Graph Analysis in the Wild:
Theory to Practice

C. Seshadhri
(Seshadhri Comandur)

Dept of Computer Science



Theory and practice

There and back again

(CS Theory)

Algorithms

Graph theory
Probability theory
Combinatorics

Practice
(Graph analysis)

Graph modeling
Clustering

Pattern counting
Scalable algorithms




Large graphs

Computer
networks

EEERE R

 Convenient
representation

* Vertices and edges
connecting them

interacti & 7= : B , . iy
on * Big, millions, billions,...
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So what about them?

Are there common
patterns?

Can you find
“Interesting” activity?
Is this graph
“special”?

Which regions should |
“care” about?

Often reduces to some algorithmic question
(via graph theory)



Graph is massive
(millions to billions)

Distributed

Noisy

Probably can't see of
all it

Maybe only one pass
of data

We need to rethink the past 50 years of
graph algorithmics.



Most common neighbors

* G Is undirected, simple graph

* Find top k pairs with most nearest
neighbors



Some naive algorithms

& <

* Try all pairs
- Complexity n2 ~ 1012

Do 2-step BFS from each node

- Complexity superlinear ~ 109



What we did

[Ballard Pinar Kolda S ICDM15]

Repeat 10,000 times

Output pairs that are
frequently reported

Pick e = (u,v) with probability prop. to d d,
Pick random neighbor w of u, and x of v
Check if (w,x) exists

If so, output u,w as candidate



Why would you do that?

 Works well (68M edge graph, top 1000 pairs in a

second)



where we assume ' < mn. We let £2, denote the indices of all
the nonzeros in X and {1, denote the top-t’ entries in X; this
requires a sort in Line 1 of at most s items (and generally many
fewer, depending on the proportion of three-paths that close
into diamonds). We compute the t' dot products in Lines 3
to 5 at a cost of ((t'd). Finally, we let {}; denote the top-t
dot products from £} in Line 6, requiring a sort of t' items.

Algorithm 2 Postprocessing
Given £, = {{i,j)| x;; > 0}. Let ¢ he the number of top
dot products, and t' = ¢ be the budget of dot products.

I: Extract top-t’ entries of X, ie. [{}y] < ' and
O o {1,708, | myy = w37 € G4 1 }
€'+ all-zero matrix of size m = n
: for (i, j) €82 do

Cij + ng—bj-

end for
. Extract top-t entries of C', Le.. |f%] < ¢ and

O — {{1,j) €Dy | ey = e ypWT, §) €0 1) }

=

B. General inputs

We present the binary version as general motivation, but
our implementation and analysis are based on the diamond
sampling algorithm for general real-valued A and B in Al-
gorithm 3. In this case. we define the matrix of weights
W e B4 such that

for all

kg [d], 2 € [m].
The weight wy; correspond to the weight of all three paths
with edge (i, k) at its center. This is computed in Line 2. The
sampling in Line 6 has the same complexity as in the binary
case, but the sampling in Lines 7 and & now has a nonuniform
distribution and so has higher complexity than in the binary
case. The postprocessing is unchanged.

Wii = || fawill i b1

Algorithm 3 Diamond sampling with general inputs
Given matrices A € E™** and B € B" ",
Let s be the number of samples.

I: for all a;; # 0 do

Z Wiee + [l |2 [l ][ [l

2 end for

4 X 4+ dl-zero matrix of size m = n
s:forf=1,... sdo

& Sample (k. 1) with probability w,/|[W]),
T Sample j with probability [b;;]/|[bg. ][
& Sample &' with probability e /]| @,
9 Ty smlag by ) b

1 end for

. Postprocessing (see Algorithm 2)

1) Nonnegative inputs: If A and B are nonnegative, the
only change is that the sign computations can be ignored in
computing the sample increment in Line 9 in Algorithm 3.
This avoids potentially expensive random memory accesses.

2) Equal inputs (Gram matvix): If B = A, then C' =
is symmetric. The matrix X is not symmetric, although
is. Hence, we modify X before by inserting the following
before the postprocessing in Line 11 in Algorithm 3:

X (X +XT)/2

Now X is symmetric. and the forthcoming analysis is
fected.

3) Equal svmmetric inputs (squared matix): If B =,
A is symmetric, then ' = A% and we can replace Line
Algorithm 2 with the following two lines:

T 4 sl agby ) b /2,
Tpr 4= Tiopr + ST B by jens ) Bgr /22
This exploits the fact that we can swap the role of & am
the initial edge sample. Again, X' may not be symmetr
we insert (2) before the postprocessing in Line 11.

C. Complexity and space
Let & = nnz(A) and § = nnz{ B).
md and [ = nd. The total work is

Ol + 4 + sloglsad)).

