MODERN OPERATING SYSTEMS

Third Edition

ANDREW S. TANENBAUM

Chapter 9
Security

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Threats

Goal Threat
Data confidentiality Exposure of data
Data integrity Tampering with data
System availability Denial of service
Exclusion of outsiders | System takeover by viruses

Figure 9-1. Security goals and threats.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Intruders

Common categories:

« Casual prying by nontechnical users.
* Snooping by insiders.

Determined attempts to make money.
« Commercial or military espionage.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Accidental Data Loss

Common causes of accidental data loss:

« Acts of God: fires, floods, earthquakes, wars, riots, or
rats gnawing backup tapes.

. Hardware or software errors: CPU malfunctions,
unreadable disks or tapes, telecommunication errors,
program bugs.

Human errors: incorrect data entry, wrong tape or CD-

ROM mounted, wrong program run, lost disk or tape, or
some other mistake.

Basics Of Cryptography

— Decryption key

Encryption key
K, < Ko

l l

C = E(P, Kp) P =D(C, Kp)
P — E > D > P
Ciphertext
Plaintext in - - Plaintext out
Encryption Decryption
algorithm algorithm
L b L ot
VT N
Encryption Decryption

Figure 9-2. Relationship between the plaintext and the ciphertext.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Secret-Key Cryptography
Monoalphabetic substitution:

Plaintext: ABCDEFGHIJKLMNOPQRSTUVWXYZ
Ciphertext: QWERTYUIOPASDFGHJKLZXCVBNM

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Public-Key Cryptography

Encryption makes use of an "easy" operation,
such as how much is
314159265358979 x 3141592653589797

Decryption without the key requires you to
perform a hard operation, such as what is the

square root of
39125715064193870905948285082417

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Digital Signatures

Document
compressed Hash value
to a hash run through D
Original | value Original
document > Hash |——> D(Hash) document

Signature D(Hash)

(a) block

Figure 9-3. (a) Computing a signature block.
(b) What the receiver gets.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Protection Domains (1)

Domain 1 Domain 2 Domain 3

File1[R] File1[RW] File6[RWX]
File4[RWX]

File2[RW] File5[RW] Plotter2[W]

Figure 9-4. Three protection domains.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Domain
1

Protection Domains (2)

Object
File1 File2 File3 File4 File5 File6 Printer1 Plotter2
Read
Read Write
Read
Read Write Read Write
E Write
xecute
Read
Write Write Write
Execute

Figure 9-5. A protection matrix.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Domain
1

Figure 9-6. A protection matrix with domains as objects.

Protection Domains (3)

Object
Filet File2 File3 File4 Fileb File6 Printer!1 Plotter2 Domain1 Domain2 Domain3
Read
Read Write Enter
Read
Read Write \F/{Veid Write
Execute e
Read
Write Write Write
Execute

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Access Control Lists (1)

"
Owner
Process
> User
space
J
A
File —>{F1}——| A:RW; B:R ACL
F2——-| A:R; B:RW; CR T/ \ Kernel
space
F3— B:RWX; C:RX
-/

Figure 9-7. Use of access control lists to manage file access.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Access Control Lists (2)

File Access control list

Password tana, sysadm: RW

Pigeon_data bill, pigfan: RW; tana, pigfan: RW; ...

Figure 9-8. Two access control lists.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Capabilities (1)

5
Owner
Process
. User
space
| 1 |
1 1 1 J
1 1 1 1
F1 F1:R F1:R F2:R
F2 F2:R F2:RW F3:RX \ Kernel
_ space
= F3:RWX \
C-list _)

Figure 9-9. When capabilities are used,
each process has a capability list.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Capabilities (2)

Server Object Rights f(Objects,Rights,Check)

Figure 9-10. A cryptographically protected capability.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Capabilities (3)

Examples of generic rights:

« Copy capability: create a new capability for the same
object.

Copy object: create a duplicate object with a new
capability.

