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Abstract

Bilateral filtering smooths images while preserving
edges, by means of a nonlinear combination of nearby
image values. The method is noniterative, local, and sim-
ple. It combines gray levels or colors based on both their
geometric closeness and their photometric similarity, and
prefers near values to distant values in both domain and
range. In contrast with filters that operate on the three
bands of a color image separately, a bilateral filter can en-
force the perceptual metric underlying the CIE-Lab color
space, and smooth colors and preserve edges in a way
that is tuned to human perception. Also, in contrast with
standard filtering, bilateral filtering produces no phantom
colors along edges in color images, and reduces phantom
colors where they appear in the original image.

1 Introduction

Filtering is perhaps the most fundamental operation of
image processing and computer vision. In the broadest
sense of the term “filtering,” the value of thefiltered image
at a given location is a function of the values of the in-
put image in asmall neighborhood of the samelocation. In
particular, Gaussian | ow-passfiltering computesawei ghted
average of pixel values in the neighborhood, in which, the
wel ghtsdecrease with distance from the nel ghborhood cen-
ter. Although forma and quantitative explanations of this
weight fall-off can begiven[11], theintuitionisthat images
typicaly vary slowly over space, so near pixels are likely
to have similar values, and it is therefore appropriate to
average them together. The noise values that corrupt these
nearby pixels are mutually less correlated than the signa
values, so noiseisaveraged away whilesignal ispreserved.

The assumption of slow spatia variationsfailsat edges,
which are consequently blurred by low-passfiltering. Many
efforts have been devoted to reducing this undesired effect
[1,2 3,4,5,6,7,8,9,10, 12, 13, 14, 15, 17]. How can
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we prevent averaging across edges, while still averaging
within smooth regions? Anisotropic diffusion[12, 14] isa
popular answer: local image variationis measured a every
point, and pixel values are averaged from neighborhoods
whose size and shape depend on loca variation. Diffusion
methods average over extended regions by solving partia
differential equations, and arethereforeinherentlyiterative.
Iteration may raiseissuesof stability and, depending on the
computational architecture, efficiency. Other approaches
are reviewed in section 6.

In this paper, we propose a noniterative scheme for edge
preserving smoothing that is noniterative and simple. Al-
though we claims no correlation with neurophysiologica
observations, we point out that our scheme could beimple-
mented by asinglelayer of neuron-like devicesthat perform
their operation once per image.

Furthermore, our scheme alows explicit enforcement
of any desired notion of photometric distance. This is
particularly important for filtering color images. If the
three bands of color images are filtered separately from
one another, colors are corrupted close to image edges. In
fact, different bands have different levels of contrast, and
they are smoothed differently. Separate smoothing perturbs
the balance of colors, and unexpected color combinations
appear. Bilaterd filters, on the other hand, can operate on
the three bands at once, and can be told explicitly, so to
speak, which colors are similar and which are not. Only
perceptualy similar colors are then averaged together, and
the artifacts mentioned above disappear.

The idea underlying bilatera filtering is to do in the
range of an image what traditiona filtersdo in itsdomain.
Two pixels can be close to one another, that is, occupy
nearby spatial location, or they can be similar to one an-
other, that is, have nearby values, possibly in aperceptual ly
meaningful fashion. Closenessrefers to vicinity in the do-
main, similarity to vicinity in therange. Traditiona filter-
ing isdomain filtering, and enforces closeness by weighing
pixel values with coefficients that fall off with distance.
Similarly, we define range filtering, which averages image



values with weights that decay with dissimilarity. Range
filtersare nonlinear because their weights depend onimage
intensity or color. Computationally, they are no more com-
plex than standard nonseparabl e filters. Most importantly,
they preserve edges, as we show in section 4.

Spatial locality is still an essentia notion. In fact, we
show that rangefiltering by itself merely distortsanimage's
color map. We then combine range and domain filtering,
and show that the combination is much more interesting.
We denote teh combined filtering as bilateral filtering.

