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Abstract—We present algorithms to detect and precisely systems are inherently inexpensive, have small dimensions
localize curbs and stairways for autonomous navigation. Tese  and may provide 3-D data at full frame rate. A number of
algorithms combine brightness information (in the form of  giaraq devices are available commercially; for our work, we

edgels) with 3-D data from a commercial stereo system. The .
overall system (including stereo computation) runs at abou4 have used a popular product, the Videre STH-MDS/-C camera

Hz on a 1 GHz laptop. We show experimental results and discuss With baseline of 9 mm (www.videredesign.com).
advantages and shortcomings of our approach. Unfortunately, the quality of stereo data is often inferior

to that of ladar measurements. We concentrate here on
correlation—based stereo, since this is the technique bged
the Videre system. An analysis of errors associated with
Robots that move aut0n0m0U3|y in urban or indoor enVironsearching for disparities using a correlation window was- pr
ment must be able to recognize certain types of features, bedented in [17]. It is well known that stereo does not work well
to avoid them (obstacles), to move towards them (targets), Qyith poorly textured areas. Note that a textured image patch
simply to build a symbolic representation of the world. Thismay become textureless due to saturation, if camera ex@osur
paper is concerned with the robust visual identification angs not properly controlled. In addition, due to occlusions
precise 3—-D localization of a ubiquitous class of featuhes t and to effects related to the finite size of the correlation
we will CO”eCtively call “curbs”. A curb in the context of ik window, range errors can be expected in Correspondence of
paper is not only the step separating a road surface from thepth discontinuities. Imperfect calibration (due, foaeple,
sidewalk, but also any generic step (such as in a stairway), ao slight mechanical misalignments produced by the robot's
well as the junction of a wall with the floor. motion) is another source of errors, which is particularly
Detection and localization of curb lines are important forharmful in the context of curb detection, as we elaborate in
two reasons. First, a robot may not be able to negotiate a cutection 1I-G.
or, if it can, may need to align itself precisely with the curb  Qur experience has shown that, due to such reasons, using
edge. Second, tracking and following a curb line representstereo range data alone would not produce acceptable detec-
a simple and effective percept-referenced behavior foanirb tion results in general. Our strategy is thus to use infoionat
navigation. from both image and geometry, which, in a stereo system,
Together with curb detection, we present a new algorithmyre perfectly registered together (indeed, this is an added
for the localization and characterization of stairwaysajfkg advantage of using Stereo)_ In fact, even a sing|e image
stairways represent important landmarks. Some robots ag&nveys a good amount of information about the presence
able to climb a flight of stairs [18], and in this case it would of a curb, since a curb line normally looks like a brightness
be desirable to determine the SlOpe of the Staircase, thobiz edge_ Several other edgeS, however, usua”y co—exist in an
the steps, and the orientation and endpoints of the stepsedgémage, and thus brightness alone would not be sufficient
Intuitively, curbs should not be difficult to detect if an for reliable detection. Our main effort in this work was to
accurate 3—-D snapshot of the environment can be acquired, Bymbine information from range and image edges in a robust
means, for example, of a 2—axis laser rangefinder (lA&d&tX  way, in order to minimize the amount of false positive while

even the latest 3-D sensors are bulky, expensive and”slowensuring good detection and precise 3-D localization.
A stereo camera is an obvious alternative to a ladar. Stereo

I. INTRODUCTION

II. CURB DETECTION
* This work was supported by DARPA-MARS2020 Program, through . .
subcontract 1080049-132209 from Carnegie Mellon Unitgrsi The main components of our curb detection system are
1A single—axis ladar or even just a laser striper coupled witbamera  shown in Fig. 1. Edge points are first extracted from one of

