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Abstract. Autonomous navigation in cross-country environments presents many new challenges with respect to
more traditional, urban environments. The lack of highly structured components in the scene complicates the design
of even basic functionalities such as obstacle detection. In addition to the geometric description of the scene, terrain
typing is also an important component of the perceptual system. Recognizing the different classes of terrain and
obstacles enables the path planner to choose the most efficient route toward the desired goal.

This paper presents new sensor processing algorithms that are suitable for cross-country autonomous navigation.
We consider two sensor systems that complement each other in an ideal sensor suite: a color stereo camera, and a
single axis ladar. We propose an obstacle detection technique, based on stereo range measurements, that does not
rely on typical structural assumption on the scene (such as the presence of a visible ground plane); a color-based
classification system to label the detected obstacles according to a set of terrain classes; and an algorithm for the
analysis of ladar data that allows one to discriminate between grass and obstacles (such as tree trunks or rocks),
even when such obstacles are partially hidden in the grass. These algorithms have been developed and implemented
by the Jet Propulsion Laboratory (JPL) as part of its involvement in a number of projects sponsored by the US
Department of Defense, and have enabled safe autonomous navigation in high-vegetated, off-road terrain.
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1. Introduction Autonomous off-road robots will be employed not only

in military operations, but also in civilian applications

Robots that can drive autonomously in off-road en-
vironments have received a good deal of attention
in recent years. The US Department of Defense
through its various agencies has been the ma-
jor sponsor of research in this field. Notable ex-
amples include the DEMO I, II and III projects
(Shoemaker and Bornstein, 1998) and the DARPA
Grand Challenge (http://www.grandchallenge.org). In-
deed, in the 2001 Defense Authorization Act,
the U.S. Congress set a goal that by 2015 one
third of the operational ground vehicle be un-
manned (http://www.gao.gov/new.items/d01311.pdf).

such as wide-area environment monitoring, disaster re-
covering, search-and-rescue activities, as well as plan-
etary exploration.

Possibly the single biggest technological challenge
for these systems is the ability to sense the environ-
ment and to use such perceptual information for con-
trol. Indeed, even if a robot is equipped with a Global
Positioning System (GPS) and an Inertial Navigation
Unit (IMU), reliable environment sensing is neces-
sary for autonomous operation beyond the line of sight
from the operator. Lacking perception capabilities, the
robot would have to rely solely on self-localization (for
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example, using GPS) and on prior environment maps.
Unfortunately, the resolution of GPS is too low for
tasks such as obstacle avoidance. Furthermore, maps
normally have too low a resolution for small obsta-
cles to be included, lack accurate elevation informa-
tion, and become obsolete. Thus, environment sensing
is essential for the task of efficient navigation over long
distances.

It should be clear that driving in outdoor,
non-urban environments is more challenging than
driving indoors or in urban scenarios (as high-
lighted by the 2004 DARPA Grand Challenge
(http://www.grandchallenge.org), whereby all compet-
ing vehicles failed within the first 7 miles of the 142
miles route). In the latter case, the environment is highly
structured, which typically translates into simpler sens-
ing and action strategies. For example, in urban situ-
ations one may expect the ground surface in front of
the robot be planar, which helps detecting obstacles
(anything sticking out of the ground plane should be
avoided). In contrast, on a bumpy dirt road the robot
should constantly determine which bumps and holes
are small enough to be negotiated (possibly by slow-
ing down) and which ones should be avoided. Vege-
tated terrain introduces one more degree of freedom
to the problem: what is considered an “obstacle” from
a purely geometric point of view, may not represent a
danger for the vehicle if it is composed of compressible
vegetation (for example, a tuft of tall grass or a small
bush). Other challenging situations include the pres-
ence of negative obstacles (such as ditches), elements
such as water, mud or snow, and adverse atmospheric
conditions such as fog.

This paper addresses a set of perception tasks that
are at the core of any control system for efficient au-
tonomous navigation in cross-country environments.
More precisely, we introduce new algorithms for (1)
obstacle detection and (2) terrain cover classification.
The problem of obstacle detection and avoidance is
well studied in robotics, however, existing algorithms
apply mostly to urban or indoor environments and don’t
work well in off-road conditions. This is because typi-
cal assumptions about the scene, such as the existence
of flat ground surface, do not hold in this case. Our
new algorithm analyzes the slant of surface patches in
front of the vehicle, and identifies patches that are steep
enough to represent a hurdle for the vehicle. The anal-
ysis is carried out on the range data produced by a laser
rangefinder (ladar) or, as in the examples in this paper,
by a stereo system. Besides detecting visible obstacle

points, our algorithm clusters such points into distinct
surface segments, which helps building a symbolic rep-
resentation of the scene in terms of an obstacle map.

While geometric scene description and obstacle de-
tection are essential tasks, they are not sufficient to
ensure efficient navigation on cross-country terrain.
In these environments, there are several possible ter-
rain types (such as soil, grass, mud) that should be
negotiated by the vehicle in different ways. An ef-
fective description of the outside world should con-
sist of the combination of geometric and terrain type
information, coupled with adaptive control strategies
(Bellutta et al., 2000; Hebert et al., 2002). The DEMO
IIT project (Shoemaker and Bornstein, 1998) pioneered
this concept, resulting in possibly the most advanced
autonomous vehicle for cross-country navigation. We
present two approaches to terrain cover perception, one
based on stereo and color analysis (from color cam-
eras), and the other based on range data processing
(from a ladar). These two systems are somewhat com-
plementary in the cues they use to discriminate between
different terrain cover classes: surface reflectivity in the
first case, local range statistics in the second one. Color
classification allows one to recognize a certain num-
ber of distinctive classes such as grass and foliage, dry
vegetation and bark, soil and rocks. Since stereo data is
co-registered with color data, it is possible to label the
obstacle detected on the basis of range information with
the terrain type estimated by color analysis. The main
challenges of color-based classification are the inherent
ambiguity of the reflectivity spectrum for some classes
of interest (such as dry grass and soil), the effect of the
illumination spectrum on the perceived color (the so-
called color constancy problem), and chromatic shift
due to atmospheric effects. The analysis of local range
statistics from ladar data, which is at the core of our
second technique, can be used to successfully discrim-
inate grass or foliage from other smooth surfaces such
as rocks or tree trunks. This “range texture” approach
is very promising, allowing one to detect surfaces even
when they are partially hidden by grass.

The two systems for terrain typing (color-stereo and
ladar) discussed in this paper have complementary
functionalities in the context of off-road autonomous
navigation, and ideally should both be part of the sen-
sor suite of a robot for such application, as shown in
1. A color stereo camera is most effective for detect-
ing and characterizing isolated obstacles, as well as for
capturing elevation profiles of the scene. A single-axis
ladar placed in the lower portion of the front of the



vehicle could be used for safe navigation in tall grass,
where obstacles may be partially hidden by vegeta-
tion and therefore may not be detected by stereo anal-
ysis. Together, these two systems may enable a new
level of autonomy in a wide variety of environmental
conditions.

The algorithms presented in this paper have been de-
veloped and implemented by the Jet Propulsion Lab-
oratory (JPL) as part of its involvement in a num-
ber of projects (ARL Demo III, DARPA Mobile Au-
tonomous Robot Software (MARS), DARPA Tactical
Mobile Robotics (TMR), and DARPA Perceptor).

This article is organized as follows. Section 2
presents our geometry-based obstacle detection and
segmentation algorithm. Section 3 describes our two
strategies for terrain cover classification: color analysis
(Section 3.1) and range texture analysis (Section 3.2).
Section 4 has the conclusions.