Since bilateral filters assume an explicit notion of dis-
tancein the domain and in the range of the image function,
they can be applied to any function for which these two
distances can be defined. In particular, bilatera filters can
be applied to color images just as easily asthey are applied
to black-and-white ones. The CIE-Lab color space [16]
endows the space of colorswith a perceptually meaningful
mesasure of color similarity, in which short Euclidean dis-
tances correlate strongly with human color discrimination
performance [16]. Thus, if we use thismetric in our bilat-
erd filter, imagesare smoothed and edges are preserved ina
way that istuned to human performance. Only perceptually
similar colors are averaged together, and only perceptually
visible edges are preserved.

In the following section, we formalize the notion of
bilateral filtering. Section 3 anayzes range filtering in
isolation. Sections 4 and 5 show experiments for black-
and-white and color images, respectively. Relations with
previous work are discussed in section 6, and ideas for
further exploration are summarized in section 7.

2 Theldea

A low-passdomain filter gpplied to image f(x) produces
an output image defined as follows:
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where ¢(£, X) measures the geometric closeness between
the neighborhood center x and a nearby point £. The bold
font for f and h emphasizes the fact that both input and
output images may be multiband. If low-passfilteringisto
preserve the dc component of low-pass signalswe obtain
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If the filter is shift-invariant, ¢(£, x) is only a function of
the vector difference¢ — X, and k4 is constant.
Rangefiltering is similarly defined:
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except that now s(f(£), f(x)) measuresthe photometric sim-
ilarity between the pixel at the neighborhood center x and

that of a nearby point £&. Thus, the similarity function s
operates in the range of the image function f, while the
closeness function ¢ operates in the domain of f. The nor-
malization constant (2) is replaced by
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Contrary to what occurs with the closeness function ¢, the
normalization for the similarity function s depends on the
image f. We say that the similarity function s is unbiased
if it depends only on the difference f(£) — f(x).

Thespatia distributionof imageintensitiesplaysnorole
in range filtering taken by itself. Combining intensities
from the entire image, however, makes little sense, since
image values far away from x ought not to affect the final
valueat x. In addition, section 3 shows that range filtering
by itself merely changes the color map of an image, and
is therefore of little use. The appropriate solution is to
combine domain and rangefiltering, thereby enforcing both
geometric and photometriclocality. Combinedfilteringcan
be described as follows:
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Combined domain and range filtering will be denoted
as bilateral filtering. It replaces the pixd vaue at x with
an average of similar and nearby pixd values. In smooth
regions, pixel valuesin asmall neighborhood are similar to
each other, and the normalized similarity function £~ 's is
closeto one. Asa conseguence, thebilatera filter acts es-
sentially as astandard domain filter, and averages away the
small, weakly correlated differences between pixel values
caused by noise. Consider now a sharp boundary between
a dark and a bright region, as in figure 1 (a). When the
bilateral filter is centered, say, on apixel on the bright side
of the boundary, the similarity function s assumes values
closeto onefor pixelson thesame side, and closeto zero for
pixelsonthedark side. The similarity functionisshownin
figure 1 (b) for a23 x 23 filter support centered two pixels
to the right of the step in figure 1 (8). The normalization
term k(x) ensures that the weightsfor all the pixels add up
toone. Asaresult, thefilter replaces the bright pixel at the
center by an average of the bright pixelsinitsvicinity, and
essentially ignores the dark pixels. Conversely, when the
filter is centered on a dark pixel, the bright pixels are ig-
noredinstead. Thus, asshowninfigurel (c), good filtering
behavior is achieved at the boundaries, thanks to the do-
main component of thefilter, and crisp edges are preserved
at the same time, thanksto the range component.
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Figure 1. (a) A 100-gray-level step perturbed by Gaussian noise with o = 10 gray levels. (b) Combined similarity weights (&, x)s(f(¢),f(x)) for a
23 x 23 neighborhood centered two pixelsto the right of the step in (a). The range component effectively suppressesthe pixelson the dark side. (c) The

step in (a) after bilateral filtering with o, = 50 gray levelsand o4 = 5 pixels.

