
UNIVERSITY OF CALIFORNIA

SANTA CRUZ

COMPLEXITY IN DATABASES, GAMES, AND LOGICS

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Jonathan T. Panttaja

September 2006

The Dissertation of Jonathan T. Panttaja
is approved:

Professor Phokion G. Kolaitis, Chair

Professor Wang-Chiew Tan

Professor Luca De Alfaro

Lisa C. Sloan
Vice Provost and Dean of Graduate Studies

Copyright c
�

by

Jonathan T. Panttaja

2006

Table of Contents

List of Figures v

List of Tables vi

Abstract vii

Dedication viii

Acknowledgments viii

I Constraint Satisfaction and Games 1

1 Introduction 2
1.1 Constraint Satisfaction . 3
1.2 Datalog . 7
1.3 The Existential � -Pebble Game . 9
1.4 Consistency . 11

2 Complexity of Pebble Games 14
2.1 Complexity of the ��������� -Pebble Game with � Fixed 14

2.1.1 The Gadgets 	 and
 . 16
2.1.2 Single-Input One-Way Switches . 17
2.1.3 Twisted Switches . 21
2.1.4 Reduction from MCV to ��������� -Pebble Game 24

2.2 Complexity of the ��������� -Pebble Game with � Part of the Input 26
2.2.1 The Gadgets 	�� and
� . 27
2.2.2 Multiple-Input One-Way Switches for the ��������� -Pebble Game 28
2.2.3 The Rule Gadget . 32
2.2.4 Winning the Game . 35
2.2.5 Reduction from KAI Game to ��������� -Pebble Game 36

2.3 A Framework for Pebble Games . 41
2.3.1 One-sided, One-way � -Pebble Game 43

iii

2.3.2 One-sided, 1-1, One-way � -Pebble Game 44
2.3.3 One-sided, Two-way � -Pebble Game 45
2.3.4 One-sided, 1-1, Two-way � -Pebble Game 45
2.3.5 Two-sided, One-way � -Pebble Game 47
2.3.6 Two-sided, 1-1, One-way � -Pebble Game 47
2.3.7 Two-sided, Two-way � -Pebble Game 48
2.3.8 Two-sided, 1-1, Two-way � -Pebble Game 49

2.4 Concluding Remarks . 50
2.4.1 Summary of Results . 50
2.4.2 Future Work . 51

II Complexity of Data Exchange 52

3 Introduction to Data Exchange 53
3.1 Background on Data Exchange . 54

4 Complexity of Data Exchange 59
4.1 Combined Complexity . 59
4.2 Combined Complexity: Upper Bounds . 60
4.3 Combined Complexity: Lower Bounds . 65

4.3.1 EXPTIME-Completeness . 65
4.3.2 coNP-Completeness . 76

4.4 Concluding Remarks . 78
4.4.1 Summary of Results . 78
4.4.2 Future Work . 78

Bibliography 80

iv

List of Figures

2.1 	 Gadget . 16
2.2
 Gadget . 17
2.3 Single-Input One-Way Switch ��� . 19
2.4 Twisted Switch . 22
2.5 	�� Gadget . 27
2.6
�� Gadget . 28
2.7 A Subgraph of � � . 29
2.8 �	��
 . 34
2.9 ��
 . 35
2.10 Duplicator’s Graph for the ��������� -Pebble Game 36

3.1 Dependency Graphs . 56

v

List of Tables

1.1 SAT Clauses � CSP Constraints . 6

2.1 Summary of Game Complexity . 44

4.1 Complexity of Data Exchange . 59
4.2 Combined Complexity of Data Exchange . 61

vi

Abstract

Complexity in Databases, Games, and Logics

by

Jonathan T. Panttaja

Databases are ubiquitous in our society. This dissertation presents a complexity anal-

ysis of two important problems related to databases. First, we show the complexity of establish-

ing strong � -consistency, which is a common heuristic for database query evaluation. Second,

we classify the complexity of the existence-of-solutions problem for data exchange.

The first part of this dissertation presents a computational complexity analysis of the

problem of determining the winner of the existential � -pebble game. Existential � -pebbles were

originally introduced to aid in the analysis of the expressive power of Datalog and related in-

finitary logics with finitely many variables. It has since been observed that strong � -consistency

can be established for an instance of constraint satisfaction if and only if the Duplicator has a

winning strategy for the existential � -pebble game on structures related to the given instance of

constraint satisfaction. The main result is that determining the winner of the existential � -pebble

game is EXPTIME-complete when � is part of the input. This implies that establishing strong

� -consistency is inherently exponential. We then use this result to prove complexity results for

a collection of related games.

The second part of this dissertation addresses the combined complexity of the existence-

of-solutions problem for data exchange. Data exchange is the problem of transforming data

from a source schema to a target schema so that all constraints of a schema mapping are satis-

fied. The existence-of-solutions problem is the question: given a source instance, is there a tar-

get instance that satisfies the constraints of the schema mapping? Earlier work showed that for

schema mappings specified by embedded implicational dependencies, this problem is solvable

in polynomial time, if the schema mapping is fixed and the constraints of the schema mapping

satisfy a certain structural condition, called weak acyclicity. We show that if the schema map-

ping is also part of the input, then the complexity of the existence-of-solutions problem rises to

2EXPTIME. We also show that there are restricted classes of inputs to the existence-of-solutions

problem for which the problem can be EXPTIME-complete or CoNP-complete.

Acknowledgments

The first part of this dissertation is based on joint work with Phokion Kolaitis, published in [19].

The second part is based on joint work with Phokion Kolaitis and Wang-Chiew Tan, published

in [20]. This work was supported in part by NSF grants IIS-0430994 and IIS-9907419.

viii

Part I

Constraint Satisfaction and Games

1

Chapter 1

Introduction

When retrieving data from a relational database, we write a conjunctive query that

specifies the data we want, and then evaluate that query against the database. The problem of

deciding whether the answer to a conjunctive query is non-empty is NP-complete in general

when both the query and the database are given as input. This query evaluation problem turns

out to be equivalent to another problem, known as the Constraint Satisfaction Problem. The

Constraint Satisfaction Problem (CSP) has been deeply studied in the area of artificial intelli-

gence. The idea is that you are given variables and constraints on the values those variables may

take. The question is whether there is an assignment of values to variables that satisfies all the

constraints. Because it is equivalent to the query evaluation problem, CSP is also NP-complete

in general. On the other hand, we know that there are subproblems that are solvable efficiently.

For instance, if no constraint involves more than one variable, we can easily decide if there is a

solution.

There are, in fact, many large classes of subproblems for which an efficient algorithm

exists to solve CSP, but because the problem is hard in general, researchers have come up with

heuristics to solve problems. One of the most effective classes of heuristics involves consistency

properties. To talk about consistency, we must first consider the concept of a partial solution.

A partial solution is an assignment of values to some of the variables in a CSP instance. The

size of a partial solution is the number of variables assigned values. A CSP instance is called

� -consistent, if every partial solution of size ��� � can be extended to a partial solution of

size � . An instance is called strongly � -consistent if every partial solution of size less than

� can be extended to a partial solution of size � . An instance is called globally consistent if

2

any partial solution can be extended to a solution to the instance. Dechter, in [5], showed that

there are conditions where strong � -consistency implies global consistency. This gives rise to

interest in algorithms to take an instance of CSP and try to change it into an equivalent instance

that is strongly � -consistent. Cooper [4] has presented an algorithm that establishes strong � -

consistency in exponential time. Unfortunately, Cooper’s algorithm is not efficient enough to

be useful on general problems. It would be useful to know if we can do better.

While studying Datalog, Kolaitis and Vardi [23] found a connection to help with this

issue. They introduced the existential � -pebble game, to help study Datalog and related logics.

This is a game played on two relational structures � and � by two players known as Spoiler

and Duplicator. They take turns placing pebbles on the structures, Spoiler playing on � and

Duplicator playing on � . Duplicator wins by always making sure that the partial mapping

from � to � determined by the pebbles is always a partial homomorphism. As it turns out,

determining strong � -consistency for an instance of CSP is equivalent to determining a winning

strategy for the Duplicator in a corresponding instance of the existential � -pebble game.

In [19], Kolaitis and I showed that determining the winner of the existential � -pebble

game is EXPTIME-complete when � is part of the input, and P-complete when � is fixed.

This shows that unless the complexity hierarchy collapses, we cannot improve asymptotically

on Cooper’s algorithm for establishing strong � -consistency. There is another, similar, game

known as the � -pebble game. Grohe [15] showed that determining the winner of this game is

P-complete when � is fixed, but the complexity when � is part of the input is still unknown.

1.1 Constraint Satisfaction

An instance of the Constraint Satisfaction Problem consists of a set � of variables,

a set � of constraints, and a domain � of possible values for the variables. Each constraint is

a pair ��� � � � where ��� �	� is a � -ary relation over � , and ��
��� is a � tuple of variables

from � . This represents the fact that the set of variables in � must take on the values from one

of the tuples of � . The question we want to answer is: Given an instance of CSP, is there an

assignment of values to variables such that every constraint is satisfied? More precisely, is there

a mapping ����� � � , such that for every constraint ��� � � � , � ��� ��
 � ?

3

Example 1.1.1 Consider the CSP instance with ��� � ��� � ��� � � �
�
, ��� �
	 � � � , and

����� ���� � ��� � � ��� ����� ����� � � � � � ��� � � � ���� � � � � � � �
����� � � 	 � 	 � , ����� � � � � 	 � , � � �

� � � � 	 � ,
� 	 � � � , � 	 � � � , � 	 � � � �
� � � 	 � � � � � � � �

There are two solutions: ����� 	 � ����� 	 � � � �
�
, and ���� 	 � ����� � � � � �

�
.

For much of what follows we will be considering problems on relational structures.

Relational structures are a generalization of directed graphs. A relational structure is a tuple

��� ��� � � � ������� � �
 � , such that � is a set of domain elements, and each ��� ��� ��� . The

vocabulary of a relational structure is the set of names of relations in the structure, along with

their arities.

Feder and Vardi [12] showed that CSP is equivalent to the Homomorphism Prob-

lem. The Homomorphism Problem is the problem of determining whether, given two relational

structures � and � , there is a homomorphism from � to � . For this problem, a homomor-

phism is a mapping � from � to � such that for every tuple �� !� ������� �" � �
 �$#� , we have that

� � �� �� � ������� � � �� � � �
 �&%� .

Example 1.1.2 Consider the structure �'� ��� � � # � , where � is
� �� �" � �" �

�
and the relation

� # is
� �� (� �" � � � �� � �" (� � � �� � �" � � � �� � �" � �

�
. Consider also the strucutre �)� ��� � � % � , such

that the domain � is
�+* � � * � � * �

�
, and the relation � % is

� � * � � * � � � �
*
� �
* � � � � * � � * � � � �

*
� �
* � � � .

Let � be the mapping from � to � such that � �� � �,� * � . This is not a homomorphism,

because �� -� �" .� �
 � # , but � � �� �� � � � �� � � �,� � * � � * � ��/
 � % .

The mapping �(0 that maps -� to
* � , � to

*
� , and � to

* � , is a homomorphism.

This instance of the homomorphism problem does have a homomorphism.

Example 1.1.3 Let �1� ��� � � # � be a structure with domain � equal to
� � �" � �" �

�
a relation

�$# that contains all possible distinct pairs of elements of � . Let �2� ��� � �3% � be a structure

such that the domain � is
�+* � � * � � * �

�
, and ��% equals

� � * � � * � � � � * � � * ��� � � * � � * � � � �
*
� �
* � � � .

This instance of the homomorphism problem does not have a solution. Note that there

is an edge between each pair of distinct elements of � , and there are no self loops in � . This

means that any mapping that maps two elements of � to the same element of � cannot be a

homomorphism. Thus, any mapping of elements of � to elements of � would map some � to
*
� , and some �4 to

* � . Since by definition, there is a tuple �� � �" 54 �
 � # , but � * � �
* � �6/
 � % , we

know that no mapping can be a homomorphism.

4

Example 1.1.4 We can also represent � -colorability as a homomorphism problem. Let � �
�
� , where

�
� is the complete graph on � vertices. So, for any graph, � the question of whether

there is a homomorphism from � to � is equivalent to the question of whether � is � colorable.

If �3��� this is 2-colorability, which is in polynomial time.

If �3��� this is 3-colorability, which is NP-complete.

In the transformation from CSP to homomorphism, � corresponds to the variables of

the instance of CSP, and to the tuples of variables in the constraints. In � , we have the values

that the variables may take on, along with the relations from the constraints. A homomorphism

from � to � corresponds to a mapping of variables to values that satisfies all the constraints.

More specifically, given an instance of CSP with variables � , domain � , and con-

straints � � � ����� � � � � ������� ���
	�� �
 �
�
, we construct an instance of the homomorphism prob-

lem as follows. We construct the relational structures � � � � � � � � � ������� � � � 	 � � and � �
� � � ��� ������� � �
 � . This is a simple restructuring of the data. Any assignment of values to vari-

ables can be considered a mapping from � to � . If we consider this a mapping � from � to

� , then � is a homomorphism if and only if the original assignment is a satisfying assignment.

To see this, consider a tuple of variables ����� ���!� ������� �� � � . For � to be a homomorphism,

� � ��� � � ������� � � ��� � � �
 � � . But this is exactly the criterion for the assignment to be satisfying.

If we wish to consider the relationship in the other direction, we simply consider a

pair of relational structures ��� ��� � � # � ������� � � #
 � , and � � ��� � � % � ������� � � %
 � , and transform

them into an instance of CSP. We let � be the set of variables and � be the set of values. We

then construct � � � ����� � � � %� ��� �
� �
 � #� � ; that is, we build a constraint for each tuple in each

relation from � .

It is easy to show that CSP is in the class NP. We must show that given an assignment,

we can decide whether it is a satisfying assignment in polynomial time. For any constraint

� ��� � ������� �� � � � � � and assignment of values to variables � , we simply check to see if the tu-

ple � � ��� � � ������� � � ��� � � �
 � . This can be accomplished by a simple linear search for each

constraint.

