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Abstract— We present algorithms to detect and precisely
localize curbs and stairways for autonomous navigation. These
algorithms combine brightness information (in the form of
edgels) with 3-D data from a commercial stereo system. The
overall system (including stereo computation) runs at about 4
Hz on a 1 GHz laptop. We show experimental results and discuss
advantages and shortcomings of our approach.

I. I NTRODUCTION

Robots that move autonomously in urban or indoor environ-
ment must be able to recognize certain types of features, be it
to avoid them (obstacles), to move towards them (targets), or
simply to build a symbolic representation of the world. This
paper is concerned with the robust visual identification and
precise 3–D localization of a ubiquitous class of features that
we will collectively call “curbs”. A curb in the context of this
paper is not only the step separating a road surface from the
sidewalk, but also any generic step (such as in a stairway), as
well as the junction of a wall with the floor.

Detection and localization of curb lines are important for
two reasons. First, a robot may not be able to negotiate a curb
or, if it can, may need to align itself precisely with the curb
edge. Second, tracking and following a curb line represents
a simple and effective percept–referenced behavior for urban
navigation.

Together with curb detection, we present a new algorithm
for the localization and characterization of stairways. Again,
stairways represent important landmarks. Some robots are
able to climb a flight of stairs [18], and in this case it would
be desirable to determine the slope of the staircase, the size of
the steps, and the orientation and endpoints of the step edges.

Intuitively, curbs should not be difficult to detect if an
accurate 3–D snapshot of the environment can be acquired, by
means, for example, of a 2–axis laser rangefinder (ladar)1. But
even the latest 3–D sensors are bulky, expensive and slow2.
A stereo camera is an obvious alternative to a ladar. Stereo
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1A single–axis ladar or even just a laser striper coupled witha camera
[12] can be used to detect a curb reliably by analyzing a vertical slice of the
scene. However, these devices cannot provide a full description of the curb
in terms of orientation and visible endpoints, unless data is integrated as the
robot moves around.

2An active 3–D sensors with limited dimensions and high frame
rate (but low resolution) has been recently commercializedby Canesta
(www.canesta.com). At this time, we don’t have enough evidence to establish
whether this sensor is suitable for the purpose of curb detection.

systems are inherently inexpensive, have small dimensions,
and may provide 3–D data at full frame rate. A number of
stereo devices are available commercially; for our work, we
have used a popular product, the Videre STH-MDS/-C camera
with baseline of 9 mm (www.videredesign.com).

Unfortunately, the quality of stereo data is often inferior
to that of ladar measurements. We concentrate here on
correlation–based stereo, since this is the technique usedby
the Videre system. An analysis of errors associated with
searching for disparities using a correlation window was pre-
sented in [17]. It is well known that stereo does not work well
with poorly textured areas. Note that a textured image patch
may become textureless due to saturation, if camera exposure
is not properly controlled. In addition, due to occlusions
and to effects related to the finite size of the correlation
window, range errors can be expected in correspondence of
depth discontinuities. Imperfect calibration (due, for example,
to slight mechanical misalignments produced by the robot’s
motion) is another source of errors, which is particularly
harmful in the context of curb detection, as we elaborate in
Section II-G.

Our experience has shown that, due to such reasons, using
stereo range data alone would not produce acceptable detec-
tion results in general. Our strategy is thus to use information
from both image and geometry, which, in a stereo system,
are perfectly registered together (indeed, this is an added
advantage of using stereo). In fact, even a single image
conveys a good amount of information about the presence
of a curb, since a curb line normally looks like a brightness
edge. Several other edges, however, usually co–exist in an
image, and thus brightness alone would not be sufficient
for reliable detection. Our main effort in this work was to
combine information from range and image edges in a robust
way, in order to minimize the amount of false positive while
ensuring good detection and precise 3–D localization.

II. CURB DETECTION

The main components of our curb detection system are
shown in Fig. 1. Edge points are first extracted from one of
the images in the stereo pair. Stereo range information is then
employed for a number of different purposes: to determine the
ground plane, which is then used to eliminate points that are
unlikely to be part of the curb, as well as inconsistent curb
edges; to compute a suitable curvature index, which is used to
weight edge points in a Hough transform framework; and to
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Fig. 1. A block scheme of our curb edge detector.

regress 3–D lines from the points that are back–projected from
candidate lines in the image. The output of this algorithm is
a set of 3–D curb edge segments, classified as concave or
convex.