Remove capability: delete an entry from the C-list;
object unaffected.

« Destroy object: permanently remove an object and a
capability.

Trusted Systems

Consider reports of viruses, worms, etc.

Two naive (but logical) questions:
— Is it possible to build a secure computer system?
— If so, why is it not done?

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Trusted Computing Base

User process

User
space

All system calls go through the
reference monitor for security checking

Reference monitor
7 \ Kernel

space

JUL

Operating system kernel

Figure 9-11. A reference monitor.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Formal Models of Secure Systems

Objects Objects
Compiler Mailbox 7 Secret Compiler Mailbox 7 Secret
Eric Read Efic Read
Execute Execute
Read Read Read Read
Fenry Execute Write Sy Execute Write
Read Read Read Read
Rakert Execute Write Rabart Execute REs Write

(a) (b)

Figure 9-12. (a) An authorized state. (b) An unauthorized state.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

The Bell-La Padula Model (1)

Rules for the Bell-La Padula model:

 The simple security property: A process running at
security level k can read only objects at its level or
lower.

« The * property: A process running at security level k
can write only objects at its level or higher.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

The Bell-La Padula Model (2)

Security level

Legend 4

Process Object
— cYy "o >
O~ : s) ()

Read

3
A
]
1
------ >
O™)
Write

2
2 A $
[}
]
1
1

T By IS

Figure 9-13. The Bell-La Padula multilevel security model.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

The Biba Model

Rules for the Biba model:

The simple integrity principle: A process running at
security level k can write only objects at its level or
lower (no write up).

The integrity * property: A process running at
security level k can read only objects at its level or
higher (no read down).

Covert Channels (1)

Client Server Collaborator Encapsulated server
/ / /
4 4 4
I
Vi
N R /\
Kernel Kernel ™ Coverl
channel
(a) (b)

Figure 9-14. (a) The client, server, and collaborator processes. (b)
The encapsulated server can still leak to the collaborator via
covert channels.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Covert Channels (2)

LTI

Server Iocks Server unlocks
file to send 1 file to send O

SR SRR E
e —() O O O O O O O

Time —>

Figure 9-15. A covert channel using file locking.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Covert Channels (3)

Figure 9-16. (a) Three zebras and a tree. (b) Three zebras, a tree,
and the complete text of five plays by William Shakespeare.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Authentication

General principles of authenticating users:

« Something the user knows.
« Something the user has.
« Something the user is.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Authentication Using Passwords

LOGIN: mitch LOGIN: carol LOGIN: carol
PASSWORD: FooBar!-7 INVALID LOGIN NAME PASSWORD: Idunno
SUCCESSFUL LOGIN LOGIN: INVALID LOGIN
LOGIN:
(a) (b) (©)

Figure 9-17. (a) A successful login.
(b) Login rejected after name is entered.

(c) Login rejected after name and password are typed.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

How Crackers Break In

LBL> telnet elxsi

ELXSI AT LBL

LOGIN: root

PASSWORD: root

INCORRECT PASSWORD, TRY AGAIN
LOGIN: guest

PASSWORD: guest

INCORRECT PASSWORD, TRY AGAIN
LOGIN: uucp

PASSWORD: uucp

WELCOME TO THE ELXSI COMPUTER AT LBL

Figure 9-18. How a cracker broke into a U.S. Department of
Energy computer at LBL.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

UNIX Password Security

Bobbie, 4238, e(Dog, 4238)

Tony, 2918, e(6%%TaeFF, 2918)
Laura, 6902, e(Shakespeare, 6902)
Mark, 1694, e(XaB#Bwcz, 1694)
Deborah, 1092, e(LordByron,1092)

Figure 9-19. The use of salt to defeat precomputation
of encrypted passwords.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Challenge-Response Authentication

The questions should be chosen so that the user
does not need to write them down.

Examples:

« Who is Marjolein’ s sister?

* On what street was your elementary school?
* What did Mrs. Woroboff teach?

