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Lecture |:
Double-diffusive instabilities,
historical perspective.



The beginning

Double-diffusive instabilities were first discovered in the context of
oceanography in the 1950s/1960s, by a group of scientists at, or
loosely affiliated with WHOI (Woods Hole Oceanographic
Institution).
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Doubly-stratified fluids

* Double-diffusive instabilities exist in doubly-stratified fluids
o Stable temperature gradient with unstable composition

> Unstable temperature gradient with stable composition




An oceanographical curiosity:
“the perpetual salt fountain” (Stommel et al, 1956)

Hot salty water,
total density is
o5 lower The cold water in the tube
R A warms up slightly, and becomes
‘-;;‘?( lower density than the salty hot
el water. A fountain gets created,
— that gives rise to a cold, fresh
SR R LR water layer on top
QI ok PSR
cioof ¥t Cold fresh colored water,
- f 7| total density is higher
L% ‘:.".".:j..'.-"
8



An oceanographical curiosity:
“the perpetual salt fountain” (Stommel et al, 1956)

Although the attempt has not been made it is likely
that in the Central North Atlantic with a tube
2,000 meters long, one might develop a pressure head of
as much as two meters at the surface. A simple experi-
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It seems premature to speculate upon the improbable practical importance of this phenomenon
for pumping up nutrient rich deep water to the surface for fish-farming applications, or its inverse
for removing waste products to the deep water. As a power source it is quite unpromising. Thus it
remains essentially a curiosity.




The salt fountain and thermohaline
convection (Stern, |1960)

The tube is

not actually
needed!

StommeL, ARONS and BLANCHARD (1956)
have described an “‘oceanographical curiosity”™
by noting that if a long vertical tube was
lowered into the ocean, in such a manner that
its bottom was exposed to cold fresh water and
its top to warm saline water, a continuous
motion could be maintained therein after
priming the fountain. Their explanation is that
the ascending (or descendin s water in the
tube would exchange heat %ut not salinity
with the ambient ocean and would be acceler-
ated due to its deficit in salt and density
relative to fluid at the same level outside the
tube. The purpose of this note, stemming
from conversations with Henry Stommel, is
to point out that in view of the great difference
between the molecular diffusivity of sale
(Ks = 1.3x 10 cm? sec™! for salinity of
35 % at 20° C) and temperature (Kr= 1.5 x
x 10~% ¢m? sec~!) nature provides her own
convective fountans. If a parcel of small



The salt fountain and thermohaline
convection (Stern, |1960)

Stern went on to lay out the linear stability analysis of
thermohaline (fingering) convection. He also adds, in a footnote,

the result for the case opposite stratifications (hot & salty below
cold & fresh):

1 Compare the interesting case of a “solute” which is
distributed so as to stabilize a super-adiabatic lapse rate
of temperature. For exemple, if f<<o, r>D>1
(ie. B < 0, f~ > 0} the salt can stabilize the stationary
mode and destabilize the oscillatory mode, thereby relcas-
ing the potential energy in the thermal stratification.

Both cases were then nicely unified in 1969:

On thermohaline convection with linear gradients

By P. G. BAINES AND A. E. GILL

Department of Applied Mathematics and Theoretical Physics,
University of Cambridge



Double-diffusive instabilities

* They are instabilities that occur when density depends on 2
independent components that diffuse at different rates. (In the
ocean, temperature and salt)

* In this first lecture, | will review linear stability theory as derived by
Baines & Gill, and will then move on to their applications in
astrophysics.



Linear theory



The equation of state

e Each fluid can be characterized by an equation of state (EOS)

* Water is nearly incompressible, so ighore pressure contributions to

EOS.

 [f temperature variations and salt concentration variations are
small, linearize EOS around a mean state “m” (Boussmesq approx.)

p(p,T,C)=p(T,C)=p(Tm,Cm)+ (T T)+ (C C)

%£=—aT'+[3’C' where ¢'=g-q
P
1 dp 1 ap

a—___ -
p, oT P p, dC

- For water at room temperature, ¢ and B are positive so 0
decreases if T increases or C decreases



Mathematical modeling

Model considered:

o Assume background temperature or salinity profiles are linear
(constant gradients T,.,C,. )

° Let T'(x,y,z,t)=z1_+ f(x,y,z,t) and C'(x,y,z,t)=zC _+ C’(x,y,z,t)
° Assume that all perturbations are triply-periodic in domain (L,,L,L,)

> This enables us to study the phenomenon with little influence from
boundaries.




