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Bilateral filtering smooths images while preserving
edges, by means of a nonlinear combination of nearby
image values. The method is noniterative, local, and sim-
ple. It combines gray levels or colors based on both their
geometric closeness and their photometric similarity, and
prefers near values to distant values in both domain and
range. In contrast with filters that operate on the three
bands of a color image separately, a bilateral filter can en-
force the perceptual metric underlying the CIE-Lab color
space, and smooth colors and preserve edges in a way
that is tuned to human perception. Also, in contrast with
standard filtering, bilateral filtering produces no phantom
colors along edges in color images, and reduces phantom
colors where they appear in the original image.

1 Introduction
Filtering is perhaps the most fundamental operation of

image processing and computer vision. In the broadest
sense of the term “filtering,” the value of the filtered image
at a given location is a function of the values of the in-
put image in a small neighborhood of the same location. In
particular, Gaussian low-pass filtering computes a weighted
average of pixel values in the neighborhood, in which, the
weights decrease with distance from the neighborhood cen-
ter. Although formal and quantitative explanations of this
weight fall-off can be given [11], the intuitionis that images
typically vary slowly over space, so near pixels are likely
to have similar values, and it is therefore appropriate to
average them together. The noise values that corrupt these
nearby pixels are mutually less correlated than the signal
values, so noise is averaged away while signal is preserved.

The assumption of slow spatial variations fails at edges,
which are consequently blurred by low-pass filtering. Many
efforts have been devoted to reducing this undesired effect
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 17]. How can
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we prevent averaging across edges, while still averaging
within smooth regions? Anisotropic diffusion [12, 14] is a
popular answer: local image variation is measured at every
point, and pixel values are averaged from neighborhoods
whose size and shape depend on local variation. Diffusion
methods average over extended regions by solving partial
differential equations, and are therefore inherently iterative.
Iteration may raise issues of stability and, depending on the
computational architecture, efficiency. Other approaches
are reviewed in section 6.

In this paper, we propose a noniterative scheme for edge
preserving smoothing that is noniterative and simple. Al-
though we claims no correlation with neurophysiological
observations, we point out that our scheme could be imple-
mented by a single layer of neuron-like devices that perform
their operation once per image.

Furthermore, our scheme allows explicit enforcement
of any desired notion of photometric distance. This is
particularly important for filtering color images. If the
three bands of color images are filtered separately from
one another, colors are corrupted close to image edges. In
fact, different bands have different levels of contrast, and
they are smoothed differently. Separate smoothing perturbs
the balance of colors, and unexpected color combinations
appear. Bilateral filters, on the other hand, can operate on
the three bands at once, and can be told explicitly, so to
speak, which colors are similar and which are not. Only
perceptually similar colors are then averaged together, and
the artifacts mentioned above disappear.

The idea underlying bilateral filtering is to do in the
range of an image what traditional filters do in its domain.
Two pixels can be close to one another, that is, occupy
nearby spatial location, or they can be similar to one an-
other, that is, have nearby values, possibly in a perceptually
meaningful fashion. Closeness refers to vicinity in the do-
main, similarity to vicinity in the range. Traditional filter-
ing is domain filtering, and enforces closeness by weighing
pixel values with coefficients that fall off with distance.
Similarly, we define range filtering, which averages image



values with weights that decay with dissimilarity. Range
filters are nonlinear because their weights depend on image
intensity or color. Computationally, they are no more com-
plex than standard nonseparable filters. Most importantly,
they preserve edges, as we show in section 4.

Spatial locality is still an essential notion. In fact, we
show that range filtering by itself merely distortsan image’s
color map. We then combine range and domain filtering,
and show that the combination is much more interesting.
We denote teh combined filtering as bilateral filtering.

