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Efficient Deformable Filter Banks

Roberto Manduchi, Pietro Perona, and Doug Shy

Abstract—This correspondence describes efficient schemes for the
computation of a large number of differently scaled/oriented filtered
versions of an image. We generalize the well-known steerable/scalable
(“deformable”) filter bank structure by imposing X-Y separability on the
basis filters. The resulting systems, designed by an iterative projections
technique, achieve substantial reduction of the computational cost.

To reduce the memory requirement, we adopt a multirate implementa-
tion. Due to the inner sampling rate alteration, the resulting structure
is not shift invariant. We introduce a design criterion for multirate
deformable structures that jointly controls the approximation error and
the shift variance.

Index Terms—Filter banks, multirate filtering, pattern analysis, steer-
able filters.

I. INTRODUCTION

Elementary visual structures such as lines, edges, texture, motion,
are powerful “cues” to understand the structure of the outside world
from its visual appearance (the image), and their identification is
instrumental for almost any visual task. Classical image processing
problems (enhancement, denoising) may be approached successfully
using elementary descriptors such as edges and textures. Image com-
pression schemes using sub-band coders, oriented along the preferred
texture orientation in the image, proved advantageous in terms of
visual rendition [1]. Velocity may be interpreted as orientation in
the spatio-temporal domain, and motion-compensated spatio-temporal
filters may be used successfully for prediction, interpolation, and
smoothing [2], as well as for coding [3].

Regardless of the specific descriptor of interest, most techniques
start processing the image (or image sequence) with a family of
linear filters tuned at a wide range of orientations and scales of
resolution (see [4] for an extensive bibliography on the subject). The
multiscale/multiorientation image decomposition is then analyzed to
detect features (usually via a nonlinear stage) and to measure their
attributes (orientation, dominant scale, velocity).

While orthogonal structures have been intensively studied in the
context of wavelet theory, several algorithms are designed to operate
on redundant (or overcomplete) image decompositions. A drawback
of this approach is that the computational cost to realize the analysis
filter bank may easily become too high for practical use. In order to
meet prescribed implementation constraints, the use of fast filtering
is mandatory.
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This correspondence describes efficient schemes for the com-
putation of a large number of differently scaled/oriented filtered
versions of an image, pushing forward previous results by Perona
[4] and Freeman and Adelson [5]. To reduce the computational
weight of multiscale/multiorientation filter banks, one may exploit the
correlation among the filters in a two-stage scheme usually named
“steerable” or “scalable” [4], [5] (or more generally, “deformable”
[4]). We point out that such systems are particular instances of the
“multistage separable” structure introduced by Treitel and Shanks [6];
this observation leads us to consider deformable filter bank structures
with X–Y separable basis filters. Our implementation effectively
reduces the computational weight associated with deformable filter
banks. An iterative projections technique is used for the least-squares
design of such structures.

While deformable filter banks are efficient in terms of computa-
tional cost, they require substantial extra memory to store interme-
diate frames. To reduce the overall memory requirement, one may
use a multirate implementation; for those filters in the filter bank that
are narrow banded, only a subsampled version of the intermediate
filtered frames needs to be stored.

In our implementation, we embed the filter bank in an analy-
sis/synthesis separable pyramidal scheme. Such a structure, unfor-
tunately, is not shift invariant. Shift invariance is usually considered
to be a fundamental property of signal processing systems; on the
other side, a system that deviates “slightly” from shift invariance
may still be suitable to most applications. In fact, if our task is the
analysis of the visual structures in an image, aliasing may be tolerated
as a signal-dependent noise, qualitatively not too different from other
forms of “noise” that are traditionally considered.

This notion is at the basis of our novel least-squares design
procedure for multirate FIR filters. Such a technique relies on the
definition of a suitable “multirate” approximation criterion, which
jointly controls the approximation error and the shift variance. We
extend this procedure to the design of our pyramidal deformable
filter banks, achieving the result of joint reduction of computational
weight and of memory requirement.

The paper is organized as follows: Section II describes the least-
squares design ofX–Y multistage separable deformable filter banks.
Section III introduces our algorithm to design least-squares mul-
tirate FIR filters and describes the design of pyramidal separable
deformable filter banks. Section IV concludes the correspondence.