[12] can be used to detect a curb reliably by analyzing acadrslice of the ; ; ; ; P
scene. However, these devices cannot provide a full deseripf the curb the Images in the stereo pair. Stereo range informatioress th

in terms of orientation and visible endpoints, unless dstategrated as the €Mployed for a nu-mb(-ar of different purposes. to dgtermiae th
robot moves around. ground plane, which is then used to eliminate points that are
2An active 3-D sensors with limited dimensions and high frame unIiker to be part of the curb. as well as inconsistent curb

rate (but low resolution) has been recently commercialibgd Canesta d t ¢ itabl t ind hich i dt
(www.canesta.com). At this time, we don’t have enough eweeto establish edges; 1o compute a sultable curvature inaex, which Is wse

whether this sensor is suitable for the purpose of curb tetec weight edge points in a Hough transform framework; and to



STERED RANGE LK cameras allows one to precisely estimate the height of the curb. In

A s B (T contrast with the early—-commitment approach of [10], which
uses only image—based information to detect curb lines (and
EDGE DETECTION @E@ can give erroneous detection in cluttered environments wit
—r ESTIMATION many distractors), we combine edge-based and range—based

EDGEL SELECTION

ESTIMATION information to reliably localize curbs in the scene. The kvor

of Turchetto and Manduchi [16] used the weighted Hough
Transform for curb edge localization, with weights values
proportional to the scalar product of the brightness gradie
and of the depth gradient in the image. With respect to [16],
the present paper uses a more sophisticated weight function
based on a descriptor of the surface curvature. In addition,

robust statistical techniques are used for the 3—-D regnessi
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CONCAVE AND CONVEX of line segments in space.
CURB EDGE SEGMENTS . . .
For what concerns stairway detection and modeling, all of
Fig. 1. A block scheme of our curb edge detector. the existing work we are aware of (e.g., [11], [18]) cons&der

monocular analysis, and basically searches for penciise$ |
in the image that correspond to the perspective projection o
regress 3-D lines from the points that are back—projected fr parallel lines in 3—-D space. Since we have range data avail-
candidate lines in the image. The output of this algorithm isable, we can work directly in 3-D, which greatly simplifies
a set of 3-D curb edge segments, classified as concave wrodel fitting and outlier rejection.
convex. .
Stairway detection and modeling requires further steps (se5: Ground Plane Estimation
Fig. 12). A plane is fitted using a robust procedure to each set The first module in our system is a routine that estimates the
of concave and convex step edges detected by the previousible ground plane. Ideally, in the case of planar sudace
algorithm. The plane with the smallest residual error imithe a curb could be identified by the points that are at a certain
chosen, and the corresponding step lines are projected ontigstance from the ground plane. However, this strategy does
it. Outlier lines that are not parallel to most other lines ar not work in practice, for two reasons. First, road surfaces
then rejected. This algorithm thus yields both the equation are often not planar (although this could be accounted for by
a plane tangent to the stairway and a number of concave @nore complex surface models). Second, this approach would
convex step edge segments. rely solely on elevation data which, in the case of steree, ar
This paper is organized as follows. After reviewing pre-often inaccurate and noisy.
vious work in Section II-A, we present in Section Il our Knowledge of the ground plane is used to rule out incorrect
algorithm for curb detection and localization, togethethwi candidate curb lines. More precisely, search is constuaioe
some experimental results and a discussion of the shortcomeints that are within a certain distangk; » from the ground
ings of our current approach. In Section Il we introduce oumplane (e.g.Hgp = 0.5 meter). In addition, a candidate line is
technigue for modeling and localizing staircases. Sedhbn rejected if it forms an angle of less théap with the ground
has the conclusions. plane normal (e.gfgp = 45°).
) To estimate the ground plane we use the Least Median of
A. Previous Work Squares (LMedS) robust procedure on the range data from
There has been extensive work over the past fifteen yeardereo [9]. If the attitude of the camera is known at least
in the field of vision—based lane and road detection for auapproximately (e.g., from the IMU of the robot), then guided
tonomous vehicles (see e.g. [2], [3], [4]). However, thigkvo sampling [13], [14] can be used to increase the likelihood
mostly considered problems such as lane marker and obsta@é sampling inliers points. The idea of guided sampling is
detection, and did not specifically address the detection afimple: rather than sampling the search space uniformgy, th
curbs. density of samples is increased in those regions where the
Curb detection over short distances for safe driving haplane is more likely to be. Unfortunately, in our system,
been demonstrated at CMU with a laser striper [12]. Thaattitude information was not accessible continuousiaalgh
problem with a fixed laser striper is that the viewing geometr the inclination of the stereo rack (which was kept vertical,
is very limited, while our task requires the ability to ddtec see Section II-F) when the robot was not moving could be
features over a rather wide field of view. Closer to our workmeasured. This was used to estimate a “default” planevelati
is the paper by Se and Brady [10]. They detect candidatto the camera position. In addition, the maximum expected
curbs by finding clusters of lines in an image using thepitch and roll angles were known, which defined the set of
Hough Transform. Then, in order to classify a curb linepossible ground planes with respect to the camera. Before
as a step—up or step—down, they compute the ground plamenning LMedS, we normally discard all range points beyond
parameters of the two regions separated by the curb line. Tha certain distance (e.gDm.x = 5 meter) as well as all