Stairway detection and modeling requires further steps (see
Fig. 12). A plane is fitted using a robust procedure to each set
of concave and convex step edges detected by the previous
algorithm. The plane with the smallest residual error is then
chosen, and the corresponding step lines are projected onto
it. Outlier lines that are not parallel to most other lines are
then rejected. This algorithm thus yields both the equationof
a plane tangent to the stairway and a number of concave or
convex step edge segments.

This paper is organized as follows. After reviewing pre-
vious work in Section II-A, we present in Section II our
algorithm for curb detection and localization, together with
some experimental results and a discussion of the shortcom-
ings of our current approach. In Section III we introduce our
technique for modeling and localizing staircases. SectionIV
has the conclusions.

A. Previous Work

There has been extensive work over the past fifteen years
in the field of vision–based lane and road detection for au-
tonomous vehicles (see e.g. [2], [3], [4]). However, this work
mostly considered problems such as lane marker and obstacle
detection, and did not specifically address the detection of
curbs.

Curb detection over short distances for safe driving has
been demonstrated at CMU with a laser striper [12]. The
problem with a fixed laser striper is that the viewing geometry
is very limited, while our task requires the ability to detect
features over a rather wide field of view. Closer to our work
is the paper by Se and Brady [10]. They detect candidate
curbs by finding clusters of lines in an image using the
Hough Transform. Then, in order to classify a curb line
as a step–up or step–down, they compute the ground plane
parameters of the two regions separated by the curb line. This

allows one to precisely estimate the height of the curb. In
contrast with the early–commitment approach of [10], which
uses only image–based information to detect curb lines (and
can give erroneous detection in cluttered environments with
many distractors), we combine edge-based and range–based
information to reliably localize curbs in the scene. The work
of Turchetto and Manduchi [16] used the weighted Hough
Transform for curb edge localization, with weights values
proportional to the scalar product of the brightness gradient
and of the depth gradient in the image. With respect to [16],
the present paper uses a more sophisticated weight function
based on a descriptor of the surface curvature. In addition,
robust statistical techniques are used for the 3–D regression
of line segments in space.

For what concerns stairway detection and modeling, all of
the existing work we are aware of (e.g., [11], [18]) considers
monocular analysis, and basically searches for pencils of lines
in the image that correspond to the perspective projection of
parallel lines in 3–D space. Since we have range data avail-
able, we can work directly in 3–D, which greatly simplifies
model fitting and outlier rejection.

B. Ground Plane Estimation

The first module in our system is a routine that estimates the
visible ground plane. Ideally, in the case of planar surfaces,
a curb could be identified by the points that are at a certain
distance from the ground plane. However, this strategy does
not work in practice, for two reasons. First, road surfaces
are often not planar (although this could be accounted for by
more complex surface models). Second, this approach would
rely solely on elevation data which, in the case of stereo, are
often inaccurate and noisy.

Knowledge of the ground plane is used to rule out incorrect
candidate curb lines. More precisely, search is constrained to
points that are within a certain distanceHGP from the ground
plane (e.g.,HGP = 0.5 meter). In addition, a candidate line is
rejected if it forms an angle of less thenθGP with the ground
plane normal (e.g.,θGP = 45◦).

To estimate the ground plane we use the Least Median of
Squares (LMedS) robust procedure on the range data from
stereo [9]. If the attitude of the camera is known at least
approximately (e.g., from the IMU of the robot), then guided
sampling [13], [14] can be used to increase the likelihood
of sampling inliers points. The idea of guided sampling is
simple: rather than sampling the search space uniformly, the
density of samples is increased in those regions where the
plane is more likely to be. Unfortunately, in our system,
attitude information was not accessible continuously, although
the inclination of the stereo rack (which was kept vertical,
see Section II-F) when the robot was not moving could be
measured. This was used to estimate a “default” plane relative
to the camera position. In addition, the maximum expected
pitch and roll angles were known, which defined the set of
possible ground planes with respect to the camera. Before
running LMedS, we normally discard all range points beyond
a certain distance (e.g.,Dmax = 5 meter) as well as all



points that do not belong to the volume spanned by the set
of possible ground planes. This simple procedure effectively
rejects a good amount of points that are likely to be outliers.
Note that points beyondDmax are then re–inserted after
ground plane estimation.

