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Lecture 2:  
Fingering convection in stars 



Recap: 

Physical mechanism 

High entropy (potential temperature),  high mu 

Low entropy (potential temperature) low mu 



The necessary condition for instability depends on the density ratio 
 
 
 
Instability to fingering occurs if  
 
 
 
 
Fastest-growing modes have 
•  kz=0 (elevator modes) 
•  kh ~ O(1) so wavelength O(2π)d 

 
 
 

 

Recap: Linear theory 

R0 =
α T0 z −Tz

ad( )
βC0 z

=
δ(∇−∇ad )

φ∇µ

=
Stabilizing temperature stratification 

Destabilizing composition stratification  

1< R0 <
κT
κC

=
1
τ

Threshold for 
overturning 
convection, 
Ledoux crit. 



Stellar numbers 

Typically: 
•  Non-degenerate regions of stars: Pr ~ 10-6,  τ~10-7 

•  Degenerate regions of stars: Pr ~ 10-2,  τ~10-3 

•  Finger size:  

•  Density ratio R0 varies substantially, and depends on mixing by 
fingering (e.g. Ulrich 1972; Vauclair 2004; Dennisenkov 2010) 
•  In RGB stars: R0 ~ 103 – 106 

•  In accretion problems: R0 ~ 1 - 106 
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Question: how much mixing does this 
instability cause? 



Traditional models of fingering convection in 
astrophysics  

Most models of mixing by fingering instabilities use a turbulent 
diffusivity for concentration (no mixing of temperature) of a 
species  

 
 
 
 
where it is assumed that 

where DC is a diffusivity, and has units of cm2/s (in cgs).  
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Traditional models of fingering convection in 
astrophysics  

�  Combining these equations, we get 

�  (assuming that a diffusive model is appropriate….) 

 The only question left is: 
   What is DC?  
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Traditional models of fingering convection in 
astrophysics  

�  The total diffusion coefficient DC is the sum of  
◦  Basic atomic and collisional processes (i.e. microscopic) 
◦  Turbulent processes (i.e. macroscopic). For fingering only: 

�  Since Dfing has units of length2/time, or length x velocity, we often 
(not always) estimate it from  

 
 
 
 

 
 
 
 
 

 

 

Dfing ∝υ fingl fing

Characteristic 
velocity of finger 

Characteristic 
lengthscale of 
finger 

DC =κC +Dfing



Traditional models of fingering convection in 
astrophysics  

�  Ulrich (1972) was first to propose a mixing model for fingering 
convection in stars.  
◦  He used  

◦  He used                                             (derive on board) 

�  Diffusion coefficient is therefore   
with constant he argues is  
 
 
 
�  Kippenhahn et al. (1980) arrive at similar formula, with different 

constant 

 

where χis the aspect ratio of finger 
(height / width), he argues is ~ 5 or 
more, so CU ~ 700 

l fing ~ d

υ fing ~ λd ~
κT

d 2 (R0 −1)
d

Dfing =CU
κT
R0 −1

CU =
8π 2χ 2

3

Dfing =CKRT
κT
R0

where CKRT ~ 12 



Observational constraints on the models 



Fingering in RGB stars 



Conventional mixing on the RGB 

�  Upon leaving the MS, the star’s outer convection zone deepens and 
dredges up material from deep within the star: first dredge-up. 

�  After this event, the base of the convection zone retreats again as 
the Hydrogen Burning Shell moves outwards.  

�  The two never overlap: no more changes in surface element 
abundances are expected on the RGB after 1st dredge up. 
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Evidence for missing mixing on the RGB 

Expected 
levels 
without 
mixing post 
dredge-up 

Burned 
at depth 

Participate in 
CNO cycle at 
depth 

First dedge-up More mixing? 