2. Obstacle Detection

Path planning for autonomous vehicles requires that
the map of all potential obstacles be produced in real
time using available sensor data. The obstacle-free can-
didate paths leading to the desired position may then
be compared in terms of their hindrance (measured, for
example, by the amount of steering involved (Lacaze
et al., 1998; Badal et al., 1994).

For navigation indoors or in structured environments
(such as roads), obstacles are simply defined as sur-
face elements that are higher then the ground plane
by some amount. Thus, assuming that elevation in-
formation is available (by means of a stereo cam-
era or a ladar), obstacle detection (OD) algorithms

Stereo camera

(Long—range 3D obstacle
detection and terrain color

classification)

Figure 1. Concept figure for our considered sensor suite.

Single-axis ladar
(Close—range visible/hidden
obstacle detection)
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normally rely on the “flat world” assumption (Zhang
et al., 1994; Williamson and Thorpe, 1998; Baten et
al., 1998; Broggi et al., 2000; Badal et al., 1994; Singh
and Keller, 1991)). While this assumption works well
for urban/indoor situations, it does not apply to off-
road, cross-country environments, where the geome-
try of the terrain can hardly be modeled as a planar
surface (Batavia and Singh, 2002; Hong et al., 2000),
see also Fig. 7). If the geometry of the terrain in front
of the vehicle is available (from stereo or ladar), it is
still possible to assess whether a candidate path can
be traversed without damage to the robot. In princi-
ple, one could determine the traversability of a given
path by simulating the placement of a 3-D vehicle
model over the computed elevation map, and veri-
fying that all wheels are touching the ground while
leaving the bottom of the vehicle clear (Lacaze et al.,
2002). This procedure, however, besides being compu-
tationally heavy, requires a high-resolution elevation
map.

Indeed, solutions for obstacle detection that use el-
evation maps (Lacaze et al., 2002) or voxel-based
representations (Hebert et al., 2002) of the world, re-
quire a change in the input data structure, which intro-
duce additional data transformation steps prior to vi-
sual obstacle detection. This could produce sampling
artifacts at object boundaries, and requires substan-
tial computational power and storage space. In con-
trast to these approaches, our OD algorithm works di-
rectly with measured 3-D point clouds. Obstacles are
detected by measuring slope and height of visible sur-
face patches, an operation that can be carried out di-
rectly in the range image domain. An earlier version of
our algorithm (Matthies and Grandjean, 1994; Matthies
etal., 1996, 1998; Bellutta et al., 2000) was based on the

-
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Figure 2. The viewing geometry for the column-based obstacle
detector. g is the slope angle. The origin of the axes corresponds
with the cameras focal point.

analysis of 1-D profiles corresponding to range values
in each pixel column in the image plane.! These mea-
surements sample the trace left by the visible surface
on the slicing planes IT defined by each pixel column
and the focal point of the camera (see Fig. 2). Assume
that a world reference frame has been defined, with x
and y axes parallel to the image plane, origin coinci-
dent with the focal point, and y axis pointing vertically.
Assume further that the y axis is parallel to the image
columns (this can be obtained by rectifying the image
after camera calibration). One may then use the slope
of the 1-D range profile with respect to the horizontal
plane to reason about obstacles. For example, Fig. 2
shows an instance of a 1-D range profile, where slant
(0) and height (H) are shown for two different surface
patches. Obstacles correspond to ramps with a slope
above a certain threshold and spanning a minimum
height. The rationale behind this approach is simple:
if a surface patch has limited slope, we may assume
that it belongs to the ground surface (for example, as
part of a path leading to a plateau), and therefore it is
traversable. If a patch is steep but of small size, it cor-
responds to an obstacle short enough to be negotiable
by the vehicle. For example, the lower patch in 2 may
be considered traversable, while the higher patch may
be considered an obstacle. This approach leads to fast
implementations, because image columns are analyzed
independently. Unfortunately, the slope 6;_p of the 1-
D range profile is, in general, smaller than the true slope
6 of the visible surface, defined by the angle between
the surface normal and the vertical axis. Indeed, it is
easy to show that the two are related as

1

V1 +tan20 cos? g

61_p = arccos

ey

where ¢ is the angle between the surface normal
and the slicing plane IT. This means that, depend-
ing on the relative viewing geometry, a sloped sur-
face may not be detected if the surface normal
points away from the camera. This characteristic is
common to all algorithms that work in a column-
by-column fashion using stereo data (Matthies and
Grandjean, 1994) or in a scan-by-scan fashion us-
ing ladar data (Hong et al., 2000; Batavia and Singh,
2002).

The algorithm described in this paper overcomes this
deficiency and computes actual 3-D slopes, while re-
taining most of the simplicity and computational effi-
ciency of the early approach. We present our detection
technique in Section 2.2, after providing in Section 2.1
a simple but rigorous definition of obstacle points that
make sense for off-road environments, formalizing and
extending the intuitive notion in Matthies et al. (1996).
Once the obstacle points have been identified in the im-
age, they can be clustered together (or segmented) into
isolated obstacles. We show in Section 2.3 that obstacle
segmentation (OS) corresponds to finding connected
components in a suitable graph built by the OD proce-
dure. Our OS algorithm uses full 3-D information, and
thus produces more meaningful results than the simple
image-based segmentation procedure of Matthies et al.
(1996).

It is instructive to compare our approach with other
stereo techniques that detect obstacles by finding sur-
face elements that are above a reference plane (horopter
(Baten et al., 1998)). Whereas horopter-based obsta-
cle detection is very fast (as it does not require any
post-processing of the stereo data), the definition of a
“ground plane” is problematic for cross-country envi-
ronments, as discussed earlier. In addition, the orienta-
tion of the horopter with respect to the camera’s refer-
ence system should be continuously adapted to the cur-
rent vehicle’s attitude. In contrast, our algorithm looks
only at local surface slopes, and is more resilient to
the vehicle’s tilt and roll, as discussed in Section 2.2.1.

Figure 3. An example of 1-D range profile.



Also note that our algorithm detects obstacles based
on a single frame of range data, and therefore does not
require integration over multiple frames (with possible
additional errors due to image mis-registration and/or
inaccurate localization).

2.1. Obstacle Points: Definition

As mentioned in the previous section, a surface ramp
is considered part of an obstacle if its slope is larger
than a certain value 6 and if it spans a vertical interval
larger than some threshold H. Unfortunately, surfaces
in cross-country environments can seldom be modeled
as ramps (i.e., linear patches). This section extends our
obstacle definition to arbitrarily shaped surfaces. We
assume here that a world reference frame has been de-
fined as in the previous section, and that the range mea-
surement system computes coordinates (p; x, Pi.y, Pi.z)
of visible surface points p; with respect to this refer-
ence frame. We will define obstacles in terms of two
distinct points in space as follows:

Definition 1. Two surface points p; and p, are called
compatible with each other if they satisfy the following
two conditions:

1. Huin < |P2,y — P1,yl < Hmax (i.e., their difference
in height is larger than H,,;, but smaller than H,,x);
2. % > sin Opa (i.e., the line joining them
forms an angle with the horizontal plane larger than

Qmax);
where Hpin, Hmax and On,x are constant parameters.