II. SEPARABLE DEFORMABLE FILTER BANKS

Consider a set of FIR filtersfd(x�; �); � 2 S; � 2 Tg, composed
by scaled and oriented versions of a prototype kernel. IfN(�; �)
is the size of filterd(x; �; �) (where� represents the scale, and�
represents the orientation), in general,

�2S �2T
N(�; �) elemen-

tary operations (sums or multiplications) per input pixel (OPP’s) are
required to implement the overall multiscale/multiorientation filter
bank in a direct-form realization. On the other side, some classes
of multidimensional FIR filters admit efficient implementation. In
particular, if we are interested in analysis filter banks that represent
the rotated version of a prototype kernel, we may exploit the idea
of steerable filters, which was introduced by Freeman and Adelson
[5] and developed further by Perona [4]. A steerable filterd(x; �) is
such that it can be decomposed as (see Fig. 1)

d(x; �) =

R�1

r=0

dr(x)tr(�): (1)
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Fig. 1. Steerable filter bank.

Fig. 2. Multistage separable filter.

We will call the filters dr(x) basis filtersand the functionstr(�)
recombination functions. TermR is called therank of the decompo-
sition. Perona [4] studied the conditions for a kerneld(x; �) (with
continuousx and �) to be exactly steerable.

One easily shows [7] that steerable filters are formally equivalent
to multistageX–Y separable structures introduced by Treitel and
Shanks [6] (see Fig. 2). As in the case of multistageX–Y sepa-
rable filters, the least-squares design of steerable filter banks [4] is
performed by computing the SVD of a matrix built from the kernel
d(x; �), where each row of the matrix corresponds to an orientation�

(similar considerations apply to the case ofscalablefilter banks [4]).
The computational savings using the discrete steerable scheme may

be computed as follows (the case of scalable filters is analogous).
The “direct” implementation requiresNN� OPP’s, whereN is the
size of the support ofd(x; �) (assumed constant with�), andN�

is the number of orientations. Using the steerable implementation,
R convolutions are computed once for all; thenR multiplications
(and R � 1 additions) per pixel are required for each orientation.
The overall number of OPP’s does not exceedR(N + N�), which
is smaller thanNN� for sufficiently small values ofR. The price to
pay is that we need to storeR filtered version of the image to be
recombined for each orientation.

A. Least-Squares Design of Separable Deformable Filter Banks

The idea of multistage separability may be extended to higher
dimensions, imposingX–Y separability on the basis filters of the
steerable/scalable filter banks. In the case of steerable filter banks,
we consider decompositions of the type

R�1

r=0

ur(x)vr(y)tr(�) (2)

(see Fig. 3). We will call this structure aseparable steerable filter
bank. The extension to scalable structures (to approximate rotated
and scaled kernels) is straightforward.

The approximation problem we attack can be formalized as fol-
lows: Given the set of kernelsfd(x; y; �); x 2 X; y 2 Y; � 2
Tg, where X; Y; T are discrete (and finite) sets, and given the

Fig. 3. Separable steerable filter bank.

decomposition index (or rank)R, find the one-dimensional (1-D)
kernelsfur(x); vr(y); 0 � r < Rg and recombination functions
ftr(�); 0 � r < Rg that minimize the quadratic norm of the error

e(x; y; �) = d(x; y; �)�

R�1

r=0

ur(x)vr(y)tr(�): (3)

Although, in the case of two-dimensional (2-D) multistage separa-
ble structures (e.g., multistageX–Y separable filters or nonseparable
steerable filter banks), the approximation task can be solved using the
SVD of the kernels’ matrix, we now find ourselves dealing with more
complex structures. In fact, the minimization task turns out to be a
trilinear approximation problem, for which the 2-D SVD technique
is not appropriate.

On the other side, it is easily seen that if two variables [say,
fur(x)g and fvr(x)g] are kept fixed, then minimizing the approx-
imation error norm is a linear problem in the third variable [here,
ftr(�)g]. This observation suggests the following iterative procedure:
Keep two variables fixed and minimize for the third one; then, cycle
for the other variables. The approximation error is guaranteed to lower
at each step, and since it is bounded from below by zero, the algorithm
converges to a minimum. In [7], we use the formalism of hypermatrix
algebra [8] and Kronecker algebra to translate the approximation task
into a sequence of simple matrix operations.