Stability theory for single non-diffusive fluids

Let’s first consider a single scalar (T or C)

( work on the board)

The criterion for instability for overturning convection is

ZI)Z<O or COZ>O



Overturning convection

e Overturning convection is a linear instability of stratified fluids with
“top-heavy” density profiles, and occurs whenever 0, >0

Example: Water heated at the bottom is unstable to thermal
convection

Buoyancy Force

Instability
criterion:

pOZ>0<=>T(')z<O




Overturning convection

e Overturning convection is a linear instability of stratified fluids with
“top-heavy” density profiles, and occurs whenever 0, >0

Example: Overturning convection can occur in fluids with top-heavy
composition.

Buoyancy Force

Instability
criterion:

p02>0<:>COZ>O




Overturning convection vs. internal waves.

* Fluids that are stable to overturning convection ( 0,, <0 ) support
internal gravity waves.

Example: Fluids heated from the top.

Buoyancy Force




Overturning convection vs. internal waves.

* Fluids that are stable to overturning convection ( 0,, <0 ) support
internal gravity waves.

Example: Fluids with bottom-heavy composition




But what about the doubly-stratified case!?

o Stable temperature gradient with unstable composition?

> Unstable temperature gradient with stable composition?

Instability
criterion ?



Stability theory for non-diffusive doubly-
stratified fluids.

Combining the two scalars is not very difficult:

(work on the board)

The criterion for instability for overturning convection is

0,.>0 — -al,_+pC,_>0



Convection in non-diffusive multi-
component fluids.

T, =0
Overturning convection : Stable system
C,.=0 >
I,
Destabilizing Overturning convection ?
composition g ; Stable system
DQQQQQAC’\ r
O ]—E)Z
0z
Stabilizing ~ Overturning
e convection
composition I Stable system ?
[
OO -
COZ < O 1 TZ)Z

pOz =O



Double-diffusive convection

* However, temperature and composition usually diffuse at different
rates

o Salt diffuse about 100 times slower than heat in salt water

e When this is the case, new linear instabilities can occur even in the
case of stably stratified density profiles.

e They are called “double-diffusive instabilities”.



instability

ing

The finger
Physical mechanism




Fingering convection

Fingering convection is found in the tropical oceans, and manifests
itself in the form of long, thin,“fingers” of hot/salty, cold/fresh
plumes of water.

Hot, salty

Cc?ra?;esh

i o




The oscillatory double-diffusive instability

Physical mechanism




ODDC

ODDC is in principle found in regions where cold, fresh water lies on
top of hot, saltier water: the Arctic, and geothermally-active lakes.

Lake Kivu




Mathematical modeling

Governing equations (for incompressible salt water):

a—u+u°Vu=—E—£gé +W’u
ot P Pu
£+u-VT+wTO =k, VT

Jt )

%€t u-VC+wC, =k V*C

ot )

V-u=0

fl=—aT+ﬁC

P,

Non-dimensionalization (work on the board)



Mathematical modeling

Governing non-dimensional equations:

1M, a-va =-Vp+(T-Cle, + Vi
Pr\ ot ‘
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Linear theory (basic instability)

Linear stability analysis:
e Assume all perturbations are of the form
é(x,y,z,t) o eik-xMz
* (Work on the board)



Linear theory (basic instability)

Linear stability analysis:
e Assume all perturbations are of the form
iK-xX+At

qg(x,y,z,t)xe
* Resulting equation for growth rate is a cubic

A+ A7 ‘k‘z (14 Pr+7)

+A ‘k‘ (Pr+7+Pr7)+ Pr‘ ‘2(1 R h
k

+Prt‘k‘6 + Prk;(r—Ro‘l) =0




Linear theory (basic instability)

General results:

* In both cases fastest-growing modes are always “elevator”
k, = 0 modes in this setup (see Radko 201 3).

