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Lecture 1:  
Double-diffusive instabilities,   
historical perspective. 



The beginning 
�  Double-diffusive instabilities were first discovered in the context of 

oceanography in the 1950s/1960s, by a group of scientists at, or 
loosely affiliated with WHOI (Woods Hole Oceanographic 
Institution). 

Melvin Stern 
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Doubly-stratified fluids 

�  Double-diffusive instabilities exist in doubly-stratified fluids  
◦  Stable temperature gradient with unstable composition 
◦  Unstable temperature gradient with stable composition 



An oceanographical curiosity:  
“the perpetual salt fountain” (Stommel et al, 1956) 

Hot salty water, 
total density is 
lower 

Cold fresh colored water, 
total density is higher 

The cold water in the tube 
warms up slightly, and becomes 
lower density than the salty hot 
water.  A fountain gets created, 
that gives rise to a cold, fresh 
water layer on top 



An oceanographical curiosity:  
“the perpetual salt fountain” (Stommel et al, 1956) 



The salt fountain and thermohaline 
convection (Stern, 1960) 

The tube is 
not actually 
needed!  



The salt fountain and thermohaline 
convection (Stern, 1960) 

Stern went on to lay out the linear stability analysis of 
thermohaline (fingering) convection. He also adds, in a footnote, 
the result for the case opposite stratifications (hot & salty below 
cold & fresh):   
 
 
 
 
 
 
 
Both cases were then nicely unified in 1969:  



Double-diffusive instabilities 
 

�  They are instabilities that occur when density depends on 2 
independent components that diffuse at different rates. (In the 
ocean, temperature and salt) 

�  In this first lecture, I will review linear stability theory as derived by 
Baines & Gill, and will then move on to their applications in 
astrophysics. 



Linear theory  



The equation of state 

�  Each fluid can be characterized by an equation of state (EOS)  
�  Water is nearly incompressible, so ignore pressure contributions to 

EOS. 
�  If temperature variations and salt concentration variations are 

small, linearize EOS around a mean state “m” (Boussinesq approx.) 

 
 
 
è  For water at room temperature, αand β are positive so ρ 

decreases if T increases or C decreases 

 
 

ρ( p,T ,C) = ρ(T ,C) = ρ(Tm ,Cm )+
∂ρ
∂T
(T −Tm )+

∂ρ
∂C
(C −Cm )

→
ρ '
ρm

= −αT '+βC '   where  q ' = q− qm

α = −
1
ρm

∂ρ
∂T
,β = 1

ρm

∂ρ
∂C



Mathematical modeling 

Model considered: 
◦  Assume background temperature or salinity profiles are linear 

(constant gradients              ) 
◦  Let 
◦  Assume that all perturbations are triply-periodic in domain (Lx,Ly,Lz) 
 

◦  This enables us to study the phenomenon with little influence from 
boundaries.  

T0 z ,C0 z
T '(x, y, z,t) = zT0 z +

!T (x, y, z,t)   and   C '(x, y, z,t) = zC0 z +
!C(x, y, z,t)



Stability theory for single non-diffusive fluids 

Let’s first consider a single scalar (T or C) 
 
( work on the board)  
 
 
 
 
 
 
The criterion for instability for overturning convection is 
 
 

 T0 z < 0  or   C0 z > 0



Overturning convection 

�  Overturning convection is a linear instability of stratified fluids with 
“top-heavy” density profiles, and occurs whenever  

Example:  Water heated at the bottom is unstable to thermal 
convection 

 
 

Buoyancy Force 

Instability 
criterion: 
  

ρ0 z > 0⇔T0 z < 0

ρ0 z > 0



�  Overturning convection is a linear instability of stratified fluids with 
“top-heavy” density profiles, and occurs whenever  

Example: Overturning convection can occur in fluids with top-heavy 
composition. 

 

Overturning convection 

Instability 
criterion: 
  

ρ0 z > 0⇔C0 z > 0

ρ0 z > 0



Overturning convection vs. internal waves. 

�  Fluids that are stable to overturning convection (             ) support 
internal gravity waves.  

Example: Fluids heated from the top.  

 
Buoyancy Force 

ρ0 z < 0



�  Fluids that are stable to overturning convection (             ) support 
internal gravity waves.  

Example: Fluids with bottom-heavy composition 

Overturning convection vs. internal waves. 

