Timothy Bisson, Scott A. Brandt
{tbisson,sbrandt} @cs.ucsc.edu

Adaptive Disk Spin-Down Algorithms in Practice

1 Introduction

Significant research has been done to minimize disk en-
ergy consumption with excellent timeout based disk spin-
down algorithms [1, 3, 4, 5]. However, in practice, per-
formance is limited with such algorithms due to spin-up
latency, file-system logging, and page-cache write-back
policies. Spin-up latency significantly decreases user in-
teractivity while file-system logging and dirty-page write-
back policies decrease the potential energy savings.

We have implemented the dynamic disk spin-down al-
gorithm of Helmbold et al. [1] in the Linux Kernel, herein
referred to as DSA. The algorithm uses multiple experts
each predicting with fixed timeouts for its overall dynamic
timeout calculation. A weight is associated with each ex-
pert and used to restrict its contribution to the overall time-
out calculation. A new timeout is calculated after every
idle period. An expert’s weight is reduced by consider-
ing its energy consumption relative to an oracle policy’s
energy consumption. We modified the DSA algorithm to
address its spin-up latency overhead and call it Modified
DSA. The aim of our work addresses spin-up latency in
the DSA algorithm by reducing the total number of spin-
ups during dynamically determined periods of user inter-
activity.

2 Spin-up Latency

The main difficulty with an efficient disk spin-down algo-
rithm is spin-up latency. We measured the spin-up latency
of our hard-disk [2] and found it to be 4.492s on average
with .0036 variance. In an efficient disk spin-down algo-
rithm, timeout computations should approach and remain
at a few seconds, since the ratio of idle to spin-down en-
ergy use may be in the low teens. Therefore, users of such
algorithms may suffer from spin-up latency every few sec-
onds, provided idle periods are also a few seconds.

Our workload consists of a 24-hour trace on our per-
sonal development machine. We show the first 10 hours in
our graphs as it consists of use by an actual user. We used
this trace in order to generate the same disk accesses for
each algorithm, and because it is should be representative
of typical workstation use. Our energy calculations are
based on the specifications provided byt the disk manu-
facturer [2]. We are currently implementing a mechanism
to directly record the actual energy consumption.

Modified DSA reduces the number of spin-downs when
system activity is determined to be interactive. Our en-
hancement performs additional weight reduction to ex-
perts when their predicted timeout and the idle period is

less than an interactive threshold. Weight reduction in-
creases with continuous idle periods less than the interac-
tive threshold. The development of this feature is still in
progress.

Figure 1 shows energy use with 4 different algorithms
over a period of 10 hours. We see the 30 second timeout
algorithm uses 3.5 times more energy than the oracle after
10 hours of operation. We also see the DSA algorithm
uses 1.5 more energy than the oracle, while the modified
DSA only uses 1.8 as much energy.

Figure 2 shows the spin-up latency per disk request
sampled at 10 minute intervals. The 30 second timeout
algorithm endures the least latency as it spin-downs the
least number of times relative to the other algorithms. Our
modified DSA algorithm has a lower spin-up latency than
both the Oracle and the original DSA algorithm. This is
due to experts with lower timeouts than the idle_period
being progressively punished while the idle period is less
than the interactive threshold.

Figure 1: Energy consumption of the four spin-down algorithms

30 : . . .
30s timeout
Modified DSA -
s r DSA --------- =
= Oracle
>
5 -
3 15[o
5 -
o T
g 10t I
=] L
" '////""/”““”“”7 I
ST g |
o T . | |
° 2 4 6 8 10

Time (h)

Figure 2: AVerage spin-u latency per disk request (10 min sampling)

0.6

T
30s timeout

Modified DSA -------

0.5

0.4

0.3

Latency (s)

0.2

0.1 |,

0 % 1 1 1 1

3 Conclusion

Our contribution consists of implementing the DSA al-
gorithm in the Linux Kernel, which to our knowledge
has not previously been done. We also adapted the algo-
rithm to address periods of user interaction with the sys-
tem by punishing experts with low timeouts when the sys-

tem is interactive, addressing one of the main drawbacks
of adaptive spin-down algorithms. We have observed that
periodic writes due to file-system logging prevent optimal
energy consuption and unecessary spin-ups. We are cur-
rently considering a solution to this whereby logged data
is temporarily stored in nonvolotile memory, such as flash,
while a disk is spun-down, and then dumped to disk at the
next spin-up.

References

[1] Western Digital. Specifications for the 120gb special
edition drive (wd120jb, wd1200pb). Dec 2003.

[2] F. Douglis, P. Krishnan, and B. Bershad. Adaptive
disk spin-down policies for mobile computers. In
In Proceedings of the second USNIX Symposium on
Mobile and Location Independent Computing, April
1995.

[3] D. Helmbold, D. Long, and B. Sherrod. A dynamic
disk spin-down technique for mobile computing. In
In Proceedings of the 2nd ACM International Confer-
ence on Mobile Computing, November 1996.

[4] P. Krishnan, PM. Long, and J.S. Vitter. Adaptive disk
spindown via optimal rent-to-buy in probabilistic en-
vironments. In In Proceedings of the 12th Interna-
tional Conference on Machine Learning, July 1995.

[5] G. De Micheli Y. Lu. Adaptive hard disk power man-
agement on personal computers. In IEEE Great Lakes
Symposium on VLSI, March 1999.