Since bilateral filters assume an explicit notion of dis-
tance in the domain and in the range of the image function,
they can be applied to any function for which these two
distances can be defined. In particular, bilateral filters can
be applied to color images just as easily as they are applied
to black-and-white ones. The CIE-Lab color space [16]
endows the space of colors with a perceptually meaningful
measure of color similarity, in which short Euclidean dis-
tances correlate strongly with human color discrimination
performance [16]. Thus, if we use this metric in our bilat-
eral filter, images are smoothed and edges are preserved in a
way that is tuned to human performance. Only perceptually
similar colors are averaged together, and only perceptually
visible edges are preserved.

In the following section, we formalize the notion of
bilateral filtering. Section 3 analyzes range filtering in
isolation. Sections 4 and 5 show experiments for black-
and-white and color images, respectively. Relations with
previous work are discussed in section 6, and ideas for
further exploration are summarized in section 7.

2 The Idea
A low-pass domain filter applied to image f(x) produces

an output image defined as follows:
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where c(�; x) measures the geometric closeness between
the neighborhood center x and a nearby point �. The bold
font for f and h emphasizes the fact that both input and
output images may be multiband. If low-pass filtering is to
preserve the dc component of low-pass signals we obtain
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If the filter is shift-invariant, c(�; x) is only a function of
the vector difference � � x, and kd is constant.

Range filtering is similarly defined:
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except that now s(f(�); f(x))measures the photometric sim-
ilarity between the pixel at the neighborhood center x and

that of a nearby point �. Thus, the similarity function s

operates in the range of the image function f, while the
closeness function c operates in the domain of f. The nor-
malization constant (2) is replaced by
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Contrary to what occurs with the closeness function c, the
normalization for the similarity function s depends on the
image f. We say that the similarity function s is unbiased
if it depends only on the difference f(�) � f(x).

The spatial distributionof image intensities plays no role
in range filtering taken by itself. Combining intensities
from the entire image, however, makes little sense, since
image values far away from x ought not to affect the final
value at x. In addition, section 3 shows that range filtering
by itself merely changes the color map of an image, and
is therefore of little use. The appropriate solution is to
combine domain and range filtering, thereby enforcing both
geometric and photometric locality. Combined filteringcan
be described as follows:
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with the normalization
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Combined domain and range filtering will be denoted
as bilateral filtering. It replaces the pixel value at x with
an average of similar and nearby pixel values. In smooth
regions, pixel values in a small neighborhood are similar to
each other, and the normalized similarity function k�1s is
close to one. As a consequence, the bilateral filter acts es-
sentially as a standard domain filter, and averages away the
small, weakly correlated differences between pixel values
caused by noise. Consider now a sharp boundary between
a dark and a bright region, as in figure 1 (a). When the
bilateral filter is centered, say, on a pixel on the bright side
of the boundary, the similarity function s assumes values
close to one for pixels on the same side, and close to zero for
pixels on the dark side. The similarity function is shown in
figure 1 (b) for a 23� 23 filter support centered two pixels
to the right of the step in figure 1 (a). The normalization
term k(x) ensures that the weights for all the pixels add up
to one. As a result, the filter replaces the bright pixel at the
center by an average of the bright pixels in its vicinity, and
essentially ignores the dark pixels. Conversely, when the
filter is centered on a dark pixel, the bright pixels are ig-
nored instead. Thus, as shown in figure 1 (c), good filtering
behavior is achieved at the boundaries, thanks to the do-
main component of the filter, and crisp edges are preserved
at the same time, thanks to the range component.



(a) (b) (c)

Figure 1: (a) A 100-gray-level step perturbed by Gaussian noise with � = 10 gray levels. (b) Combined similarity weights c(�; x)s(f(�); f(x)) for a
23� 23 neighborhood centered two pixels to the right of the step in (a). The range component effectively suppresses the pixels on the dark side. (c) The
step in (a) after bilateral filtering with �r = 50 gray levels and �d = 5 pixels.