Unfortunately, one cannot be sure that the minimum found this way
will be global (the error surface being in general not convex), and
the solution will depend on the starting point. Experimental tests and
strategies for the selection of the starting point and for termination
criteria are discussed in [7].

1) Experimental Tests:We consider the separable steer-
able/scalable decomposition of a family of rotated and scaled
kernels. The continuous prototype kernel is the separable function
d(x; y) = d1(x)d2(y), whered1(x) is the second derivative of a
Gaussian with standard deviation�, and d2(y) is a Gaussian with
standard deviation�2 = 3� (filters with similar elongate shape
are widely used in computer vision to achieve high orientation
selectivity). The orientation� is sampled inN� = 20 points
for 0 � � < 180�, whereas the scale�, ranging from 1 to 4
(two octaves), is sampled logarithmically onN� = 12 points.
The continuous kernels are sampled onZ2 and windowed within
a square of sideN = Nx = Ny = 35. Each scaled/oriented
kernel is normalized to unitary energy. The results forR = 30
are shown in Figs. 4–7. Two observations may be drawn from the
experimental data.

1) Our algorithm designs basis kernels all with the same size.
Observing Fig. 4, however, it is clear that some basis kernels
may be conveniently windowed to a smaller support without
introducing relevant additional approximation error and with
reduced computational cost. The design of deformable filter
banks with inhomogeneous kernels’ sizes is described in [7].
However, note that we have the following.
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Fig. 4. Basis filtersfur(x)g, fvr(y)g and recombination functionsfqr(�; �)g in the separable steerable/scalable decomposition (R = 30) for the
test of Section II-A1.

2) For a sufficiently high number of scales/orientations, the com-
putational weight due to the basis filters becomes negligible
with respect to that of the recombination. In fact, the ratio
between the OPP’s for the two operations is approximately
equal to2N=N�N�.

III. M ULTIRATE DEFORMABLE FILTER BANKS

ImposingX–Y separability on the basis filters of a deformable
filter bank reduces the overall computational weight at the price of
supplementary memory for storing the intermediate filtered images.

Frame memories are expensive, and it is desirable to reduce the
memory requirement while enjoying reduced computational cost.

A solution is derived observing that some of the basis filters
may be narrow banded. The filtered signals are thus highly corre-
lated and may be subsampled before storing (therefore, using less
memory). These reduced-rate versions are then interpolated and
linearly recombined for each scale and orientation. Although this
may seem computationally expensive at first, we can show that with
a suitable choice of the interpolator filters, the overall implementation
results are efficient both in terms of memory and of computational
cost.
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Fig. 5. Error norm per kernel versus decomposition indexR for the test
of Section II-A1. Dashed line: nonseparable steerable/scalable SVD-based
decomposition [4]. Solid line: separable steerable/scalable decomposition with
non-(�-�) separable recombination functions (solid line). Dotted line: sep-
arable steerable/scalable decomposition with (�-�) separable recombination
functions. As expected, by imposing separability, we pay the price of higher
approximation error for the same rank.

Fig. 6. Error normE�; � = x; y je(x; y; �; �)j2 versus angle� and

scale� for the system of Fig. 5.

In the case of separable deformable filter banks, we adopt the
multirate implementation for those 1-D basis filters that are suitably
narrow banded and jointly optimize for the multirate 1-D filters and
for the recombination functions. In particular, we use the pyramidal
octave-band separable structure represented in Fig. 13.

A. Least Squares Design of Multirate FIR Filters

The general structure of aM -fold multirate FIR filter [9] is
shown in Fig. 8. TermM is the multirate order of the multirate
filter. To analyze this system, thez-transform notation results are
handy. We will indicate sequences in the space (time) domain
with lowercase letters and theirz-transform with the corresponding
uppercase letters. In the case of Fig. 8,G(z) and Q(z) are two

(a) (b)

Fig. 7. (a) Approximating and (b) original kernel for the system of Fig. 5
corresponding to the orientation that gives the highest error for� = 2:4
(� = 45�-error = 16.2%).