CSP contains, as a special case, 3-SAT. Given a 3-CNF formula � ��� � , the variables

of the CSP instance are just the variables of the formula, the domain is simply
�
	 � � � , and

the relations correspond to ternary or, with all possible combinations of positive and negative

literals. Table 1.1 shows four relations. There are, of course, eight possible clauses in a CNF

5

Clause ����������	�
�	��� ������������	�
�	��� ������������	���
�	��� ������������	 ��
�	 �!��
Relation � 	 �

� � � � � 	 � � � � � � 	 � � � � 	 � � � � � � 	 � � �
� � � 	 � � � � � � 	 � � � � � � 	 � 	 � � � � 	 � 	 �
� � � 	 � 	 � � 	 � � � � � � 	 � � � � � � 	 � � � � �
� 	 � � � � � � 	 � � � 	 � � 	 � � � 	 � � 	 � � � 	 �
� 	 � � � 	 � � 	 � 	 � � � � 	 � 	 � � � � 	 � 	 � � �
� 	 � 	 � � � � 	 � 	 � 	 � � 	 � 	 � 	 � � 	 � 	 � 	 �

Table 1.1: Converting SAT clauses into CSP constraints

formula, but because " is commutative, we can rearrange each clause, based on the number of

negations, into one of these four.

Example 1.1.5 Given � � ��� �#" � �$" � � �&% �('��!�)" � � " � � �*% ��� � "+'�� ��' � � � , we construct an

instance of CSP as follows. The set of variables ��� � � � ��-� �� � �� �
�
, the domain �1� �
	 � � � ,

and the constraints � � � � ��� � �� � �� � � � � � � � � ��� � �� � �� � � � � � � � � ��� � �� � �� � � � � � �
�
.

Because 3-SAT is NP-complete, this reduction shows us that CSP is NP-complete in

general.

One common approach in the study of NP-complete problems is to consider restric-

tions of the problem. If we think about CSP as the homomorphism problem, there are two

inputs, � and � . This is uniform CSP. We could instead consider the non-uniform problem

where one of the inputs is fixed. The number of possible mappings from � to � is � � �-, #., . So,

if we fix � , the homomorphism problem is solvable in polynomial time in the size of � .

If, instead we consider non-uniform CSP with � fixed, also known as CSP � � � , we

get a more varied complexity theory. If � is the complete graph on two vertices, then CSP � � �
corresponds to the question of whether � is 2-colorable. This problem is known to be solvable

in polynomial time. On the other hand, as we saw earlier in the reduction from 3-SAT to

CSP, there is a fixed � , with 4 relations, for which CSP � � � is NP-complete. In fact, Thomas

Schaefer [26] showed that for any � with a Boolean (or 2 element) domain, CSP � � � is either

solvable in polynomial time or is NP-complete. Feder and Vardi considered this and introduced

what is known as the Feder-Vardi Dichotomy Conjecture for non-uniform CSP.

6

Conjecture 1.1.1 [11] For every � , either CSP � � � is solvable in polynomial time, or CSP � � �
is NP-complete.

Bulatov [2] has shown that this conjecture is true for all � with up to a three-element

domain. For higher order domains, a complete classification is still not known, but there have

been efforts to find broad classes of tractable cases.

Many tractable cases of CSP � � � can be described using closure properties of the

constraints. Feder and Vardi [11] described a number of tractable cases of CSP � � � , many of

which were later described by Jeavons et al. [16] using closure properties. These include the

case of constraints closed under affine operations, semi-lattices, and near-unanimity functions.

Several of these tractable cases are subsumed by expressibility in Datalog, which we

define in the next section. For sets of constraints � closed under near-unanimity functions or

semi-lattice functions, the complement of CSP � � � is expressible in Datalog [11]. On the other

hand, for sets of constraints � closed under affine functions, the complement of CSP � � � is not

necessarily expressible in Datalog [11].

1.2 Datalog

A Datalog program consists of a finite number of rules. Each rule has the form

��� ��� � � � � � ��� � �-����� �
 ���
	 � . For each rule, we refer to ��� ��� � as the head of the rule, and

� � ��� � �-����� �
 ���
	 � as the body. A fact is a rule with an empty body. Each ��� ���
� � is known

as an atom. The elements of each ��� are either variables or constants. An atom that has only

constants is called a ground atom. A fact that contains only a ground atom is known as a ground

fact.

The relational symbols that appear in atoms of a Datalog rule are given names based

on where they appear. Any relational symbol that appears in the head of a rule is called an in-

tentional database predicate (IDB), while a relational symbol that only ever appears in the body

of rules is called an extensional database predicate (EDB). The rules of the Datalog program

tell the relationship between the EDBs and the IDBs. Given relations for the EDBS, the Datalog

program tells us how to construct the IDBs.

In each Datalog program, one of the IDBs is designated as the goal. The Datalog

program then defines a query over the EDBs. This query can be computed in polynomial time

7

in the size of the EDBs, using a simple bottom up evaluation. For each rule, we check to see if

there are tuples in the relations in the body that make the body true. We then add the appropriate

tuple to the relation represented in the head of the rule. One step of scanning to see if there is a

rule that can be applied takes time polynomial in the size of the given EDBs. Because the arities

of the relations are fixed, the number of possible tuples is a polynomial in the size of the EDBs.

This tells us that the result can be computed in polynomial time.

Example 1.2.1 Consider a Datalog program with the following three rules:
� ��� ��� � � ��� ��� �����
� ��� ��� � � � � ��� ��� � ��� ��� ��� � ��� �	� �����

 � � � ��� �� �
This program has one EDB, � , and two IDBs,

�
and

. The IDB

is the goal.

Given an edge relation of a graph, this Datalog program determines if there is an odd cycle.

This is the negation of the question of whether a graph is 2-colorable. As we saw

earlier the 2-colorability problem is equivalent to CSP � � � � .

Example 1.2.2 Consider the Path Systems problem defined by Cook [3]:

Given a finite set of formulas � , a set of axioms � ��� , and a rule of inference

� �� � , compute the theorems of this system.

We can define a Datalog program to solve this as follows:
� ��� � � ��� ��� �
� ��� � � ��� ����� �"� �	� � � � ��� ������� �
Cook showed that this problem is P-complete.

So we now see that finding solutions to Datalog programs is possible in polynomial

time, and also there are Datalog programs that are P-complete. This gives us expressibility of

a problem in Datalog as a sufficient condition for tractability. Unfortunately, CSP � � � can not

be represented in Datalog. This is due to the fact that queries expressible in Datalog have the

monotone property. This means that adding tuples to the EDBs cannot reduce the number of

tuples in the IDBs. On the other hand, in CSP � � � , adding tuples to the input instance, � can

make a satisfiable instance unsatisfiable.

Example 1.2.3 Let us reconsider the problem of 2-colorability. This corresponds to CSP � � �
where � is the complete graph on two vertices. Let � be a path on three vertices. Every path is

8

2-colorable, so there is a homomorphism from � to � . If we then add an edge to � , and make

it a cycle on three vertices, then there is no homomorphism from � to � .

On the other hand, if we instead consider the complement of 2-colorability, and an

input graph that is not 2-colorable, it is clear that adding edges to the graph can never make it

2-colorable.

So, we have now seen that ' CSP � � � can be expressed in Datalog for some � . Now,

we can ask another question: When can ' CSP � � � be expressed in Datalog? The answer to this

question comes from Kolaitis and Vardi [24], and depends on the existential � -pebble game,

which we describe in the next section.

1.3 The Existential � -Pebble Game

The existential � -pebble game, or ��������� -pebble game, was introduced by Kolaitis

and Vardi in [21] to aid in the study of the expressive power of Datalog and the infinitary

logic ������ � . The logic ������ � consists of all logical sentences, with finitely many variables,

constructed from atomic formulae using and, or, infinitary and, infinitary or, and existential

quantification. For each � , we define ��� � � � to be the fragment of ������ � with � variables.

Kolaitis and Vardi [21] showed that every query expressible in Datalog is also expressible in

������ � .

Let � and � be two relational structures over the same vocabulary. A relational

structure � 0 � � ����0 � � #	�� ������� � � #
�
 � � is a substructure of � � � � � � # � ������� � � #

�

if ��0 � �
and for each � , �&# �� � �$#� . A partial homomorphism from � to � is a homomorphism from a

substructure of � to a substructure of � .

Let �� � be a positive integer. The existential � -pebble game (or, in short, the ��������� -
pebble game) is played between two players, the Spoiler and the Duplicator, on two relational

structures � and � according to the following rules:

� Each player has � pebbles labeled
� ������� ��� .

� On the � -th move of a round of the game,
��� � � � , the Spoiler places a pebble on an

element � of � , and the Duplicator responds by placing the pebble with the same label

on an element
* � of � .

9

� The Spoiler wins the game at the end of that round, if the correspondence ����
* � ,

� � � � � , is not a homomorphism between the substructures of � and � with universes
� �� ������� �" �

�
and

�+* � ������� � * �
�
, respectively.

� Otherwise, the Spoiler removes one or more pebbles, and a new round of the game begins.

The Duplicator wins the ��������� -pebble game if he has a winning strategy, that is to say, a sys-

tematic way that allows him to sustain playing “forever,” so that the Spoiler can never win a

round of the game.

To illustrate this game (and its asymmetric character), let
�
� be the � -clique, that

is, the complete undirected graph with � nodes. For every � � � , the Duplicator wins the

��������� -pebble game on
�
� and

�
��� � , but the Spoiler wins the ��������� � � -pebble game on

�
��� �

and
�
� . As another example, let �
	 be the � -element linear order, � � � . If ���� , then the

Duplicator wins the ����� � � -pebble game on � � and �
 , but the Spoiler wins the ����� � � -pebble

game on �
 and � � �
The ��������� -pebble game can be used to characterize when two structures satisfy the

same sentences in the logic ��� � � � .

Theorem 1.3.1 [21]

Let � and � be two relational structures over the same vocabulary. The Duplicator

wins the ��������� -pebble game on � and � if and only if � satisfies all of the same sentences of

��� � � � as � . That is, for all �
 ��� � � � , � � � ��� � � � � .

Note that the above description of a winning strategy for the Duplicator in the ��� ����� -
pebble game is rather informal. The concept of a winning strategy can be made precise, how-

ever, in terms of families of partial homomorphisms with appropriate properties. Specifically, a

winning strategy for the Duplicator in the existential � -pebble game on � and � is a nonempty

family � of partial homomorphisms from � to � such that:

1. For every �
�� , the domain ����� ��� � of � has at most � elements.

2. � is closed under subfunctions, which means that if �	
�� and � ��� , then �
�� .

3. � has the � -forth property, which means that for every ��
�� with � ����� ��� ����� � and

every
 � on which � is undefined, there is a �	
�� that extends � and is defined on .

10

Intuitively, the second condition provides the Duplicator with a “good” move when

the Spoiler removes a pebble from an element of � , while the third condition provides the

Duplicator with a “good” move when the Spoiler places a pebble on an element of � .

A configuration for the ��� ����� -pebble game on � and � is a � � -tuple of elements

from � and � , �� -� ������� �" � �
* � ������� � * � � , such that �
 � ,

* �
�� , and the mapping from

� to � that maps � to
* � is a partial function. A winning configuration for the Duplicator

is a configuration of the ��������� -pebble game such that the corresponding homomorphism is a

member of some winning strategy for the Duplicator. Let � � � � � � � be the set of all winning

configurations.

With the definition of the ��������� -pebble game, we can now revisit the question of when

' CSP � � � can be expressed in Datalog. First we define � -Datalog as the fragment of Datalog

in which only � variables are allowed in each rule. Kolaitis and Vardi [24] showed that there is

a connection between expressibility in � -Datalog and the ��������� -pebble game.

Theorem 1.3.2 [24] Let � be a relational structure over a vocabulary � . ' CSP � � � is express-

ible in � -Datalog if and only if the following condition holds:

For every structure � over � if the Duplicator wins the ��������� -pebble game on � and

� , then there is a homomorphism from � to � .

1.4 Consistency

To complete the connection between CSP, Datalog and the ��� ����� -pebble game, we

now discuss consistency properties of CSP instances. A CSP instance is � -consistent [13] if

every partial solution of size � � � can be extended to a solution of size � . Here, a partial

solution is an assignment of values to a subset of the variables that satisfies all of the constraints

over those variables. More rigorously, for every set
�
�-� ������� � � ��� � � of � � � variables, and any

partial solution over those variables, and for any variable � /
 � �-� ������� � � ��� � � , there is a partial

solution over
�
� � ������� � � ��� � � � � that is an extension of the original partial solution.

A CSP instance is known as strongly � -consistent [13] if it is � -consistent for all
	 � � � � . In an instance that is strongly � -consistent, every partial solution of size less than

� can be extended to a partial solution of size � . Strong 2-consistency is also known as arc

consistency, and strong 3-consistency is known as path consistency. If we have an instance

11

of CSP over � variables, and that instance is strongly � -consistent, then that means that every

partial solution can be extended to a full solution. We refer to such an instance as globally

consistent.

Example 1.4.1 Let � � � � � 	 � 	 � � � 	 � � � � � � � � � � � � � �� � , and ��� � � � 	 � � � � � � � � � � . Consider

the CSP instance � � � ��� � � � � ��� ��� � � ������ ��� � � . This instance is not arc consistent, because 2 is

a valid assignment for � , but there is no valid assignment for � associated with � ��� .

Dechter [5] presented a sufficient condition for local consistency to imply global con-

sistency. So, if an instance of CSP is strongly � -consistent for large enough � , then the instance

is also globally consistent. In an instance that is globally consistent, we can perform backtrack

free search to find a solution.

This property makes it desirable to have an efficient algorithm to determine whether

an instance of CSP is strongly � -consistent for arbitrary � . In addition, we might ask whether we

can take an instance of CSP and construct an equivalent instance that is strongly � -consistent.

By equivalent, we mean that the two instances have exactly the same set of solutions. This

process is known as establishing strong � -consistency, or constraint propagation. Cooper [4]

presented an algorithm for establishing strong � -consistency. This algorithm takes time poly-

nomial in the size of the instance, and exponential in � . So, for fixed � , this yields a polynomial

time algorithm and for varied � , this yields an exponential algorithm.