In the dense case,

The total storage (not counting the inputs A and B) is
2 storage( A) + storage(B) + 5s + 3" + 3t

We give detailed arguments below and in the implement
discussion in Section V.

Preprocessing. For the sampling in Lines 7 and ¢
precompute cumulative, normalized column sums for F
the same for rows of A, requiring storage of storage(
storage( ) and computation of Ofa + ). The matrix W
the same nonzero pattern as A, so the cost to store it is
to storage(A) and to compute it is Ofa).

Sampling. For a straightforward implementation, the
per sample in Line 6 is Oflog{a)). For Line 7. the co:
sample is O(log(3/d)): here, we have used the approxim
nnz(by, ) = 4/d. A similar analysis applied for 4 and Li
So. the cost per sample is log(a)+ logl3/d) +logla,
Without loss of generality, we assume that we need to
the three-paths and the summand in Line 9 for a total st
of Bs.

Postprocessing. Conservatively. we require 3t" storag
the (i, j, @ or ;) triples in € and 3t storage fo
(1,7, ci;) triples in €. The sorting requires at most O s
time, and usually much less since nnz( X ) may be mucl
than s due to only some three-paths forming diamond
concentration, ie., picking the same (i, j] pair multiple 1

IV, ANALYSIS OF DIAMOND SAMPLING
This section provides a theoretical analysis of dia
sampling. We first prove that the expected value of 1
rri-,"' [W]],. and then we prove error bounds on our estimi
a function of the number of samples. Unless stated other
our analysis applies to the general version of the dian
sampling algorithm (Algorithm 3).

A. Expectation

For a single instance of Lines 6 to 8 of Algorithm 3, we
define the event

Ejixj = choosing three-path (K1, k. j).

LEmMA 1. Pr(&p;) = |apsbyjag] /W1

Proof: The probability of choosing three-path (K4, k., j)
is (by independence of these choices) the product of the
following probabilities: that of choosing the center edge (4, k).
then picking j. and then picking £".

Pri&y i) = Prietr (i,k)) - Prlendpts j and &'lctr (1, )
~ W |ba— |l [o:]l1
_ il lewilllbeally  fbegl  lawl
L [bealle el
_ i by i |
(W

L]

In what follows, we use X, ;; to be the following random
variable: if 7, j are the respective indices updated in the fth
iteration, -‘:i.j.f = Sgll(ﬂ“b“ﬂk',')bk'j. Otherwise, X,'_J'_,' =1.
Observe that a;; = 57| X

LEMMA 2. For diamend sampling, Elr,;/s| =

it
&,/IWih.

Proaf: We note that Elzy;/s] = B[}, Xil/s =
IE[.Y,-__,-_I]. (We use linearity of expectation and the fact that
the X; ; ¢ are iid. for fixed ¢, j and varying £)

E[X; ;4] = z ZPr Eperitg ) - sg{Ageibgip ) by
— [t b it |
R e
- m? Danbigacib
1
= m(gﬂmb@)(kzﬂk.ibk.j)

1 N

‘*Hll(ﬁkibkjﬂk'i) bk'j

B. Concentration bounds
We now provide some concentration bounds when all entries
in A and B are nonnegative.

LEMMA 3. Fixc > 0 and error probability & < (0, 1). Assume
all entries in A and B are nonnegative and at most 1. If the
number of samples

s 2 3K Wl log(2/d) /(7))

then

Prffeg | Wi /s — i) > ech]] < 4.

Progf: Observe that X ;; is in the range [0, K. Thus,
Yije = Xojo/ K is in [0,1]. Set gy = 3., Y550 Since y;
is the sum of random variables in [0, 1], we can apply the
standard multiplicative Chemoff bound (Theorem 1.1 of [32]).
This yields Pry; = (1 + f‘,l]ELJU]] < cxp(—:glE[y,-j]fS).
By Lemma 2, Ely;;| = (5/K)(c;/|W]1), which is at least
3I0g(9,fd)f. by choice of . Hence PI’[JU (1+2)Efy;;]] =<
4/2. Note that y;; = x;;/ K. We multiply the expression
inside lhe Pr[| by KW/ /s to get the event x| W1 /s =
(1+c)ch;.