Fig. 8. Multirate FIR filter.

Fig. 9. System of Fig. 8 withM = 2 redrawn using polyphase decompo-
sition.

Fig. 10. Basic multirate structure used in the pyramidal scheme.

Fig. 11. Polyphase implementation of the raised-cosine interpolator.

FIR filters interconnected via the cascade of anM -fold decimator
followed by anM -fold interpolator.

The presence of decimator/interpolator blocks in the scheme allows
us to use polyphase implementation to reduce the computational
weight. For example, ifM = 2, we may redraw the scheme of
Fig. 8 using the Type 1 polyphase decomposition [10] of the kernels
involved. Here,G(z) = G0(z

2) + z�1G1(z
2), where g0(x) =

g(2x); g1(x) = g(2x + 1). We thus obtain the scheme of Fig. 9,
where all the filters work on reduced sampling rate, and therefore,
with respect to the scheme of Fig. 8, the number of OPP’s is reduced
by one half. However, unless the filters are perfectly bandlimited, the
system is linear periodically time variant (LPTV).

Rabiner and Crochiere [9] designed multirate filters with brickwall
frequency response using a minimax error criterion in the frequency
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Fig. 12. Pyramidal scheme for the multirate 1-D scalable decomposition.

domain. These filters are typically used for sampling rate conversion
of acoustic signals. In our case, however, we are not interested
in sharp lowpass responses; therefore, the minimax criterion of
[9] is not adequate for our applications. Instead, we propose a
novel least-squares criterion for multirate systems based on the time
domain, which explicitly takes into account the shift variance. For
the following discussions, it is important to notice that the least-
squares design of deterministic linear filters in the temporal domain
has the following operatorial interpretation: Approximating a target
convolution kerneld(x) with a kernelu(x) in the least-squares sense
is equivalent to minimizing the maximum punctual deviation from
the desired output for all unit norm input signals [11].

Consider the multirate scheme of Fig. 8, where for simplicity’s
sake, we setM = 2. As noted earlier, the system is LPTV, and
therefore, it is characterized by two impulse responses, corresponding,
for instance, to inputs�(x) and�(x+ 1) [where�(x) is the discrete
impulse]. Lett(0)(x) and t(1)(x + 1) be such impulse responses. It
is easily shown that

t
(0)

(x) = q � g
0
(x); t

(1)
(x+ 1) = q � g

1
(x) (4)

whereg
0
(x) andg

1
(x) are obtained by interleavingg0(x) andg1(x)

with null-valued samples.
If t(0)(x) = t(1)(x), the system is shift invariant, and it operates

a convolution with a (fixed) kernelt(0)(x). Otherwise, inputting a
signal l(x), the output at pointx0 will be

y(x0) =
hl(x); p(0)(x� x0)i; evenx0
hl(x); p(1)(x� x0)i; oddx0

(5)

where h�; �i is the inner product, and

p
(0)

(x) =
t(0)(x); evenx
t(1)(x); oddx

p
(1)

(x) =
t(1)(x); evenx
t(0)(x); oddx:

(6)

Minimizing the maximum punctual deviation from the desired output,
in this case, is equivalent to the following task.

Minimize maxfkp(0)(x)� d(x)k2; kp(1)(x)� d(x)k2g: (7)

This problem, unfortunately, is not in a least-squares formulation,
and designing the optimal filtersg(x) and q(x) for (7) involves a
nonlinear procedure. We may then consider the following suboptimal
task.

Minimize E2 =
kp(0)(x)� d(x)k2 + kp(1)(x)� d(x)k2

2
: (8)

To better understand the meaning of the proposed error criterion, let
us translate it in terms oft(0)(x) andt(1)(x). Using (6), we have that

2E2 = kt(0)(x)� d(x)k2 + kt(1)(x)� d(x)k2: (9)

The following upper bound holds.

kt(0)(x)� t
(1)

(x)k2 � 2[E2 + kt(0)(x)� d(x)k

� kt(1)(x)� d(x)k]: (10)

Now, using (4), one can show that the minimization task is multilinear
in g0(x), g1(x), andq(x). An iterative algorithm to minimize form
(9), which is similar in spirit to the technique of Section II-A, is
described in [7].