The ground plane is estimated at each frame. Once a plane
is found by LMedS, it is compared with the “default” ground
plane as well as with the ground plane estimated in the
previous frame. The plane among such three candidates that
best fits the data is then declared the ground plane for the
current frame.

C. Curvature Estimation

Surface curvature is obviously a good indicator for a po-
tential curb edge (i.e., a flat surface cannot be an edge). Thus,
it may seem that differential singularities such as ridges [5]
of the range data could be used directly to detect candidate
points. However, we found that a ridge operator applied
to stereo data often gives unsatisfactory results. Spurious
ridges are likely to appear, even when the range data has
been smoothed. In addition, the “correct” ridges are often
not rectilinear, due to noise in the range data. In contrast,
differential singularities computed on the image (brightness
edges) are more likely to faithfully correlate with actual curb
lines. Our strategy is thus to rely on brightness edgels for the
localization of candidate curb edge points, and on a curvature
field defined over all range data to weight such edgels.

The question now is how to assign a meaningful “curvature
index” (CI) value to each range point. One may expect that, in
the vicinity of a curb edge, one of the twoprincipal curvature
valuesk1 andk2 will be large (in magnitude), while the other
one will be small [15]. The proposed curvature index, defined
in terms ofk1 andk2, is defined as follows:

CI =
(|k1| − |k2|)

2

(|k1| + |k2|)2 + ǫ
(1)

where ǫ is a small positive constant. One notices that0 ≤
CI < 1; CI is equal to 0 when the two curvatures are iden-
tical, and becomes close to 1 when one principal curvature is
small (in magnitude) while the other one is large (see Fig. 2).

k1

k2

-50 -40 -30 -20 -10 0 10 20 30 40 50

-50

-40

-30

-20

-10

0

10

20

30

40

50

k1

k2

-50 -40 -30 -20 -10 0 10 20 30 40 50

-50

-40

-30

-20

-10

0

10

20

30

40

50

Fig. 2. The proposed curvature indexCI as a function of the two curvature
indicesk1 andk2 (see (1)) forǫ = 1 (left) and ǫ = 100 (right).

Although the estimation of principal curvatures requires
computing square roots (a computationally expensive oper-
ation), this is not the case for our chosen curvature index.
This is seen by re–writing (1) in terms of themean curvature,

H = (k1 +k2)/2, and of theGaussian curvature, K = k1k2:

CI =

{

H2
−K

H2
−ǫ

, K ≥ 0
H2

H2
−K−ǫ

, K < 0
(2)

The expressions forH and for K are reported in [15], and
involve estimating the first, second and partial derivatives
of the measured surface with respect tox and y. Gaussian
smoothing is performed on the range data before computing
such derivatives; the constantǫ in (1) was set to 1 in our
experiments. Examples of curvature index fields for real
images are shown in Figs. 4 and 5.

D. Line Selection

Candidate curb lines are selected starting from image
edgels (edge segments) corresponding to 3–D points that are
closer thanHGP to the ground plane. A weighted Hough
transform [6] is used to detect such lines, with the weights
derived from the curvature indexCI at each point. Using the
Hough transform ensures that a curb line can be detected even
when only a limited number of edgels are found on it.

A large value ofCI signifies that an edge point is likely
to belong to a curb line. However, one should consider also
the case when range is not available (for whatever reason) for
some of the pixels. Accordingly, we proposed the following
weight function at each edge pixel:

w = αCI + (1 − α) (3)

whereα is a positive constant between 0 and 1. The term
(1 − α) ensures that some weight is assigned to edge points
even when range is not available. When stereo data is reliable,
α can be set to a value very close to 1; in our experiments,
we setα to 0.95.

The peaks of the weighted Hough transform identify candi-
date curb lines. A potential problem with using weights is the
risk of detecting multiple lines intersecting at one point with
large weight. This is because a single point “votes” according
to its weight for a whole pencil of lines. To reduce the risk of
these concentric line patterns being detected, we use a non–
maxima suppression strategy: a point in the Hough transform
(parameterized by slope and intercept) is considered a peak
only if it has the highest value within a certain window around
itself. In this way, concentric lines that have very similarslope
or intercept are avoided.

E. 3–D Line Regression

The procedure in the previous section allows one to esti-
mate a number of candidate curb lines defined over the image
plane. The next two steps are: (1) Regression of 3–D lines
from the back–projection of the image points in the detected
image lines; (2) Determination of the endpoints (in 3–D) of
such curb segment. We’ll begin by describing the first task.