ρ0 z < 0



But what about the doubly-stratified case?  

 

◦  Stable temperature gradient with unstable composition? 
◦  Unstable temperature gradient with stable composition?  

Instability  
criterion ? 
  



Stability theory for non-diffusive doubly-
stratified fluids.  
 
Combining the two scalars is not very difficult:  
    (work on the board) 
 
 
 
 
 
 
 
The criterion for instability for overturning convection is 
 
 

ρ0 z > 0   →   −αT0 z +βC0 z > 0



C0 z = 0

C0 z > 0

C0 z < 0

Overturning convection Stable system 

€ 

T0z = 0

€ 

ρ0z = 0

Overturning convection 

Stable system ?  

Overturning 
convection 

€ 

T0z

€ 

T0z

€ 

T0z

Stable system ?  
Destabilizing 
composition 

Stabilizing 
composition 

Convection in non-diffusive multi-
component fluids.  

€ 

ρ0z = 0



Double-diffusive convection  

�  However, temperature and composition usually diffuse at different 
rates 
◦  Salt diffuse about 100 times slower than heat in salt water 

�  When this is the case, new linear instabilities can occur even in the 
case of stably stratified density profiles. 

�  They are called “double-diffusive instabilities”. 



The fingering instability 

Physical mechanism 



Fingering convection  

Fingering convection is found in the tropical oceans, and manifests 
itself in the form of long, thin, “fingers” of hot/salty, cold/fresh 
plumes of water. 

Hot, salty 

Cold fresh 



Physical mechanism 

The oscillatory double-diffusive instability 



ODDC 

ODDC is in principle found in regions where cold, fresh water lies on 
top of hot, saltier water: the Arctic, and geothermally-active lakes. 

Lake Kivu 



Governing equations (for incompressible salt water): 
 
 
 
 
 
 
 
 
 
 
Non-dimensionalization (work on the board) 

 

 

 

∂u
∂t

+u ⋅∇u = −∇p
ρm

−
ρ
ρm
gêz +ν∇

2u

∂T
∂t

+u ⋅∇T +wT0 z =κT∇
2T

∂C
∂t

+u ⋅∇C +wC0 z =κC∇
2C

∇⋅u = 0
ρ
ρm

= −αT +βC

Mathematical modeling 



Governing non-dimensional equations: 

 
 
 
 
 

 

 
 

Mathematical modeling 

1
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⎝
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⎝
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Governing parameters: 
 

for ocean 

for ocean 



Linear stability analysis:  
�  Assume all perturbations are of the form  

�  (Work on the board) 
 

Linear theory (basic instability) 

q̂(x, y, z,t)∝ eik⋅x+λt



Linear stability analysis:  
�  Assume all perturbations are of the form  

�  Resulting equation for growth rate is a cubic 

 

 

Linear theory (basic instability) 

q̂(x, y, z,t)∝ eik⋅x+λt

λ3 +λ 2 k
2
(1+ Pr+τ )

+λ k
4
(Pr+τ + Prτ )± Pr
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General results: 

•  In both cases fastest-growing modes are always “elevator”     
kz = 0 modes in this setup (see Radko 2013). 

•  Fingering regime: growth rate is real (pure exponential 
growth) 

•  ODDC regime: growth rate is complex (exponential + 
oscillatory) 

 

Linear theory (basic instability) 



The necessary condition for instability depends on the density ratio 
 
 
 
Instability to fingering occurs if  

 
 

 

Linear theory (fingering) 

R0 =
αT0 z
βC0 z

=
Stabilizing temperature stratification 

Destabilizing salinity stratification  

1< R0 <
κT
κC

=
1
τ

Marginal stability threshold 
~ 100 in ocean,  

Threshold for 
overturning 
convection 



�  The dynamics of the ODDC instability depends on the 
non-dimensional inverse density ratio 

�  Linear instability to ODDC occurs if  

 
 

Linear theory (ODDC) 

R0
−1 =

βC0 z
αT0 z

=
Stabilizing salinity stratification 

Destabilizing temperature stratification  

Marginal stability threshold 
~ 1.14 in ocean,  1< R0

−1 <
ν +κT
ν +κC

=
Pr+1
Pr+τ



Linear theory (basic instability) 