Using the Chernoff lower tail bound and identical reasoning,
we get Prlz;|[ W] /s < (1 - :)ri] < 4/2. A union bound
completes the proof. ]

The following theorem gives a bound on the number of
samples required to distinguish “large™ dot products from
“small” ones. The constant 4 that appears is mostly out of
convenience; it can be replaced with anything > 1 with
appropriate modifications to s

THEOREM 4. Fix some threshold v and error probability 4 €
(0,1). Assume all entries in A and B are nonnegative and at
mast K. Suppase s = 121 |W ), log(2mn/8)/ 7. Then with
probability at least 1 — 4, the following holds for all indices
ijand U, if ey =7 and g < T4, then 1y = xage

Progf: First consider some dot product ¢;; with value
at least 7. We can apply Lemma 3 with = = 1/2 and emor
probability 4 /mn, so with probability at least 1 — 4/mn,
| Wi fs = r:'fj,"? = 72/2, Now consider dot product
cpgr < 7/3. Define Yoy and Y oy as in the proof of
Lemma 3. We can apply the lower tail bound of Theorem
1.1 (third part) of [32]: for any b > 2eE[y; ;| Prly > b <
27t

We set b = .vrg,f'EKlﬁ"ll. From Lemma 2 and the
assumptinn that eyt < 7/3 and Efyyp] = Elzpp]/K =
w*'j JE|Wy < 572 (16K W) < b,f'_.r Plugging in our
bound for s, b= (12K |[W|; log 9nm,"d),"r (2K W)
= 6log(9mn,fd) Hence, Pr[J” =B < 4/(2mn). Equiva-
lently, P |[W )y /s> 77 j9]<d,f 2mn). We take a union
bound over all the error probabilities (there are at most man
pairs 7, j or @', j').

In conclusion, with probability at least 1— 4, for any pair of
indices 7, j: if ¢;; > 7. then z; |[W 1 /5 = r2/2, Ifcy < 7/4,
then x;; ||, /s < 72/2. This completes the proof. ]

To get a useful interpretation of Lemma 3 and Theorem 4,
we ignore the parameters = and 4. Let us also assume that
K =1, which is a reasonable assumption for most of our
experiments, Bdsic‘tlly to get a reasonable estimate of ;.
we require |1V |l,.fr samples. If the value of the t-th largest
entry in C'is 7. we require |1, /7% samples to find the t-
largest entries. For instance, on a graph, if we want to identify
pairs of vertices with at least 200 common neighbors, we can
set 7 = 200, and ||y will be the number of {non-induced)
3-paths in the graph. The square in the denominator is what
makes this approach work. In Table 1of Section VI, we show
some of the values of ||[W ||, /72 for particular datasets, where
T is the magnitude of the largest entry.



My research




What theory?

Information

Theory

Theoretical
computer science

Probability

Theor &
Y F(o)=[f{)e " dt

—af

Linear
Algebra

Functional

Analysis




Triangle counting

Sociology, physics, bioinformatics,
graph clustering, machine learning,...

Every situation has led to new
algorithms, new math, and new
applications
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Theoretical foundations

AT AN G TR T T I TR T DA T T OO AR OO S AR S T ST RIS AT
AR T oG AT T LT A D AGR TR GG AR TO T T C T T TTE D G T TTIRARG
GEOAGREE LA T T T O S AL A T T T e RS AT T CCARRALCCTT
CRARCTIATE e CACCA AT O TTCAAT I CTTCADCACH
AR S TR T T T G T T oA T O R A LCT oI TRAGA D RARTTCT RCACTGAACTS
TR LG RGO AR T A GG AR S O NS T C TR TACK GO TGO T O AL AGRS
AT O S O AT RN IO D T O AT T T FRC T TN OO AAR TACT T CCARMTAATT

ARCTCECTAT i AGAIGTR
EEAATEATSAGE AN CTT OO CARRCTTTARG RACT ARG
SARTER, TOTOATCIOCCT o AARCCORCAGCI THRGTA PCAIEAIGACCTTIOATIS
TOCTEGEACARATGAFRAGRERTCTETCTTIT CTEE TG TTGRARGRCAGREATGERTT
IO CATI T RCG AT ITCOCAR I CCTT

TOCTCDATS COAGCABRTCTTOAATCT ARRGGRIITATCTS
G T T G AT R G R e T TAGAR L ARR T T CTACACTG AR C T CTACCAG L AGTTGR
AR TGGRAGCC TSI TR TACHK CIGATGR
AOOREI AT CCATTC I TS TR SARAT, RETCTETATCTCR
AAGRGARERAA AICCCTEOTSEE TEATORGAT

LTI T T T T IR AR AARACT TR AAGRAAGTTTAAGRAGTRAGGRATOR and

Sublinear algorithms: How to sample a large
“function” for algorithmic purposes?



PhD sutra



Your advantage over your
advisor Is time



Don't just read It. Fight It

- P. R. Halmos



A paper Is a map. Maps are used
for traveling, not reading



Go back to the big picture



Everyone has slumps



Learn to present



There are no boundaries
between fields



Ask guestions
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