Example 1.4.2 Recall the previous example: � � � ��� � � �3� ��� ��� � � ��� ��� ����� � . The new instance

� � � ��� � � ��0� ��� ����� � ��0� ��� ����� � , with �$0� �
� � 	 � � � � and ��0� �

� � 	 � � � � establishes arc consistency

for the initial instance.

Even when we cannot use strong � -consistency to establish global consistency, it

can be used as a heuristic to improve search. Dechter [6] presents an algorithm called bucket

elimination that encompasses many algorithms, sometimes known as adaptive consistency al-

gorithms, that make use of constraint propagation to reduce the amount of search needed to

solve an instance of CSP. Thus, there is a tradeoff between search and establishing higher levels

of consistency.

To tie this back to Datalog and the ��������� -pebble game, we look to a paper by Kolaitis

and Vardi [23]. They present a crucial connection between the ��������� -pebble game and strong

� -consistency.

12

Theorem 1.4.1 [23] Let � be a positive integer, let � be a � -ary vocabulary, and let � and �
be two relational structures over � . It is possible to establish strong � -consistency for � and �
if and only if � � � � � � �$/�

This result, combined with Theorem 1.3.2, gives us the following connection between

expressibility in � -Datalog and establishing strong � -consistency.

Theorem 1.4.2 [23]

Let � be a relational structure over a vocabulary � . ' CSP � � � is expressible in � -

Datalog if and only if for every structure � over � , establishing strong � -consistency for � � �
implies that there is a homomorphism from � to � .

13

Chapter 2

Complexity of Pebble Games

In this chapter we show the complexity of a variety of pebble games. First, we show

that determining whether the Duplicator has a winning strategy for the ��� ����� -pebble game is

P-complete when � is fixed. Recall that strong 2-consistency is known as arc-consistency (AC).

Kasif showed that establishing arc consistency is P-complete. In the section 2.1, we present an

alternate proof of this for all fixed � . This proof illustrates the ideas needed for the primary result

of this dissertation, which we prove in section 2.2: If � is part of the input, determining whether

the Duplicator has a winning strategy for the ��������� -pebble game is EXPTIME-complete. We

then present a framework for pebble games and discuss the complexity of the games in this

framework.

2.1 Complexity of the
�����

��� -Pebble Game with � Fixed

In this section we show that, for every � � � , determining the winner of the ��������� -
pebble game is a P-complete problem. We do this by constructing a reduction from the Mono-

tone Circuit Value problem (MCV) in the style of Grohe [15], but with different gadgets. In this

reduction, the structures will be undirected graphs with ten unary predicates, called colors. So,

we actually prove that, for every � � � , the ��������� -pebble game restricted to such structures is

P-complete.

As was mentioned earlier, strong 2-consistency is called arc consistency. Kasif showed

in [18] that establishing arc consistency is complete for polynomial time. Specifically, he

showed the following theorem.

14

Theorem 2.1.1 [18] The propositional Horn clause satisfiability problem is log-space reducible

to AC.

Proof: (Sketch)

An instance of the propositional Horn clause satisfiability problem (PHSP) is similar

to a Datalog program. The main difference is that atoms are simply propositional variables

rather than predicates. In addition, a rule of the form � �
� is known as a goal. An atom is

known as solvable if we can establish its truth through the application of rules. A PHSP program

is known as unsatisfiable if and only if the goal is solvable.

Given an instance of PHSP,
���

, we construct an instance of AC such that
���

is

unsatisfiable if and only if the goal
�
� does not have a valid assignment of � . To encode this

problem as an instance of AC, we construct a variable for each atom, each fact, each goal, and

the body of each rule. We then add constraints which encode the possible relative values that the

variables can take. For instance, if there is a rule of the form
� � � , then we have a constraint

� ��� ��� ��� � � � � � �
	 � � � � �
	 ��	 � � ����� � � � � .
When all of these constraints are put together, establishing arc consistency is equiva-

lent to determining whether the goal is solvable.

The result presented here applies to all fixed � , and also illustrates techniques used in

the next section to prove the EXPTIME-hardness result.

We now present some required definitions. The following concepts and terminology

come from Grohe [15].

1. In an undirected graph with colors, a distinguished pair of vertices is a pair of vertices

that are of the same color, and of a color not used for any other vertex in the graph.

2. A position of the ��������� -pebble game on � and � is a set
�

of ordered pairs such that
� � ��� � and � � � � � . Often we will omit the ordered pair notation and use the

shorthand *
 � to mean that �� � * �
 � .

3. A strategy for the Spoiler is simply a mapping from positions to moves that tells the

Spoiler how to play given the current position.

15

4. We say that the Spoiler can reach a position
� 0 from another position

�
of the ��������� -

pebble game on � and � if the Spoiler has a strategy for the ��������� -pebble game on �
and � such that, starting from position

�
, either he wins the game, or after a number of

moves the game is in a position
� 0 0 such that

� 0 � � 0 0 .
This concept will be used to combine strategies of the Spoiler on different gadgets to

construct strategies for the combined game.

5. We say that the Duplicator can avoid a position
� 0 from another position

�
of the ��������� -

pebble game on � and � if the Duplicator has a winning strategy for the ��������� -pebble

game on � and � such that, starting from position
�

, position
� 0 never occurs.

For each gadget used in the reduction there will be two pieces, one for the Spoiler’s

structure and one for the Duplicator’s structure. For gadget � , we call the Spoiler’s side ��� ,

the Duplicator’s side ��� , and the pair ����� ����� � simply � .

2.1.1 The Gadgets 	 and

ji i’ j’ji

h h h’

Figure 2.1: 	 gadget based on the gadget from [15]. 	�� is on the left and 	�� is on the right.

The graphs 	 � and
 � , which are both based on gadgets from [15], will be used for

and nodes and or nodes respectively. 	�� , as seen in Figure 2.1, consists of the six vertices

� � � 0 � � � � 0 �� �� 0 . These six vertices form three distinguished pairs, � � � � 0 � , � � � � 0 � , and �� �� 0 � .
There are edges from � to � , and � to , and edges from � 0 to � 0 and � 0 to 0 . This graph has only

one non-identity automorphism, which we will call � � � , that maps any vertex to 0 and any

vertex 0 to . 	�� is simply the subgraph of 	�� determined by � � � �� . Starting from position

� � 0 , the Spoiler can reach both � � 0 and � 0 in the ��������� -pebble game on � 	���� 	�� � .

�� , seen in Figure 2.2, has ten vertices. It contains the three distinguished pairs

� � � �(0 � , � � � � 0 � , and �� �� 0 � , plus four additional nodes, which we will name by their connections

16

i j i i’ j j’

h’hh

Figure 2.2:
 gadget based on the gadget from [15].
 � is on the left and
 � is on the right.

to the other vertices. These nodes are ��� , � 0 � 0 , � 0 � 0 , and � � 0 0 . This graph has three non-

identity automorphisms, which we will refer to as � � � � , � � �4 , and � � � � . These automorphism

fix � , , and � respectively, while switching the other two. By playing according to these auto-

morphisms, the Duplicator can avoid either � � 0 or 0 from � � 0 , but not both, in the ��� ����� -pebble

game.

2.1.2 Single-Input One-Way Switches

Single-Input One-Way Switches are used to restrict the ways in which the Spoiler can

win the game. The basic intuition is that the Spoiler can only make progress in one particular

direction; moreover, to do so he must use all of his pebbles.

This lemma is similar to Lemma 14 from [15], adapted to the ��� ����� -pebble game.

Lemma 2.1.2 For every � � � there exists a pair of graphs � �� and � �� with � �� � � �� ,
� � �� 0 ��� ��� 0 � � � � � �� � , � � 0 and � � 0 distinguished pairs of vertices, and

� � ��� � � � � � �� � ,
such that:

1. The Spoiler can reach � � 0 from � � 0 in the ��� ����� -pebble game on � � �� � � �� � .

2. There exist two disjoint sets of positions of the ��������� -pebble game on � � �� � � �� � , called

Pretrapped and Trapped positions such that:

(a) Pretrapped and Trapped positions are partial homomorphisms.

(b) From Pretrapped positions, the Duplicator can avoid positions that are not Trapped

and not Pretrapped.

17

(c) From Trapped positions, the Duplicator can avoid positions that are not Trapped.

(d) The position
� � � 0 � is Pretrapped.

(e) If
�

is Pretrapped and � � � � � , then
��� � � � � is Pretrapped.

(f) The positions
�
� �
�

and
�
� � 0 � are Trapped.

(g) If
�

is Trapped and � � � � � , then
��� � � � � is Trapped.

Proof: First, we define � �� and � �� . Then, we show that these graphs have the desired prop-

erties.

� � � �� � � � � �� 0 ������� 0 � �
� � � � � � �
	 � � � � ������� ��� � � �

� � � �� � � � ��� � � � �" � � � �
� ��� 0 � � � �" � ��� �� 	� �
� � � � �" � � � � � * � ��� /� *
�
� � � � �" � � � � � * � ��� * /� � �
� � � � � 	 � � � � � 	 � � � �
� � � � �" � ������� �� 	� �
� � � � �" � ��� 0 �

� � � �� � � � � ��� � �
� � � � � � � � ������� � � � � �
� � � � 	 � �

� � � �� � � � ��� � � � �" � � � �
� � � � �" � � � � � * � ��� /� *
�
� � � � �" � � � � � 	 � � � �
� � � � � 	 � ����� �

We color each row of vertices a unique color so that when the Spoiler places a pebble

on row 2, the Duplicator cannot place a pebble on row 1. These graphs are in Figure 2.3.

18

y

x

y y’

O Ox x’4
S

4
D

Figure 2.3: Single-Input One-Way Switch ���

The graph � �� has the property that given any set of � � � � � vertices of the form
� � � �" ��� �� 	� , there are exactly � � � � � vertices

� � � � * ��� * � 	� such that these vertices

form a complete bipartite graph with sets of size � and � � � ��� . We will use this fact later

in describing the strategy of the Duplicator.

In order to prove the first item, we must exhibit a sequence of moves for the Spoiler in

the ��� ����� -pebble game on � � �� � � �� � , starting in position
� � � 0 � , such that either the Duplicator

loses or the position
�
� � 0 � occurs. The Spoiler first places � � � pebbles on

� � � �" ��� � 	� .
Since these are all adjacent to the pebble on � , the Duplicator must place � � � pebbles adjacent

to ��0 . Because, in the Spoiler’s graph, there is an edge � � � �" � � � � � * � � for all /� *
, these are

all adjacent to each other, the Duplicator cannot respond by placing any of these pebbles on the

same vertex. The Duplicator is forced to place these pebbles on
� � � �" ��� � 	� . The Spoiler

now picks up the pebbles on � � 0 and places a pebble on � � � 	 � . This pebble is adjacent to

every pebble the Spoiler placed in the previous row, so the Duplicator must place his pebble on

� � � 	 � . Now the Spoiler picks up any pair of pebbles from row 1 and places a pebble on � . The

Duplicator must place a pebble on either � or � 0 , but it must be adjacent the pebble placed in

row 2. Since � � � 	 � is not connected to � , the Duplicator must play on � 0 , arriving at the position
�
� � 0 � .

Now we must show the existence of the two disjoint sets of positions. We first define

a set of partial homomorphisms, and then split it to form the Pretrapped and Trapped positions.

Given a partial homomorphism
� � � �� � � �� , we define � � � � �

� ��� � � � �" ��� � � � � � � � � �" � �	

� % � 	� , and � � � � � � ��� � � � �" ��� � � � � � � � � �" � �
 � % 3� 	� . Also, let

� � � � � � � � � � � � �
��� � � � � � . Let � be the set of all partial homomorphisms

� � � �� � � �� such that:

19

1. � � � � �

2. � � � � ��� � 	 � � � 0 /
 �

3. ' ��� ��0
 � % � �0
 � �

We say that a position
�

is Pretrapped if
�
 � and � � 0
 � , and

�
is Trapped if

�
 � and � �-0 /
 � .

Now it remains to prove that the sets of Pretrapped and Trapped positions have the

desired properties. By definition, Pretrapped and Trapped positions are partial homomorphisms.

Clearly any subset of a Trapped position is Trapped, and any subset of a Pretrapped position is

either Trapped or Pretrapped. The position
� � �!0 �
 � , so

� � �-0 � is Pretrapped. The positions
�
� �
�

and
�
� �0 � are in � , so they are Trapped.

Assume that
�

is Pretrapped; then � � � � ��� � 	 , and every pebble that the Duplicator

has placed on row 2 is on the positive side and is therefore connected to � . This means that
� � � � � � is a partial homomorphism, and, since we have not changed any of the criteria for

being in � or removed � � 0 , ��� � � � � is Pretrapped.

Assume that
�

is Trapped; then � � 0 /
 � . There is no vertex adjacent to � 0 that is not

also adjacent to � , so when the Duplicator must play on one of them, it is always acceptable to

play on � . This means that
��� � � � � is Trapped.

Now we must show that for every position
�
 � such that � � � � � , and for every

�
 � � � �� � , there is a �
 � � � �� � such that
� � �

� �
�

 � , and if

�
was Trapped, then so is

��� �
� �
�
.

Case 1: If � � � , then � � � . Clearly
�

was Trapped, and therefore so is
��� � � � � .

Case 2: If � � � � �" � , then if � � � � � �
� ��� � � ��� � � �

� ��� � � � � , then there exists

� � � * � , * � 	 , such that � � � * � is adjacent to every vertex in � � � � �
� � , so choose � � � � � * � . This

is still a partial homomorphism. It is also still in � because we have not affected the criteria

for membership. If � � � � � �
� ��� � � � � � � �

� ��� � ��� � , then � � � � � 	 � . Since � � � � � �
� ��� �

� � � � � �
� ��� � � � � , we know that � � � � ��� � 	 , and � � 0 /
 � . Thus

��� �
� �
�

�� .

Case 3: If � � � � � 	 � , then if � � � � � �
� ��� � � � � , then there exists � � � * � , * � 	 , such

that � � � * � is adjacent to every vertex in � � � � �
� � , so choose � � � � � * � . This is still a partial

homomorphism. It is also still in � because we have not affected the criteria for membership.