Gratton et al. 2000 



�  The second change in surface abundances coincides with time 
when the hydrogen-burning shell passes through lowest-
excursion point of first dredge-up = luminosity bump. 
Coincidence? No! (Charbonnel & Zahn 2007) 

Fingering convection as the missing mixing 
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Fingering convection as the missing mixing 

�  Near the colder, outer edge of the hydrogen burning shell, 
the dominant reaction is  

 
This reaction locally decreases the mean molecular weight 

(Ulrich 1972) 

2 particles of total mass 6 

3 particles of total mass 6 

(Source: Wikipedia) 



�  As a result, an inverse μ–gradient forms after luminosity 
bump (but not before) (Charbonnel & Zahn 2007) 

 

Fingering convection as the missing mixing 
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�  Charbonnel & Zahn (2007) proposed that fingering convection 
could explain the RGB abundance observations 

�  They used the models of Ulrich (1972), Kippenhahn et al. 
(1980) for mixing coefficient:  
 

 

   

  The C = 1000 value is consistent with prediction by Ulrich (1972) 
and explains RGB observations… 

✔  All good!  …. (or is it?) 

Charbonnel & Zahn (2007) 

Black solid line: C = 1000 
Black dotted line: C = 100 

Dfing =
C
R0
κT R0 =

δ
φ
∇−∇ad

∇µ

Charbonnel & Zahn (2007)  

where 



Direct numerical simulations (DNSs) of 
fingering convection 



Numerical simulations as experimental tool 

�  The last two decades have seen the emergence of supercomputing 
as an experimental tool in astrophysics 

�  Thanks to HPC, DNS can be performed at parameters approaching 
astrophysical values. This is particularly true for fingering 
convection, since fingers are small (typical Reynolds number 
moderate). 

Stampede2 @ U. Texas  
XSEDE facilities 



Mathematical modeling 

Model considered is same as before: 
◦  Assume background temperature or salinity profiles are linear 

(constant gradients              ) 
◦  Let 
◦  Assume that all perturbations are triply-periodic in domain (Lx,Ly,Lz) 
 

◦  This enables us to study the phenomenon with little influence from 
boundaries.  

T0 z ,C0 z
T '(x, y, z,t) = zT0 z +

!T (x, y, z,t)   and   C '(x, y, z,t) = zC0 z +
!C(x, y, z,t)



2D vs. 3D 

�  2D simulations are very tempting, as they are a fraction of the 
computational cost, and can be run on desktop computer with 
simple serial code.  

�  Early numerical work (e.g. Dennisenkov 2010) used 2D model.  

Compositional field 
2D fingering convection  
in RGB star, 
Denissenkov 2010 



2D vs 3D 

�  At low Prandtl number, there is a huge difference between 2D and 
3D simulations.  
◦  Pr = τ= 0.03, R0=33, 2D case: artificial shear layers 

  
C ux 

Garaud and Brummell 2015 

µ u



2D vs 3D 

�  At low Prandtl number, there is a huge difference between 2D and 
3D simulations.  
◦  Pr = τ= 0.03, R0=33, 3D case (thin domain): no shear layers 

  

C ux 

Garaud and Brummell 2015 



3D simulations of fingering convection 

�  Early 3D work first presented by Traxler et al. 2011. 

�  Parameters not “astrophysical” but trying to be…   

Pr = τ= 0.1 

R0=1.45 R0=9.1 



3D simulations of fingering convection 

�  More recent work (Brown et al. 2013) reaches smaller Pr, τ 

Pr =τ=0.01, 
R0 = 5 



More than just a pretty movie … 

�  In DNS, there is no “mixing coefficient”. Compositional transport is 
caused by actual fluid motion, and accounted for exactly through 
the compositional equation (dimensional form)  

 

�  Horizontal average of this equation becomes 

which can be rewritten in conservative form as 
where  

 
�  In a homogeneous steady state, the flux is constant in the domain:  

∂C
∂t

+u ⋅∇C +wC0 z =κC∇
2C

∂C
∂t

+
∂
∂z
wC =κC

∂2C
∂z2

∂C
∂t

+
∂FC ,tot
∂z

= 0
FC ,tot = wC −κC

∂C
∂z

Turbulent  
(macroscopic) flux 

Diffusive (microscopic)  
flux 

wC = wC



Modeling transport 

�  After exponential growth, nonlinear saturation leads to statistically 
stationary state.  