Let’s assume that a large enough numberNi of points
in a given image lineli have range values (otherwise, the
candidate lineli is discarded). Such points can thus be back–
projected onto known 3–D points in the scene. Let us call



the back–projected 3–D points{pj}. Simple geometry shows
that all 3–D points in{pj} must lie on the same plane,Πi,
containing the focal point and the image lineli. A Cartesian
basis for this plane can be easily found either based on
the intrinsic camera parameters, or directly from the 3–D
point coordinates using SVD [15]. Thus, 3–D line regression
of these 3–D points boils down to 2–D regression3 in the
plane Πi. Care must be taken in this operation, since a
large number (possibly, more than one half) of structured
outliers (i.e., points belonging to other planar surfaces)can be
expected. This precludes the use of traditional robust methods
such as LMedS or RANSAC, and calls for the use of the Least
K–th of Squares (LKS) algorithm [1] instead. In addition, one
can rely on the weights computed by (3) for guided sampling.
This is because one may reasonably expect that points inΠi

which do not belong to a curb line should have small curvature
index CI and therefore small weight.

Our regression procedure, which is a simple variation of
LMedS, is detailed in the following:

1) Let {p̄j} ⊂ {pj} be the subset of 3–D points in{pj}
that are the back–projections of edge points in the
image.

2) Sample (without replacement) two points from{p̄j}.
A generic pointp̄j is chosen with probabilityZ · wj

(wj being the weight of point̄pj as defined in (3) and
Z being a normalization constant). Determine the line
through the two sampled points.

3) Compute the distances (residuals)dj of each point in
{pj} (including non–edge points) to this line. Compute
the weighted residualŝdj = dj/wj, and determine the
K–th smallest such residual.

4) Iterate steps 2–3 for a fixed number of times. Return
the line with the smallest associatedK–th smallest
weighted residual,̂d(K)

min.

Guided sampling reduces the probability of sampling a
point outside the curb line. The choice of weighted distances
d̂j increases the likelihood that points with small curvature
index are assigned to the outlier subset. Note that this proce-
dure assumes that there are at leastK inliers, and therefore
K must be sufficiently small. Algorithms to determine a
suitable value forK have been proposed in [8], [7]. In the
interest of computational speed, we used a fixed value of
K = 0.2 · Ni. An example of robust line fitting inΠi is
shown in Fig. 3 (left).

Once the 3–D curb line (lying onΠi) has been regressed,
the next task is the determination of the endpoints of the 3–
D curb edge segment. This is a typical problem in robust
statistics, and requires the estimation of a suitable “scale”
in order to separate inliers from outliers. A simple strategy
would be to threshold all of the weighted residuals{d̂j} in
the previous algorithm by a value proportional tôd

(K)
min. A

more elaborate approach is the Modified Selective Statistical
Estimator (MSSE) proposed in [1], whereby an unbiased scale

3Note the early–commitment character of this operation: an error in the
image line detection cannot be recovered by subsequent 3–D reasoning.

Fig. 3. Left: The points{pj} in Πi and the regressed line. The height of
each point marker is proportional to the weighted residuald̂j of the point with
respect to the line. Right: The Videre stereo camera used forour experiments
seen on Stanford’s Segbot.

estimate,σn, is computed from the smallestn–th residuals.
The indexn is increased (starting fromn = 2) until the
(n + 1)–th smallest residual is larger thanTσn (where T
is a positive constant). Then, all points witĥdj > Tσn

are considered outliers. We have experimented with both
methods, obtaining comparable results.

In addition to this procedure, we use simple heuristics
to enforce spatial coherence on the points belonging to the
same line. First, small gaps between segments of points that
survived the previous steps are filled; then, small segments
are removed. Finally, 3–D segments that are inconsistent with
our model are rejected. These are: (1) segments that form an
angle of less thanθGP with the ground plane normal, and (2)
segment pairs whose projections on the image intersect each
other. The first constraint was already discussed in section
II-B. The second constraint derives from the fact that it is
topological impossible for the projection of two curb linesto
intersect anywhere else than at an endpoint. Finally, once the
line segments have been determined, each segment is labeled
as “concave” or “convex” based on the sign of the average
mean curvature of its points.