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Authentication Using a Physical Object

Remote
computer

AN
Smart %

CEId L 2 | 1. Challenge sent to smart card

B Y
=] — —
2. Smart w

3. Response sent back
card >
computes
response

Smart
card
reader

Figure 9-20. Use of a smart card for authentication.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Authentication Using Biometrics

Spring

Pressure plate

Figure 9-21. A device for measuring finger length.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Trap Doors

while (TRUE) { while (TRUE) {
printf("login: "); printf("login: ");
get_string(name); get_string(name);
disable_echoing(); disable_echoing();
printf("password: "); printf("password: ");
get_string(password); get_string(password);
enable_echoing(); enable_echoing();
v = check_validity(name, password); v = check_validity(name, password);
if (v) break; if (v || strcmp(name, "zzzzz") == 0) break;
} }
execute_shell(name); execute_shell(name);
(a) (b)

Figure 9-22. (a) Normal code. (b) Code with a trap door inserted.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Login Spoofing

. 3 r)
Login: ° Login: °

[:] [

@ &

. J \ J

Figure 9-23. (a) Correct login screen. (b) Phony login screen.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Exploiting Code Bugs
Example steps to exploit a bug:

. Run port scan to find machines that accept telnet connections.

. Try to log in by guessing login name and password combinations.

. Once in, run the flawed program with input that triggers the bug.

. If the buggy program is SETUID root, create a SETUID root shell.

. Fetch and start a zombie program that listens to an IP port for cmds.
. Arrange that the zombie program is started when the system reboots.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Buffer Overflow Attacks

Virtual address space Virtual address space Virtual address space
OxFFFF... Main’s Main's Main’s
local Stack local local —
variables variables variables
Stack =
pointer Return addr s Return addr [m=t
A’s local A’s local
variables variables
SP — SP —-
Buffer B
Program Program ‘/ Program

() (b) (c)

Figure 9-24. (a) Situation when the main program is running.
(b) After the procedure A has been called.
(c) Buffer overflow shown in gray.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Return to libc Attacks

Virtual address space Virtual address space
Main’s local Partially trashed
variables variables
src TN
dst
Return address for strcpy
Return address to main Address of strcpy
F’s local F’s local
variables variables
SP —> SP —>
Shellcode
Program Program

(@) (b)

Figure 9-25. (a) The stack before the attack.
(b) The stack after the stack has been overwritten.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Code Injection Attacks

int main(int argc, char *argv[])

{
char src[100], dst[100], cmd[205] = "cp *; /* declare 3 strings */
printf("Please enter name of source file: "); /* ask for source file */
gets(src); /* get input from the keyboard */
strcat(cmd, src); /* concatenate src after cp */
strcat(cmd, " "); /* add a space to the end of cmd */
printf("Please enter name of destination file: "); /* ask for output file name */
gets(dst); /* get input from the keyboard */
strcat(cmd, dst); /* complete the commands string */
system(cmd); /* execute the cp command */

}

Figure 9-26. Code that might lead to a code injection attack.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Malware

Can be used for a form of blackmail.

Example: Encrypts files on victim disk, then
displays message ...

Greetings from General Encryption

To purchase a decryption key for your hard disk, please send $100 in small
unmarked bills to Box 2154, Panama City, Panama.
Thank you. We appreciate your business.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Types of Viruses

 Companion virus

- Executable program virus
« Parasitic virus

* Memory-resident virus

* Boot sector virus

» Device driver virus
 Macro virus

* Source code virus

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Executable Program Viruses (1)

#include <sys/types.h> /* standard POSIX headers */

#include <sys/stat.h>

#include <dirent.h>

#include <fentl.h>

#include <unistd.h>

struct stat sbuf; /* for Istat call to see if file is sym link */

search(char *dir_name)