Definition 2.  'Two points p; and p, belong to the same
obstacle if:

1. They are compatible with each other, or:
2. There exists a chain of compatible point pairs link-
ing p; and p,.

Note that these definitions identify obstacles only in-
directly: we will say that p is an “obstacle point” if
there exists at least one other visible surface point
that is compatible with p. One potential drawback of
this definition is that isolated points protruding from
the ground may not be classified as obstacles (if they
admit no compatible points). However, such isolated
points are usually measurement errors, which would
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Figure4. The two truncated cones U), and L , for the determination
of compatible points.

probably be discarded anyway. The condition involv-
ing Hp,.x enforces separation of two obstacles in those
cases where pairs of points exist, one for each obstacle,
satisfying the slope condition but located far apart (see
Sections 2.2.1 and 2.3). The compatibility relationship
can also be expressed as follows (see Fig. 4):

Equivalent Definition 1. The points compatible with
a surface point p are those belonging to the two trun-
cated cones U, and L, with vertex in p, axis oriented
vertically, and limited by the two planes of equation
y = Hpin and y = Hy,x respectively.

2.2.  Obstacle Detection (OD) Algorithms

To find all obstacle points in a range image, we need
to look for pairs of compatible points. A naive strat-
egy would examine all point pairs, resulting in N> — N
tests, where N is the number of points in the image
for which range was computed. In fact, it is not neces-
sary to test all point pairs, but only a much smaller
subset of them. For if p is the projection of a 3-D
point p onto the image plane, then the points com-
patible with p must project® onto two truncated trian-
gles (Up and L) with vertex in p (assuming zero tilt
and roll; for non-zero tilt/roll the triangle projections
change, as discussed in Section 2.2.1). These are ap-
proximately isosceles triangles (see Fig. 5), with verti-
cal symmetry axis, height equal to Hyax f/ p, (Where f
is the camera’s focal length), and base approximately

2Hmaxf — 1
equal to e o cosD where v = arctan p,/p, is the



86 Manduchi et al.

Image Plane

Figure 5. The projection of the truncated cones onto the image
plane (only upper cone shown)

azimuth angle of p measured on the x-z plane from
the z axis (which can be derived directly from p and
the intrinsic camera parameters). This observation sug-
gests the following algorithm, with complexity linear
in N:

OD Algorithm 1.

e Initialization: Classify all pixels as non-obstacle.
e For each pixel p;:

o Scan the points in the two truncated triangles Uy,
and L, until a pixel p; compatible with p; is
found, in which case classify p; as an obstacle
point and move on to the next pixel.

e If no pixel in Uy, ULjp compatible with p; is
found, p; is not an obstacle point.

One drawback of this algorithm is that it may test the
same point pair (p;, p;) twice. The overall number of
tests can be estimated as follows. Let o be the expected
proportion of obstacle points in the image, and let K
be the average number of points in each projected trun-
cated triangle on the image plane. The average number
of tests for each non-obstacle point is thus 2K . If one
assumes that there is a proportion « = L/K of obsta-
cle points within each double truncated triangle, then
the probability of finding the first obstacle point after
exactly n tests is

P, = P(obstacle point found at n - th test)

2L
_{(1—05)"—l l<n<2K-L)+1

2K —n—1’
0, otherwise

2

No simple expression can be found for the expectation
of n in (2). Instead, we may approximate it with a ge-
ometrically distributed variable:* P, = (1 —a)" 'a,
which has expectation equal to 1/c.

Thus, the expected overall number of tests is approx-
imately N(1 + 2K (1 — o)).

Let us now introduce a second strategy, which does
not require duplicate tests:

OD Algorithm 2.

o Initialization: Classify all pixels as non-obstacle.

e Scan the pixels in the image from bottom to top and
from left to right. For each pixel p;:

e Examine all points in Up;, and determine the set S;
of points compatible with p;.

e If S; is not empty, classify all points of S; as well as
Pi as obstacle points.

It is easy to see that each pixel p;is tested only once
against all other pixels in Up, U Lj,. With reference
to the quantities introduced earlier, now NK tests must
be performed over the image. Thus, if the expected
ratio of obstacle points agn the image is less than
0.5(1 + 1/K), the second algorithm results in higher
computational efficiency.

2.2.1. Parameter Selection. Our OD algorithms rely
on a set of parameters (the slant angle threshold 6 and
the minimum/maximum height thresholds H;, and
Hinax). This section provides some general guidelines
for selecting suitable parameter values.

The slant threshold should correspond to the maxi-
mum slant that the vehicle can safely negotiate. All the
experiments of this paper use & = 40°. The minimum
height threshold Hyy,;, should be less than or equal to the
vertical clearance under the vehicle (Hyj, = 0.2 m in
our experiments). Note that, whereas Hy,, determines
the minimum size of a detected obstacle, two points in
the same obstacle may be separated by a vertical dis-
tance smaller than Hy,,, as long as they are linked by
a chain of compatible point pairs.

Differently from Hy,, the maximum height thresh-
old Hyy is determined by the quality (density) of the
stereo range estimates. The choice of H,x should be
based on the following two observations. A small value
for Hpax increases the risk of over-segmentation (a sin-
gle obstacle gets identified as two distinct obstacles ver-
tically stacked) if there is a “hole” in the measured point
cloud. On good quality stereo data the point cloud will



be dense and therefore in such cases Hp,.x can be se-
lected to be equal to Hp,. This will signficantly speed
up the run-time of the obstacle detection algorithm. On
data sets with medium-poor quality stereo, on the other
hand, a large value for Hy,,y is necessary to handle miss-
ing segments in the point cloud. However, this increases
the computational load of the algorithm, since H,x de-
termines the size of the search window. Furthermore,
according to Definition 1, Hy,,x determines the maxi-
mum horizontal distance Dy« for two points to be com-
patible (it is easy to see that Dyyx = 2Hpax €Ot Oppax)-
By limiting Dy« to a value smaller than or equal to the
vehicle’s width, one ensures that the algorithm does not
mistakenly merge two obstacles when there is enough
horizontal clearance to drive between them. In our tests,
we used Hy.x = 1 m.

It should also be noted that our “canonical” hypoth-
esis that the y axis of the chosen reference frame al-
ways points vertically is not very realistic. Normally,
the camera reference frame is attached to the vehicle,
hence when the vehicle itself is tilted our original hy-
pothesis fails. If the actual vertical direction can be
recovered (based on IMU information), it is in princi-
ple possible to adaptively re-adjust the camera refer-
ence frame to account for the new attitude. This simply
amounts to pre-multiplying the values of coordinates of
the measured 3-D points by a suitable rotation matrix.
Note that the search windows of OD Algorithms 1 and
2 (the truncated projected triangles discussed earlier)
will also change when the vehicle tilts. If the vehicle
tilts by angle 6, the height of each projected triangle

will change by a factor of approximately m ,
while the base of the triangle projection will be approx-
imately unchanged. For a pure rotation ¢, the projected
triangles will rotate by the same amount ¢ on the im-
age plane. For combined rotation and tilt, the projected
triangles will rotate and their lengths and heights will
change. We compensate for small vehicle tilt and roll by
using a larger projected triangle search window than the
theoretically computed parameters. This obviates the
need to estimate vehicle state information from IMU

or visual odometry.

2.3.  Obstacle Segmentation

Besides detecting obstacle points, it is useful to identify
all distinct obstacles in the image. This facilitates fur-
ther reasoning about obstacle size and type, and inhibits
undesired “gap filling” if the measured 3-D points are
interpolated.
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In our earlier work (Matthies et al., 1996; Bellutta
et al., 2000), obstacle segmentation corresponded to
finding the connected components of the obstacle pixel
map on the image plane. This approach is computation-
ally simple, but may incorrectly link two distinct obsta-
cles when their projections on the image plane overlap,
even though they are well separated in space (under-
segmentation). Additionally, this prior solution may as-
sign more than one label to a single obstacle when it
has gaps or missing range points (over-segmentation).
This can be avoided by using the equivalence relation-
ship stated in Definitions 1 and 2, which makes full use
of 3D spatial information.

