitioned among differ-
ent classes of traffic. However, if a class is sufficiently gen-
eral, overloading within a class is possible and there may
be times in which it is desirable to assure a particular traf-
fic flow within a class. To provide more flexibility, we will
investigate the benefit of adding finer-grained transaction-
style QoS assurance to AQuA. A transaction is a particular
sequence of read or write request issued by a client. It is
associated with a class and uses the resource of that class.
Because of the use of hierarchical sharing, the mechanism
enablingper-classandper-transactionassurance should fit
together seamlessly as a two layered hierarchical sharing.
¿¿¿¿¿¿¿ 1.33

Acknowledgments

This research was supported in part by Lawrence Liv-
ermore National Laboratory, Los Alamos National Lab-
oratory, and Sandia National Laboratory under contract
B520714. We are also grateful for our sponsors Intel Cor-

110

poration and Veritas Software. Thanks to Feng Wang for
assistance with OBFS.

References

[1] C. Akinlar and S. Mukherjee. Bandwidth guarantee in
a distributed multimedia file system using network at-
tached autonomous disks. InProceedings of the IEEE
Real Time Technology and Applications Symposium (RTAS
2000), page 237, Washington, D.C., 2000.

[2] G. A. Alvarez, E. Borowsky, S. Go, T. H. Romer, R. Becker-
Szendy, R. Golding, A. Merchant, M. Spasojevic, A. Veitch,
and J. Wilkes. Minerva: An automated resource provision-
ing tool for large-scale storage systems.ACM Trans. Com-
put. Syst., 19(4):483–518, 2001.

[3] E. Anderson, M. Hobbs, K. Keeton, S. Spence, M. Uysal,
and A. C. Veitch. Hippodrome: Running circles around
storage administration. InProceedings of the Conference on
File and Storage Technologies, pages 175–188, Berkeley,
CA, USA, 2002. USENIX Association.

[4] J. Bruno, J. Brustoloni, E. Gabber, B. Ozden, and A. Silber-
schatz. Disk scheduling with quality of service guarantees.
In IEEE International Conference on Multimedia Comput-
ing and Systems, volume 2, pages 400–405, June 1999.

[5] M. Buddhikot and G. Parulkar. Efficient data layout,
scheduling and playout control in mars.ACM/Springer
Multimedia Systems Journal, 5(3):199–211, 1997.

[6] M. M. Buddhikot, G. M. Parulkar, and J. R. Cox, Jr. Design
of a large scale multimedia server.Journal of Computer
Networks and ISDN Systems, 27(3):503–517, 1994.

[7] D. D. Chambliss, G. A. Alvarez, P. Pandey, D. Jadav, J. Xu,
R. Menon, and T. P. Lee. Performance virtualization for
large-scale storage systems. InProceedings of the 22th
International Symposium on Reliable Distributed Systems
(SRDS’03), pages 109–118, 2003.

[8] Z. Dimitrijevic and R. Rangaswami. Quality of service sup-
port for real-time storage systems. InProceedings of the
International IPSI-2003 Conference, October 2003.

[9] S. B. et al.An Architecture for Differentiated Services. IETF
DiffServ Working Group, December 1998.

[10] S. Floyd and V. Jacobson. Link-sharing and resource man-
agement models for packet networks.IEEE/ACM Transac-
tions on Networking, 3(4):365–386, 1995.

[11] J. Gemmell, H. Vin, D. Kandlur, P. Rangan, and L. Rowe.
Multimedia storage servers: A tutorial and survey.IEEE
Computer, 28(5):40–49, 1995.

[12] R. J. Honicky and E. L. Miller. Replication under scal-
able hashing: A family of algorithms for scalable decen-
tralized data distribution. InProceedings of the 18th In-
ternational Parallel & Distributed Processing Symposium
(IPDPS 2004), Santa Fe, NM, Apr. 2004. IEEE.