If � ��� � � �
� ����� � � � , then � � � � � 	 � . Since � � � � � �

� ����� � � � , we know that � � � � ���(� 	
,

20

and � � 0 /
 � . Thus
��� �

� �
�

 � .

Case 4: If � � � , then, if
�

is Pretrapped,
� � � � � � is Pretrapped, so � � � . If

�
is

Trapped, then check �&� � � � � � . If � ��� � � � � ��� � 	 , then �3� � , else �3� � 0 .

We call � � �� � � �� � the Single-Input One-Way Switch.

Corollary 2.1.3 The Spoiler can reach
� ��� ���(0 � � from

� ��� ��-0 � � in the ��� ����� -pebble game on

the Single-Input One-Way Switch, but not in the ������� � � � -pebble game on the Single-Input

One-Way Switch.

Proof: The first part of the Corollary is simply a restatement of condition 1 from Lemma

2.1.2. Assume for the sake of contradiction that the Spoiler can reach
� ��� �� 0 � � from

� �������0 � �

in the ������� � � � -pebble game on the Single-Input One-Way Switch. Then, from the position
� ��� ��-0 � � ��� ����� � of the ��������� -pebble game, the Spoiler could reach the position

� �������-0 � � ��������� �

by ignoring the pebbles on ��� ����� and playing the ��� ��� � � � -pebble game. We know that the

position
� ��� �� 0 � � ��������� � is Pretrapped, but the position

� ��� ���(0 � � ��� ����� � is neither Pretrapped

nor Trapped. This is a contradiction because the Duplicator can avoid such positions from

Pretrapped positions.

Because of Corollary 2.1.3, the Spoiler has to use all of his pebbles in order to make progress.

The “One-Way” aspect of the Switch lies in the fact that
� ������� 0 � � is Trapped, and

� ��� �� 0 � � is

not. This means that the Duplicator can avoid
� ��� �� 0 � � from

� ������� 0 � � .

2.1.3 Twisted Switches

The Twisted Switch consists of an 	 gadget, an
 gadget, and two Single-Input One-

Way Switches in parallel. Figure 2.4 shows a schematic of the Twisted Switch with boxes

where the Single-Input One-Way Switches would be. We use a Twisted Switch in the reduction

to initialize the game. The construction of the Twisted Switch is the same as that in Grohe

[15], except that we substitute a Single-Input One-Way Switch in place of what Grohe calls a

Threshold Switch.

The following Lemma introduces a set of positions of the Single-Input One-Way

Switch, called Switched positions. Within the Twisted Switch, the Duplicator uses Switched

positions instead of Trapped and Pretrapped positions on the Single-Input One-Way Switch.

21

Lemma 2.1.4 There is a set of positions of the ��������� -pebble game on �� , called Switched

positions, such that

1.
� � ��0 ��� � � and

� � � ��� �0 � are Switched.

2. If
�

is Switched, then either
��� � � � 0 ��� � � or

��� � � � ��� �0 � is Switched.

3. The Duplicator can avoid positions that are not Switched from Switched positions in the

��� ����� -pebble game.

Proof: Let the set of Switched positions be the set of all
�
 � , such that if � �
 � , then

��� � � ��0 �
 � .

Clearly
� � � 0 ��� � � and

� � � ��� � 0 � are Switched. If
�

is Switched, then either
�

is

Trapped or
�

is Pretrapped. If
�

is Pretrapped, then
� � � � � 0 � is also Pretrapped, because

� � 0
 � , and
� � � � � � is Pretrapped, as proven earlier. Therefore

� � � � � 0 ��� � � is Switched.

If
�

is Trapped, then � � is either in
�

or not. If � ��
 �
, then

� � � � 0
 � , and therefore
� � � � � 0 ��� � � is Switched. If � � /
 � , then

� � � � � ��� � 0 �
 � , and
� � � � � ��� � 0 � is Switched.

Based on the earlier proof, if
�
 � , then the Duplicator can play to some

� 0
 � .

We only need to show that the Duplicator can maintain the property that if � �
 �
, then

� � � � ��0 �
 � . If
� � � � �-0 ��� � � is Switched, then the Duplicator plays according to a Trapped

strategy on
� � � � �-0 � . If

� � � � � ��� �0 � is Switched, then the Duplicator plays according to a

Trapped strategy on
��� � � ��0 � .

y

x

O O O O

x’x

y y’

T TS D

Figure 2.4: Twisted Switch [15]

22

Lemma 2.1.5 On the Twisted Switch, the Spoiler can reach
�
� � 0 � from

� � � 0 � in the ��������� -
pebble game, and there exists a set of positions of the ��� ����� -pebble game called Twisted posi-

tions such that

1. From Twisted Switches, the Duplicator can avoid non-Twisted positions.

2.
�
� �
�
, and

�
� �0 � , are Twisted positions.

3. If
�

is a Twisted position, then
� � � � � 0 � is a Twisted position.

Proof: It is easy to see that the Spoiler can reach � ��0 from � ��0 . The Spoiler plays to either � � 0
or ��0 in 	 , and the traverses one of the One-way switches, and reaches � �-0 .

Let the Twisted positions be all those positions that meet one of the following criteria:

1.
��� � � � � , ��� � � � � � , ����� is Switched,

���
�
� � � � ��� � � is Trapped.

2.
��� � � � � , ��� � � � � 4 , ��� � is Switched,

��� � � � � � ��� � � is Trapped.

3.
��� � � � � ,

��� � � � � � , ��� � is Switched,
��� � � � � � ��� � � is Trapped.

4.
��� � � � � ,

��� � � � �4 , ��� � is Switched,
���
�
� � � � ��� � � is Trapped.

Clearly,
�
� �
�

and
�
� � 0 � are Twisted. Assume

�
is twisted. We know that

�	� � � � � �
or
��� � � � �4 . Since � �-0 is in both of these automorphisms,

��� � � � 0 � is Twisted.

Given any Twisted position
�

, it falls in one of the four categories above. On each

part of the graph, the Duplicator simply plays according to the appropriate strategy.

The Twisted Switch will be used to initialize the game. To do this, �
 � � and

� 0
 � � are colored the same color, while �
 � � is colored a different color. Thus, if

the Spoiler plays on � , then the Duplicator must play on � 0 . From here the Spoiler can play

to
� ��� ��� 0 � � . The Twisted positions allow the Duplicator to avoid

� ��� �� � � , which is a losing

position.

23

2.1.4 Reduction from MCV to
���������

-Pebble Game

Theorem 2.1.6 For every fixed � � � , determining the winner of the ��� ����� -pebble game is

P-Complete.

Proof: This reduction is modified only slightly from the reduction in [15]. The reduction

proceeds as follows: Given a circuit � , an assignment of values to the input nodes, and a

node � , we construct a graph � � . For each node in the circuit, there are three choices:

1. If is an input node, then � � contains vertices and 0 . If the value of in � is false,

then we color 0 black.

2. If is an and node with parents
*

and 	 , then � � contains nodes and 0 ; a copy of 	�� ,

called 	�
 with � and �(0 identified with and 0 ; and two copies of � �� , one of which has

� and �-0 connected to � and � 0 , and � and �0 connected to
*

and
* 0 called �
� . The other

copy connects and 0 to 	 and 	 0 in a similar manner and is called �
� .

3. If is an or node with parents
*

and 	 , then � � contains nodes and 0 ; a copy of
 �
called
�
 with � and � 0 identified with and 0 ; and two copies of � �� , one of which has

� and � 0 connected to � and � 0 , and � and � 0 connected to
*

and
* 0 called �
� . The other

copy connects and 0 to 	 and 	 0 in a similar manner and is called ��
� .

In any case, is colored white.

The construction of � � is similar, except that we do not add 0 and we use the Spoiler

version of each gadget and switch instead of the Duplicator version.

In addition, there is a Twisted Switch
�

, such that � is colored a fresh color in � � ,

and �-0 is colored the same color in � � . Also, in � � , � in
�

is connected to � , while in � � , � is

connected to � and � 0 is connected to �0 .
The basic idea is that the Spoiler plays from the top of the Twisted Switch through

the graph attempting to reach a false input. Because of the properties of the 	 and
 gadgets

and the Single-Input One-Way Switch, the Spoiler can do this if the value of the goal node

is false. If the value of the goal node is true, then the Duplicator can play along indefinitely.

He does this by choosing a path down the simulated circuit which leads to a true input. If the

Spoiler attempts to depart from the intended mode of play, the Duplicator can use the properties

24

of Trapped and Pretrapped strategies to arrive at a partial homomorphism that is a subset of the

identity.

Now we want to prove that if the value of node � in � is false, then the Spoiler wins

the ��������� -pebble game on � � � � � � � , and if the value of node � is true, then the Duplicator wins

the ��������� -pebble game on � � � � � � � . First, assume that the value of � is false. We must show

that the Spoiler wins the � � -pebble game. First, the Spoiler can play starting on � � 0 , and play to

� �.0 . The proof is by induction on the height of � . Assume that the height of � is 0. This means

that � is an input node. Since we assume that the value of � is false, by construction, � and � 0
are different colors, so the Spoiler wins. Now assume that the height of � is � and for every

node � of height less than � , if the value of � is false, then the Spoiler wins. If � is an and node

with inputs
*

and 	 , then one of the inputs of � is false. Assume, without loss of generality, that
*

is false. In the ��� ����� -pebble game on � 	 � � 	 � � , the Spoiler can reach � � 0 from � ��0 . From this

position the Spoiler can reach
* * 0 along � �� . By induction, the Spoiler wins the game starting

from
* * 0 . The argument is analogous for the or nodes.

Now that we have shown that if the value of � is false, then the Spoiler wins the

��������� -pebble game, we must show that if the value of � is true, then the Duplicator wins the

��������� -pebble game.

A position
�

is safe if the position on
�

is twisted and there exists a node such that:

1. For every one-way switch � adjacent to 0 , ��� � � � � � is Trapped, and everywhere else
�

acts as the identity; or

2. For every one-way switch � adjacent to �0 , ��� � � � �0 � is Trapped, and

(a) is an and node with parents
*

and 	 , and
� ��� � � � � , � � � � � � � ��0 � is Pretrapped,

and
� ��� � � � � �-0 � is Pretrapped.

(b) is an or node with parents
*

and 	 with one of the following:

i.
*

is true and
����� � � � �4 , ��� � � � � � � 0 � is Pretrapped, and

����� � � � � .

ii. 	 is true and
� ��� � � � ��� , � ��� � � � � ��0 � is Pretrapped, and

� � � � � � � .

(c) is an input node with /
 � .

We now must show that the set of safe positions is a winning strategy for the Duplica-

tor. Any safe position is a partial isomorphism. The position � ��0 is clearly a safe position. Since

25

all of the criteria for being safe involve subset properties, any subset of a safe position is safe.

Now, given any safe position
�

, we must show that the Duplicator can play into another safe

position. Assume
�

satisfies case 1. The Duplicator plays according to the identity everywhere

except the one-way switches adjacent to . On one of these subgraphs � , the Duplicator plays

according to a Trapped strategy on � �
�
� �
�

if � �	� � � � � � , and according to a Trapped

strategy on � otherwise.

If
�

satisfies case 2, then on each one-way switch � adjacent to , the Duplicator

plays according to a Trapped strategy on
�	��� � � �0 � .

If
�

satisfies case 2a, then we play a Trapped strategy on �
� � � � �-0 � and �
� � � � �-0 � ,
unless there are already � � � pebbles placed on one of these subgraphs, in which case we

simply play according to a Trapped strategy on that subgraph. As before we play according to

the identity everywhere outside the vicinity of , and according to an automorphism on 	
 .
The Duplicator plays similarly for the other cases.

This reduction is clearly in L, because we replace each gate in the circuit with a gadget

whose size depends solely on what type of gate it is. We can easily keep track of the indices

for the loop in a small amount of space. We have used 10 different colors for the reduction. We

use three for the 	 and
 gadgets, four for the rows of the Single-Input One-Way Switches, one

for the input of the Twisted Switch, one to encode the values of the circuit inputs, and one base

color for everything else.

2.2 Complexity of the
�����

��� -Pebble Game with � Part of the Input

Kasai, Adachi and Iwata [17] showed that the following pebble game, which (to avoid

confusion in the terminology) we will call the KAI game, is EXPTIME-complete. The game

is played between two players, called Player I and Player II. An instance of the KAI game is

a quadruple ��� � � � � ��	 � , where � is a set of nodes, � � � � is a set of rules, � � � is the

initial position of the game, and 	
 � is the goal. There are as many pebbles as nodes in the

initial position � ; at the start of the game, each node in � has a pebble on it. The two players

take turns, and in each turn they slide a pebble as follows: If ��� ������� �
 � is a rule, then the

current player may slide a pebble from � to � , if there are pebbles on � and � , but not � . The

26

first player to place a pebble on the goal 	 wins. The problem is, given ��� � � � � ��	 � , does Player

I have a winning strategy?

We will show that the ��������� -pebble game is EXPTIME-complete by exhibiting a

reduction from the KAI game. The reduction proceeds by constructing an instance of the ��������� -
pebble game such that the Spoiler and the Duplicator simulate the instance of the KAI game.

In particular, the Spoiler can win only by simulating a winning strategy for Player I in the KAI

game. If there is no winning strategy, then the Spoiler does not gain any advantage by not

simulating the KAI game. For this reduction, we use � � � � � .
To perform this simulation, we use a Twisted Switch (Section 2.1.3) to initialize the

game, and new switches to allow Player I and Player II to choose rules, to apply the rules, and

to force the Spoiler to simulate the game.

2.2.1 The Gadgets 	 � and
 �

These gadgets allow the Spoiler and Duplicator to choose rules of the KAI game to

use. In both the 	 � and
 � gadgets, the nodes � � ��� �� ��� � � are colored the same color, but the

color of � � is different from the color of � 4 for ��/� . See Figures 2.5 and 2.6 for examples of

the 	 � and
 � gadgets respectively.

x x x x

y y y y y y y y yy y y

0 1

1 2 3 1 2 31
0

1
1 0

2
1
2

0
3

1
3

Figure 2.5: 	 � Gadget

Lemma 2.2.1 For every � � � , in the ��������� -pebble game on � 	 �� � 	 �� � , from a position
� � � 4 � ,
 �
	 � � � , the Spoiler can reach

�
� � � �4

�
for any � .