It is useful to associate each measured point with
one node of an undirected graph (point graph), where
two nodes are linked by an edge if the corresponding
points are compatible. Thus, according to Definition 2,
two points p; and p, belong to the same obstacle if and
only if there exists a path in the graph from p; to p.
We can extend this notion to define a single obstacle as
a maximal connected subgraph (i.e., a connected com-
ponent) of the point graph. The connected components
of the point graph may be computed online at the same
time of graph creation (i.e., within OD Algorithms 1 or
2) using the Union—Find algorithm (Mehlhorn, 1984).

Note that our obstacle segmentation algorithm does
not require pixels colored with the same label to be
spatially connected (in 2D image space) to each other.
Indeed, the algorithm is able to correctly assign only
one label to a single obstacle even when there are gaps
in the range measurement. This is an important advan-
tage in scenes with sparse stereo range data.

2.3.1. Shape-Based Validation. Our obstacle detec-
tion algorithm identifies a number of distinct obstacles
as distinct sets of image pixels. It is often the case that,
due to measurement noise, a number of such clusters
need to be rejected as spurious. Previous work (Bellutta
et al., 2000) used 2-D area information (such as region
areas) of pixel clusters in the image plane as a crite-
rion for rejection, the rationale being that very small
connected components are likely to be “outliers” and
therefore should be discarded. However, it should be
clear that, due to perspective, 2-D region area is not a
very significant measure. Given that the spatial coordi-
nates of the obstacle points are known, it makes more
sense to define meaningful 3-D attributes of shape and
volume. Our current approach builds simple attributes
from the raw point-cloud data, enabling real-time anal-
ysis. Some of the features we have experimented with



88 Manduchi et al.

are the volume of the 3-D bounding box around an ob-
stacle, the average and maximum slope, as well as the
obstacle height. A simple rule-based system (assign-
ing thresholds to all such attributes) rejects obstacles
with small bounding volume, small average/maximum
slopes, or small average/maximum relative height. For
example, all detected obstacles with an average slope
lesser than 2.5, or maximum slope lesser than 5.0 are
considered false positive.

2.3.2. Experimental Results. Our obstacle detection
algorithm was implemented and prototyped in C/C++-.
Initial implementation of the code ran at 1.5 Hz to
0.5 Hz on 320 x 240 images, on a 900 Mhz Pentium III
PC. The variable speed of the algorithm resulted from
differences in density (quality) of stereo-range data in
the image, the window size used in the algorithm for
nearby and distant pixels, and camera orientation and
placement on the vehicle (which determines the num-
ber of visible ground points).

Some detection and segmentation results for typi-
cal cross-country situations are shown in Figs. 6 and
7 (the images shown in the figures correspond to the

left camera of the stereo pair). Stereo can only com-
pute disparities where the left and right images in the
pair overlap; hence, the leftmost columns of the image
contain no range measurements (see Fig. 6(b) and (¢)).
Note that our technique does not compute the ground
plane, and thus can be used successfully with cases
such as the last image of Fig. 7, where no ground plane
can be defined.

The images in Figs. 6 and 7(a) and (c) contain slanted
surfaces pointing away from the camera, which rep-
resents a challenge for the columnwise algorithm of
Matthies et al. (1996) and Bellutta et al. (2000) but not
for our 3-D based algorithm. The image in Fig. 7(b)
contains a “negative obstacle” (a ditch across the road).
A method to detect negative obstacles based on range
information is discussed in Bellutta et al. (2000). Our
algorithm correctly detects the visible face of the ditch
as an obstacle even though it is below the ground level.

3. Terrain Classification

As mentioned in the Introduction, terrain classifica-
tion is a required capability for efficient navigation in

(b) (©)

Figure 6. The measured range map (b) and elevation map py, (c) for the image in (a). The elevation profile for the image column highlighted
in (b) and (c) is shown in (d). More precisely, (d) shows the elevation as a function of the distance from the camera for one slicing plane (see
Fig. 2). The computed obstacle points and ob-stacle segmentation are shown in (e) and (f) respectively.
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Figure 7. Examples of obstacle detection and segmentation. Different obstacles are shown with different gray values in the right column.

vegetated environments (Bellutta et al., 2000; Hebert
etal.,2002). Information about the terrain composition,
in conjunction with the geometric description of visi-
ble “obstacles”, can be used for selecting the optimal
path as well as the optimal velocity for traversal. More
precisely, given the elevation profile along a candidate
path, and some information about the compressibility
of terrain cover, one may predict the dynamic behavior
of the vehicle as it drives through that path at a given
speed. Vegetation such as grass or bushes is compress-
ible, therefore the visible surface does not correspond
to the “load bearing” surface (where the vehicle’s tires
actually touch the ground). Simple models for the ve-
hicle’s dynamics in vegetated terrain of known com-
pressibility characteristics were presented in Talukder
et al. (2002), based on the earlier model for bare (un-

compressible) soil of Rankin et al. (1998). In this pa-
per we concentrate on the perception problem, using
sensors normally found on autonomous robots: color
cameras and laser rangefinders (ladars). Both sensors
have advantages and disadvantages. Color cameras are
passive, which has tactical value. They are cheap, small
and light, produce full frame data at an acceptable rate,
and can be used to compute range by stereopsis. Un-
fortunately, regular cameras cannot be used at night,
and the quality of stereo data is not always satisfactory,
especially in the case of grass patches and dense veg-
etation. Ladars, on the other hand, can be used by day
and night, and usually produce very accurate and dense
range data. The interpretation of range profiles for ter-
rain typing is perhaps less intuitive than color analysis,
but is still feasible, as we show in Section 3.2 (see
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also Macedo et al., 2000; Hong et al., 2000). However,
ladars (especially imaging ladars) are bulkier, heavier
and more expensive than cameras.

We discuss techniques for terrain classification using
color images and ladar data in the next two sections.
Note that the chosen class taxonomy depends mainly
on two factors: which classes are useful for autonomous
navigation, and which classes can actually be detected
with the available sensor information. The right bal-
ance must be struck between the desire for high de-
scriptiveness (which would lead to dense taxonomies)
and the need for robust classification (which favors
fewer classes). In the case of color-based classification
(Section 3.1), we normally consider the following set
of classes: soil/rock, green (photosynthetic) vegetation,
dry (non-photosynthetic) vegetation (which includes
tree bark), as well as a “none of the above” class. For
the case of range analysis from a ladar (Section 3.2),
we consider discrimination of “obstacles” character-
ized by relatively smooth surfaces (such as rocks or
tree trunks) from grass or foliage.

3.1. Color-Based Classification

The apparent color of a surface is a function of the
irradiance spectrum on the camera, which, in clear at-
mospheric conditions, is a combination of the radiance
spectrum of the illuminant(s), the reflectance spectrum
of the surface, and the relative geometry of the illu-
minant and of the observer with respect to the surface
(Horn, 1986; Elachi, 1987). Of all these components,
it is the surface reflectance that carries information
about the material type. Examples of reflectivity spec-
tra within the visible and Near Infrared (NIR) band
for three materials of interest (green or photosynthetic
vegetation, dry or non-photosynthetic vegetation, and
soil) are shown* in Fig. 8. Visible wavelengths cover
the interval from approximately 400 nm to 700 nm.
NIR wavelengths up to about 1 pm are not visible to
human eye but are within the range of CCD sensors
(although almost all cameras have an optical filter to
block such wavelengths out). It can be noted from Fig. 8
that green vegetation is easily separable from the other
two classes, both in the visible and in the NIR band. In
particular, its reflectance has a characteristic feature at
approximately 750 nm (beyond the visible spectrum),
sometimes called the “red edge” (Elachi, 1987). Soil re-
flectance curves generally exhibit a gentle increase with
increasing wavelength. In particular, soil reflectance
depends upon the chemical and physical properties of
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Figure 8. Typical reflectance curves for photosynthetic vegetation
(solid line), soil (dotted line), and non-photosynthetic vegetation
(dashed line) (from [17]).

the components, moisture content (wetter soils appear
darker) and texture, and surface roughness. From Fig. 8,
one also notes that the spectrum of dry vegetation ap-
pears very similar to that of soil. This makes color-
based discrimination between the two classes rather
challenging in some cases, and represents a limitation
of this method (Roberts et al., 1993).