�  Both compositional and temperature flux are negative (transport is 
downward) 
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Modeling transport 

�  After exponential growth, nonlinear saturation leads to statistically 
stationary state.  

�  Both compositional and temperature flux are negative (transport is 
downward) 

�  This is easy to understand: 
(derivation on board) 
 
�  In a star, this means that  
temperature is transported  
upgradient! (but not much)  
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3D simulations of fingering convection 

�  To extract the turbulent diffusion coefficient, assume : 

 
�  As a result, we define 

FC = wC = −Dfing∇C

Dfing = −
wC
C0 z

→ Dfing = − ŵĈ R0κT

Can be directly 
extracted from DNS as 
function of input 
parameters Pr, τ, R0 



3D simulations of fingering convection 

�  To extract the turbulent diffusion coefficient, assume : 

 
�  As a result, we define 

�  Data will often be presented in terms of the non-dimensional 
Nusselt number 

so  

NuC =
−κCC0 z + wC

−κCC0 z
=
κC +Dfing

κC
=

Total flux of composition 

Diffusive flux of composition 

NuC −1=
Dfing

κC
measures the efficiency of turbulent mixing  

FC = wC = −Dfing∇C

Dfing = −
wC
C0 z

→ Dfing = − ŵĈ R0κT



3D simulations of fingering convection 

The Nusselt number (or fluxes) can be extracted for a wide range of 
simulations. This is the most complete dataset to date.  

NuT −1=
DT , fing
κT

r = R0 −1
τ −1 −1

Transport of heat by 
fingering convection is 
negligible for Pr, τ<0.01 
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3D simulations of fingering convection 

The Nusselt number (or fluxes) can be extracted for a wide range of 
simulations. This is the most complete dataset to date.  
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3D simulations of fingering convection 

We can use it to test the Ulrich (1972) or Kippenhahn et al. (1980) 
models:  

Dfing (R0 −1)
κT

r = R0 −1
τ −1 −1
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An improved model for fingering 
convection 



Brown et al. 2013 

In fingering convection in 
astrophysics (Brown et al. 
2014 , following Radko & 
Smith 2012) 

�  Saturation occurs when the 
growth rate σ of the shearing 
instability associated with the 
fluid motion within the fingers is 
of the order of the growth rate 
of the fingering instability λ :  

€ 

σ = Kλ



Brown et al. 2013 

�  The growth rate λ and most-rapidly growing mode of the 
fingering instability can be found by solving linear problem. 

�  Ignoring viscosity, by dimensional analysis, (or more rigorously 
through Floquet theory ), it can be shown that the shearing 
instability growth rate is   

 
�  W = typical vertical velocity within the fingers  
�  kh = horizontal wavenumber of most rapidly-growing finger. 

�  So we can estimate W at saturation of the fingering instability:   

σ ∝Wkh

σ ∝Wkh = Kλ→W =
CBλ
kh



Brown et al. 2013 

�  To compute the diffusion coefficient, we then use linear theory  
 (derivation on the board).  

 

Everything 
except CB is 
known from 
linear theory! 

F̂C = ŵĈ ∝−
1
R0

W 2

λ +τkh
2
= −

CB
2λ 2

R0kh
2 (λ +τkh

2 )



With CB =7,  the fit is very good (within factor of 2) for all 
(astrophysically-relevant) cases with τ<Pr<<1 

We now have a way of estimating transport by homogeneous 
fingering convection at astrophysical parameters.  

 

Brown et al. 2013 
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But is it the whole story ???  



Large-scale structures 

Evolution of a fingering simulation at  

Stellmach et al. 2011 

Pr = 7,  τ =1/ 3,  R0 =1.1



Stellmach et al. 2011 

Large-scale structures 

Fluxes increase 
significantly 
when layers 
form.  



Thermohaline staircases 

�  In fact, the propensity of fingering 
convection to form layers has been 
known for a long time.  