2.1 Example: the Gaussian Case
A simple and important case of bilateral filtering is

shift-invariant Gaussian filtering, in which both the close-
ness function c(�; x) and the similarity function s(�; f) are
Gaussian functions of the Euclidean distance between their
arguments. More specifically, c is radially symmetric

c(�; x) = e
�

1
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where
d(�; x) = d(� � x) = k� � xk

is the Euclidean distance between � and x. The similarity
function s is perfectly analogous to c:
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where
�(�; f) = �(�� f) = k�� fk

is a suitable measure of distance between the two intensity
values � and f. In the scalar case, this may be simply the
absolute difference of the pixel difference or, since noise
increases with image intensity, an intensity-dependent ver-
sion of it. A particularly interesting example for the vector
case is given in section 5.

The geometric spread �d in the domain is chosen based
on the desired amount of low-pass filtering. A large �d
blurs more, that is, it combines values from more distant
image locations. Also, if an image is scaled up or down, �d
must be adjusted accordingly in order to obtain equivalent
results. Similarly, the photometric spread �r in the image
range is set to achieve the desired amount of combination
of pixel values. Loosely speaking, pixels with values much
closer to each other than �r are mixed together and values
much more distant than�r are not. If the image is amplified
or attenuated, �r must be adjusted accordingly in order to
leave the results unchanged.

Just as this form of domain filtering is shift-invariant,
the Gaussian range filter introduced above is insensitive to
overall additive changes of image intensity, and is therefore

unbiased: if filtering f(x)produces h(x), then the same filter
applied to f(x)+a yields h(x)+a, since �(f(�)+a; f(x)+
a) = �(f(�)+ a� (f(x)+ a)) = �(f(�)� f(x)). Of course,
the range filter is shift-invariant as well, as can be easily
verified from expressions (3) and (4).

3 Range Versus Bilateral Filtering
In the previous section we combined range filtering with

domain filtering to produce bilateral filters. We now show
that this combination is essential. For notational simplicity,
we limit our discussion to black-and-white images, but
analogous results apply to multiband images as well. The
main point of this section is that range filtering by itself
merely modifies the gray map of the image it is applied to.
This is a direct consequence of the fact that a range filter
has no notion of space.

Let �(�) be the frequency distribution of gray levels in
the input image. In the discrete case, �(�) is the gray level
histogram: � is typically an integer between 0 and 255, and
�(�) is the fraction of image pixels that have a gray value
of �. In the continuous case, �(�) d� is the fraction of
image area whose gray values are between � and � + d�.
For notational consistency, we continue our discussion in
the continuous case, as in the previous section.

Simple manipulation, omitted for lack of space, shows
that expressions (3) and (4) for the range filter can be com-
bined into the following:

h =

Z
1

0

� � (�; f) d� (7)

where

� (�; f) =
s(�; f) �(�)R

1

0
s(�; f) �(�) d�

independently of the position x. Equation (7) shows range
filtering to be a simple transformation of gray levels. The
mapping kernel � (�; f) is a density function, in the sense
that it is nonnegative and has unit integral. It is equal
to the histogram �(�) weighted by the similarity function
s centered at f and normalized to unit area. Since � is



formally a density function, equation (7) represents a mean.
We can therefore conclude with the following result:

Range filtering merely transforms the gray map
of the input image. The transformed gray value is
equal to the mean of the input’s histogram values
around the input gray level f , weighted by the
range similarity function s centered at f .

It is useful to analyze the nature of this gray map trans-
formation in view of our discussion of bilateral filtering.
Specifically, we want to show that

Range filtering compresses unimodal histograms.

In fact, suppose that the histogram �(f) of the input
image is a single-mode curve as in figure 2 (a), and consider
an input value of f located on either side of this bell curve.
Since the symmetric similarity function s is centered at f ,
on the rising flank of the histogram, the product s� produces
a skewed density � (�; f). On the left side of the bell � is
skewed to the right, and vice versa. Since the transformed
value h is the mean of this skewed density, we have h > f

on the left side and h < f on the right side. Thus, the
flanks of the histogram are compressed together.