Proof: Clear based on vertex coloring.

Lemma 2.2.2 For every � � � , in the ��� ����� -pebble game on
 �� �
�� , from a position
� � ��4 � ,

 �
	 � � � , the Duplicator can choose any
� � � � � , and avoid

�
��� ���4

�
for

� /� � .

27

x x

y y y y y y y y yy y y

x x 1

1 2 3 1 2 31
0

1
1 0

2
1
2

0
3

1
3

0

Figure 2.6:
 � Gadget

Proof: In a similar way to that used on the smaller
 gadget, the Duplicator chooses an in-

termediate step which forces the Spoiler to play a certain way in order to carry information

forward in the game.

2.2.2 Multiple-Input One-Way Switches for the
������� �

-Pebble Game

The idea of the Multiple-Input One-Way Switch is to restrict the Spoiler’s potential

winning strategies. We simulate each node � � in the KAI game by using three nodes in the

Duplicator’s graph, � � � �� � � �� � . These correspond to not having a pebble on � � in the simulated

game, having a pebble on � � in the simulated game, and no information about � � , respectively.

In the Multiple-Input One-Way Switch, the Spoiler can make progress only if he has information

about each node in the simulated game. Also, if the Spoiler attempts to play backwards through

the Switch, he will end up with no information about any nodes in the simulated game.

Lemma 2.2.3 For every � � � , there exists a pair of graphs � �� , and � �� such that:

� � � �� �� �� �� ������� �� � � � �� � � �� �� � � �� ��� � ��� �� ��� �� ������� ��� � � � ��� � � �� ��� � � ��
� � � � � �� � �

� � � ������� �� � � � ��� � ������� ��� � � � � � � � � �� � , � � � � �� ��� is � � � � � , � � � � �� ��� is � � � � � , and the

following properties hold:

1. From a position
� � � � �4 � �

� � � � � � � �� �
 �
	 � � ��� , the Spoiler can reach the position
�
� � � �4 � �

� � � � � � � �� �
 �
	 � � ��� in the ��������� -pebble game on � �� and � �� .

2. There exist two disjoint sets of positions of the ��������� -pebble game on � � �� � � �� � , called

Pretrapped and Trapped positions, such that:

28

x x x x

y y y y

0 1 10

1y y

xxx x

y y

1 2 2 2

1 2
1 2

1 2 1 1

1 1 2 2
100

Figure 2.7: A Subgraph of � �

(a) Pretrapped and Trapped positions are partial homomorphisms.

(b) From Pretrapped positions, the Duplicator can avoid positions that are not Pre-

trapped and not Trapped.

(c) From Trapped positions, the Duplicator can avoid positions that are not Trapped.

(d) From any position �������
	������������������� where �����	�� 	!�" �# $ " �&%('����)�(+*
�,�-� , the Duplicator can avoid ./	0.1	! for all ���2�3�4�,�-�5'6$ " �&%('���� .

(e) All positions that are subsets of positions of the form ��� 	 � 	!87 ��9���:���#���5'6$ 	 "
�&%('����)� , are Pretrapped.

(f) If � is Pretrapped and �#1*4� , then �<;=��.>	�.?	8� is Pretrapped for all � .
(g) Any position in which all of the Spoiler’s pebbles are on nodes .
	 , is Trapped.

(h) If � is Trapped and ��1*4� , then �@;=��� 	 � 	 � is Trapped for all � .

Proof: First, we define �BAC and ��AD . Then, we show that these graphs have the desired prop-

erties.

29

� � � �� � � � � � �� �� �� �� ������� �� � � � �� � � �� �� � � �� ��� � ��� �� ��� �� ������� ��� � � � ��� � � �� ��� � � ��
� �

� � �4 � � � � � � � � � � � � � � � � � � � � � �
� � �4 � � � � � � � � � � � � � � � � � � �

� � � �� � � � ��� � �"� �4 ��� � � � � � � � � � � � � � � � � � � � � �
� ��� � � �"� �4 ��� � � � � � � � � � � � � � � � � � � � �
� ��� � � �"� �4 ��� � � � � � � � � � � � � � � � �
� ��� �4 �"� �� ��� �6/�

� � � � /� � � � � �
� ��� �4 �"� �� ��� ��/�

� � �� � 	 %�� � 	 ��" �� � 	 %�� � 	 � � �
� ��� �4 �"� �� ��� /�

	 � � � � � � � � � �
�
� � � � /� � � � � � � mod ��� � � � �

� ��� � � �"� �� �
� �

� ��� �4 �"� �� ��� �� � 	 ��" � �6/� � � � �
� ��� �4 �"� �� ��� �� � 	 ��" � �6/� � � � �
� ��� �4 ��� � ��� � � � � � � � � � � � � � � � � � � � �
� ��� �4 ��� �4 ��� � � � � � � � ��
 �
	 � � ��� �
� ��� �4 ��� �� ���

� � � � � � � � � � � � � � � � � � ���
 �
	 � � ���

� � � �� � � � � � ������� �� � � � ��� � ������� ��� � � � � �
� � � � � � � � � � � � �
� � � � � � � � � � � �

� � � �� � � � ��� � �"� � � � �
� ��� � �"� 4 ��� ��/� � �
� ��� � �"� 4 � � �
� ��� � �"� 4 ��� ��/� � �
� ��� � ��� � � �

One can picture this graph as a set of connected switches, each of which is similar

to the Single-Input One-Way Switch. In particular, each individual switch needs to be colored

30

a separate color. Figure 2.7 shows two component switches for the game on 4 pebbles. There

would be one more in the full Multiple-Input One-Way Switch, connected to each of these two

in the same way.

From a position
� � � � � � �4 � �

� � � � � � � �� �
 �
	 � � ��� , the Spoiler can take his

extra pebble and place it on � � . We know that � �� is only connected to � �� where � � 	 , and � ��
is only connected to � �� where � � 	 . So, if � � � ��
 � , the Duplicator must place a pebble on

some � �� , � � 	 , and if � � � ��
 � , the Duplicator must play on
� �� , � � 	 . Now, the Spoiler

picks up the pebble on � � and places it on � � . Similarly, the Duplicator must play negative if

her pebble is on � �� and positive if her pebble is on � � � . The Duplicator’s choice is more limited

than in the previous move, because the Duplicator can only play on � �4 such that � � /� � � � . After

� � � such moves,
� 0 will consist of

� � � � � � � � �4���� �
�

union a set
� � � � � � � �

� � � � � � � � , such that

� � � � /� � � 4 � for all ��/� , and the sign of
� � matches the sign of
� for all � .

The Spoiler next picks up the pebble on � � � � and places it on � � . For any � ��
 � �� ,

� � 	
, there is a , � � � 	 , such that ��� �4 �"� �� � /
 � � � �� � for any � . This means that the

Duplicator must place a pebble on either � �� , or � �� depending on the sign of � �4 . Next, the

Spoiler picks of the pebble on � � and places it on � � . The Duplicator must respond by playing

a pebble on � �� or � �� , depending on the sign of � �4 . This sequence is continued.

From here it is easy to see that the Spoiler can reach
�
� � � �4 � �

� � � � � � � �� �

�
	 � � ��� .

Now we must exhibit a set of positions with the appropriate properties.

Let � be the set of all partial homomorphisms,
�

, from � � to � � such that:

1. � ���� such that � 4 �

�� � � � � / � � � � such that � ��

�� � � � .
2.

� � , � ��

�� � � � � / � � 	 such that �4

 � � � � .
3.

� � , � � �

�� � � � � / � � 	 such that �4

 � � � � .
�

is Pretrapped if � � �� such that � 4 �

 � � � � and
�
 � .

�
is Trapped if

�
�� and
�

is not Pretrapped.

The last four properties of these sets of positions are easy to see. The difficulty arises

in proving that given any Trapped position, the Duplicator can play so that the position remains

Trapped, and given any Pretrapped position, the Duplicator can play so that the position is either

Trapped or Pretrapped. We prove that given any position in � , the Duplicator can play so that

31

the new position is also in � and if the previous position was Trapped, then the new position is

Trapped. Given a position in � , there are four basic types of moves that the Spoiler can make.

Case 1: � � � � . The Duplicator can always play on � � .
Case 2: � � � � . If � � � �4 /
 � for any , then the Duplicator can play on � � . Assume

� � � � �
 �
(the case of � � � � �
 �

is symmetric). We need to find node � �4 , such that � 	
,

and � �4 is connected to all of the chosen nodes on the � and � levels. Since there are strictly

fewer than � � � such nodes, there is a choice such that the partial homomorphism property is

maintained.

Case 3: � � � � . If � � � � such that � ��

 � � � � , then � � 	 such that
� � � � * � � * �4 � �

is a partial homomorphism. If � � � � � 	
such that

*
��

 � � � � , then either

* �
� or

* � � will

maintain the partial homomorphism. Let � � � ���

 � � � ��� � /� 	�
. If � � � � � � � , then

� /� 	
such that �4
 � . Then, if � 	 , the Duplicator plays

* � � , otherwise the Duplicator

plays
* �
� .

Case 4: � � � � : If
�

is Pretrapped, then the Duplicator can play � � . If
�

is Trapped,

then the Duplicator can play one of � � ��� �� ��� � � .
Now we show that using this strategy, the Duplicator will avoid � � � �4 for all

� � � �

� � � ��	
 �
	 � � � from any position
� � � � � � � � � � � � � � where � � � � � �4
 � �
 �
	 � � ��� � �

� � � . We know that
�

is Pretrapped, so
� � � � � � �4 � � � � � � � � ��
 �
	 � � � is Pretrapped.

For sake of contradiction, assume that the Spoiler can play to
�
� � � �4

�
for some ���� . This means

that the Duplicator would have played a pebble on � �� for some
� � 	 . There are two reasons

that the Duplicator will play a pebble on � �� with
� � 	 : Either there are � 0 and

� 0 such that � � �� �
is in
 � � � 0 � ; or

� 0 contains � � � pairs of the form ��� � �� with � /� 	 . In the first case we can

recurse to the second case. Now it is easy to see that the Duplicator would never actually play to

this position, because for some � , the pair � � � �
 � . If the Spoiler plays on � � , the Duplicator

will play on � � � .

2.2.3 The Rule Gadget

The rule gadgets are used to simulate a move of the KAI game. One rule gadget

causes the Spoiler to lose if the rule gadget corresponds to a rule that cannot be applied, and

another causes the Duplicator to lose if the rule cannot be applied.

32

First, we define the rule gadget �	�
 , shown in Figure 2.8, that is used to keep the

Spoiler playing nicely.

� � �	�
� � � � � �� 0 �� � �� 0 � �� � �� 0 � ������� 0 ��� � ��� 0� ��� � ��� 0 � ��� ��� 0 ��� � ��� 0� ����� ��� 0 � � �
� � � �� � 0 �� � � �� � � 0 �� � � �� � � 0 � � � � � � � � � �
� �" �� �" ���" �� �

� � �	�
� � � � ��� � �� � 0 � � ��� � � �� � � 0 � � ��� � � �� � � 0 ��� � � � ��� � � � �
� ��� �" �� � � ��� �" �� � � ��� �" �� � � ��� � �" �� � � ��� � �" �� � � ��� � �" �� � � �
� ���!� �" �� � � ���!� �" � � ���!� �" �� � � �
� �����" �� � � �����" �� � � �����" �� � � ��� � �" ��� � ��� � �" �� � � ��� � �" �� � � �
� ��� � �" �� � � ��� � �" � � ��� � �" �� � � �
� �	� �" � � � �	� �" � � � �	���" � � � �	� � �" � � � �	� � �" � � � �	� � �" � � �
� �	� � �" � � � �	� � �" � � � �	� � �" � � � �
� �� �� 0 � � � �� ��� 0 � � � �� ��� 0� � � �
� ��� �� 0 � � ��� ��� 0 � � ��� ��� 0 ��� �
 � �� �" ���" �� ���

� � �	�
� � � � � �� 0 ������� 0 ������� 0 � �
� � � �� � 0 � � � � � � � � � �
� �

� � �	�
� � � � ��� � �� � 0 ��� � � ����� � � � �
� ��� �" � � ��� �" � � �	� �" � � �� �� 0 � � �� ��� 0 � � �� ��� 0 � �

Lemma 2.2.4 If the rule gadget �	�
 does not correspond to a legal rule, that is, if one of � �,� ,
� � � , � � � is not in

�
, then the Duplicator can avoid � 0 � 0� in the ��� ����� -pebble game on �	�
 .

Proof: Each rule gadget corresponds to a rule � ��� ������� � . If
� ��� �� � � � ������� � � � �	� ��� � � � �

�
, then the Spoiler can reach

� ��� 0 �� 0 � � � ��� 0 ��� 0 � � � �	� 0 ��� 0� � � . Otherwise, if the Spoiler plays on

��0 ���0 ��� 0 , the Duplicator is forced to play on � 0 ���0 ����0 .

33

x y z

x’ y’ z’

x y z

x’ y’

x x y y z z

x’ y’ z’ z’z’y’x’

0

0 0

0 0

0

1

1

1

1

1

1

Figure 2.8: The rule gadget �	�
 that penalizes the Spoiler for choosing a bad rule

Next, we define the gadget ��
 , shown in Figure 2.9.