points that do not belong to the volume spanned by the sel = (k; + k2)/2, and of theGaussian curvatureK = ki ko:

of possible ground planes. This simple procedure effelgtive e

_ : - : - K =0
rejects a good amount of points that are likely to be outliers CI — H?—¢ )
Note that points beyond),,., are then re—inserted after # K <0

gr(;l:]nd plane;esltlma_tlon. : d hi o | The expressions foff and for K are reported in [15], and
. € ground plane Is estimated at each frame. Once a plagg |y e estimating the first, second and partial derivative
is found by LMedsS, it is compared with the “default” ground

of the measured surface with respectat@and y. Gaussian

plang as well as with the ground plane est|matgd n th%moothing is performed on the range data before computing
previous frame. The plane among such three candidates t ch derivatives; the constantin (1) was set to 1 in our

best fitsf the data is then declared the ground plane for th(§Xperiments. Examples of curvature index fields for real
current frame. images are shown in Figs. 4 and 5.

C. Curvature Estimation D. Line Selection

. . _— Candidate curb lines are selected starting from image
Surface curvature is obviously a good indicator for a po-

tential curb edge (i.e., a flat surface cannot be an edge)s,Thuecjgels (edge segments) corresponding to 3-D points that are

it may seem that differential singularities such as riddss [ Closer thanfp to the ground plane. A weighted Hough

of the range data could be used directly to detect candida(%ansmrm [6] is used to detect such lines, with the weights

) : . _derived from the curvature indeXI at each point. Using the
points. However, we found that a ridge operator applie :
. ) .~ Hough transform ensures that a curb line can be detected even
to stereo data often gives unsatisfactory results. Spsiriou

ridges are likely to appear, even when the range data havghen only a limited number of edgels are found on it
9 y ppear, 9 A large value ofC1 signifies that an edge point is likely

been smoothed. In addition, the “correct” ridges are ofte . :
'zo belong to a curb line. However, one should consider also

not rectilinear, due to noise in the range data. In contras . )
differential singularities computed on the image (brigd he case when range is not available (for whatever reason) fo
some of the pixels. Accordingly, we proposed the following

edges) are more likely to faithfully correlate with actuatic weight function at each edge pixel:
lines. Our strategy is thus to rely on brightness edgelstfer t '
localization of candidate curb edge points, and on a curgatu
field defined over all range data to weight such edgels.