F. Experiments

Our algorithms run under Linux on a 1GHz laptop. We
use Videre’s Small Vision System (SVS) software for stereo
matching and Intel’s Open Computer Vision library for a
number of subroutines. Curb detection is performed at a rate
of approximately 4 Hz (including disparity computation over
320 by 240 pixels). To maximize the expected angle between
curb lines on the image and the epipolar lines (see Section II-
G), the stereo rig was oriented vertically, as in Fig. 3 (right).

Successful examples of curb detection are shown in
Figs. 4–8. In some cases, the 3–D data is shown from behind
to improve readibility. Figs. 4–5 also display the detected
image edges and the curvature indexCI field. The estimated
ground plane is visible in Figs. 5–7. Two examples with
inaccurate detection are shown in Figs. 9 and 10. In the case
of Fig. 9, the position of one endpoint is grossly incorrect.
This may happen at times due to failure of the scale estimation
module for outlier detection (Section II-E). Another problem
is shown in Fig. 10, where a line on the floor was mistakenly



Fig. 4. Top left: The left image in a stereo pair, with the detected curb
lines (white: concave; black: convex). Top right: The curvature index CI
field, defined only for points that have range measurements. Pixels for which
the value ofCI could not be computed are marked in black. Bottom left:
The brightness edges obtained by Canny’s edge detector. Bottom right: The
brightness edges mapped onto the reconstructed 3–D surface. Colored edges
have a large value of the associated curvature indexCI. The color of an
edgel depends on the sign of its associated mean curvature (blue: negative;
red: positive).

considered a curb edge. The reasons for these types of error
are discussed at length in the next section.

G. Shortcomings and Bottlenecks

Although the technique described in the previous subsec-
tions has shown excellent results in most cases, there are some
open issues that will require more work. We discuss the two
most relevant remaining problems in the following.

Stereo Artifacts. It is well known that, as a consequence
of slight camera misalignment, a window–based correlation
stereo may compute incorrect disparities in the case of strong
edges that are almost parallel to the epipolar lines. An
analytical description of this behavior can be found in [17]; it
is similar in nature to the “aperture problem” of optical flow,
which arises when computing the image velocity component
orthogonal to the image gradient. Fig. 11 illustrates this
phenomenon by way of experiments with a test pattern viewed
by our stereo camera at different orientations. The test pattern
was printed on a flat surface. The epipolar lines of the rectified
images shown in the figure are horizontal; the re–projection
calibration error was less than 0.2 pixels. When the edge
pattern at the center of the image is vertical, the disparityis
correctly computed; by rotating the stereo camera such that
the lines in the pattern are almost horizontal, a rather large
disparity error (positive or negative) is recorded.

This phenomenon may influence the performance of our
curb detector, since strong brightness gradients on an oth-
erwise flat surface (e.g., a line painted on the floor) may
generate a non–null value of the curvature indexCI and
therefore a non–negligible value of the weightw assigned

Fig. 5. Top left: The left image in a stereo pair, with the detected concave
curb line. Top right: The curvature indexCI field, defined only for points
that have range measurements. Pixels for which the value ofCI could not be
computed are marked in black. Bottom left: The brightness edges obtained
by Canny’s edge detector. Bottom right: The reconstructed 3–D surface, with
the estimated ground plane and the detected curb edge segment (marked in
yellow).

Fig. 6. Left: The left image in a stereo pair, with the detected curb lines
(white: concave; black: convex). . Right: The reconstructed 3–D surface, with
the estimated ground plane and the detected curb edge segments (yellow:
concave; pink: convex).

to a pixel by (3). This may lead to errors in the determination
of the segment endpoints (Fig. 9) and even to the incorrect
detection of curb lines (Fig. 10).

Our current fix to this problem is to smooth the range
data with a rather large kernel (σ = 15–21 pixels) before
computing the curvature index, in the hope to reduce the
influence of small range variations due to disparity estimation
errors. However, a more comprehensive recovery strategy,
based on a better understanding of the root of the problem (the
disparity computation), is needed for more reliable results.