3.1.1. Normalization and Calibration. Ideally, one
would like to derive from the measured [r, g, b] color,
the “normalized” surface color (that is, the color of
the surface under canonical illumination and observa-
tion conditions, which is a function only of the sur-
face reflectance). Brightness normalization (Healey,
1992), which transforms the vector [r, g,b] into
[r, gl/(r + g + b), is a simple and popular approach.
The new vector is invariant to scalar transformations
of the type «[r, g, b], which can model the effect of
a number of variables: the intensity of the illuminant,
the angle between the surface normal and the illumi-
nant direction (under the Lambertian hypothesis (Horn,
1986), and the iris aperture of the camera. However,
the brightness component conveys information about
the surface reflectance that is useful for discrimina-
tion, and in practical cases this procedure does more
harm than good, at least when enough data is available
to train the system. A more useful type of normaliza-
tion is white point calibration, a standard procedure
(usually already implemented in the camera hardware)
that yields a diagonal transformation of the color vec-
tors (i.e. of the type [ar, B8g, yr], where a, B, y are
positive coefficients). White point calibration attempts
to normalize the perceived colors with respect to the



spectral composition of the illuminant. The coefficients
are computed by imaging a white surface, and forcing
the transformed color vector into a canonical triplet.
The procedure can be repeated periodically, or every
time the illuminant changes. Apart from the burden of
presenting a white surface patch to the camera, white
point calibration has two main drawbacks. First, the
diagonal transformation is only an approximation of
the actual change of perceived color of surfaces under
a changing illuminant (Maloney and Wandell, 1986).
Second, white point calibration assumes that only one
illuminant type is present in the scene. This is not true
in normal outdoor environments, which usually con-
tain at least two illuminants (direct sunlight and dif-
fuse light or shade). Despite these shortcomings, white
point calibration is a viable pre-processing stage that
helps improve classification.

Color constancy techniques that use more complex
models of color formation for illuminant compensa-
tion have been proposed (for a review, see Buluswar
and Draper, 2002). However, these methods often rely
on unrealistic assumptions about the scene or require
laborious procedures to estimate the reflectance and
illumination parameters. In contrast to model-based
techniques, we adopt an exemplar-based approach, and
learn color distributions of terrain classes by training
over a large number of images taken under widely dif-
ferent illumination conditions. In typical field experi-
ments, we collected training data containing surfaces
of interest under direct sunlight and in the shade, and at
different times of the day. Extensive testing has shown
that this method works very well for outdoor images,
provided that (1) a representative training data set can
be collected, covering all expected environmental con-
ditions, and (2) the classifier is able to adequately repre-
sent the variability of perceived color within each single
class. In the next section, we discuss a simple Maxi-
mum Likelihood classifier that has given good results
for this task, based on Mixture of Gaussians modeling.

3.1.2. Classification Using Mixtures of Gaussians.
We use a maximum likelihood (ML) strategy for pixel-
wise classification. For a given class k, the perceived
color ¢ is modeled as a random vector with density
(class-conditional likelihood) f(c|k). Each pixel is
thus assigned to the class that maximizes f(c | k). Note
that if prior probabilities P(k)for the classes are set,
then ML classification is easily converted into MAP
classification, by choosing the class k that maximizes
P(k)f(c|k). Our classifier models the conditional
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class likelihood for a given class k with a Mixture of
Gaussians:

M(k)

flelky =" o ;G (e phuj» Zx.)) 3)

j=1

where G(c; ux, j, L, ;) is a Gaussian density with mean
ik, ; and covariance X, j, and o ; are the mixing coeffi-
cients (with o ; > Oand Zj ay,j = 1) (Bishop, 1995).
The quantity M (k) represents the number of Gaussian
clusters (or modes) within the given class k. The model
parameters {y, j, [k, j, 2k, j} can be learned from la-
beled training images® using the Expectation Maxi-
mization (EM) algorithm (Bishop, 1995). The starting
point for the EM algorithm is obtained by an initial
k-means clustering (Bishop, 1995), itself initialized by
random seeds. The ability of the model to represent
multi-modal densities is indeed very important for out-
door images. For example, for the same terrain type, the
color distributions under direct light and under diffuse
light (shade) usually correspond to different Gaussian
modes. There exist a number of standard techniques in
the literature to select the “correct” number of modes
M (k) for each class (McLachlan and Peel, 2000, chap-
ter 6), none of which, in the authors’ experience, is
really satisfactory. Choosing too few modes leads to
inaccurate representation, while too many modes may
overfit the data. In practice, anumber of modes between
3 and 5 proved a good compromise in most cases.

In addition to the chosen set of terrain classes, it
is important to also provide a “none of the above”
(or “outlier”) class, to which all of the pixels that do
not correspond to any of the selected classes should
be assigned. Intuitively, these are colors that are not
well explained by the chosen model. As explained in
Ripley (1996), we select outliers by analyzing the total
likelihood of the color:

K
f©=>_PH)f(clk @)
k=1

where Kis the number of classes, and P (k) is the prior
probability of class k (for example, in the case of uni-
form priors, P(k) = 1/K). Thus, a color c is assigned
to the outlier class if f(c) < fy, where fy is a threshold
constant. The choice of f; may be problematic: the total
likelihood is a probability density function, and there
is no intuitive criterion to guide the threshold selection.
Following (Ripley, 1996), we link the threshold f; to
the probability Py that a color pixel will be assigned to
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Figure 9. The pdf of a mixture of 3 Gaussians, and the outlier
threshold fp. The area of the shaded region is equal to Py in (5).

the outlier class based on our color model (see Fig. 9):
n={  fed 5)
flo<fo

Py (amonotone function of ¢) is a more intuitive param-
eter to use than fy, since it represents an actual proba-
bility value. Given Py, fj can be found by solving (5).
For any candidate value of fj, the integral on the right
hand side of (5) is computed by standard Monte Carlo
sampling. Then, standard nonlinear 1-D root finding
techniques can be used to solve the integral Eq. (5).

Figure 10 shows the classification result on an image
containing objects (the red poles) that never appeared in
the training data.® The classifier correctly assigns those
surfaces to the outlier class (color-coded in black in the
classification map). The threshold f, was determined
by solving Eq. (5) for Py = 0.99. Note that also the
pixels corresponding to the sky (which was not used
for training) are classified as outliers.