At first, the result that range filtering is a simple remap-
ping of the gray map seems to make range filtering rather
useless. Things are very different, however, when range fil-
tering is combined with domain filtering to yield bilateral
filtering, as shown in equations (5) and (6). In fact, consider
first a domain closeness function c that is constant within
a window centered at x, and is zero elsewhere. Then, the
bilateral filter is simply a range filter applied to the window.
The filtered image is still the result of a local remapping
of the gray map, but a very interesting one, because the
remapping is different at different points in the image.

For instance, the solid curve in figure 2 (b) shows the
histogram of the step image of figure 1 (a). This histogram
is bimodal, and its two lobes are sufficiently separate to
allow us to apply the compression result above to each
lobe. The dashed line in figure 2 (b) shows the effect of
bilateral filtering on the histogram. The compression effect
is obvious, and corresponds to the separate smoothing of
the light and dark sides, shown in figure 1 (c). Similar
considerations apply when the closeness function has a
profile other than constant, as for instance the Gaussian
profile shown in section 2, which emphasizes points that
are closer to the center of the window.

4 Experiments with Black-and-White Im-
ages

In this section we analyze the performance of bilateral
filters on black-and-white images. Figure 5 (a) and 5 (b) in
the color plates show the potential of bilateral filtering for

the removal of texture. Some amount of gray-level quan-
tization can be seen in figure 5 (b), but this is caused by
the printing process, not by the filter. The picture “sim-
plification” illustrated by figure 5 (b) can be useful for
data reduction without loss of overall shape features in ap-
plications such as image transmission, picture editing and
manipulation, image description for retrieval. Notice that
the kitten’s whiskers, much thinner than the filter’s win-
dow, remain crisp after filtering. The intensity values of
dark pixels are averaged together from both sides of the
whisker, while the bright pixels from the whisker itself are
ignored because of the range component of the filter. Con-
versely, when the filter is centered somewhere on a whisker,
only whisker pixel values are averaged together.

Figure 3 shows the effect of different values of the pa-
rameters �d and �r on the resulting image. Rows corre-
spond to different amounts of domain filtering, columns to
different amounts of range filtering. When the value of the
range filtering constant �r is large (100 or 300) with respect
to the overall range of values in the image (1 through 254),
the range component of the filter has little effect for small
�d: all pixel values in any given neighborhood have about
the same weight from range filtering, and the domain filter
acts as a standard Gaussian filter. This effect can be seen
in the last two columns of figure (3). For smaller values
of the range filter parameter �r (10 or 30), range filtering
dominates perceptually because it preserves edges.

However, for�d = 10, image detail that was removed by
smaller values of�d reappears. This apparently paradoxical
effect can be noticed in the last row of figure 3, and in
particularly dramatic form for �r = 100, �d = 10. This
image is crisper than that above it, although somewhat hazy.
This is a consequence of the gray map transformation and
histogram compression results discussed in section 3. In
fact, �d = 10 is a very broad Gaussian, and the bilateral
filter becomes essentially a range filter. Since intensity
values are simply remapped by a range filter, no loss of
detail occurs. Furthermore, since a range filter compresses
the image histogram, the output image appears to be hazy.
Figure 2 (c) shows the histograms for the input image and
for the two output images for �r = 100, �d = 3, and for
�r = 100, �d = 10. The compression effect is obvious.

Bilateral filtering with parameters �d = 3 pixels and
�r = 50 intensity values is applied to the image in figure 4
(a) to yield the image in figure 4 (b). Notice that most of
the fine texture has been filtered away, and yet all contours
are as crisp as in the original image.