The question now is how to assign a meaningful “curvature whereq is a positive constant between 0 and 1. The term
index” (CI) value to each range point. One may expect that, i1 — «) ensures that some weight is assigned to edge points
the vicinity of a curb edge, one of the tvpincipal curvature  even when range is not available. When stereo data is reliabl
valuesk; andk, will be large (in magnitude), while the other « can be set to a value very close to 1; in our experiments,
one will be small [15]. The proposed curvature index, definedve seta to 0.95.

w=aCl+ (1 —-a) 3)

in terms ofk; andk,, is defined as follows: The peaks of the weighted Hough transform identify candi-
) date curb lines. A potential problem with using weights is th
CI = ([F1] = [F2]) (1) risk of detecting multiple lines intersecting at one poirithw
([k1| + [k2])? + € large weight. This is because a single point “votes” acecaydi

. . . to its weight for a whole pencil of lines. To reduce the risk of
wheree is a small positive constant. One notices thak L .

i i . these concentric line patterns being detected, we use a non—
CI < 1; CI is equal to 0 when the two curvatures are iden- . . i g
X o maxima suppression strategy: a point in the Hough transform
tical, and becomes close to 1 when one principal curvature IE . : . .
small (in magnitude) while the other one is large (see Fig. 2) parameterized by slope and intercept) is considered a peak

" “only if it has the highest value within a certain window ardun

itself. In this way, concentric lines that have very simgéope

or intercept are avoided.

E. 3-D Line Regression

The procedure in the previous section allows one to esti-
mate a number of candidate curb lines defined over the image
plane. The next two steps are: (1) Regression of 3-D lines
Fig. 2. The proposed curvature ind€x as a function of the two curvature from the back—projection of the image points in the detected
indicesk1 and k2 (see (1)) fore = 1 (left) ande = 100 (right). image lines; (2) Determination of the endpoints (in 3-D) of

such curb segment. We'll begin by describing the first task.

Although the estimation of principal curvatures requires Let's assume that a large enough numbér of points
computing square roots (a computationally expensive opein a given image line/; have range values (otherwise, the
ation), this is not the case for our chosen curvature indexcandidate ling; is discarded). Such points can thus be back—
This is seen by re—writing (1) in terms of theean curvature  projected onto known 3-D points in the scene. Let us call




the back—projected 3-D poin{g; }. Simple geometry shows
that all 3-D points in{p,;} must lie on the same plan#,,
containing the focal point and the image lifje A Cartesian
basis for this plane can be easily found either based on
the intrinsic camera parameters, or directly from the 3-D
point coordinates using SVD [15]. Thus, 3-D line regression
of these 3-D points boils down to 2-D regression the
plane II;. Care must be taken in this operation, since a
large number (possibly, more than one half) of structured
outliers (i.e., points belonging to other planar surfacas) be
expected. This precludes the use of traditional robust austh  Fig- 3. Left: The points{p; } in TI; and the regressed line. The height of
such as LMedS or RANSAC. and calls for the use of the Leasefach point marl_(er is proportional to the weighted residyadf the poiqt with

. . " respect to the line. Right: The Videre stereo camera useduioexperiments
K—th of Squares (LKS) algorithm [1] instead. In addition, oneéseen on Stanford’s Segbot.
can rely on the weights computed by (3) for guided sampling.
This is because one may reasonably expect that poirik in
which do not belong to a curb line should have small curvaturestimate,s,,, is computed from the smallest-th residuals.

index CI and therefore small weight. The indexn is increased (starting from = 2) until the
Our regression procedure, which is a simple variation ofn + 1)-th smallest residual is larger thako,, (whereT
LMedS, is detailed in the following: is a positive constant). Then, all points witly, > To,

1) Let{p;} C {p;} be the subset of 3-D points ifp,}  are considered outliers. We have experimented with both

that are the back-projections of edge points in thenethods, obtaining comparable results.
image. In addition to this procedure, we use simple heuristics
2) Sample (without replacement) two points frofp;}.  to enforce spatial coherence on the points belonging to the
A generic pointj; is chosen with probabilityZ - w; ~ same line. First, small gaps between segments of points that
(w; being the weight of poinp; as defined in (3) and Ssurvived the previous steps are filled; then, small segments
Z being a normalization constant). Determine the lineare removed. Finally, 3-D segments that are inconsistetht wi
through the two sampled points. our model are rejected. These are: (1) segments that form an
3) Compute the distances (residuals)of each point in angle of less thafic» with the ground plane normal, and (2)
{p;} (including non—edge points) to this line. Compute Segment pai.rs whose p_rojections on the image inte_rsect egch
the weighted residuald; = d;/w;, and determine the Other. The first constraint was already discussed in section
K—th smallest such residual. [I-B. The second constraint derives from the fact that it is