[13] L. Huang, G. Peng, and T. cker Chiueh. Multi-dimensional
storage virtualization. InSIGMETRICS 2004/PERFOR-
MANCE 2004: Proceedings of the joint international con-
ference on Measurement and modeling of computer sys-
tems, pages 14–24, New York, NY, USA, 2004. ACM Press.

[14] M. Karlsson, C. Karamanolis, and X. Zhu. Triage: Per-
formance isolation and differentiation for storage systems.
Technical Report HPL-2004-40, HP Laboratories, March
2004.

[15] K. KleinOsowski, T. Ruwart, and D. Lilja. Communicating
quality of service requirements to an object-based storage
device. InProceedings of the Conference on Mass Storage
Systems and Technologies (MSST 2005), April 2005.

[16] D. D. E. Long and M. N. Thakur. Scheduling real-time disk
transfers for continuous media applications. InProceed-
ings of the 12th IEEE Symposium on Mass Storage Systems
(MSST 1993), April 1993.

[17] Y. Lu, D. H. Du, and T. Ruwart. Qos provisioning frame-
work for an osd-based storage system. InProceedings of
the Conference on Mass Storage Systems and Technologies
(MSST 2005), April 2005.

[18] C. Lumb, A. Merchant, and G. Alvarez. Facade: Virtual
storage devices with performance guarantees. InUSENIX
Conference on File and Storage Technology (FAST’03,
2003.

[19] M. Mesnier, G. R. Ganger, and E. Riedel. Object-based
storage. IEEE Communications Magazine, 41(8):84–900,
August 2003.

[20] A. L. Reddy and J. Wyllie. Disk scheduling in a multimedia
I/O system. InProceedings of ACM Conference on Multi-
media, pages 225–233. ACM Press, 1993.

[21] L. Reuther and M. Pohlack. Rotational-position-awarereal-
time disk scheduling using a dynamic active subset (DAS).
In Proceedings of the 24th IEEE Real-Time Systems Sym-
posium (RTSS 2003). IEEE, December 2003.

[22] SGI. Guarantee-rate i/o version 2 guide, 2004.
[23] P. Shenoy and H. Vin. Cello: A disk scheduling framework

for next generation operating systems. InProceedings of
the Conference on Measurement and Modeling of Computer
Systems, pages 44–55. ACM Press, 1998.

[24] V. Sundaram and P. Shenoy. A practical learning-based ap-
proach for dynamic storage bandwidth allocation. InPro-
ceedings of 11th International Workshop on Quality of Ser-
vice (IWQoS 2003), pages 479–497, June 2003.

[25] F. Wang, S. A. Brandt, E. L. Miller, and D. D. Long. OBFS:
A file system for object-based storage devices. InPro-
ceedings of 21st IEEE / 12th NASA Goddard Conference
on Mass Storage Systems and Technologies (MSST 2004),
April 2004.

[26] F. Wang, Q. Xin, B. Hong, E. L. Miller, D. D. Long, S. A.
Brandt, and T. T. McLarty. File system workload analysis
for large scientific computing applications. InProceedings
of the Conference on Mass Storage Systems and Technolo-
gies (MSST 2004), April 2004.

[27] S. A. Weil. Leveraging intra-object locality with ebofs.
UCSC CMPS-290S Project Report, May 2004.

[28] S. A. Weil, K. T. Pollack, S. A. Brandt, and E. L. Miller.
Dynamic metadata management for petabyte-scale file sys-
tems. InProceedings of the 2004 ACM/IEEE Conference
on Supercomputing (SC ’04), Pittsburgh, PA, Nov. 2004.
ACM.

[29] T. M. Wong, R. A. Golding, C. Lin, and R. A. Becker-
Szendy. Zygaria: storage performance as a managed re-
source. InIEEE Real Time and Embedded Technology and
Applications Symposium (RTAS 06), April 2006.

111

[30] J. C. Wu and S. A. Brandt. Storage access support for
soft real-time applications. InProceedings of the 10th
IEEE Real-Time and Embedded Technology and Applica-
tions Symposium (RTAS ’04), Toronto, Canada, May 2004.

112