� � ��
� � � � � �� 0 �� � �� 0 � �� � �� 0 � ������� 0 ��� � ��� 0� ��� � ��� 0 � ��� ��� 0 ��� � ��� 0� ����� ��� 0 � � �
� � � �� � 0 �� � � �� � � 0 � � � �� � � 0 � � � � � � � � � �
� �" �� �" ���" �� �" �� � � �

� � ��
� � � � ��� � �� � 0 � � ��� � � �� � � 0 � � ��� � � �� � � 0 ��� � � ����� � � � �
� ��� �" �� � � ��� �" �� � � ��� �" �� � � ��� � �" ��� � ��� � �" �� � � ��� � �" �� � � �
� ���!� �" �� � � ��� � �" � � ���!� �" �� � � ��� �" �� � � � � �
� �����" �� � � �����" �� � � �����" �� � � ��� � �" �� � � ��� � �" �� � � ��� � �" �� � � �
� ��� � �" �� � � ��� � �" � � ��� � �" �� � � ��� �" �� � � � � �
� �	� �" �� � � �	� �" �� � � �	���" �� � � �	� � �" �� � � �	� � �" �� � � �	� � �" � � �
� �	� � �" � � � �	� � �" � � � �	� � �" � � � � �	� �" � � � � �
� �� �� 0 � � � �� ��� 0 � � � �� ��� 0� � � �
� ��� �� 0 � � ��� ��� 0 � � ��� ��� 0� ��� �
 � � �" � �" � ��� �
� �� �� � � �� 0 � � �� �� � � ��� 0 � � �� �� � � ��� 0 � �

34

� � ��
� � � � � �� 0 ������� 0 ��� ��� 0 � �
� � � �� � 0 � � � � ��� � � � �
� �

� � ��
� � � � ��� � �� � 0 ��� � � � � � � � � �
� ��� �" � � ��� �" � � �	� �" � � �� �� 0 � � �� ��� 0 � � �� ��� 0 � �

Lemma 2.2.5 If the rule gadget ��
 does not correspond to a legal rule, that is, if one of � �,� ,
� � � , � � � is not in

�
, then the Spoiler can play to �.0 ��0� , which causes the Duplicator to lose.

Proof: If
� ��� �� � � � ��� ��� � � � �	����� � � � � �

, then the Spoiler can play to reach the position
� ����0 ��-0 � � � ���.0 ���0� � � �	��0 ����0� � � . If

� ��� �� � � ������� � � �	����� � � � �
, then the Duplicator can play to

� ����0 ��-0 � � ���0 ���.0 � � �	��0 ����0 � � . Otherwise, the Spoiler can play to
� ��� 0 ���0 � � ���0 ���0 � � �	��0 ����0� � � which

causes the Duplicator to lose because �0� is colored a distinct color.

x’ y’ z’ x’ y’x’ y’ z’ z’z’y’x’0 0 01 1 1

z
x y z

x y zx x y y z
0 0 01 1 1

Figure 2.9: The rule gadget ��
 that penalizes the Duplicator for choosing a bad rule

2.2.4 Winning the Game

For each gadget, we define its boundary to be the set of nodes which are used to

connect that gadget to other gadgets. For � � , 	 � , and
� , the � and � nodes form the

boundary. For �	�
 and ��
 , the boundary consists of all the nodes except the middle nodes.

For the Twisted Switch, the boundary consists of � in
� � and � ���0 in � � . In the Twisted Switch,

� and �-0 are never connected to any other gadgets.

35

Lemma 2.2.6 For each gadget other than the Twisted Switch, starting from a position that is a

subset of the identity on the boundary, the Duplicator can avoid any position that is not a subset

of the identity on the boundary.

Proof: For 	�� ,
� , �	��
 and ��
 this is clear, because for each � in this set, � � � ��� . On

the Multiple-Input One-Way Switch, this follows from the properties proven in Lemma 2.2.3.

By combining this lemma with the properties of the Multiple-Input One-Way Switch,

we obtain a sufficient condition for the Duplicator to win the ��������� -pebble game.

2.2.5 Reduction from KAI Game to
������� �

-Pebble Game

I I I

R

M

R

M

M

R

M

R

y

x

x

y

T

D

Figure 2.10: Component decomposition of the Duplicator’s graph for the reduction

36

Theorem 2.2.7 Determining the winner of the ��������� -pebble game with � part of the input is

EXPTIME-Complete.

Proof: We perform a reduction from the KAI Game to the ��������� -pebble game. An instance

of the KAI Game consists of ��� � � � � ��	 � . Given this, we form an instance of the ��� ����� -pebble

game as follows. First, � � � � � � � , so the Spoiler and Duplicator will be playing with as many

pebbles as there are nodes in the KAI game.

The Duplicator’s graph and the Spoiler’s graph each have two sides. One side repre-

sents Player I’s turn in the KAI game, while the other side represents Player II’s turn.

First, we build Player I’s side of the graph. For each � �
 � , we form three nodes

in � , called � � � �� � � � �� � � � . These three nodes correspond to specific information about the

simulated KAI game. If there is a pebble on � � � � , then there is a pebble on � in the KAI game,

and � � � � corresponds to no pebble on � . A pebble on � � in the Duplicator’s graph means that

the Spoiler has made a mistake. For each ��� ������� �
 � , construct a rule gadget to penalize the

Spoiler, connected to each � ��� � � �� ��� by 	 � gadgets. The other end is then connected to a

Multiple-Input One-Way Switch.

On the other half of the graph is another set of nodes, � � � �� � � � �� � � � . Connecting the

� � nodes to Duplicator punishing rule gadgets is a set of
 � gadgets where � � � � � . Given any

two of these
 � gadgets � and � , there is an edge between ��� � �4 and � � � �� for all � �� ��� , and

an edge between ��� � � and � � � � for all � . We then connect a Multiple-Input One-Way Switch to

each of the rule gadgets in the obvious way. The outputs of these are connected back around to

the first set of state nodes.

We use a Twisted Switch to set up the initial positions. If � �
 � , then there is an

edge from �0 of the Twisted Switch to � � � � , otherwise there is an edge from �(0 to � � � � . There is

an edge from � to � � � for every � . We then color � 0 a unique color.

The Spoiler’s graph is constructed in a similar way. The Spoiler gets � � � and � � �

for every � �
 � . Also, for each rule and each side, there is a corresponding Multiple-Input

One-Way Switch followed by a rule gadget. For the Twisted Switch, we color � the same color

that we colored � 0 in the Duplicator’s graph.

The idea is that the two players now simulate the KAI game by playing the ��������� -
pebble game on these structures. The Spoiler initializes the game by playing on the Twisted

Switch. From here, the Spoiler uses the 	 � gadgets to choose a rule, then plays through

37

the �	�
 gadget and the Multiple-Input One-Way Switch to simulate the move of Player I in

the KAI game. Then the Spoiler continues to play through Player II’s side of the structures,

allowing the Duplicator to choose a rule to simulate, and applying that rule. If Player I has a

winning strategy for the KAI game, then this simulation process will eventually simulate Player

I’s placing a pebble on 	 . Because of the coloring of the structures, this causes the Spoiler to

win the ��������� -pebble game. The more difficult step is showing that if Player I does not have a

winning strategy, then the Duplicator wins the ��������� -pebble game. If the Spoiler plays nicely

and simulates the KAI game, then the Duplicator can avoid 	 , by playing a smart strategy for the

KAI game. If the Spoiler does not play nicely, and departs from the simulation, then, because

of the properties of the gadgets, the Duplicator can play along indefinitely.

First, we show that if Player I has a forced win in the KAI game, then the Spoiler can

win the ��������� -pebble game. A forced win consists of a strategy such that on Player I’s turn,

there is a legal rule such that for every choice Player II makes, Player I arrives back at a position

with a forced win.

If the Spoiler plays on � in the Twisted Switch, the Duplicator must play on � 0 . This

allows the Spoiler to play the initial position of the KAI game. Since we know that there is a

rule that corresponds to a forced-win strategy for Player I in the KAI game, the Spoiler can use

the 	 � gadgets to choose that rule. Then, the Spoiler can traverse the Multiple-Input One-Way

Switch, maintaining the values of the nodes. Since this rule was chosen from a forced-win

strategy for Player I, we know that it is a legal rule to apply, so the Spoiler can play to the � �

with the value of � � corresponding to the simulated game after the chosen rule has been applied.

Now the Spoiler continues play along the
 � gadgets. We know that the Spoiler can

reach some rule along these gadgets, but the Duplicator gets to pick which one. The Duplicator

must pick a single rule because of the connections among the outputs of the
 � gadgets. This

means that the Spoiler can reach the Multiple-Input One-Way Switch that corresponds to some

rule, with all of the information intact. Now the Spoiler plays through the Multiple-Input One-

Way Switch and the rule gadget to return to the � � side of the structure. Since the Spoiler is

playing according to a forced-win strategy, there is a forced-win strategy from this position.

Eventually the Spoiler will place a pebble on 	 � , and the Duplicator will be forced to

place a pebble on 	 � � . Since these are different colors, the Spoiler wins.

Now, assuming that Player I does not have a forced win in the KAI game, we must

38

exhibit a winning strategy for the Duplicator.

Consider a configuration �2� � � � � � of the KAI game where � is the set of nodes

that have pebbles on them and
�

is a Boolean representing which player’s turn it is. We call a

configuration of the KAI game critical for a position
�

of the ��������� -pebble game if one of the

following is true:

1. The number of active nodes is � � � , it is the Spoiler’s turn, and

(a) For each Multiple-Input One-Way Switch � � 4 on Player II’s side,
� � � ��� � � � � � � � � � �

�
� � � � � � �� � � � /
��

�
is Trapped.

(b) For each Multiple-Input One-Way Switch � � 4 on Player I’s side that corresponds

to a rule ��� ������� � such that � ���	
 � and � /
 � ,
� � � � � � � � � � � � � � �
 �� � � � � � ��� � � � � � � � � � � /
�� ��� � � � � � ��� is Pretrapped.

(c) For each Multiple-Input One-Way Switch � � 4 on Player I’s side that corresponds

to a rule ��� ������� � such that either � /
 � , � /
 � , or �
 � , then
� � � ��� � � � � � � � � � �

�
��� � ������� ��� � � � � � �� � � � /
 � � � � ������� ��� � � � � � � � � �
 � � ��� ��� ��� is Pretrapped.

2. The number of active nodes is less than � � � , it is the Spoiler’s turn and there exists � �
such that:

(a) For each Multiple-Input One-Way Switch � � 4 on Player II’s side,
� � � � � � � � � � � � � � �

�
�

is Trapped, � � /
 � ,
� � � � � � � � � � � � is Trapped.

(b) For each Multiple-Input One-Way Switch � � 4 on Player I’s side that corresponds

to a rule ��� ������� � such that � ����
 � and � /
 � ,
� � � ��� � � � � � � � � � �
 � �6� � ��� is

Pretrapped, and � � /
 � ,
� � � ��� � � � � � � � is Pretrapped.

(c) For each Multiple-Input One-Way Switch � � 4 on Player I’s side that corresponds

to a rule ��� ������� � such that either � /
 � , � /
 � , or �
 � , then
� � � � � � � � � � � � � � �

�
��� � ������� ��� � � � � � � � � �
 � � ������� ��� is Pretrapped.

3. The number of active nodes is � � � , it is the Duplicator’s turn, and

(a) For each Multiple-Input One-Way Switch � � 4 on Player I’s side, we have that
� � � ��� � � � � � � � � � �
 � � � � � � � �� � � � /
 � � is Trapped.

39

(b) For each Multiple-Input One-Way Switch � � 4 on Player II’s side that corresponds

to a rule ��� ������� � such that � ���
 � and � /
 � ,
� � � � � � � � � � � � � � �
 � �$� � � �

�
�
��� � � � � � � � � � � /
 � ��� � � � � � ��� is Pretrapped.

(c) For each Multiple-Input One-Way Switch � � 4 on Player II’s side that corresponds

to a rule ��� ������� � such that either � /
 � , � /
 � , or �
 � , then
� � � ��� � � � � � � � � � �

�
��� � ������� ��� � � � � � �� � � � /
 � � � � ������� ��� � � � � � � � � �
 � � ��� ��� ��� is Pretrapped.

4. The number of active nodes is less than � � � , it is the Duplicator’s turn, and there exists � �
such that:

(a) For each Multiple-Input One-Way Switch � � 4 on Player I’s side, we have that
� � � � � � � � � � � � � � �
 � � is Trapped, � � /
 � ,

� � � � � � � � � � � � is Trapped.

(b) For each Multiple-Input One-Way Switch � � 4 on Player II’s side that corresponds

to a rule ��� ��� ��� � such that � ���
 � and � /
 � ,
� � � ��� � � � � � � � � � �
 � ��� � ��� is

Pretrapped, and � � /
 � ,
� � � ��� � � � � � � � is Pretrapped.

(c) For each Multiple-Input One-Way Switch � � 4 on Player II’s side that corresponds

to a rule ��� ������� � such that either � /
 � , � /
 � , or �
 � , then
� � � � � � � � � � � � � � �

�
��� � ������� ��� � � � � � � � � �
 � � ������� ��� is Pretrapped.

Let the safe positions be the set of partial homomorphisms
�

such that
� ��� is Twisted

and there is a configuration of the KAI game that is not on a winning path for Player I, which

is critical for
�

. Notice that any position where the empty configuration is critical is a winning

position for the Duplicator.

What we must show is that for any safe position, the Duplicator can play in such a

way as to avoid non-safe positions. The empty position is safe. As an example, consider a safe

position
�

in which the configuration � � � � � is critical for
�

. If the Spoiler plays in any � � 4 ,
then the Duplicator plays according to a Trapped strategy on � � 4 . If the Spoiler plays on

�
,

then the Duplicator plays according to a Twisted strategy on
�

. If the Spoiler plays on �	� � , the

Duplicator has no choices. If the Spoiler plays on � � 4 , then the Duplicator plays according to

a Pretrapped strategy on � � 4 . If � � � � � � � , then, as proven earlier, the Duplicator can avoid

� � � �4 on all � � 4 . Also, if � � 4 corresponds to a rule that is illegal in configuration � , then the

Duplicator can also avoid � � � �4 for all � � 4 .

40

The Duplicator plays similarly on the other side of the graph when a configuration

� � � � � is critical for
�

.

As pointed out in Section 2.1, the structures used in the reduction of MCV to the

��������� -pebble game with fixed � were undirected graphs with a fixed number of colors (ten).

In contrast, the structures used in the preceding reduction of the KAI game to the ��������� -game

with � part of the input are undirected graphs with a number of colors that is linear in the size

of the input. It is an interesting technical problem to exhibit a reduction of the KAI game to the

��������� -game with � part of the input in which the structures are undirected graphs with a fixed

number of colors.