4) lterate steps 23 for a fixed number of times. Returriopological impossible for the projection of two curb lines

the line with the smallest associatdd—th smallest intersect anywhere else than at an endpoint. Finally, dmee t
weighted residuald ™) line segments have been determined, each segment is labeled

min. 13 ” “ ” H
8 “concave” or “convex based on the sign of the average

Guided sampling reduces the probability of samplin
ping P y ping mean curvature of its points.

point outside the curb line. The choice of weighted distance
d; increases the likelihood that points with small curvaturer Experiments
index are assigned to the outlier subset. Note that thiseproc
dure assumes that there are at lefisinliers, and therefore

K must be sufficiently small. Algorithms to determine a
suitable value forK' have been proposed in [8], [7]. In the
interest of computational speed, we used a fixed value

Our algorithms run under Linux on a 1GHz laptop. We
use Videre's Small Vision System (SVS) software for stereo
matching and Intel's Open Computer Vision library for a

umber of subroutines. Curb detection is performed at a rate
K — 0.2- N,. An example of robust line fitting ilT; is of approximately 4 Hz (including disparity computation ove

o ! 320 by 240 pixels). To maximize the expected angle between
shown in Fig. 3 (left). ; . : . .
curb lines on the image and the epipolar lines (see Section Il

Once the 3-D curb line (lying ofil;) has been regressed, G the st ) ented verticall " Fig. 3 (figh
the next task is the determination of the endpoints of the 3= ). the stereo rig was oriented vertically, as in g. g .
Successful examples of curb detection are shown in

D curb edge segment. This is a typical problem in rObus'}:igs 4-8. In some cases, the 3-D data is shown from behind

statistics, and requires the estimation of a suitable &Scal ) o X )
to improve readibility. Figs. 4-5 also display the detected

in order to separate inliers from outliers. A simple strgteg . . . .
would be to threshold all of the weighted residugs } in image edges and the curvature indeifield. The estimated
ground plane is visible in Figs. 5-7. Two examples with

; ; i 7K
the previous algorithm by_ a value prpportlonal_dﬁfn. A ._inaccurate detection are shown in Figs. 9 and 10. In the case
more elaborate approach is .the Modified Selechvg Staistic of Fig. 9, the position of one endpoint is grossly incorrect.
Estimator (MSSE) proposed in [1], whereby an unbiased S‘Cahlehis may happen at times due to failure of the scale estimatio

3Note the early—commitment character of this operation: fmorén the _rnOdu'e fo_r Ol_JtlleI’ detection (_SeCt'On ”'E)- Another pretni
image line detection cannot be recovered by subsequent agbming. is shown in Fig. 10, where a line on the floor was mistakenly



Fig. 4. Top left: The left image in a stereo pair, with the detd curb  Fig. 5. Top left: The left image in a stereo pair, with the did concave
lines (white: concave; black: convex). Top right: The ctuva index Cl curb line. Top right: The curvature indeRl field, defined only for points
field, defined only for points that have range measuremeixslsFor which ~ that have range measurements. Pixels for which the val@ obuld not be
the value ofCl could not be computed are marked in black. Bottom left: computed are marked in black. Bottom left: The brightnesgesdbtained
The brightness edges obtained by Canny’s edge detectdorBeight: The by Canny’s edge detector. Bottom right: The reconstructdd Surface, with
brightness edges mapped onto the reconstructed 3-D su@almed edges  the estimated ground plane and the detected curb edge se¢meamked in
have a large value of the associated curvature indéx The color of an  yellow).
edgel depends on the sign of its associated mean curvatiue (egative;

red: positive).

considered a curb edge. The reasons for these types of error
are discussed at length in the next section.