2.1 Example the Gaussian Case

A simple and important case of bilatera filtering is
shift-invariant Gaussian filtering, in which both the close-
ness function ¢(&, x) and the similarity function s(¢, f) are
Gaussian functionsof the Euclidean distance between their
arguments. More specifically, ¢ isradially symmetric

C(f,X) = e_%<d(§—;x))2

where
d(&,x) = d(& —x) =[] = x|

is the Euclidean distance between ¢ and x. The similarity
function s is perfectly analogousto c:

e = e’

where
8(¢,f) =d(¢—1) = lo — 1l

isasuitable measure of distance between the two intensity
values ¢ and f. In the scalar case, this may be simply the
absolute difference of the pixel difference or, since noise
increases with image intensity, an intensity-dependent ver-
sion of it. A particularly interesting example for the vector
caseisgivenin section 5.

The geometric spread o, in the domain is chosen based
on the desired amount of low-pass filtering. A large o4
blurs more, that is, it combines values from more distant
imagelocations. Also, if animageisscaled up or down, o4
must be adjusted accordingly in order to obtain equivalent
results. Similarly, the photometric spread o, in the image
range is set to achieve the desired amount of combination
of pixel values. Loosely speaking, pixel swith values much
closer to each other than &, are mixed together and values
much moredistant than o, arenot. If theimageisamplified
or attenuated, o, must be adjusted accordingly in order to
leave the results unchanged.

Just as this form of domain filtering is shift-invariant,
the Gaussian range filter introduced above isinsensitive to
overall additive changes of imageintensity, and istherefore

unbiased: if filtering f(x) producesh(x), thenthesamefilter
appliedtof(x) + ayiddsh(x) + a, sinced (f(¢) +a, f(x) +
a) =4(f(¢) +a— (f(x) +a)) = 6(f(¢) —f(x)). Of course,
the range filter is shift-invariant as well, as can be easily
verified from expressions (3) and (4).

3 Range VersusBilateral Filtering

Inthe previous section we combined rangefiltering with
domain filtering to produce bilateral filters. We now show
that thiscombinationisessential. For notational simplicity,
we limit our discussion to black-and-white images, but
anal ogous results apply to multiband images as well. The
main point of this section is that range filtering by itself
merely modifies the gray map of theimageit is applied to.
This isadirect consequence of the fact that a range filter
has no notion of space.

Let v(¢) be the frequency distribution of gray levelsin
the input image. Inthediscrete case, v(¢) isthegray level
histogram: ¢ istypically an integer between 0 and 255, and
v(¢) isthefraction of image pixelsthat have agray value
of ¢. In the continuous case, v(¢) d¢ is the fraction of
image area whose gray values are between ¢ and ¢ + d¢.
For notational consistency, we continue our discussion in
the continuous case, as in the previous section.

Simple manipulation, omitted for lack of space, shows
that expressions (3) and (4) for the rangefilter can be com-
bined into the following:
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where
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independently of the position X. Equation (7) shows range
filtering to be a simple transformation of gray levels. The
mapping kernel (¢, f) isadensity function, in the sense
that it is nonnegative and has unit integral. It is equal
to the histogram v(¢) weighted by the similarity function
s centered at f and normalized to unit area. Since 7 is

(¢, f) =



formally adensity function, equation (7) representsamean.
We can therefore conclude with the following result:

Range filtering merely transforms the gray map
of theinputimage. Thetransformed gray valueis
equa to the mean of the input’shistogram values
around the input gray level f, weighted by the
range similarity function s centered at f.

Itisuseful to analyze the nature of this gray map trans-
formation in view of our discussion of bilateral filtering.
Specifically, we want to show that

Rangefiltering compressesunimodal histograms.

In fact, suppose that the histogram v(f) of the input
imageisasingle-modecurveasinfigure2 (a), and consider
aninput value of f located on either side of thisbell curve.
Since the symmetric similarity function s is centered at f,
ontherising flank of the histogram, the product s produces
a skewed density (¢, f). On theleft side of the bell ris
skewed to the right, and vice versa. Since the transformed
value h isthe mean of thisskewed density, we have h > f
on the left side and A < f on the right side. Thus, the
flanks of the histogram are compressed together.