The minimization of form (8) has an interesting counterpart in the
frequency domain. Using Parseval’s equality, one can show that (8)
is equivalent to the following task.

Minimize
2�

0

jD(e
j!
)�Q(e

j!
)G(e

j!
)=2j2 d!

+
2�

0

jQ(e
j!
)G[e

j(!+�)
]=2j2 d!: (11)

The first term of (11) represents the deviation from the target
response, assuming the two filters are correctly bandlimited; the
second term measures the residual spectral overlapping with the
repetition ofG(ej!) introduced by the inner decimation.

B. Pyramidal Implementation of Deformable Filter Banks

As mentioned earlier, we consider a slightly less general multirate
scheme than in Fig. 8; in fact, we embed our system in a pyramidal
structure. The choice of a pyramidal scheme has been inspired by the
inherently self-similarity of the scaled kernels to be approximated.

The basic multirate structure is represented in Fig. 10. The two
systems are equivalent if we setG(z) = H(z) and Q(z) =

H(z)U(z2), or G(z) = H(z)U(z2) andQ(z) = H(z). The overall
pyramidal structure is shown in Fig. 12 for the 1-D scalable case and
in Fig. 13 for the 2-D case. In particular, we set the decimation filter
equal to the interpolator and keep it constant for all branches in the
overall deformable structure.

In the scheme of Fig. 12, the basis filters are characterized by two
indices (i; j); index i signals the level (ordepth) in the pyramid
(i = 0 means no inner rate alteration), whereas indexj enumerates
the filters in the same level. A basis filter at depthi is actually a
multirate filter of multirate order2i for which the transfer function
of the decimator/interpolator is equal toi

l=1
H(z2l).

Any filter suitable for pyramidal decomposition is a candidate for
h(x) as long as it can be implemented with few OPP’s. This is a
fundamental requirement because we store the basis filters’ outputs in
their decimated versions for parsimony of memory. For each scale and
orientation, we interpolate back these signals before recombination.

In our experiments, we have used a simple three-tap raised-
cosine filter h(x) = [a; 1; a] for the decimator/interpolator; the
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Fig. 13. Pyramidal scheme for the 2-D multirate separable scalable/steerable decomposition.

optimization ofh(x) is discussed in [7]. To interpolate of a factor
2 using the polyphase implementation of Fig. 11, we need only 0.5
multiplications and 0.5 sums per output sample.

To appreciate the reduction of the computational burden for the
recombination, consider a 1-D scalable filter bank where allR

basis filters are implemented in a two-multirate scheme. For each
scale/orientation, we need 0.5 (for interpolation) plus 0.5R (for
recombination) multiplications per input sample. A comparison with
the nonmultirate case (where the reconstruction requiresR multipli-
cations per input sample per scale/orientation) shows that even if the
multirate implementation may require an increase in the filter bank’s
rank to compensate for larger approximation error, it makes for the
substantial reduction of the computational cost associated with the
basis filtering and the recombination.

The problem of thea priori selection of the multirate order and
kernel’s size for each basis filter is discussed in [7], where we also
derive an iterative technique for the least-squares design of pyramidal
deformable filter banks. In brief, with respect to the case of simple
separable deformable filter banks, one has to consider the effect of
the decimators/interpolators and the fact that now, the basis filters are
characterized by a variable number of impulse responses.

Our pyramidal structure can be extended to the 2-D case for
steerable/scalable decompositions. The most general scheme would
consider nonseparable subsampling lattices [10]; however, we restrict
ourselves to the case of separable lattices and filters (see Fig. 13).
Note that if Ix and Iy are the maximum depths of the filters in
X and in Y respectively, the system is characterized by2(I +I )

impulse responses.

IV. CONCLUSION

We have described a technique for the efficient implementation of
deformable filter banks based on the use of separable basis filters and
multirate implementation. The filter bank is embedded in a pyramidal

structure and designed under a novel multirate error criterion that
jointly minimizes the approximation error and the shift variance. The
computational weight and memory requirement may be substantially
reduced with respect to the common steerable/scalable decomposition
based on SVD.

The Matlab software to design the filter banks described
in this paper may be found at http://www.vision.caltech.edu/
manduchi/def.tar.Z.
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