Figure 4 (c) shows a detail of figure 4 (a), and figure
4 (d) shows the corresponding filtered version. The two
onions have assumed a graphics-like appearance, and the
fine texture has gone. However, the overall shading is
preserved, because it is well within the band of the domain
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Figure 2: (a) A unimodal image histogram � (solid), and the Gaussian similarity function s (dashed). Their normalized product � (dotted) is skewed to
the right. (b) Histogram (solid) of image intensities for the step in figure 1 (a) and (dashed) for the filtered image in figure 1 (c). (c) Histogram of image
intensities for the image in figure 5 (a) (solid) and for the output images with �r = 100, �d = 3 (dashed) and with �r = 100, �d = 10 (dotted) from
figure 3.

filter and is almost unaffected by the range filter. Also, the
boundaries of the onions are preserved.

In terms of computational cost,the bilateral filter is twice
as expensive as a nonseparable domain filter of the same
size. The range component depends nonlinearly on the
image, and is nonseparable. A simple trick that decreases
computation cost considerably is to precompute all values
for the similarity function s(�; f). In the Gaussian case, if
the image has n levels, there are 2n+1 possible values for
s, one for each possible value of the difference �� f .

5 Experiments with Color Images
For black-and-white images, intensities between any

two grey levels are still grey levels. As a consequence,
when smoothing black-and-white images with a standard
low-pass filter, intermediate levels of gray are produced
across edges, thereby producing blurred images. With color
images, an additional complication arises from the fact that
between any two colors there are other, often rather dif-
ferent colors. For instance, between blue and red there
are various shades of pink and purple. Thus, disturbing
color bands may be produced when smoothing across color
edges. The smoothed image does not just look blurred,
it also exhibits odd-looking, colored auras around objects.
Figure 6 (a) in the color plates shows a detail from a picture
with a red jacket against a blue sky. Even in this unblurred
picture, a thin pink-purple line is visible, and is caused
by a combination of lens blurring and pixel averaging. In
fact, pixels along the boundary, when projected back into
the scene, intersect both red jacket and blue sky, and the
resulting color is the pink average of red and blue. When
smoothing, this effect is emphasized, as the broad, blurred
pink-purple area in figure 6 (b) shows.

To address this difficulty, edge-preserving smoothing
could be applied to the red, green, and blue components of
the image separately. However, the intensity profiles across
the edge in the three color bands are in general different.
Separate smoothing results in an even more pronounced

pink-purple band than in the original, as shown in figure 6
(c). The pink-purple band, however, is not widened as it is
in the standard-blurred version of figure 6 (b).

A much better result can be obtained with bilateral fil-
tering. In fact, a bilateral filter allows combining the three
color bands appropriately, and measuring photometric dis-
tances between pixels in the combined space. Moreover,
this combined distance can be made to correspond closely
to perceived dissimilarity by using Euclidean distance in the
CIE-Lab color space [16]. This space is based on a large
body of psychophysical data concerning color-matching
experiments performed by human observers. In this space,
small Euclidean distances correlate strongly with the per-
ception of color discrepancy as experienced by an “average”
color-normal human observer. Thus, in a sense, bilateral
filtering performed in the CIE-Lab color space is the most
natural type of filtering for color images: only perceptually
similar colors are averaged together, and only perceptu-
ally important edges are preserved. Figure 6 (d) shows the
image resulting from bilateral smoothing of the image in
figure 6 (a). The pink band has shrunk considerably, and
no extraneous colors appear.

Figure 7 (c) in the color plates shows the result of five
iterations of bilateral filtering of the image in figure 7 (a).
While a single iteration produces a much cleaner image
(figure 7 (b)) than the original, and is probably sufficient
for most image processing needs, multiple iterations have
the effect of flattening the colors in an image considerably,
but without blurring edges. The resulting image has a much
smaller color map, and the effects of bilateral filtering are
easier to see when displayed on a printed page. Notice the
cartoon-like appearance of figure 7 (c). All shadows and
edges are preserved, but most of the shading is gone, and
no “new” colors are introduced by filtering.