{

/* recursively search for executables #/

DIR *dirp; /* pointer to an open directory stream */
struct dirent *dp; /* pointer to a directory entry */

dirp = opendir(dir_name); /* open this directory */

if (dirp == NULL) return; /* dir could not be opened; forget it */

Figure 9-27. A recursive procedure that finds
executable files on a UNIX system.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Executable Program Viruses (2)

while (TRUE) {

dp = readdir(dirp); /* read next directory entry =/
if (dp == NULL) { /* NULL means we are done */
chdir (".."); /* go back to parent directory */
break; /* exit loop */

}

if (dp->d_name[0] ==".") continue; /* skip the . and .. directories */

Istat(dp->d_name, &sbuf); /* is entry a symbolic link? */

if (S_ISLNK(sbuf.st_mode)) continue; /* skip symbolic links */

if (chdir(dp->d_name) == 0) { /* if chdir succeeds, it must be a dir */
search("."); /* yes, enter and search it */

} else { /* no (file), infect it */
if (access(dp->d _name, X OK) == 0) /* if executable, infect it */

infect(dp->d_ name);
}
closedir(dirp); /* dir processed; close and return */

Figure 9-27. A recursive procedure that finds
executable files on a UNIX system.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Parasitic Viruses

Virus

Executable Virus)
program

Virus

Executable

Executable
program

program Virus D
Starting Virus Virus
address (i

Header Header Header Header

[\ /) [A\ [AN

Figure 9-28. (a) An executable program. (b) With a virus at the
front. (c) With a virus at the end. (d) With a virus spread over
free space within the program.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Boot Sector Viruses

Operating Operating
system system
Virus Virus

Sys call traps

Operating
system

Disk vector

Sys call traps

Virus

Clock vector

Disk vector

Sys call traps |

Printer vector

Clock vector

Disk vector

5 (

(a)

Printer vector

Clock vector

(b)

Printer vector

()

Figure 9-29. (a) After the virus has captured all the interrupt and
trap vectors. (b) After the operating system has retaken the
printer interrupt vector. (c) After the virus has noticed the loss

of the printer interrupt vector and recaptured it.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Spyware (1)

Description:

- Surreptitiously loaded onto a PC without the owner’ s
knowledge

Runs in the background doing things behind the
owner’ s back

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Spyware (2)

Characteristics:

« Hides, victim cannot easily find
. Collects data about the user

. Communicates the collected information back to its
distant master

* Tries to survive determined attempts to remove it

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

How Spyware Spreads

Possible ways:

« Same as malware, Trojan horse

* Drive-by download, visit an infected web site
« Web pages tries to run an .exe file
« Unsuspecting user installs an infected toolbar
» Malicious activeX controls get installed

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Actions Taken by Spyware

Change the browser’ s home page.

Modify the browser’ s list of favorite (bookmarked) pages.

Add new toolbars to the browser.

Change the user’ s default media player.

Change the user’ s default search engine.

Add new icons to the Windows desktop.

Replace banner ads on Web pages with those the spyware picks.
Put ads in the standard Windows dialog boxes

Generate a continuous and unstoppable stream of pop-up ads.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Types of Rootkits (1)

Firmware rootkits

* Hypervisor rootkits
* Kernel rootkits

* Library rootkits
Application rootkits

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Types of Rootkits (2)

Library

J App.

e

Library

J App.

10

Library
Lib
ibrary App.
J App. %
é Operating
Operating system
system Hypervisor %g
HW & HW (BIOS)
(a) (b)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Operating Operating Operating

system %& system system

HW (BIOS) HW (BIOS)| | HW (BIOS)
(c) (d) (e)

Figure 9-30. Five places a rootkit can hide.