�  In many regions of the ocean unstable 
to fingering convection, one can find 
thermohaline staircases.  

 

Schmitt, 2005 



Mean-field theory 

Questions:  
1.  Why do large-scale structures emerge? 
2.  Under which conditions do they emerge?  
3.  How to they modify transport properties?  
 
�  Large-scale structures (waves, staircases) in double-diffusive 

convection can be studied using “mean-field” theory  

 



�  General idea:  large-scale structures form through positive 
feedback between large-scale temperature/composition 
perturbation and induced fluxes. 

Mean-field theory 



�  General idea:  large-scale structures form through positive 
feedback between large-scale temperature/composition 
perturbation and induced fluxes. 

Perturbations in local   
density ratio 

  
 

Mean-field theory 

€ 

T z,C z

€ 

R∝ T z
C z

Large-scale 
temperature, solute 

perturbations 



�  General idea:  large-scale structures form through positive 
feedback between large-scale temperature/composition 
perturbation and induced fluxes. 

Perturbations in local   
density ratio 

  
 

Mean-field theory 

€ 

T z,C z

€ 

R∝ T z
C z

Perturbations in 
turbulent fluxes 

 
 

€ 

FT ,C = f (R;Pr,τ)

Large-scale 
temperature, solute 

perturbations 



Different feedback loops can lead to different “mean-field” instabilities: 
1.  Gravity-wave generation 
2.  Layer formation 
 

Perturbations in local   
density ratio 

  
 

Mean-field theory 

€ 

T z,C z

€ 

R∝ T z
C z

Perturbations in 
turbulent fluxes 

 
 

€ 

FT ,C = f (R;Pr,τ)

Large-scale 
temperature, solute 

perturbations 



Mean-field theory 

�  Consider the original equations, and average them over smaller 
scales and fast timescales (all equations now non-dimensional)  

 

 
�  Standard mean field closure problem: if Reynolds stresses and 

fluxes are known, the problem can be solved for evolution of large-
scale fields. 

1
Pr

∂u
∂t

+∇⋅R
#

$
%

&

'
(= −∇p + T −C( )ez +∇2u

∂T
∂t

+∇⋅FT +w =∇
2T    

           →   ∂T
∂t

+w =−∇⋅FT ,tot

∂C
∂t

+∇⋅FC +
w
R0

= τ∇2C

            →   ∂C
∂t

+
w
R0

 = −∇⋅FC,tot

FT ,tot = −∇T +uT

FC ,tot = −τ∇C +uC

Note: here the overbar 
denotes averaging process, 
which needs not be 
horizontal average 



Mean-field theory 

Empirical “closure” model: (Radko 2003; Traxler et al. 2011) 
1.   Neglect Reynolds stress. 
2.   Assume fluxes are mostly in vertical direction, and define non-

dimensional quantities 

 
3.  Assume these non-dimensional quantities only depend on 

other non-dimensional quantities 
 
where                                   
 
 
is the local density ratio, and the functions                  are assumed 

to be known (see later about this). 

 

 
 

 

 

NuT  = NuT (R;Pr,τ )  and   γ = γ (R;Pr,τ )

NuT =
FT ,tot

−(1+Tz )
  and  γ =

FT ,tot

FC ,tot

R = 1+Tz
R0
−1 +Cz

NuT  and γ



Mean-field theory 

�  Mean field equations for staircase formation boil down to: 

 

�  These equations nevertheless admit one set of simple solutions: 
◦  No mean flow:  

◦  Constant temperature and compositional gradients:  

◦  Constant density ratio  

�  This solution represents the homogeneous fingering state.  

 

1
Pr
∂u
∂t

= −∇p+ (T −C)e z +∇
2u

∂T
∂t

+w=−∇⋅FT ,tot

∂C
∂t

+
w
R0
= −∇⋅FC ,tot

A closed 
set of nasty 
coupled  
nonlinear 
equations! 