Figure 11 shows two examples of color-based classi-
fication in outdoor scenes. Only those pixels for which
the range (as measured by stereo) was less than 50 me-
ters were classified. It is not particularly useful to try
to analyze terrain at longer distances, and chromatic
shift may occur due to atmospheric effects (Nayar and
Narasimhan, 2000). These images did not belong to
the training data set. It should be noted that in the first
image, the system correctly classified the scene under
direct sunlight as well as in the shade. The second image
in Fig. 11 highlights the inherent color ambiguity be-
tween the “soil” and the “dry grass” classes, discussed
in Section 3.1. Indeed, most of the surface of the mound
of ground to the right of the image was incorrectly clas-
sified as dry grass. Unfortunately, this ambiguity cannot
be removed based on color alone (Roberts et al., 1993).
Some other features (such as visual texture (Castano et
al., 2001; Shi and Manduchi, 2003) or thermal multi-
spectral analysis (Abedin et al., 2003)) could be used
jointly with color to enhance the classifier performance
in these cases.

3.1.3. Open Problems. In our experience, color is a
very effective feature for terrain typing. Still, there are a
number of open problems related to color that require
further investigation. Two such problems, which are
the object of current research in our laboratories, are
briefly summarized in the following:

1. Illuminant compensation. As mentioned earlier, tra-
ditional color constancy algorithms are not very
effective for automatic illuminant compensation
in outdoor scenes. Our exemplar-based approach
trains the system with a plethora of images taken
of the scene under as many illumination conditions

Figure 10. Color-based classification. The color code for the classification map in the right image is the following: Light gray: soil/rock;

medium gray: dry vegetation; dark gray: green vegetation; black: outlier.
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Figure 11. Color classification examples. The classification maps in the right image use the same grayscale code as in Fig. 10. Only points for

which the range was less than 50 meters were classified.

as possible. While this approach has proven very
reliable in our experiments, it requires a substantial
training data collection and labeling effort that can
make it unpractical. In Manduchi (2004) we present
preliminary results using a technique that allows
one to train the system with only one (or a few)
images containing the different types of terrain of
interest under just one “canonical” illuminant. The
knowledge of the color statistics of each class un-
der the canonical illuminant enables the system to
estimate the illuminant (or illuminants, such as di-
rect sunlight and shade) contained in a new scene at
the same time as classification. A Maximum Like-
lihood strategy is used to assign illuminant labels
to points in the scene, as well as to determine the
illuminants’ parameters. Prior knowledge of the il-
luminant parameters’ distribution can be also used
in a Bayesian framework, in order to improve the
robustness of the system. The interested reader is
encouraged to consult (Manduchi, 2004) for more
details.

2. Color shift in atmospheric conditions. It is well
known that, under some specific adverse atmo-
spheric conditions (such as fog or haze), the per-
ceived color of a surface changes according to the
distance of the surface to the observer. The physics

of this phenomenon is well understood (McCartney,
1976; Nayar and Narasimhan, 2000). Indeed, color
shift can be a significant nuisance for outdoor color
classification; our current research is investigating
strategies for recovering the original surface color
based on the estimated atmospheric parameters and
the distance to the visible surfaces (which can be
computed, for example, by stereopsis).

3.2.  Ladar-Based Classification

The accurate range profile produced by a ladar can
be used to discriminate between certain classes of ter-
rain. In this section we use ladar data to discrimi-
nate between grass and other types of surfaces that are
likely to belong to obstacles. Although OD is usually
studied as a geometric identification problem (as in
Section 2), we show here that in environments charac-
terized by tall and dense vegetation OD also requires
terrain cover classification. Indeed, geometry-based
obstacle detection cannot be used directly in these en-
vironments, because grass tufts would be perceived as
obstacles. Our goal is thus to discriminate grass patches
from non-traversable obstacles such as rocks and tree
trunks.
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Figure 12. (a) The “Urbie” robot facing two rocks at 45° and 315°. (b) The measured range points (the axis units are in millimeters). The
fan-shaped clusters of lines correspond to directions with no range estimation due to self-occluding structures on the robot.

Range data is well-suited to this type of recognition.
Intuitively, one would expect that range data should be
spatially scattered in areas that correspond to grass and
bushes, and should exhibit a more regular and smooth
pattern on bare soil or rock (Macedo et al., 2000).
Thus, local analysis of range profiles should provide
enough information to discriminate between these two
cases. An example of a range profile taken by a ladar
system rotating around the vertical axis is shown in
Fig. 12(b). Some ladars are capable of returning both
range estimates and the intensity of the returns associ-
ated with each range estimate; we do not use intensity
information as our interest is to develop a range-only
approach that could be extended to the analysis of cloud
of points not necessarily obtained via ladar. Our ladar,
described in detail in the next section, was mounted on
the Urbie robot, a small Packbot designed for urban
environments, shown in Fig. 12(a). The dots shown in
Fig. 12(b) correspond to the laser hits for the scene
shown in (a). The fan-shaped clusters of lines indicate
directions that were not analyzed in the scan because
there was a permanent occlusion in the robot that pre-
vented the laser from being fired in that direction (such
as a camera mounted to the left of the laser occluding
the ladar’s view to the left of the robot).

In the following sections, we present an algorithm
that can reliably discriminate between grass and ob-

stacle surfaces based in the analysis of the range from
a single-axis ladar (Castano and Matthies, 2003). An
attractive feature of this algorithm is that it is able to de-
tect surfaces when they are partially hidden by the veg-
etation, such as in Fig. 12. We describe in Section 3.2.1
the characteristics of the ladar used in our system. Sta-
tistical features of range data in grass are discussed in
Section 3.2.2. The properties derived in Section 3.2.2
are instrumental in the analysis of our obstacle detec-
tion algorithm, described in detail in Section 3.2.3.

3.2.1. The Ladar System. We consider here a ladar
collecting range measurements as it rotates around a
vertical axis. In particular, the examples in this paper
are based on data from a customized Acuity Accu-
Range 4000 (Bergh et al., 2000; Matthies et al., 2000).
This ladar operates at a wavelength of 780 nm, in the
NIR domain, rotates at a rate of 5 Hz and can estimate
range up to distances of 15 m (50 ft). The ladar is ca-
pable of acquiring up to 1024 samples per revolution
but we set the sampling interval to 10 mradians (i.e.,
Aa = 0.57°) to relax a constraint on the minimum size
of the grass blades, as explained later.

The accuracy of each range estimate is affected by
parameters such as distance, environmental tempera-
ture and color and pose of the target (Adams, 2000).
The standard deviation o, of the estimation error is a



function of the measured range d, as well as of the angle
of incidence. For our experiments, we set the operative
range to [0.3 m, 2.0 m].

3.2.2. Statistics of Range in Grass. To better justify
our detection algorithm, we introduce some statistical
models for the measured range in situations of inter-
est. For simplicity’s sake, our analysis assumes that the
measurements are noiseless.

We begin with the simple case of a linear surface
patch, corresponding to an “obstacle” (Note thatin con-
text of this section, “obstacle” is any object that is not
grass.) Consider a small angular span « € [0, A], and
assume that the surface is at angle y with the laser beam
at o« = 0 (see Fig. 13), where the measured range is
d(0) = D. The measured range at angle « is thus

d(a) = Dsin(y)/ sin(a + y) (6)

For small angular spans, we can linearize Eq. (6) and
write

—D(—ak) (1)

dd
dla)=d0)+a—
do|,_

where K = coty. If the angle « is a random variable
uniformly distributed in [0, A], one easily sees that the
measured distance, being a linear function of a uniform
random variable, is itself uniformly distributed within
[D, D(1 — AK)].

Our goal here is to determine the distribution of laser
returns in a situation with uniform grass. To simplify
our treatment, we will make the following assump-
tions, which don’t significantly affect the validity of
our model:

Figure 13. Overhead view of a slanted linear patch, corresponding
to an obstacle.
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1. The laser beam is infinitesimal, with null diver-
gence;

2. No two laser beams hit the same grass blade;

3. The grass blades in ahomogeneous patch have iden-
tical circular sections of diameter /4, and their cen-
ters are distributed as a uniform Poisson field with
intensity A.