At first, the result that rangefiltering isa simple remap-
ping of the gray map seems to make range filtering rather
usdless. Thingsarevery different, however, when rangefil -
tering is combined with domain filtering to yield bilateral
filtering, as shownin equations(5) and (6). Infact, consider
first a domain closeness function ¢ that is constant within
awindow centered at x, and is zero elsawhere. Then, the
bilateral filter issimply arangefilter applied to the window.
The filtered image is till the result of alocal remapping
of the gray map, but a very interesting one, because the
remapping is different at different pointsin the image.

For instance, the solid curve in figure 2 (b) shows the
histogram of the step image of figure 1 (a). This histogram
is bimodal, and its two lobes are sufficiently separate to
allow us to apply the compression result above to each
lobe. The dashed linein figure 2 (b) shows the effect of
bilateral filtering on the histogram. The compression effect
is obvious, and corresponds to the separate smoothing of
the light and dark sides, shown in figure 1 (c). Similar
considerations apply when the closeness function has a
profile other than constant, as for instance the Gaussian
profile shown in section 2, which emphasizes points that
are closer to the center of the window.

4 Experiments with Black-and-White Im-
ages

In this section we analyze the performance of bilateral

filters on black-and-whiteimages. Figure5 (a) and 5 (b) in

the color plates show the potentia of bilatera filtering for

the removal of texture. Some amount of gray-level quan-
tization can be seen in figure 5 (b), but thisis caused by
the printing process, not by the filter. The picture “sim-
plification” illustrated by figure 5 (b) can be useful for
data reduction without loss of overall shape featuresin ap-
plications such as image transmission, picture editing and
mani pul ation, image description for retrieval. Notice that
the kitten’s whiskers, much thinner than the filter's win-
dow, remain crisp after filtering. The intensity values of
dark pixels are averaged together from both sides of the
whisker, while the bright pixels from the whisker itself are
ignored because of the range component of thefilter. Con-
versaly, when thefilter is centered somewhere on awhisker,
only whisker pixel values are averaged together.

Figure 3 shows the effect of different values of the pa-
rameters o4 and o, on the resulting image. Rows corre-
spond to different amounts of domain filtering, columnsto
different amounts of range filtering. When the value of the
rangefiltering constant o, islarge (100 or 300) with respect
tothe overal range of valuesin theimage (1 through 254),
the range component of thefilter has little effect for small
oq: al pixel valuesin any given neighborhood have about
the same weight from range filtering, and the domain filter
acts as a standard Gaussian filter. This effect can be seen
in the last two columns of figure (3). For smaller values
of the range filter parameter ¢, (10 or 30), range filtering
dominates perceptually because it preserves edges.

However, for oy = 10, image detail that wasremoved by
smaller valuesof o, reappears. Thisapparently paradoxical
effect can be noticed in the last row of figure 3, and in
particularly dramatic form for o, = 100, o4 = 10. This
imageiscrisper than that aboveit, although somewhat hazy.
Thisis a consequence of the gray map transformation and
histogram compression results discussed in section 3. In
fact, o, = 10 isavery broad Gaussian, and the bilateral
filter becomes essentially a range filter. Since intensity
values are simply remapped by a range filter, no loss of
detail occurs. Furthermore, since a range filter compresses
the image histogram, the output image appears to be hazy.
Figure 2 (c) shows the histograms for the input image and
for the two output images for o, = 100, o4 = 3, and for
o, = 100, o4 = 10. The compression effect is obvious.

Bilateral filtering with parameters oy = 3 pixels and
o, = b0 intensity valuesis applied to theimagein figure4
(a) to yield theimage in figure 4 (b). Notice that most of
the fine texture has been filtered away, and yet all contours
areas crisp asin the origina image.