G. Shortcomings and Bottlenecks

Although the technique described in the previous subsec-
tions has shown excellent results in most cases, there are so
open issues that will require more work. We discuss the twdrig. 6. Left: The left image in a stereo pair, with the detdcterb lines

s ; ; (white: concave; black: convex). . Right: The reconstrd@eD surface, with
most relevant remaining prObIemS in the foIIowmg. the estimated ground plane and the detected curb edge seg(yehow:

concave; pink: convex).

Stereo Artifacts. It is well known that, as a consequence
of slight camera misalignment, a window—based correlation

stereo may compute incorrect disparities in the case ofigtro : . : L
y P P . g to a pixel by (3). This may lead to errors in the determination
edges that are almost parallel to the epipolar lines. An

analytical description of this behavior can be found in [if7] of the_segment er?dpo'”t? (Fig. 9) and even to the incorrect
AN p B . detection of curb lines (Fig. 10).
is similar in nature to the “aperture problem” of optical flow Our current fix to this problem is to smooth the range
which arises when computing the image velocity componenéatau 'trl: a ratrl1)((er lar ; kF()arneJr (_'15 21 pixels) beforeg
orthogonal to the image gradient. Fig. 11 illustrates this Wi g€ K = -omel PIX

: . . omputing the curvature index, in the hope to reduce the
phenomenon by way of experiments with a test pattern viewefi

b . . . influence of small range variations due to disparity estiomat
y our stereo camera at different orientations. The tesepat errors. However a more comprehensive recovery strate
was printed on a flat surface. The epipolar lines of the redtifi ‘ ’ P Y 9y,

images shown in the figure are horizontal; the re—projectio ased on a better understanding of the root of the problesn (th

calibration error was less than 0.2 pixels. When the edgg'Sparlty computation), is needed for more reliable result

pattern at the center of the image is vertical, the dispdsity Peak Detection.An open problem with the system discussed
correctly computed; by rotating the stereo camera such thab far is that any peak in the Hough transform that survives
the lines in the pattern are almost horizontal, a ratherelargthe non—maxima suppression test (Section II-D) is consitler
disparity error (positive or negative) is recorded. a candidate curb line — even when no curb is visible in the
This phenomenon may influence the performance of ouimage! This calls for a criterion to assert with a certainrdeg

curb detector, since strong brightness gradients on an otlef confidence when a curb is actually present in the image. We
erwise flat surface (e.g., a line painted on the floor) mayurrently use the following heuristic. First, the medi#fT’,
generate a non—null value of the curvature indek and of the weighted Hough transform values is computed. Then,
therefore a non—negligible value of the weightassigned a peak is considered a candidate only if its value is larger



Fig. 7. Left: The left image in a stereo pair, with the detdcterb lines  Fig. 9.  Left: The left image in a stereo pair, with the detdctmncave
(white: concave; black: convex). Right: The reconstru@ed surface (seen  curb line. Right: The reconstructed 3—-D surface with thected curb edge
from behind), with the estimated ground plane and the dedectiro edge  segment (marked in yellow). Note that the detected segmeehes beyond
segments (yellow: concave; pink: convex). Note that thameged ground  the actual curb edge.

plane is incorrect, yet the curb edges are detected correctl

Fig. 10. Left: The left image in a stereo pair, with the detdctoncave
Fig. 8. Left: The left image in a stereo pair, with the detdct®ncave  curb lines. Right: The reconstructed 3-D surface with titeaded curb edge
curb line. Right: The reconstructed 3-D surface (seen framirtl), with segments (marked in yellow). Note that one of the two detecteb edges
the estimated ground plane and the detected curb edge se@gmeked in is incorrect.
yellow).

making sure that not all three lines are the same one. From

than S - HT,,, whereS is a positive constant (e.g5, = 5).  each selected line, we randomly pick a point, making sure
This procedure can be seen as a form of hypothesis testinthat the resulting three points are not collinear and that no
More precisely, we assume that in the “null” hypothesis (i.e two points are the same (in case two lines are the same
when there are no curbs in the scene), the values of the Hougime). Then, the distance (residual) of all points of all dine
transform tend to be distributed uniformly, while a heavi ta to the plane defined by such three points is compytedd
in the distribution would be observed when a curb is presenthe median residual is stored. After a number of iterations,