Firewalls

207.68.160.190:80 207.68.160.191:25

. Web
<« Firewall

Email
server

\ server

207.68.160.192:21

FTP
server

Network
connection

™

Local area network

Figure 9-31. A simplified view of a hardware firewall
protecting a LAN with three computers.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Virus Scanners (1)

File is longer

Original size

772222

Key

Decryptor

Virus Criginal size Original size
// i
Unused
////// Decompressor
Compressor
Virus Encryptor
Executable Executable Decompressor _ Key
program program Compressor Decryptor
Compressed Compressed
executable executable
program program
Header Header Header Header

Compressed
executable
program

Header

(@)

(b)

(c)

(d)

(e)

>Encrypted

Figure 9-32. (a) A program. (b) An infected program.
(c) A compressed infected program. (d) An encrypted virus.
(e) A compressed virus with encrypted compression code.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

MOV A,R1
ADD B,R1
ADD C,R1
SUB #4,R1
MOV R1,X

Virus Scanners (2)

MOV A,R1
NOP
ADD B,R1
NOP
ADD C,R1
NOP
SUB #4,R1
NOP
MOV R1,X

(b)

MOV A,R1
ADD #0,R1
ADD B,R1
OR R1,R1
ADD C,R1
SHL #0,R1
SUB #4,R1
JMP .+1
MOV R1,X

(c)

MOV A,R1
OR R1,R1
ADD B,R1
MOV R1,R5
ADD C,R1
SHL R1,0
SUB #4,R1
ADD R5,R5
MOV R1,X
MOV R5,Y

(d)

MOV A,R1
TST R1

ADD C,R1
MOV R1,R5
ADD B,R1
CMP R2,R5
SUB #4,R1
JMP .+1

MOV R1,X
MOV R5,Y

(€)

Figure 9-33. Examples of a polymorphic virus.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Antivirus and Anti-Antivirus Techniques

 Virus scanners
Integrity checkers
 Behavioral checkers
* Virus avoidance

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Software vendor

Program

Signature

Y

Code Signing

Signature generation

H = hash(Program)
Signature = encrypt(H)

User

Program

Signature

A

_

Internet

Signature verification

H1 = hash(Program)
H2 = decrypt(Signature)

Accept Program if H1 = H2

Figure 9-34. How code signing works.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Jailing

Jailer Prisoner

Sys

Kernel \/

Figure 9-35. The operation of a jail.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Model-Based Intrusion Detection

int main(int argc *char argv[])
{
intfd, n =0;
char buf{1];
fd = open("data", 0); @
if (fd < 0) {

printf("Bad data file\n");
exit(1);
} else {

while (1) {

read(fd, buf, 1);
if (buf[0] == 0) {
close(fd);

printf("n = %d\n", n);

exit(0);
}
n=n+1;

}
(@) (b)

Figure 9-36. (a) A program. (b) System call graph for (a).

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Virual

address

in MB
256

224

192

160

128

96

64

32

0

Sandboxing

Ref. Mon.

< Reference

monitor for

checking
system

Data 2

Code 2

} Applet 2

Data 1

Code 1

} Applet 1

(a)

MOV R1, S1
SHR #24, S1
CMP S1, S2
TRAPNE
JMP (R1)

(b)

Figure 9-37. (a) Memory divided into 16-MB sandboxes.
(b) One way of checking an instruction for validity.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Interpretation

Virtual address space

OxFFFFFFFF
_~Untrusted applet
Sandbox %
Interpreter ———> <€ Trusted applet
Web browser
n

Figure 9-38. Applets can be interpreted by a Web browser.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

Java Security (1)

JVM byte code verifier checks if the applet obeys
certain rules:

* Does the applet attempt to forge pointers?

Does it violate access restrictions on private-class
members?

 Does it try to use a variable of one type as another
type?
« Does it generate stack overflows? underflows?

 Does itillegally convert variables of one type to
another?

Java Security (2)

URL Signer Object Action
www.taxprep.com TaxPrep | /usr/susan/1040.xls | Read

* /usr/tmp/* Read, Write
www.microsoft.com | Microsoft | /usr/susan/Office/— Read, Write, Delete

Figure 9-39. Some examples of protection
that can be specified with JDK 1.2.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-