Figure 4 (c) shows a detail of figure 4 (a), and figure
4 (d) shows the corresponding filtered version. The two
onions have assumed a graphics-like appearance, and the
fine texture has gone. However, the overall shading is
preserved, because it iswell within the band of the domain
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Figure 2: (a) A unimodal image histogram v (solid), and the Gaussian similarity function s (dashed). Their normalized product  (dotted) is skewed to
theright. (b) Histogram (solid) of image intensities for the step in figure 1 (a) and (dashed) for the filtered imagein figure 1 (c). (c) Histogram of image
intensities for the image in figure 5 (a) (solid) and for the output images with o = 100, o4 = 3 (dashed) and with o, = 100, o4 = 10 (dotted) from

figure 3.

filter and isamost unaffected by the range filter. Also, the
boundaries of the onions are preserved.

Intermsof computational cost, thebilaterd filter istwice
as expensive as a nonseparable domain filter of the same
size. The range component depends nonlinearly on the
image, and is nonseparable. A simple trick that decreases
computation cost considerably is to precompute al values
for the similarity function s(¢, f). Inthe Gaussian case, if
theimage has n levels, thereare 2n + 1 possiblevalues for
s, one for each possible vaue of the difference ¢ — f.

5 Experimentswith Color Images

For black-and-white images, intensities between any
two grey levels are ill grey levels. As a conseguence,
when smoothing black-and-white images with a standard
low-pass filter, intermediate levels of gray are produced
acrossedges, thereby producing blurred images. With color
images, an additional complication arises from thefact that
between any two colors there are other, often rather dif-
ferent colors. For instance, between blue and red there
are various shades of pink and purple. Thus, disturbing
color bandsmay be produced when smoothing across color
edges. The smoothed image does not just look blurred,
it also exhibits odd-looking, colored auras around objects.
Figure6 (a) inthecolor plates showsadetail fromapicture
with ared jacket against ablue sky. Evenin thisunblurred
picture, a thin pink-purple line is visible, and is caused
by a combination of lens blurring and pixel averaging. In
fact, pixels aong the boundary, when projected back into
the scene, intersect both red jacket and blue sky, and the
resulting color is the pink average of red and blue. When
smoothing, this effect is emphasized, as the broad, blurred
pink-purpleareainfigure 6 (b) shows.

To address this difficulty, edge-preserving smoothing
could be applied to the red, green, and blue components of
theimage separately. However, theintensity profilesacross
the edge in the three color bands are in genera different.
Separate smoothing results in an even more pronounced

pink-purpleband than in the original, as shown in figure 6
(). The pink-purpleband, however, isnot widened asitis
in the standard-blurred version of figure 6 (b).

A much better result can be obtained with bilatera fil-
tering. Infact, abilatera filter alows combining the three
color bands appropriately, and measuring photometric dis-
tances between pixels in the combined space. Moreover,
this combined distance can be made to correspond closely
to perceived dissimilarity by using Euclidean distanceinthe
CIE-Lab color space [16]. This space is based on alarge
body of psychophysical data concerning color-matching
experiments performed by human observers. In this space,
small Euclidean distances correlate strongly with the per-
ception of color discrepancy asexperienced by an“ average”
color-norma human observer. Thus, in a sense, bilateral
filtering performed in the CIE-Lab color space is the most
natural typeof filtering for color images: only perceptually
similar colors are averaged together, and only perceptu-
ally important edges are preserved. Figure 6 (d) showsthe
image resulting from bilatera smoothing of the image in
figure 6 (4). The pink band has shrunk considerably, and
No extraneous col ors appear.

Figure 7 (c) in the color plates shows the result of five
iterations of bilatera filtering of the imagein figure 7 (a).
While a single iteration produces a much cleaner image
(figure 7 (b)) than the original, and is probably sufficient
for most image processing needs, multiple iterations have
the effect of flattening the colorsin an image considerably,
but without blurring edges. Theresultingimagehasamuch
smaller color map, and the effects of bilatera filtering are
easier to see when displayed on a printed page. Noticethe
cartoon-like appearance of figure 7 (c). All shadows and
edges are preserved, but most of the shading is gone, and
no “new” colors are introduced by filtering.