Overturning convection 

C0 z = 0
Stable system 

€ 

 R0 = 0

€ 

      R0 =1

Overturning convection Stable 
system 

Fingering convection 

€ 

R0 =
1
τ

€ 

R0
−1 =

Pr+1
Pr+ τ

Stable system 

Overturning 
convection 

ODDC 

€ 

      R0
−1 =1

€ 

T0z

€ 

T0z

€ 

T0z

C0 z > 0

C0 z < 0

Destabilizing 
composition 

Stabilizing 
composition 



Regions of the ocean susceptible to DDC 

From You (2002)  



Double-diffusive instabilities in 
astrophysics 



From the ocean to the stars 

 
 
Main differences between salt water and the plasmas in stellar 
interiors are: 
�  C represents the concentration of a chemical species, rather than 

that of salt 
�  (Weak) compressibility 
�  Values of the parameters Pr and τ 



The SV Boussinesq equations 
Weak compressibility is addressed by using the Spiegel & Veronis 
(1960) Boussinesq equations for gases. 

∂u
∂t

+u ⋅∇u = −∇p
ρm

−
ρ
ρm
ge z +ν∇

2u

∂T
∂t

+u ⋅∇T −wT0 z
ad =κT∇

2T

∂C
∂t

+u ⋅∇C =κC∇
2C

∇⋅u = 0
ρ
ρm

= −αT +βC

New term accounts for change in 
temperature due to slow expansion 
or contraction of parcel of gas as it 
adjusts to local pressure of 
surroundings. Note that  

T0 z
ad = −

g
cp



Governing non-dimensional equations: 

 
 
 
 
 

 

 
 

Mathematical modeling 
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Governing parameters: 
 

Exactly the same 
equations as in the 
oceanographic 
incompressible case! 
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�  The dynamics of DD instabilities depends on the non-
dimensional density ratio 

�  Fingering case:   
 

 Instability range:  

�  Oscillatory case:  
 

 Instability range:  

 
 

 

Linear theory (basic instability) 

€ 

R0 =
∇ −∇ad

φ
δ
∇µ

1< R0 <
κT
κC

=
1
τ

Pr+τ
Pr+1

=
ν +κC
ν +κT

< R0 <1

R0 = 1 corresponds to Ledoux criterion 
R0 = 0 corresponds to Schwartzschild criterion 

€ 

R0 =
Stabilizing gradient

Destabilizing gradient

R0 =
Detabilizing gradient
Stabilizing gradient



�  Pr and τare typically very small in stellar interiors (~10-6) 

 
 

 

Parameter values in stars 

Pr and τ in 
MS stars of 
various 
masses (from 
Garaud et al. 
2015) 



�  Pr and τare typically very small in stellar interiors (~10-6) 
•  With the exception of degenerate regions where electron 

conduction becomes important (e.g. RGB stars, WD stars) 

 
 

 

Parameter values in stars 

Pr and τ in a 1Msun 
RGB star  star just 
before the luminosity 
bump (from Garaud et 
al. 2015) 

Pr 

τ 



�  The dynamics of DD instabilities depends on the non-
dimensional density ratio 

�  Fingering case:   
 

 Instability range:  

�  Oscillatory case:  
 

 Instability range:  

 
 

 

Linear theory (basic instability) 

€ 

R0 =
∇ −∇ad

φ
δ
∇µ

1< R0 <
1
τ

>>1  in stars 

Pr+τ
Pr+1

< R0 <1
<<1  in stars 

R0 = 1 corresponds to Ledoux criterion 
R0 = 0 corresponds to Schwartzschild criterion 

€ 

R0 =
Stabilizing gradient

Destabilizing gradient

€ 

R0 =
Detabilizing gradient
Stabilizing gradient



€ 

∇µ = 0
Overturning convection Stable system 

€ 

 ∇ =∇ad

€ 

∇ −∇ad =
φ
δ
∇µ

Overturning convection 

Stable system   

€ 

∇ −∇ad

Stable 
system  

Convection in multi-component fluids.  

€ 

∇ −∇ad =
φ
δ
∇µ

€ 

∇ −∇ad

€ 

∇ −∇ad

Fingering 
convection 

ODDC Overturning 
convection 

€ 

∇µ < 0

€ 

∇µ > 0

Destabilizing 
composition 

Stabilizing 
composition € 

R0 =1

€ 

R0 =
1
τ

€ 

R0 =1

€ 

R0 =
Pr+ τ
Pr+1



Fingering convection in 
astrophysics 



Fingering convection in astrophysics  

Fingering convection found a number of situations with stable 
potential temperature (entropy) gradient (aka radiative zones) and 
unstable mean molecular weight gradient.  