Let us briefly comment on such assumptions. As-
sumption 1 is not consistent with the fact that a laser
beam has non-null divergence, and that it has non-null
initial diameter. However, finite divergence has a small
effect on our analysis, as discussed in Macedo et al.
(2000), therefore we can safely neglect it. Assumption
2 is acceptable if the grass blades are thin enough, i.e.,
if the blade diameter /4 is smaller than d - tan(Aw) for
all distances d within the operative range. In our case,
for an operative range of [0.3 m, 2.0 m] and a sam-
pling interval of Ao = 10 mradians, the constraint is
satisfied as long as the blades’ diameter £ is less than
3 mm in the near field and less than 2 cm in the far
field. Assumption 3 is a working hypothesis that we
found empirically to be reasonably accurate in typical
outdoor situations. A similar hypothesis was used in
Leung and Malik (1997), Huang et al. (2000), albeit in
a different context.

Based on these assumptions, it can be shown (Leung
and Malik, 1997; Huang et al., 2000; Macedo et al.,
2000) that the measured noiseless range for the grass
case is distributed as an exponential random variable
with parameter A = Ak (as shown in Fig. 14(a), solid
line). Figure 15(b) shows the histogram of actual range
measurements over a number of revolutions of the ladar
in the case of tall homogeneous grass. The grass patch
was at a distance of approximately 1.5 meters from the
robot, as shown in Fig. 15(a). The best-fitting exponen-
tial (superimposed on the histogram in Fig. 15(b)) has
parameter A = 3.7/m. From visual inspection, it can
be noted that the exponential curve approximates the
histogram tail rather well.

Suppose now a linear surface patch, such as the one
depicted in Fig. 13, is partially hidden by grass. In this
case, the maximum possible range at a particular angle
« is equal to the distance to the surface d(«). However,
the laser beam may be intercepted by a blade of grass
before reaching the surface. The analytical expression
of the pdf of range within an angular sector A, assum-
ing that the surface is linear and partially occluded by
uniform grass, is derived in the Appendix. The shape
of this density is shown in Fig. 14(a) (dashed line). It is
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Figure 14. (a) The pdf of the range in the case of grass (solid line) and of a partially hidden obstacle (dashed line). (b) The pdf of the same
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Figure 15. Normalized histogram of range measured over 30 revolutions (b). The curve represents the best-fitting exponential density. The

robot was placed about 1.5 m from a patch of tall grass (a).

seen that for values smaller than the minimum distance
D to the surface, the range behaves as an exponential
variable (like in the uniform grass case); as expected,
its pdf vanishes for values beyond the maximum dis-
tance Dy to the surface within the sector A (in Fig. 13,
Diax = d(A)).

3.2.3. The Detection Algorithm. In the previous sec-
tion it was shown that the presence of a surface, albeit
partially hidden, may change the distribution of the
measured range in grass. Based on this observation, an
earlier detection algorithm (Macedo et al., 2000) used

higher order statistics of range, computed over small
angular sectors, as discriminative features. However,
this algorithm did not exploit the “spatial coherence”
property of typical smooth surfaces. In other words,
it did not use the observation that if a measurement
d(a) comes from an object surface, the subsequent
measurement d (o + Ac) is likely to produce a similar
range value. This is not true of measurements coming
from grass. This property is not self-evident from the
marginal range distributions discussed in Section 3.2.2,
because the order of measurements is lost when build-
ing such statistics. For example, in the case of a slanted



surface patch (large y ), range measurements have large
marginal variance, and their distribution may be con-
fused with that of a patch of grass if the sampling order
is neglected.

The spatial coherence hypothesis, however, is weak-
ened when the surface is partially hidden by vegeta-
tion, because laser beams have a certain probability
of being intercepted by grass blades before hitting the
surface. To minimize this effect, we can pre-process
the measured data with a non-linear filter that out-
puts the maximum value of range within a window
of contiguous samples. This filter exploits the fact
that, facing a (partially hidden) surface, no measure-
ment of points beyond such surface can be taken (see
Fig. 12). Thus, if a laser beam within a small win-
dow hits the surface of an obstacle, then the maxi-
mum range measured within this window of samples
is likely to correspond to an obstacle surface measure-
ment. In a sense, the maximum-value filter acts as a
“grass remover”. This concept can be better formalized
by looking at how the filter transforms the distribution
of the input data. Let {d|, d5, . . ., d, }be a window of n
equidistributed and mutually independent® range sam-
ples. Then, the cumulative distribution function (cdf)
ofd = max{d, ds, ..., d,} is equal to:

Fyd)=Pd <d)=Pd, <d.d, <d,...,d, <d)
= Fy(d)" (®)

where F;(d) is the marginal cdf of the range measure-
ments. By differentiation, we find the pdf of d to be

fi(d) = nFy(d)"~" fu(d) )

where f;(d) is the marginal pdf of the range measure-
ments. Figure 14(b) shows the probability densities of
filtered range measurements for the case of pure grass
(solid line) and of a partially hidden surface (dashed
line). It is seen that in the second case, the effect of the
maximum-value filter is to concentrate mass around the
values corresponding to the surface (thereby reducing
variance), while, in the first case (pure grass), variance
remains high.

Our surface detection algorithm works as follows.
First, the data is subdivided into windows of n non-
overlapping samples, and the maximum value d among
the samples in each window is extracted. If n is large
(in our case, greater than 3), the set of non-overlapping
windows can be replaced by a n-sample sliding win-
dow. Then, the resulting sequence {d} is analyzed, to
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check for segments with high spatial coherence that
provide evidence for surface patches. Spatial coher-
ence can be expressed in terms of the differential char-
acteristics of the data. In particular, we compute the
magnitude of the second derivative of d:

y = |d*d/da’| (10)

This has the advantage of producing a very small or
null output value when the input is a linear ramp (cor-
responding to a locally flat surface, in any orientation).
Thus, small values of y should indicate possible surface
patches.

The identification of surface hits is not done on a
scan-by-scan basis but on a sequence of scans. Let’s
assume that the analysis of a scan at time ¢ indicates
that a return from a laser beam fired in direction «, that
yielded a range estimate d(w), is likely to have hit an
obstacle surface. This hypothesis can be verified by ob-
serving the range estimate in directions adjacent to «
attime ¢ + At. Thus, hits are classified as surfaces only
after they are compared against hits in previous scans.
In essence, this methodology applies consistency of the
scene through time, i.e., if At is sufficiently small, the
relative positions of ladar and surface can change very
little regardless of the relative motions and speeds of
both ladar and surfaces. Thus, a hit in a direction with
range estimate d(«) obtained at time ¢ is likely to be
an obstacle surface if there is a hit in direction o 4+ A«
with a range estimate d(«) + Ad attime ¢ + At for suf-
ficiently small Aa, Ad and At. This is the primary cri-
terion for selecting candidate surface hits. Additional
heuristic criteria can be added to remove false positives
from such candidates. For example, candidate hits are
removed when there are no other candidate hits nearby.
We also remove candidate hits that lie outside the oper-
ative range [0.3 m 2.0 m]. As areference, for our exper-
iments At = 0.2 s is given by the 5 Hz rotation rate of
the laser. Likewise, the value of Ad is determined by the
maximum distance that the robot can move in At, i.e.,
given a maximum speed of 1 ms, the robot can move in
At = 0.2sby adistance of Ad = 0.2 m, thatis, 10% of
the operational range. Thus, the robot is able to observe
an approaching object (either because of the motion of
the object or the motion of the robot) up to 10 times
before reaching it, which gives the algorithm time to
evaluate the scene. Finally, in our setup we have Ax ~
30°. There are many situations in which the relative
change of orientation between the robot and obstacle
ina At lapse is larger than A« including a fast in-place
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rotation of the robot, a fast straight motion of the robot
passing by a stationary obstacle and any combination
of these, among others (there are corresponding con-
ditions when the robot is not moving but the obstacle
is in motion, and when both are in motion). In these
cases, the absence of a sufficiently small A« does not
mean that the obstacles cannot be detected but only that
they cannot be tracked; when the value of A« becomes
sufficiently small, the obstacle will be detected, as a
new different obstacle.