Peak Detection.An open problem with the system discussed
so far is that any peak in the Hough transform that survives
the non–maxima suppression test (Section II-D) is considered
a candidate curb line – even when no curb is visible in the
image! This calls for a criterion to assert with a certain degree
of confidence when a curb is actually present in the image. We
currently use the following heuristic. First, the medianHTm

of the weighted Hough transform values is computed. Then,
a peak is considered a candidate only if its value is larger



Fig. 7. Left: The left image in a stereo pair, with the detected curb lines
(white: concave; black: convex). Right: The reconstructed3–D surface (seen
from behind), with the estimated ground plane and the detected curb edge
segments (yellow: concave; pink: convex). Note that the estimated ground
plane is incorrect, yet the curb edges are detected correctly.

Fig. 8. Left: The left image in a stereo pair, with the detected concave
curb line. Right: The reconstructed 3–D surface (seen from behind), with
the estimated ground plane and the detected curb edge segment (marked in
yellow).

thanS · HTm, whereS is a positive constant (e.g.,S = 5).
This procedure can be seen as a form of hypothesis testing.
More precisely, we assume that in the “null” hypothesis (i.e.,
when there are no curbs in the scene), the values of the Hough
transform tend to be distributed uniformly, while a heavy tail
in the distribution would be observed when a curb is present.

This strategy has been only partially successful. Clearly,a
more thorough investigation into the statistical properties of
the weighted Hough transform for these types of images is
needed for more satisfactory results.

III. STAIRWAY MODELING

The curb detection and localization algorithm described
in the previous section is the initial building block of our
stairway modeling and localization procedure. Indeed, a stair-
way can be defined as a vertical succession of regular steps,
with two sets of parallel convex and concave edges lying on
parallel planes. Hence, if a number of such edges have been
found, one may attempt to fit a plane through them, thus
determining the stairway slope and step size.

Our algorithm proceeds as follows. First, a number of
curb line segments are determined. The ground plane is not
computed in this case (since very little of it may be visible
anyway), and therefore relative height or slope criteria are
not used to reject candidate lines. The line segments found
are divided into the set of concave and of convex ones. For
each such set, we run a variant of the LMedS algorithm to
robustly fit a plane to the lines contained in the set. More
precisely, we randomly select (with replacement) three lines,

Fig. 9. Left: The left image in a stereo pair, with the detected concave
curb line. Right: The reconstructed 3–D surface with the detected curb edge
segment (marked in yellow). Note that the detected segment extends beyond
the actual curb edge.

Fig. 10. Left: The left image in a stereo pair, with the detected concave
curb lines. Right: The reconstructed 3–D surface with the detected curb edge
segments (marked in yellow). Note that one of the two detected curb edges
is incorrect.

making sure that not all three lines are the same one. From
each selected line, we randomly pick a point, making sure
that the resulting three points are not collinear and that no
two points are the same (in case two lines are the same
one). Then, the distance (residual) of all points of all lines
to the plane defined by such three points is computed4, and
the median residual is stored. After a number of iterations,
the plane with the smallest median residual is chosen. This
operation is performed on both line sets (concave and convex),
and the plane with the smallest residual,Π̄, is kept.

Once the tangent planēΠ has been fitted, it would be
desirable to find its intersections̄li with the planesΠi defined
in Section II-E. The reader is reminded that the planeΠi

contains the focal point and the lineli in the image plane.
The linesl̄i thus contain the perspective projections ontoΠ̄ of
the points{pj} defined in Section II-E. Hence, besides being
co-planar, the lines̄li are (ideally) parallel – even though
the linesli in the image plane are, in general,not parallel,
due to perspective. The knowledge of linesl̄i may be very
useful for the control of a stair–climbing robot [18]. However,
this procedure does not eliminate the risk that a spurious line
(e.g., a shadow) that is co–planar with the other edge lines be
identified as an actual step line. To alleviate this risk, we can
rely on the parallelism that is expected of the detected lines. A
simple rejection procedure is outlined in the following. First,
the angular differences,∆ij between the lines in each pair
(l̄i, l̄j) are computed. Then, for each fixedi, we compute

4Note that we use the actual 3–D points corresponding to imagelines
for this procedure, not the points in the line regressed by the procedure of
Section II-E.
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Fig. 11. Top row: The left image (rectified) of a stereo pair atdifferent
camera orientations. The printed pattern is almost perfectly flat. Bottom row:
The computed disparity. Black pixels indicate points for which the disparity
was not computed (due to lack of texture).
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Fig. 12. A block scheme of the stairway modeling/localization algorithm.

the median of the values{∆ij} . The resulting values are
expected to be small for any linēli that is almost parallel
to most other lines, and high otherwise. The adaptive–scale
outlier detection algorithm MSSE [1] is then used for rejection
of these latter cases.