2.3 A Framework for Pebble Games

Combinatorial games have been used to analyze logical definability and the expressive

power of various logics. Usually a logic � will be parameterized based on some syntactic

property � , often number of variables or alternation of quantifiers. This gives rise to logic

fragments � � ��� . With each fragment, we associate a game

 � ��� . This game is played on two

structures � and � , by two players known as Spoiler and Duplicator. The game is designed

such that Duplicator has a winning strategy if and only if � and � satisfy the same sentences

in � � ��� .
As discussed earlier, for ������ � the corresponding game is the ��������� -pebble game. For

the first-order logic ��� , each fragment ��� � ��� is the set of first-order sentences with quantifier

rank that is at most � , and the game

 � ��� is the � -move Ehrenfeucht-Fraı̈ssé game. For the

infinitary logic � � � � with finitely many variables, each fragment is ��� � � , the infinitary logic

with � variables. The corresponding game is the � -pebble game, which has been used to study

fixed-points logics in finite model theory. (For a survey, see [15].)

For each of these games

 � ��� , we have the decision problem of determining the win-

ner of the game: Given two structures Aand B, does the Duplicator have a winning strategy for

 � ��� on Aand B? It is easy to show that determining the winner of the the k-move Ehrenfeucht-

Fraı̈ssé game is in LOGSPACE. Determining the winner of the � -pebble game is comparatively

more difficult. Grohe showed in [15] that determining the winner of the � -pebble game is

41

complete for polynomial time.

A natural extension of this is to consider the complexity of these games when the

parameter � is part of the input. Pezzoli showed in [25] that the complexity of the � -move

Ehrenfeucht-Fraı̈ssé game is PSPACE-complete if � is part of the input. This exponential jump

in complexity when � is allowed to vary in the Ehrenfeucht-Fraı̈ssé game raises the question,

what happens in other games when the parameter is allowed to vary? We have now shown that

this same exponential jump in difficulty exists for the ��������� -pebble game. It has been conjec-

tured that a similar exponential jump in complexity exists for the � -pebble game. Specifically,

the following problem is conjectured to be EXPTIME-complete: Given an integer � , and two

structures Aand B, does the Duplicator have a winning strategy for the � -pebble game on Aand

B? This conjecture is still open.

In an attempt to better understand the complexity of the � -pebble game, we present

a framework to analyze the complexity of a suite of similar combinatorial pebble games. The

framework presented here covers some heavily studied pebble games, including Ehrenfeucht-

Fraı̈ssé games [25], the ��������� -game [23, 22], and the � -pebble game [1, 15], as well as some

previously unstudied games.

Each of these games is played on two finite relational structures � and � , using �
pebbles for each of the two players. The first player, Spoiler, takes one of his pebbles and places

it on a node in one of the two structures. The second player, Duplicator, responds in the other

structure. The Duplicator is attempting to maintain some property of the mapping from pebbles

on � to the pebbles on � . The variations come from how the Spoiler is allowed to choose which

structure to play on, what property the Duplicator must maintain, and whether the Spoiler may

pick up pebbles in addition to placing them.

With two structures, we must know which player places pebbles on which structure.

In a no-alternation game, the Spoiler always places pebbles on � , and the Duplicator always

places pebbles on � . This means that the Spoiler has no choice about which structure to play

on, and has limited options for plays. We will refer to this as a one-sided game, meaning that the

Spoiler can play on only one side. On the other hand, the Spoiler might be allowed to choose

which structure to play on, forcing the Duplicator to play on the other one. In this sort of game,

the Spoiler may play on either � or � , although the mapping property the Duplicator is trying

to maintain still applies to the mapping determined from � to � . Games with this property will

42

be referred to as two-sided games. One could also consider games with limited alternation, but

we will focus here on one-sided and two-sided games.

We consider two basic properties of mappings: Whether the mapping is one-to-one

(1-1), and how strictly the mapping must preserve relations. A mapping is 1-1 if no node in �
is associated with two distinct nodes in � . To make this more explicit, we pair up the pebbles,

such that � is the node in � occupied by the � th pebble on � , and
* � is the node in � occupied

by the corresponding � th pebble on � . A mapping is 1-1 if for every pair of pebble pairs �� � � * � � ,
�� �4 � * 4 � , if

* � � * 4 then � � �4 . A game is known as 1-1 if the Duplicator must maintain the

property that the mapping from � to � is always 1-1.

As far as preserving the relations, we consider two kinds of mappings, one-way ho-

momorphism and two-way homomorphism. In a one-way homomorphism, for every relation

�
�

� , and every tuple �� � ������� �" � � �
 �
�

� , such that � ������� �" ��� have pebbles on them, the tuple

of corresponding pebbled nodes in � , � * � ������� � * � � �
 �
�

� . Notice that one-way homomor-

phisms are not hurt by extra tuples in � . In the case of undirected graphs, there is always a

one-way homomorphism from any graph to a complete graph with the same number of nodes.

In a two-way homomorphism, every tuple in � must correspond to a tuple in � ,

and every tuple in � must correspond to a tuple in � . Specifically, there is a pebbled tuple

�� �� ������� �" � � �
 �
�

� if and only if the corresponding pebbled tuple � * � ������� � * ��� �
 �
�

� .

The final parameter discussed here is how long the game can last. In Ehrenfeucht-

Fraı̈ssé games, each player places pebbles until they have placed them all, and then the game

ends. On the other hand, in the ��������� -pebble game, the Spoiler can choose to pick up peb-

bles and place them again, allowing the game potentially to last forever. For the rest of this

discussion, we will be considering only infinite play games.

In this framework, the ��������� pebble game presented earlier is the one-sided, one-way

� -pebble game. The � -pebble game of Immerman and Barwise is the two-sided, 1-1, two-way

� -pebble game. For a summary of the complexity results known about games in this framework,

see Table 2.1.

2.3.1 One-sided, One-way
�
-Pebble Game

As discussed earlier, this game corresponds with the ��������� -pebble game. As proved

above, if � is fixed, then this game is P-complete, and if � is part of the input, then this game is

43

Game � fixed � varied
1-sided, 1-way game P-complete - Thm 2.1.6 EXPTIME-complete - Thm 2.2.7
1-sided, 1-1, 1-way game P-complete - Thm 2.3.1 EXPTIME-complete - Thm 2.3.1
1-sided, 2-way game P-complete - Thm 2.3.4 EXPTIME-complete - Thm 2.3.4
1-sided, 1-1, 2-way game P-complete - Thm 2.3.5 EXPTIME-complete - Thm 2.3.5
2-sided, 1-way game P-complete - Thm 2.3.8 EXPTIME-complete - Thm 2.3.8
2-sided, 1-1, 1-way game P-complete - Thm 2.3.11 EXPTIME-complete - Thm 2.3.11
2-sided, 2-way game P-complete - Thm 2.3.14 Unknown
2-sided, 1-1, 2-way game P-complete [15] Unknown

Table 2.1: A summary of the complexity results known for pebble games.

EXPTIME-complete.

2.3.2 One-sided, 1-1, One-way
�

-Pebble Game

In the following theorem, when we say the structures have a bounded vocabulary,

we mean that there is some fixed � such that no relation in � or � has arity greater than � .

In addition, for the following theorem we make the assumption that � is no greater than the

maximum of � � � and � � � . This is a reasonable assumption, because if each node of both � and

� is covered, then playing extra pebbles does not change the properties of the position. If the

Spoiler plays on a node in � , then the Duplicator simply plays according to the mapping that

already exists.

Theorem 2.3.1 On structures over a bounded vocabulary, there is a logspace reduction from

the one-sided, one-way game to the one-sided, 1-1, one-way game.

Proof: Given � , � , and � , construct � 0 , � 0 , and � as follows: For each node � in � , ��0 has

� copies �� ������� �" ��� . For every tuple �� � ������� �" � � in some relation � of � , the corresponding

relation in � 0 has � arity ����� tuples that correspond to all possible combinations of the � version

of each node. We construct � 0 from � in a similar way. Note that the number of tuples created

is exponential in the arity of the relations. If the maximum arity of the vocabulary were not

bounded, this reduction would be exponential in the size of the input.

This reduction is in � , because we simply need a number of counters, equal to the

maximum allowed arity of a relation, that can each count up to � , and a single counter that can

44

count up to the size of � and � . Under the assumption that � �
max � � � � � � � � � , and that the

maximum arity is fixed, this requires a logarithmic amount of space.

Assume that the Spoiler wins the one-sided, one-way game on � , � , � . This means

that the Spoiler has a winning strategy to force the Duplicator into a mapping that is not a one-

way homomorphism. Any mapping that is not a one-way homomorphism is also not a 1-1,

one-way homomorphism, so the same strategy is also a winning strategy for the one-sided, 1-1,

one-way game, where any play on a node � corresponds to a play on any 4 � .
Now assume that the Duplicator has a winning strategy for the one-sided, one-way

game on � , � , � . To extend this to a winning strategy for the one-sided, 1-1, one-way game

on � 0 , � 0 , and � , we consider a simulated version of the one-sided, one-way game on � , � ,

and � . Any time the Spoiler plays on a node 4 � , the Duplicator first considers how she would

play in response to � in the one-sided, one-way game. This gives rise to a node
* � . Now the

Duplicator need only choose a
*
�� such that the 1-1 property is not violated. Since there are as

many such nodes as there are pebbles, the Duplicator always has a valid choice.

Corollary 2.3.2 For each fixed � : Given � and � , determining whether the Duplicator has a

winning strategy for the one-sided, 1-1, one-way game is P-complete.

Corollary 2.3.3 Given � , � , and � , determining whether the Duplicator has a winning strat-

egy for the one-sided, 1-1, one-way game is EXPTIME-complete.

2.3.3 One-sided, Two-way
�

-Pebble Game

Theorem 2.3.4 Given � , � , and � , determining whether the Duplicator has a winning strategy

for the one-sided, two-way game is EXPTIME-complete.

Proof: In the proof of the complexity of the one-sided, one-way game, the winning strategy

for the Duplicator always maintains a two-way homomorphism.

2.3.4 One-sided, 1-1, Two-way
�
-Pebble Game

The following reduction is identical to the reduction for the one-sided, 1-1, one-way

� -pebble game.

45

Theorem 2.3.5 On structures over a bounded vocabulary, there is a logspace reduction from

the one-sided, two-way game to the one-sided, 1-1, two-way game.

Proof: Given � , � , and � , construct � 0 , � 0 , and � as follows: For each node � in � , ��0 has

� copies �� ������� �" �� . For every tuple �� � ������� �" � � in some relation � of � , the corresponding

relation in � 0 has � arity ����� tuples that correspond to all possible combinations of the � version

of each node. the input. We construct �30 from � in a similar way.

This reduction is in � , because we simply need a number of counters, equal to the

maximum allowed arity of a relation, that can each count up to � , and a single counter that can

count up to the size of � and � . Under the assumption that � �
max � � � � � � � � � , and that the

maximum arity is fixed, this requires a logarithmic amount of space.

Assume that the Spoiler wins the one-sided, two-way game on � , � , � . This means

that the Spoiler has a winning strategy to force the Duplicator into a mapping that is not a two-

way homomorphism. Any mapping that is not a two-way homomorphism is also not a 1-1,

two-way homomorphism, so the same strategy is also a winning strategy for the one-sided, 1-1,

two-way game, where any play on a node � corresponds to a play on any 4 � .
Now assume that the Duplicator has a winning strategy for the one-sided, two-way

game on � , � , � . To extend this to a winning strategy for the one-sided, 1-1, two-way game

on � 0 , � 0 , and � , we consider a simulated version of the one-sided, two-way game on � , � ,

and � . Any time the Spoiler plays on a node 4 � , the Duplicator first considers how she would

play in response to � in the one-sided, one-way game. This gives rise to a node
* � . Now the

Duplicator need only choose a
*
�� such that the 1-1 property is not violated. Since there are as

many such nodes as there are pebbles, the Duplicator always has a valid choice.

Corollary 2.3.6 For each fixed � : Given � and � , determining whether the Duplicator has a

winning strategy for the one-sided, 1-1, two-way game is P-complete.

Corollary 2.3.7 Given � , � , and � , determining whether the Duplicator has a winning strat-

egy for the one-sided, 1-1, two-way game is EXPTIME-complete.

46

2.3.5 Two-sided, One-way
�

-Pebble Game

Theorem 2.3.8 On structures over a bounded vocabulary, there is a logspace reduction from

the one-sided, one-way game to the two-sided, one-way game.

Proof: Given � , � , and � an instance of the one-sided, one-way game, we construct � 0 , � ,

and � an instance of the two-sided, one-way game. To form � 0 , we add � nodes, 	 � ������� 	 � to �
which are not connected to any other nodes in the Gaifman graph. In other words, 	5� ������� ��	 �
do not appear in any relations in � 0 . The Spoiler wins the two-sided, one-way game if at

some point in a run of the game there are pebbled nodes � ������� �" �4 in ��0 such that for some

relation symbol � , �� -� ������� �" 54 �
 � # , but � � �� �� � ������� � � �� 54 �6/
 � % . Since the nodes 	 � do not

participate in any relation, pebbles on them can never contribute to a win for the Spoiler. We

now describe the winning strategies for the Spoiler and Duplicator.

Assume that the Spoiler wins the one-sided, one-way game on � , � , and � . Since

� � � 0 , and � has not changed, the Spoiler’s winning strategy for the one-sided, one-way

game works for the two-sided, two-way game on � 0 , � , and � .

Now assume that the Duplicator wins the one-sided, one-way game on � , � and � . If

the Spoiler plays on the subset of ��0 which is isomorphic to � , the Duplicator plays according

to his winning strategy for the one-sided, one-way game. If the Spoiler plays on 	 � , then the

Duplicator can play on any node in � because, as previously discussed, 	 � is not in any relation.

If the Spoiler plays on any node in � , then the Duplicator plays on some 	 � which is not yet

pebbled.

Corollary 2.3.9 For each fixed � : Given � and � , determining whether the Duplicator has a

winning strategy for the two-sided, one-way game is P-complete.

Corollary 2.3.10 Given � , � , and � , determining whether the Duplicator has a winning strat-

egy for the two-sided, one-way game is EXPTIME-complete.

2.3.6 Two-sided, 1-1, One-way
�
-Pebble Game

Theorem 2.3.11 On structures over a bounded vocabulary, there is a logspace reduction from

the two-sided, one-way game to the two-sided, 1-1, one-way game.