FT ,tot = −NuT 1+Tz( )    and  FC ,tot =
FT ,tot

γ
NuT  = NuT (R;Pr,τ )       
γ = γ (R;Pr,τ )

R = 1+Tz
R0
−1 +Cz

€ 

u = 0

€ 

T z = T0z,   C z = C0z
R = R0



Mean field theory 

Stellmach et al. 2011 

Homogeneous 
fingering state. 



Mean-field theory 

�  Let’s linearize the system around the homogeneous fingering state, 
and study the effect of large-scale/slow timescale small amplitude 
perturbations. 

�  Substituting this back into the governing equations, to get a 
linearized system for large-scale variables.  

 
 
 

 

NuT  = NuT (R0 )+R'
dNuT
dR

R=R0

 and     γ  = γ (R0 )+R' dγ
dR R=R0

T = z +T '  and  C = zR0
−1 +C '   

R(x,t) = R0 + R '(x,t) ≅ R0 + R0 (T 'z− R0C 'z )



Mean-field theory 

�  For horizontally-invariant perturbations, this is quite easy to do: 
equations reduce to  

�  Assuming normal modes of the kind  

�  Get a quadratic for growth rate of horizontally-invariant modes.  

(derivation on the board) 
 
 
 

 

Λ2 +Λk 2 ANu (1− R0γ0
−1)+Nu0(1− AγR0 )⎡

⎣
⎤
⎦− k

4AγNu0
2R0 = 0

∂T
∂t
=−∇⋅FT ,tot

∂C
∂t

= −∇⋅FC ,tot

FT ,tot = −NuT 1+Tz( )    and  FC ,tot =
FT ,tot

γ
NuT  = NuT (R;Pr,τ )       
γ = γ (R;Pr,τ )

R = 1+Tz
R0
−1 +Cz

q(z,t)∝ eiKz+Λt



Mean-field theory 

�  Assuming normal modes of the kind  
yields a cubic (again) for the growth rate of large-scale structures: 

 
    where the coefficients are functions of                     as well as 
 
 
 
 
 
�  This cubic can have direct modes, or complex-conjugate modes. 
  
 

 

€ 

Λ3 + aΛ2 + bΛ + c = 0

€ 

Pr,τ,R0,k( )

q(x,t)∝ eik⋅x+Λt

Nu0 = Nu(R0 )              γ0 = γ tot (R0 )

ANu = R0
dNu
dR R=R0

       Aγ = R0

dγ tot
−1

dR
R=R0



Mean-field theory 

�  Modes of instability:  
◦  “Layering mode” or “γ-mode” (Radko 2003). The fastest 

growing mode is horizontally invariant with no mean flow.  

 

  Interpretation: The horizontally invariant mean-field 
equations can be re-written as 
 
  
 
è  If              then the system is antidiffusive! 
 

∂R
∂t

= NuT
dγ
dR

∂ 2R
∂ z2

+ ...

€ 

dγ
dR

< 0

Radko’sγ-instability criterion: A necessary condition for the 
layering instability is that the flux ratio should be a decreasing 
function of density ratio: 
      

€ 

dγ
dR

< 0



Mean-field theory 

�  Modes of instability:  
◦  CC-modes: Large-scale exponentially growing gravity waves, and 

correspond to the “collective instability” (Stern 1969). 

 

 

 Interpretation: The collective modes are simply the ODDC 
instability using turbulent diffusivities!   
•  from a turbulent point of view, the salt diffuses faster than 

heat 
•  now the rapidly-diffusive component is unstably stratified, 

while the slowly diffusing one is stable. 

Criterion for instability:  Turbulent diffusivities must be 
sufficiently large.  
 



Mean-field theory: proof of concept 

To determine whether this 
works quantitatively 

�  We need to find out what are the 
functions 

 
�  For water parameters, we used 

small-box simulations to extract 
these quantities (Traxler et al. 
2011;  Stellmach et al. 2011) and 
their derivatives with respect to 
R.  