Examples of fitting planēΠ and projected lines̄li (convex
edges) for two different staircases are shown in Figs. 13–14.
Note that non–parallel lines have been automatically rejected.

Fig. 13. Left: The left image in a stereo pair, with the detected step lines
(white: concave; black: convex). Right: The 3–D stereo reconstruction (seen
from behind), with the planēΠ fitting the convex step lines, and the projected
lines l̄i (shown in purple).

IV. SUMMARY AND CONCLUSIONS

We have introduced new, robust algorithms for the detection
and 3–D localization of curbs and of stairways. Our approach
uses range data from stereo, correlating geometry with bright-
ness edge information from the image. Implemented on a
laptop computer, the overall system runs at about 4 Hz, with
satisfactory results. Our system finds application in indoor

Fig. 14. Left: The left image in a stereo pair, with the detected step lines
(white: concave; black: convex). Right: The 3–D stereo reconstruction, with
the planeΠ̄ fitting the convex step lines, and the projected linesl̄i (shown
in purple). Note the stereo artifacts due to the texturelessarea at the bottom
of the staircase.

and urban autonomous navigation, where curbs and stairways
are important landmarks for world modeling.

REFERENCES

[1] A. Bab–Hadiashar and D. Suter, “Robust Range Segmentation”, Proc.
ICPR, 1999.

[2] A. Broggi, “Robust Real–Time Lane and Road Detection in Critical
Shadow Conditions”,Proc. IEEE Int. Symp on Comp. Vis., 1995.

[3] J. Crisman and C. Thorpe, “SCARF: A Color Vision System that Tracks
Roads and Intersections”,IEEE Trans. Robotics and Autom., 9(1):49–58,
Feb. 1993.

[4] E.D. Dickmans and B.D. Mysliwetz, “Recursive 3–D Road and Relative
Ego–State Recognition”,IEEE Trans. PAMI, 14:199–213, May 1992.

[5] D. Eberly, R. Gardner, B. Morse, S. Pizer and C. Scharlach, “Ridges for
Image Analysis”,Journ. Math. Imaging and Vision,4(4):353–373, 1994.

[6] J. Forsberg, U. Larsson and A. Wernersson, “Mobile RobotNavigation
Using the Range–Weighted Hough Transform”,IEEE Robotics & Au-
tomation Magazine, March 1995.

[7] K. Lee, P. Meer, and A. Park, “Robust Adaptive Segmentation of Range
Images”,Trans. IEEE PAMI, 20(2), Feb. 1998.

[8] J. Miller and C. Stewart, “MUSE: Robust Surface Fitting Using Unbiased
Scale Estimates”,Proc. IEEE CVPR’96, San Francisco, 1996.

[9] P. Rousseeuw and A. Leroy,Robust Regression and Outlier Detection,
Wiley, 1987.

[10] S. Se and M. Brady, “Vision–based Detection of Kerbs andSteps”,
Proc. BMVC97, 1997.

[11] S. Se and M. Brady, “Road Feature Detection and Estimation”, Machine
Vision and Applications, 14:157–65, 2003

[12] C. Thorpe et al., “Driving in Traffic: Short–Range Sensing for Urban
Collision Avoidance”,Proc. SPIE: UGV Tech. IV, Vol. 4715, April 2002.

[13] B. Tordoff and D.W. Murray, “Guided Sampling and Consensus for
Motion Estimation”–,Proc. ECCV. May 2002

[14] P.H.S. Torr and C. Davidson, “IMPSAC: Synthesis of Importance
Sampling and Random Sample Consensus”,IEEE Trans. PAMI, 25:354–
64, 2003.

[15] E. Trucco and A. Verri,Introductory Techniques for 3–D Computer
Vision, Prentice–Hall, 1998.

[16] R. Turchetto and R. Manduchi, “Visual Curb Localization for Au-
tonomous Navigation”,Proc. IEEE/RSJ IROS’03, Las Vegas, October
2003.

[17] Y. Xiong and L. Matthies, “Error Analysis of a Real–TimeStereo
System”,Proc. IEEE CVPR, 1997.

[18] Y. Xiong and L. Matthies, “Vision–Guided Autonomous Stair Climb-
ing”, Proc. ICRA, 2000.