3.2.4. Experimental Results. Our algorithm was
tested on scenes taken by the Acuity laser while
mounted on the Urbie robot, as shown in Fig. 12. The
experiments were run on eight scenes for periods of
length between 15 and 90 seconds. The scenes included
environments with sparse and dense grass, with and
without obstacles (where the rocks were both trees and
rocks), with obstacles in the clear and partially hidden
and with the robot both stationary and on the move at
various speeds. From the 1313 scans produced by these
scenes we obtained 4 false alarms (i.e., four cases in
which grass was misclassified as an obstacle surface);
all the obstacles in the sequences were identified cor-
rectly, at some point of the run, i.e., not every obstacle
is identified in every single frame in which it appears

(a)

Figure 16.
range data of Fig. 12.
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(a) The “Urbie” robot facing two rocks at 45° and 315° (repeated from Fig. 12 for reference). (b) Obstacle surface detection on the

but every obstacle is identified as such, in at least one
frame of the sequence. This classification is consistent
with the hazard detection and avoidance objective of
the task, in contrast to a target tracking task that would
penalize the loss of the target during any frame of the
sequence The right half of Fig. 16 shows the obsta-
cle classification that corresponds to the scene in left
half of Fig. 12, repeated in Fig. 16 as a reference. The
lines shown in light gray indicate hits that are asso-
ciated with obstacles. Note that both rocks (including
the partially hidden one) have been detected correctly.
Running times for the algorithm in a Pentium 4, 2.2 Ghz
machine, are in the order of 450 s and 215 us per rev-
olution (512 samples) for scenes with and without ob-
stacles, respectively. Thus, the algorithm can be easily
integrated into a real-time navigation system. Finally,
the sequence of images in Fig. 17 shows some results
of the obstacle detection and avoidance in tall grass
using Urbie. In this case, the algorithm was ported to
C++ and ran under VxWorks. At the time of the port-
ing, the customized Acuity ladar of Urbie had been
replaced by a Sick ladar with a sampling interval of
8.7 mradians (0.5 degrees), a scan span of 180° and an
expected range error of 70 mm at 4 m. The sequence
in Fig. 17 shows Urbie following a path that has an ob-
stacle hidden by tall grass; the robot correctly detects
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Figure 17. Obstacle avoidance in tall grass using laser-based foliage classification.

the obstacle and steers to the left to avoid it. Images
and movies of the results of these tests are available at
telerobotics.jpl.nasa.gov/people/andres/{tmr,mars}.

Note that other techniques for discriminating vege-
tation from soil and obstacles using ladar data from a
moving robot have been proposed (Hebert et al., 2002;
Lacaze et al., 2002). These approaches, which are ap-
propriate for use with a 2-axes ladar, are voxel-based
representations of the 3-D data. This representation al-
lows for the easy integration of measurements as the
vehicle moves ahead (if accurate information about the
vehicle’s position and attitude is available). With re-
spect to voxel-based techniques, our algorithm has a
much lower computational complexity and does not re-
quire integration of data over multiple scans (although
it does use multiple scans to rule out false positives),
while providing excellent results with a single-axis
ladar.

4. Conclusions

We have presented novel algorithms for obstacle de-
tection and terrain classification for cross-country envi-
ronments. Our techniques, which use data from a stereo
color cameras and from a single-axis ladar, are at the
core of JPL’s perceptual system for autonomous off-
road navigation and have been tested in the context of
the several projects funded by the US Department of
Defense. Our experimental result in the course of these
projects have shown the viability and robustness of our
algorithms for obstacle detection, color-based terrain
typing and obstacle labeling, and ladar-based obstacle
detection in grass.

Our more recent work is looking at further extend-
ing the terrain perception capabilities of a vehicle by

using new sensors and new visual analysis algorithms.
For example, color analysis can be made more robust
by taking atmospheric effects into account (Nayar and
Narasimhan, 2000). Texture features (Castano et al.,
2001) could be used to either complement color classi-
fication or for terrain typing at night, when color cannot
be used. Possible additional sensors include multispec-
tral cameras in the thermal IR (Abedin et al., 2003),
which also could be used for terrain classification at
night, and polarization cameras, which may help de-
tecting water bodies in the scene (Wolff, 1996).

Appendix

In this Appendix we compute the distribution of the
range in the case of an obstacle partially hidden by
grass. The geometry of the obstacle surface is repre-
sented in Fig. 13; we are interested in the distribution
within the angular sector [0, A]. To simplify our treat-
ment, we will henceforth assume that K = coty < 0,
as in Fig. 13 (the case K > 0 is derived straightfor-
wardly). It is assumed that the area between the ladar
and the obstacle is uniformly covered by grass with
spatial density A and constant blade diameter 4 (then
A = hAX, as defined in Section 3.2.2).

We first compute the cumulative distribution func-
tion (cdf) of the range d:

A
Fad) = f Pd(@) < d) fula) da
a=0
A

7 pdw <dyde A
A a=0

where we used the total probability theorem, condition-
ing with respect to the measuring angle ., and assuming
that the pdf f,(«) of « is uniform within [0, A]. Using
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approximation (7), and remembering that K < 0, we
can write

0, d<0
Pda)<dy={1—e™, 0<d=<d)
1, d > d(w)
0, d <0
_Ji—-e?* d>0,a> D_Kd
D—d
1, o<
DK
(A.2)

Combining (A.1) with (A.2), one obtains the cdf of the
range within the sector of angle A:

0, d<0
1—e M, 0<d<D

1 B A
Fud)= 1~ / da+/ (1 —e*)da |,
0

A 5

D <d < D(1 — AK)
1, d > D(1 — AK)
0, d<0

1 —e ™, 0<d<D

D <d < D(1 — AK)
1, d > D(1 — AK)

(A.3)

and, by differentiation, its pdf:

0, d<0
re ™ 0<d<D
D—d+1/a
d)y={re 1 - ——7—),
Ja(d) e ( DK
D <d < D( — AK)
0. d> D(1 — AK)

(A.4)

This pdf is represented in Fig. 14 (left, dashed line)
for A = 1/m, A = 6°, y = 107° (and therefore K =
coty = —3),and D = 1.5 m.s
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Notes

1. A similar OD algorithm was used with ladar measurements in
Hong et al. (2000).

2. Since there is a one-to-one correspondence between visible 3-D

points p and their projections p onto the image plane, we will say

that two pixels p; and p, are compatible when the corresponding

3-D points p; and p; are.

This approximation is acceptable when « is not too small.

4. The curves in Figure 8 were built using data from the ASTER
Spectral Library (Hook, http://speclib.jpl.nasa.gov).

5. We use a simple graphical user interface that allows one to quickly
hand-label images in a training data set.

6. The original color images can be obtained by sending email to
manduchi @soe.ucsc.edu.

7. Statistical independence is an acceptable hypothesis given our
assumption that no two laser beams can hit the same grass blade,
and assuming dense grass.
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