 

NuT  = NuT (R;Pr,τ )       
γ = γ (R;Pr,τ )

¢ 
 

¢ 
 



Mean-field theory: proof of concept 

�  Stability diagram: the Traxler “flower plot” shows the real part of 
solutions of the mean-field cubic                                      as 
functions of wavenumber 

Pr = 7,  τ = 0.01,  R0 =1.5
Basic fingering mode 

Gravity wave mode 

Layering mode 
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Mean-field theory: proof of concept 

Comparison of the growth rates with numerical simulation shown 
earlier: 

 

 
 

     Mean field theory works!  

 
Stellmach et al. 2011 

Pr = 7,  τ =1/ 3,  R0 =1.1



Application to stars 

�  To predict whether large-scale instabilities develop in stars , 
we can use the Brown et al. (2013) model to compute 

�  This implies  

 

 

NuT  = NuT (R;Pr,τ )       
γ = γ (R;Pr,τ )

NuT =1− ŵT̂ =  1+
CB

2λ 2

kh
2 (λ + kh

2 )
    

γ =
−1+ ŵT̂

−τR0
−1 + ŵĈ

=

1+ CB
2λ 2

kh
2 (λ + kh

2 )

τR0
−1 +

CB
2λ 2

R0kh
2 (λ +τkh

2 )



Predictions for fingering 
convection, astrophysical 
regime:  
�  No layering 

instability! 
�  Gravity waves:  
◦  For low R0, gravity 

waves exist for Pr 
down to 10-3, but 
not lower. 
◦  For higher R0, or 

low Pr, τ gravity 
waves are absent 

From Garaud et al. 2015 

Pr#
Pr=τ=10(5#
r=10(4#

Pr=τ=10(3#
r=10(4#

Pr=τ=10(3#
r=10(1#
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r=10(1#

Pr=τ=10(1#
r=10(4#

Pr=τ=10(5#
r=10(1#

Low R0 High R0 

Large-scale 
structures do not 
emerge in stars 
(where Pr < 10-6) 

GW 

GW GW 



Gravity waves ? 

�  We indeed find gravity wave excitation in the predicted region of 
parameter space (e.g. Pr ~τ~ 0.01) 

Pr = τ = 0.03,R0 =1.11

However, it is not 
clear whether 
fingering convection 
with this low R0 can 
ever be triggered 
deep inside 
degenerate regions 
of stars  
(Garaud et al. 2015) 



Implications: 
 
The Brown et al. 2013 model applies!  
 



Mixing by fingering probably cannot explain RGB abundances      
 (cf. Denissenkov 2010).  

 

 

Implications for RGB stars. 
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Fingering convection explains why MS stars that have accreted planets 
do not show evidence for higher metallicity (cf. Vauclair 2004).   

 

 

Implications for planetary accretion onto 
MS stars 

Garaud (2011) 



Implications for element layers 

Fingering convection strongly moderates the formation of element-
rich layers in intermediate mass stars (Zemskova et al. 2014); 
convective layers probably do not form (TBC) 

DNS of fingering convection in 
an iron layer,  
Zemskova et al. 2014 

30Myr evolution of 
iron layer with 
fingering, TGEC 
Zemskova et al. 2014 



Take-home messages 

Basic fingering instability: 

�  Fingering instabilities can occur in a wide variety of situations in stars, 
whenever unstable mu-gradient develop 

�  Fingers are typically small scale (~10-100m) 

�  Saturation occurs because of secondary shearing instabilities in 
between up- and down fingering. 

�  Nonlinear fluxes can be predicted semi-analytically using “linear” 
theory of Brown et al. (2013), or analytically using their asymptotic 
model.  



Take-home messages 

 
Mean-field instabilities: 
 
Under some circumstances, larger-scale structures (e.g. staircases, large-
scale gravity waves) form in fingering convection. This can be studied 
using mean-field theory (Radko 2003; Traxler et al. 2011). 

We find that at astrophysical parameters 
�  No layering instability 
�  Gravity waves only excited at intermediate Pr (degenerate 

matter), very low density ratio 
�  For non-degenerate stellar interiors, neither layers nor gravity 

waves are excited.  
  