* Fingering regime: growth rate is real (pure exponential
growth)

* ODDC regime: growth rate is complex (exponential +
oscillatory)



Linear theory (fingering)

The necessary condition for instability depends on the density ratio

aTo Stabilizing temperature stratification
RO — z —
[)’COZ Destabilizing salinity stratification

Instability to fingering occurs if

K Marginal stability threshold
e
1<R0 <+ ~ 100 in ocean,

Threshold for

overturning
convection




Linear theory (ODDC)

e The dynamics of the ODDC instability depends on the
non-dimensional inverse density ratio

R = ﬁCOZ _ Stabilizing salinity stratification

0 T e o
ol Destabilizing temperature stratification

e Linear instability to ODDC occurs if

1 V+tK, Marginal stability threshold
1<R0 < ~ |.14 in ocean,

V+KC



Linear theory (basic instability)

R,=0
Overturning convection : Stable system
C,.=0 >
I,
o Overturning convection Fingering convection Stable
Destabilizing i ' system
composition
_ T
C >0 i = l e
0z RO =1 RO T
Overturning  ODDC
o convection I
Stabnthg DGDW Stable system
composition : —
I 5 T
o Pr+l 0z
C,. <0 Ry =

R51=1 * Pret



Regions of the ocean susceptible to DDC

From You (2002)



Double-diffusive instabilities in
astrophysics



From the ocean to the stars

Main differences between salt water and the plasmas in stellar
interiors are:

e C represents the concentration of a chemical species, rather than
that of salt

e (Weak) compressibility

* Values of the parameters Prand T



The SV Boussinesq equations

Weak compressibility is addressed by using the Spiegel & Veronis
(1960) Boussinesq equations for gases.

7 u VT K, VT

ot

i)—c+u-VC = Kcvz(\
l

V-ou=0 New term accounts for change in
temperature due to slow expansion

P _ —-aT + BC or contraction of parcel of gas as it

P, adjusts to local pressure of
surroundings. Note that

Tad g

0z =T

C
p



Mathematical modeling

Governing non-dimensional equations: Exactly the same
1 { a0 equations as in the
— |, u-vu|=-Vp+ (T - C) e + Vi oceanographic
Pr\ ot incompressible case!
7/ AP
E +U-VI £Ww=V’T Governing parameters:
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Linear theory (basic instability)

e The dynamics of DD instabilities depends on the non-
dimensional density ratio

V—Vad
1)
5V

* Fingering case: R, =

R, = | corresponds to Ledoux criterion
R, = 0 corresponds to Schwartzschild criterion

R, =

Stabilizing gradient

Destabilizing gradient

Instability range: | < Ro < Kr - l
K C T
Detabilizing gradient

* Oscillatory case: R =

Stabilizing gradient
Pr+7 Vv+K,

Instability range: =
Pr+1 v+k,

<R0<1



Parameter values in stars

e Prand 7 are typically very small in stellar interiors (~10)
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Parameter values in stars

e Prand 7 are typically very small in stellar interiors (~10)

- With the exception of degenerate regions where electron
conduction becomes important (e.g. RGB stars,WD stars)
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Linear theory (basic instability)

e The dynamics of DD instabilities depends on the non-
dimensional density ratio

V-V _,
Oy

R, = | corresponds to Ledoux criterion
R, = 0 corresponds to Schwartzschild criterion

R, =

(5 u

- Fingering case: R, - Stabilizing gradient

Destabilizing gradient

Instability range: 1< R < >>| in stars
0

Detabilizing gradient

e Oscillatory case: R, = —— .
Stabilizing gradient

Instability range: < R <1

«— <<| in stars




Convection in multi-component fluids.

V=V,

Stable system Overturning convection

. V - Vad
Stable Fingering
system convection Overturning convection
Destabilizing '
composition : —
vV, <0 " V-V,
R = ; Ry=1 :
V-V, = QVM ODDC Overturning
0 convection
Stabilizing Stable system
composition ' UGQ_)
V >0 )
H Pr+ 7 V-V,
R, = =1
Pr+1



Fingering convection in
astrophysics



Fingering convection in astrophysics

Fingering convection found a number of situations with stable

potential temperature (entropy) gradient (aka radiative zones) and
unstable mean molecular weight gradient.