6 Relations with Previous Work
The literature on edge-preserving filtering is vast, and

we make no attempt to summarize it. An early survey can
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Figure 3: A detail from figure 5 (a) processed with bilateral filters with various range and domain parameter values.
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Figure 4: A picture before (a) and after (b) bilateral filtering. (c,d) are details from (a,b).



be found in [8], quantitative comparisons in [2], and more
recent results in [1]. In the latter paper, the notion that
neighboring pixels should be averaged only when they are
similar enough to the central pixels is incorporated into
the definition of the so-called “G-neighbors.” Thus, G-
neighbors are in a sense an extreme case of our method, in
which a pixel is either counted or it is not. Neighbors in [1]
are strictly adjacent pixels, so iteration is necessary.

A common technique for preserving edges during
smoothing is to compute the median in the filter’s sup-
port, rather than the mean. Examples of this approach are
[6, 9], and an important variation [3] that uses K-means
instead of medians to achieve greater robustness.

More related to our approach are weighting schemes
that essentially average values within a sliding window, but
change the weights according to local differential [4, 15]
or statistical [10, 7] measures. Of these, the most closely
related article is [10], which contains the idea of multiply-
ing a geometric and a photometric term in the filter kernel.
However, that paper uses rational functions of distance as
weights, with a consequent slow decay rate. This forces
application of the filter to only the immediate neighbors
of every pixel, and mandates multiple iterations of the fil-
ter. In contrast, our bilateral filter uses Gaussians as a
way to enforce what Overton and Weimouth call “center
pixel dominance.” A single iteration drastically “cleans”
an image of noise and other small fluctuations, and pre-
serves edges even when a very wide Gaussian is used for
the domain component. Multiple iterations are still useful
in some circumstances, as illustrated in figure 7 (c), but
only when a cartoon-like image is desired as the output. In
addition, no metrics are proposed in [10] (or in any of the
other papers mentioned above) for color images, and no
analysis is given of the interaction between the range and
the domain components. Our discussions in sections 3 and
5 address both these issues in substantial detail.

7 Conclusions
In this paper we have introduced the concept of bilateral

filtering for edge-preserving smoothing. The generality of
bilateral filtering is analogous to that of traditional filter-
ing, which we called domain filtering in this paper. The
explicit enforcement of a photometric distance in the range
component of a bilateral filter makes it possible to process
color images in a perceptually appropriate fashion.

The parameters used for bilateral filtering in our illus-
trative examples were to some extent arbitrary. This is
however a consequence of the generality of this technique.
In fact, just as the parameters of domain filters depend on
image properties and on the intended result, so do those of
bilateral filters. Given a specific application, techniques for
the automatic design of filter profiles and parameter values
may be possible.

Also, analogously to what happens for domain filtering,
similarity metrics different from Gaussian can be defined
for bilateral filtering as well. In addition, range filters can be
combined with different types of domain filters, including
oriented filters. Perhaps even a new scale space can be
defined in which the range filter parameter �r corresponds
to scale. In such a space, detail is lost for increasing �r, but
edges are preserved at all range scales that are below the
maximum image intensity value. Although bilateral filters
are harder to analyze than domain filters, because of their
nonlinear nature, we hope that other researchers will find
them as intriguing as they are to us, and will contribute to
their understanding.
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(a)
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Figure 5: A picture before (a) and after (b) bilateral filtering.

(a) (b)

(c) (d)

(a)

(b)

(c)

Figure 7: [above] (a) A color image, and its bilaterally smoothed
versions after one (b) and five (c) iterations.

Figure 6: [left] (a) A detail from a picture with a red jacket against a
blue sky. The thin, pink line in (a) is spread and blurred by ordinary low-
pass filtering (b). Separate bilateral filtering (c) of the red, green, blue
components sharpens the pink band, but does not shrink it. Combined
bilateral filtering (d) in CIE-Lab color space shrinks the pink band, and
introduces no spurious colors.