 
This can happen with e.g.  
�  Shell burning in RGB stars.  
�  Accretion of higher-mu material on top of the star 
�  Thin element layers in intermediate-mass stars 



Fingering in RGB stars 

€ 

m /M

HBS CZ 

Ulrich 1972, Charbonnel & Zahn 2007, 
Denissenkov et al. 2008, 2010,2011, 
Cantiello & Langer 2011, Traxler et al. 
2011,  Lagarde et al. 2011, Wachlin et 
el. 2014 

Inverse mu-
gradient forms  
at edge of HBS 



Accretion of high-mu material 

Planetary infall on top of a star (MS star,  WD stars), causes an 
inverse mu-gradient just below the surface (or below the surface 
CZ if there is one). 

 
µ

€ 

m /M

CZ 

Vauclair 2004, Garaud 2011, Theado & Vauclair 2012, Deal et al. 2013, 2015, 
Wyatt et al. 2014, Wachlin et al. 2017, Bauer et al. 2018 



Accretion of high-mu material 

Similar inverse mu-gradients can arise because of accretion from 
more evolved companion star. 

Marks & Sarna 1998, 
Stancliffe et al. 2007; 
Thompson et al. 2008; 
Stancliffe 2009, …  

In all these cases, the 
main question asked is 
“How much mixing does 
the fingering instability 
cause?” 



Element layers in stars 

�  Combination of radiative levitation and gravitational settling causes 
accumulation of some elements near their opacity peak (Richard et 
al. 2001, …) 

�  This can be fingering-unstable (Theado et al. 2009, …) 

Evolution of X(Fe) in 
a 1.7 Msun star over 
30Myr, from 
Zemskova et al. 2014. 

Gravitational 
settling 

Radiative 
acceleration 



ODDC in stars 



ODDC in astrophysics  

ODDC is found in situations with unstable potential temperature 
(entropy) gradient but unstable mu-gradient. These regions are  
Ledoux-stable but Schwarzschild-unstable. This situation is 
characteristic of so-called semi-convective regions in stars. 

 
The terminology “semi-convection” was first introduced by 

Schwarzschild & Harm (1958). However, the connection with 
ODDC was only realized later (Kato 1966).   

 
ODDC regions are mostly found outside convective cores, when a 

strong mu-gradient is present. 



Mu-gradients outside convective cores 

There are typically two mass-
ranges in which they occur on the 
MS: 
�  Intermediate-mass stars (1-2 

Msun) 
�  High-mass stars ( >10 Msun) 

In both cases, mu-gradients build 
up outside the convective core, but 
for different reasons. 
 
See reviews by e.g. Spiegel 1969, 
Langer et al. 1983, Spruit 1992, 
Merryfield 1995, Shibahashi 2009… 

“Convective core 
radius” using 
Schwarzschild crit. 

“Convective core 
radius” using Ledoux 
crit. 

Semi-convective 
region 



Intermediate-mass stars 

�  In the 1-2 Msun range, weak dependence of nuclear reactions (pp-
chain) on temperature implies He production outside the 
convective core as estimated using Schwarzschild-radius. 

�  Ledoux-based radius further out, region in-between is ODDC-
unstable. 
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High-mass stars 

�  In the >10Msun mass range, nuclear reactions strongly 
concentrated within the convective core 

�  Opacity in the core ~ 1+X, decreases with X as nuclear reactions 
proceed. This causes the core to shrink with time as more of the 
energy can be transported radiatively.  

�  Shrinking core leaves behind concentric shells of progressively 
higher He content  
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Retreating CZ 

Region becomes 
ODDC unstable 



Mu-gradients outside convective cores 

“Convective core 
radius” using 
Schwarzschild crit. 

“Convective core 
radius” using Ledoux 
crit. 

Semi-convective 
region 

In all these cases, the 
main question asked is 
“How much mixing does 
semiconvection cause?” 



Disclaimer: 

The list of relevant DDC-unstable situations presented here is not 
exhaustive! 