6 Redationswith Previous Work

The literature on edge-preserving filtering is vast, and
we make no attempt to summarize it. An early survey can
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Fi gure4: A picture before (a) and after (b) bilateral filtering. (c,d) are details from (a,b).



be found in [8], quantitative comparisons in [2], and more
recent results in [1]. In the latter paper, the notion that
neighboring pixels should be averaged only when they are
similar enough to the centra pixels is incorporated into
the definition of the so-cdled “G-neighbors” Thus, G-
neighborsare in a sense an extreme case of our method, in
which apixel iseither counted or itisnot. Neighborsin[1]
are gtrictly adjacent pixels, so iteration is necessary.

A common technique for preserving edges during
smoothing is to compute the median in the filter's sup-
port, rather than the mean. Examples of this approach are
[6, 9], and an important variation [3] that uses K -means
instead of medians to achieve greater robustness.

More related to our approach are weighting schemes
that essentially average valueswithin asliding window, but
change the weights according to local differentia [4, 15]
or statistical [10, 7] measures. Of these, the most closely
related articleis [10], which contains the idea of multiply-
ing a geometric and a photometric term in the filter kernd.
However, that paper uses rationa functions of distance as
weights, with a consequent slow decay rate. This forces
application of the filter to only the immediate neighbors
of every pixel, and mandates multiple iterations of the fil-
ter. In contrast, our bilatera filter uses Gaussians as a
way to enforce what Overton and Weimouth call “center
pixel dominance” A single iteration drastically “cleans’
an image of noise and other smdl fluctuations, and pre-
serves edges even when a very wide Gaussian is used for
the domain component. Multipleiterations are till useful
in some circumstances, as illustrated in figure 7 (c), but
only when acartoon-likeimage is desired as the output. In
addition, no metrics are proposed in [10] (or in any of the
other papers mentioned above) for color images, and no
analysisis given of the interaction between the range and
the domain components. Our discussionsin sections 3 and
5 address both these issuesin substantial detail.

7 Conclusons

In this paper we have introduced the concept of bilateral
filtering for edge-preserving smoothing. The generality of
bilateral filtering is analogous to that of traditional filter-
ing, which we caled domain filtering in this paper. The
explicit enforcement of aphotometric distancein therange
component of abilatera filter makesit possible to process
color images in a perceptually appropriate fashion.

The parameters used for bilateral filtering in our illus-
trative examples were to some extent arbitrary. This is
however a consequence of the generality of thistechnique.
In fact, just as the parameters of domain filters depend on
image propertiesand on the intended result, so do those of
bilateral filters. Given a specific application, techniquesfor
the automatic design of filter profiles and parameter values
may be possible.

Also, analogously to what happens for domain filtering,
similarity metrics different from Gaussian can be defined
for bilatera filteringaswell. Inaddition, rangefilterscan be
combined with different types of domain filters, including
oriented filters. Perhaps even a new scale space can be
defined in which the rangefilter parameter o, corresponds
toscale. Insuchaspace, detail islost for increasing ., but
edges are preserved at al range scales that are below the
maximum image intensity value. Although bilatera filters
are harder to analyze than domain filters, because of their
nonlinear nature, we hope that other researchers will find
them as intriguing as they are to us, and will contribute to
their understanding.
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Figure5: A picture before (a) and after (b) bilatera filtering.
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Figure 7: [above] (@) A color image, and its bilaterally smoothed
versionsafter one (b) and five (c) iterations.

Figure 6: [left] (a) A detail from a picture with a red jacket against a
blue sky. Thethin, pink linein (&) is spread and blurred by ordinary low-
pass filtering (b). Separate bilateral filtering (c) of the red, green, blue
components sharpens the pink band, but does not shrink it. Combined
bilateral filtering (d) in CIE-Lab color space shrinks the pink band, and
introducesno spurious colors.