This can happen with e.g.
e Shell burning in RGB stars.
* Accretion of higher-mu material on top of the star

e Thin element layers in intermediate-mass stars



Fingering in RGB stars

double shell-
burning core

~. _~ inert carbon
| ) holinm burning shell
—r—Ne um-ourning she

planetary nebula

double shell- 7™~ hydrogen-burning she
burning red giant ) &

_~ helium burming

red ="
giant
Seh?r' 7~ hydrogen-burning shell I
urnng 0 - _
Slo?!J helium-burning nverse mU

subgiant e gradient for'mS

i/ . inert helium at edge of HBS
(T""* hydrogen-burning shell

HBS CZ

white dwarf subgiant/
red giant core

Ulrich 1972, Charbonnel & Zahn 2007,

Denissenkov et al. 2008, 2010,201 I,

Cantiello & Langer 201 |, Traxler et al.

2011, Lagarde et al. 201 1,Wachlin et -

el.2014

m/M



Accretion of high-mu material

Planetary infall on top of a star (MS star;, WD stars), causes an
inverse mu-gradient just below the surface (or below the surface
CZ if there is one).

CZ

>
m/M

Vauclair 2004, Garaud 201 |, Theado & Vauclair 2012, Deal et al. 2013, 2015,
Wyatt et al. 2014, Wachlin et al. 2017, Bauer et al. 2018



Accretion of high-mu material

Similar inverse mu-gradients can arise because of accretion from

more evolved companion star.

Marks & Sarna 1998,
Stancliffe et al. 2007;
Thompson et al. 2008;
Stancliffe 2009, ...

In all these cases, the
main question asked is

“How much mixing does
the fingering instability
cause?”




Element layers in stars

e Combination of radiative levitation and gravitational settling causes
accumulation of some elements near their opacity peak (Richard et
al.2001, ...)

e This can be fingering-unstable (Theado et al. 2009, ..))
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ODDC in stars



ODDC in astrophysics

ODDC is found in situations with unstable potential temperature
(entropy) gradient but unstable mu-gradient. These regions are
Ledoux-stable but Schwarzschild-unstable. This situation is
characteristic of so-called semi-convective regions in stars.

The terminology “semi-convection” was first introduced by

Schwarzschild & Harm (1958). However, the connection with
ODDC was only realized later (Kato 1966).

ODDC regions are mostly found outside convective cores, when a
strong mu-gradient is present.



Mu-gradients outside convective cores

There are typically two mass- “Convective core
ranges in which they occur on the radius” using Ledoux
MS: crit.

e Intermediate-mass stars (1-2
Msun)

e High-mass stars ( >10 Msun)

Semi-convective

In both cases, mu-gradients build
up outside the convective core, but
for different reasons.

See reviews by e.g. Spiegel 1969,
Langer et al. 1983, Spruit 1992,

Merryfield 1995, Shibahashi 2009...

“Convective core
radius” using
Schwarzschild crit.



Intermediate-mass stars

* In the 1-2 Msun range, weak dependence of nuclear reactions (pp-
chain) on temperature implies He production outside the
convective core as estimated using Schwarzschild-radius.

e Ledoux-based radius further out, region in-between is ODDC-
unstitble.
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High-mass stars

* In the >10Msun mass range, nuclear reactions strongly
concentrated within the convective core

e Opacity in the core ~ |+X decreases with X as nuclear reactions
proceed. This causes the core to shrink with time as more of the
energy can be transported radiatively.

» Shrinking core leaves behind concentric shells of progressively
higher He content

Region becomes
ODDC unstable

Stable

>
R Retreating CZ




Mu-gradients outside convective cores

“Convective core
radius” using Ledoux
crit.

In all these cases, the

5 . . (S, . .
main question asked is _ , onvective
“How much mixing does

semiconvection cause!?”’

“Convective core
radius” using
Schwarzschild crit.



Disclaimer:

The list of relevant DDC-unstable situations presented here is not
exhaustive!