This strategy has been only partially successful. Clearly, the plane with the smallest median residual is chosen. This
more thorough investigation into the statistical propetof — operation is performed on both line sets (concave and cgnvex
the weighted Hough transform for these types of images ignd the plane with the smallest residual, is kept.

needed for more satisfactory results. Once the tangent pland has been fitted, it would be
desirable to find its intersectiomswith the planedlI; defined
lIl. STAIRWAY MODELING in Section II-E. The reader is reminded that the pldbe

The curb detection and localization algorithm describedcontains the focal point and the lirdg in the image plane.
in the previous section is the initial building block of our The linesl; thus contain the perspective projections ofitof
stairway modeling and localization procedure. Indeedaa-st the points{p;} defined in Section II-E. Hence, besides being
way can be defined as a vertical succession of regular step@-planar, the lined; are (ideally) parallel — even though
with two sets of parallel convex and concave edges lying othe linesi; in the image plane are, in generabt parallel,
parallel planes. Hence, if a number of such edges have be&ie to perspective. The knowledge of linksmay be very
found, one may attempt to fit a plane through them, thusiseful for the control of a stair—climbing robot [18]. Hovesy
determining the stairway slope and step size. this procedure does not eliminate the risk that a spurioes li

Our algorithm proceeds as follows. First, a number of(€.9., & shadow) that is co—planar with the other edge liees b
curb line segments are determined. The ground p|ane is n&qentiﬁed as an actual step line. To alleviate this riSk, \ap Cc
computed in this case (since very little of it may be visiblerely on the parallelism that is expected of the detectedline
anyway), and therefore relative height or slope criteria ar Simple rejection procedure is outlined in the followingrsfi
not used to reject candidate lines. The line segments fourl#e angular differences);; between the lines in each pair
are divided into the set of concave and of convex ones. Fdtli,/;) are computed. Then, for each fixéd we compute
each such set, we run a variant of the LMedS algorithm to , _ . -

Note that we use the actual 3-D points corresponding to iniags

rObUStly fit a pIane to the lines contained in the set. MorQOr this procedure, not the points in the line regressed leypitocedure of
precisely, we randomly select (with replacement) threedjn Section II-E.



Fig. 11. Top row: The left image (rectified) of a stereo pairdiferent
camera orientations. The printed pattern is almost péyfélet. Bottom row:
The computed disparity. Black pixels indicate points forishhthe disparity
was not computed (due to lack of texture).
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Fig. 12. A block scheme of the stairway modeling/locali@atialgorithm.

the median of the value$A;;} . The resulting values are
expected to be small for any ling that is almost parallel

to most other lines, and high otherwise. The adaptive-sca

outlier detection algorithm MSSE [1] is then used for reiftt
of these latter cases. B
Examples of fitting plan&l and projected lineg (convex

edges) for two different staircases are shown in Figs. 13-14

Note that non—parallel lines have been automatically tegec

Fig. 13. Left: The left image in a stereo pair, with the detdcstep lines
(white: concave; black: convex). Right: The 3-D stereo metwiction (seen
from behind), with the planél fitting the convex step lines, and the projected
lines I; (shown in purple).

IV. SUMMARY AND CONCLUSIONS

We have introduced new, robust algorithms for the detectiopy
and 3-D localization of curbs and of stairways. Our approach

uses range data from stereo, correlating geometry withhbrig
ness edge information from the image. Implemented on

Fig. 14. Left: The left image in a stereo pair, with the detdcstep lines
(white: concave; black: convex). Right: The 3-D stereo mstwiction, with

the planell fitting the convex step lines, and the projected linggshown

in purple). Note the stereo artifacts due to the texturetessa at the bottom
of the staircase.

and urban autonomous navigation, where curbs and stairways

are important landmarks for world modeling.
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