47

Proof: Given � , � , and � , construct � 0 , � 0 , and � as follows: For each node � in � , � 0 has

� copies �� ������� �" ��� . For every tuple �� � ������� �" � � in some relation � of � , the corresponding

relation in � 0 has � arity ����� tuples that correspond to all possible combinations of the � version

of each node. We construct � 0 from � in a similar way.

This reduction is in � , because we simply need a number of counters, equal to the

maximum allowed arity of a relation, that can each count up to � , and a single counter that can

count up to the size of � and � . Under the assumption that � �
max � � � � � � � � � , and that the

maximum arity is fixed, this requires a logarithmic amount of space.

Assume that the Spoiler wins the two-sided, one-way game on � , � , � . This means

that the Spoiler has a winning strategy to force the Duplicator into a mapping that is not a one-

way homomorphism. Because any mapping that is not a one-way homomorphism is also not

a 1-1, one-way homomorphism, the same strategy is also therefore a winning strategy for the

two-sided, 1-1, one-way game, where any play on a node (� corresponds to a play on any 4 � .
Now assume that the Duplicator has a winning strategy for the two-sided, one-way

game on � , � , � . To extend this to a winning strategy for the two-sided, 1-1, one-way game

on � 0 , � 0 , and � , we consider a simulated version of the two-sided, one-way game on � , � ,

and � . Any time the Spoiler plays on a node 4 � , the Duplicator first considers how she would

play in response to � in the one-sided, one-way game. This gives rise to a node
* � . Now the

Duplicator need only choose a
*
�� such that the 1-1 property is not violated. Since there are as

many such nodes as there are pebbles, the Duplicator always has a valid choice.

Corollary 2.3.12 For each fixed � : Given � and � , determining whether the Duplicator has a

winning strategy for the two-sided, 1-1, one-way game is P-complete.

Corollary 2.3.13 Given � , � , and � , determining whether the Duplicator has a winning strat-

egy for the two-sided, 1-1, one-way game is EXPTIME-complete.

2.3.7 Two-sided, Two-way
�
-Pebble Game

Theorem 2.3.14 There is a logspace reduction from the two-sided, 1-1, two-way � -pebble game

to the two-sided, two-way � pebble game.

48

Proof: Given two relational structures � and � , we construct � 0 and � 0 by adding to each

structure a new binary relation symbol
�

, such that
� � � � � � � � ��� �� ��� ��
 � � and

� � � �
� � � � ��� �� ��� �
 � � . Each structure therefore now contains a relation which is a complete

graph on its elements. If the Duplicator ever plays so that the position of the game is not a 1-1,

two-way homomorphism, then there will be two elements !� �" .�
 � , such that -� and � are

mapped to the same element
*

of � . Since �� � �" � �
 �
� � and � * � * � '
 � � � , the Duplicator

loses the game. The winning positions for the Duplicator are exactly the same for both games.

This reduction is in � , because we simply need two counters to create the two com-

plete graphs.

2.3.8 Two-sided, 1-1, Two-way
�

-Pebble Game

This game corresponds to the � -pebble game. Grohe [15] showed that this game is

P-complete for every fixed � . The complexity when � is part of the input is still open.

Theorem 2.3.15 On structures with a bounded vocabulary, there is a logspace reduction from

the two-sided, two-way game to the two-sided, 1-1, two-way game.

Proof: Given � , � , and � , construct � 0 , � 0 , and � as follows. For each node � in � , ��0 has

� copies �� ������� �" �� . For every tuple �� � ������� �" � � in some relation � of � , the corresponding

relation in � 0 has � arity ����� tuples that correspond to all possible combinations of the � version

of each node. We construct � 0 from � in a similar way.

This reduction is in � , because we simply need a number of counters equal to the

maximum allowed arity of a relation, that can each count up to � , and a single counter that can

count up to the size of � and � . Under the assumption that � �
max � � � � � � � � � , and that the

maximum arity is fixed, this requires a logarithmic amount of space.

Assume that the Spoiler wins the two-sided, two-way game on � , � , � . This means

that the Spoiler has a winning strategy to force the Duplicator into a mapping that is not a one-

way homomorphism. Since any mapping that is not a two-way homomorphism is also not a 1-1,

two-way homomorphism, that strategy is also therefore a winning strategy for the two-sided,

1-1, two-way game, where any play on a node � corresponds to a play on any 4 � .

49

Now assume that the Duplicator has a winning strategy for the two-sided, two-way

game on � , � , � . To extend this to a winning strategy for the two-sided, 1-1, two-way game

on � 0 , � 0 , and � , we consider a simulated version of the two-sided, two-way game on � , � ,

and � . Any time the Spoiler plays on a node 4 � , the Duplicator first considers how she would

play in response to � in the two-sided, two-way game. This gives rise to a node
* � . Now the

Duplicator need only choose a
*
�� such that the 1-1 property is not violated. Since there are as

many such nodes as there are pebbles, the Duplicator always has a valid choice.

2.4 Concluding Remarks

2.4.1 Summary of Results

The constraint satisfaction problem is, in general, NP-complete. Because this problem

has so many applications in such a wide variety of areas, researchers have worked hard to find

tractable cases. Many of these “islands of tractability” correspond to expressibility in Datalog.

At the root of this connection lie consistency properties and the existential � -pebble game. We

have seen that determining the winner of this game is EXPTIME-complete when � is part of

the input, and P-complete when � is fixed. The EXPTIME-completeness result implies that

establishing strong � -consistency is also EXPTIME-complete when � is part of the input. This

result puts limits on how establishing strong � consistency can be used to help solve instances

of CSP.

We have also looked at a number of other, related combinatorial games, in an effort

to determine the complexity of the � -pebble game. We have used the complexity of the ��������� -
pebble game to move toward the complexity of the � -pebble game. We presented a framework

that parameterizes these pebble games and gives us a spectrum of games between the ��������� -
pebble game and the � -pebble game in terms of rules. We have also shown that most of the

games have the same complexity as the ��������� -pebble game, although some results are still

open.

50

2.4.2 Future Work

We would like to know the complexity of the � -pebble game. Based on the results we

have seen, we expect the complexity to match the complexity of the other, related games. The

games we have studied are parameterized games, in that we have a parameter � which affects

the complexity. We have seen that when � is fixed, these pebble games are P-complete, and

when � is part of the input, the games are EXPTIME-complete. There is another approach to

complexity which makes more explicit the contribution of this parameter. It is called, rationally

enough, parameterized complexity (see [8]).

For any conventional complexity class C, we can consider XC, which is the set of

all parameterized languages � , such that � � is in C, for all k. Clearly, all the pebble games

we consider are in XP. As Downey and Fellows [8] point out, the results of Kasai, Adachi and

Iwata show that their � -pebble game is XP-complete. The reduction presented here does not,

however, show that the ��������� -pebble game is XP-complete. The reason is that the reduction

does not preserve the parameter. The number of pebbles used in the ��������� -pebble game directly

related, not to the number of pebbles in the KAI game, but to the number of nodes. We would

like to know where the ��� ����� -pebble game, and the other games in our framework, lie on the

parameterized complexity scale.

Much of the research into CSP has focused on CSP � � � , where � is fixed. Because

of this, we might want to consider the complexity of determining the winner of the ��������� -
pebble game when � is fixed. Consider the structure � � � �+*
� ��� � , such that � � � � * � * � � .
There is a homomorphism from every graph to � , so the question of whether the Duplica-

tor has a winning strategy is trivial. On the other hand, we can consider the structure � �
� �
	 � � � � ��� � ��� � � � � � � � , where the � � are the relations from Table 1.1 representing the logical

or with different numbers of negations. There is a polynomial time reduction from the 3-SAT

problem to the ��� ����� -pebble game with � . The reduction is the same as the reduction from

3-SAT to CSP, except that we use the size of � as value of � . It is not known whether there

exists a structure � such that the ��� ����� -pebble game with � fixed is EXPTIME-hard.

51

Part II

Complexity of Data Exchange

52

Chapter 3

Introduction to Data Exchange

Every relational database has a schema, which determines the organization of the

data. In the Data Exchange Problem, the goal is to transform a database from a source schema

to a target schema, while satisfying certain given constraints. The source schema, target schema

and constraints are together known as a schema mapping. An instance of the Data Exchange

Problem is a schema mapping and a source instance. The task is to produce a target instance

that satisfies all of the constraints.

In general there can be many solutions. Fagin et al. [9] have proposed what they

call a universal solution as the preferred solution. A universal solution is a solution that does

not contain any extra assumptions. In essence it contains the minimum amount of information

necessary to satisfy all the constraints. They also presented an algorithm to compute a universal

solution if the constraints are weakly acyclic. Weak acyclicity is a structural limitation on the

constraints that effectively puts bounds on the amount of computation needed to generate a

universal solution. Their algorithm runs in polynomial time for any fixed schema mapping

where the constraints are weakly acyclic.

A necessary step in the process of finding a universal solution is to answer the existence-

of-solutions problem: Is there a target instance such that the source instance and target instance

satisfy all the constraints? This is an important problem when upgrading database schemas to

account for new information that must be stored, or when importing data from an outside source.

In the same paper in which they presented the universal solution, Fagin et al. showed that the

existence-of-solutions problem is known to be in polynomial time for every fixed schema map-

ping in which the constraints are weakly acyclic. In [20], we showed that if you relax the weak

53

acyclicity condition in a minimal way, the problem can be undecidable. In addition we showed

that if you allow the schema mapping to vary, but still require the weak acyclicity condition,

the problem is in 2EXPTIME. If you put further restrictions on the schema mapping, the the

existence-of-solutions problem can be CoNP-Complete or EXPTIME-Complete.

3.1 Background on Data Exchange

A schema is a finite collection �1� � � � ������� � � � � of relation symbols, each of a fixed

arity. An instance
 over � is a sequence � �
�

� ������� � �
�

� � such that each �
�

� is a finite relation

of the same arity as � � . We shall often use � � to denote both the relation symbol and the

relation �
�

� that interprets it. Given a tuple � , we denote by � ��� � the association between � and

the relation � where it occurs. Let � � � � � ������� � �
 � and � � � � � ������� � � � � be two disjoint

schemas. We call � the source schema and � the target schema. Instances over � are called

source instances, and instances over � are called target instances.

We consider schema mappings of the form � � � � ��� ��� 		� ��� � � , where � is a source

schema, � is a target schema, � 	
� is a finite set of s-t tgds, and � � is the union of a finite set

of target tgds with a finite set of target egds. As described earlier, if
 is a source instance,

then a solution for
 is a target instance � such that the pair �
���� � satisfies every constraint

in � 		� � � � . The data exchange problem associated with � asks, given a source instance

 , to construct a solution � for
 . The existence-of-solutions problem for � asks: Given a

source instance
 , does a solution for
 exist? Clearly, this decision problem underlies the data

exchange problem itself, and any algorithm for the data exchange problem will also solve the

existence-of-solutions problem.

As an example, consider the schema mapping � � � � ��� ��� 		� ��� � � in which � ��
�
�
, ��� � � � , and

������ ����������� �"!$# %&�(')�*����%+�-,.')��%/��� �	�10
 � � ��')�*�2�	%+�&,3')�*%/��� �"!4')�*�2��� �5�

')�����	6&�&,3')�*�2�	78�9!:63�;7<0

Note that we omitted the universal quantifiers in the above constraints; in the sequel, we will

often do this, and implicitly assume such quantification. The source instance
 � �
� � � � � � �

has a solution � � �
� � � � � � ��� � � � � � � . In contrast, no solution exists for the source instance

54

 0 � � � � � � � � ��� � � � � � � .
We now give the definition of a weakly acyclic set of target tgds. This crucial concept

was formulated by A. Deutsch and L. Popa in 2001, and independently used in [9] and [7] (in

the latter paper, under the term constraints with stratified witness).

Definition 3.1.1 Let � be a set of tgds over a schema � . Construct a directed graph, called the

dependency graph, as follows:

(i) Nodes: For every pair (� , �) with � a relation symbol of the schema and � an

attribute of � , there is a distinct node; call such a pair (� , �) a position.

(ii) Edges: For every tgd � ��� � � ����� ��� ��� � in � and for every � in � that occurs in

� , and for every occurrence of � in � in position (� , �&�):

1. For every occurrence of � in � in position (� , �64), add an edge � � �"� � � � � � �"� 4 � (if it

does not already exist).

2. In addition, for every existentially quantified variable � and for every occurrence of � in

� in position (
�

, � �), add a special edge � � �"� � � � � � � � � � (if it does not already exist).

Note that there may be two edges in the same direction between two nodes, but exactly

one of the two edges is special.

� We say that � is weakly acyclic if the dependency graph has no cycle going through

a special edge.
� We say that a tgd � is weakly acyclic if the singleton set

� � � is weakly acyclic.

For example, the tgd � ��� ��� � � � � � ��� ��� � is weakly acyclic; in contrast, the tgd

� ��� ��� � � � � � ��� ��� � is not, because the dependency graph contains a special self-loop. Since

no existentially quantified variables occur in full tgds, every set of full tgds is weakly acyclic.

Note also that if � � and � � are two weakly acyclic sets of tgds, then their union � � � � � need

not be weakly acyclic.

Example 3.1.1 Consider the tgd � ��� ����� � � � � ��� ��� � . As we can see in Figure 3.1a, this

tgd is weakly acyclic, because there is no cycle that includes a special edge. Similarly, the tgd

� ��� ����� � � ������ � in Figure 3.1b is weakly acyclic. Figure 3.1c, however, shows that the two

tgds together form a non-weakly acyclic set.

55

Special
Normal

cba

(R, 2)(R,1)(R, 2)(R,1)(R, 2)(R,1)

Figure 3.1: a) Dependency graph for � ��� ��� � � � � � ��� ��� � . b) Dependency graph for
� ��� ����� � � ������ � . c) Dependency graph for the set containing both dependencies.

In [9], it was shown that weak acyclicity is a sufficient condition for the tractability

of the data exchange problem; in particular, it is a sufficient condition for the tractability of the

existence-of-solutions problem. Before we state the result, we need a few definitions.

A homomorphism from a conjunctive formula � ��� � to an instance
�

is similar to a

homomorphism between structures. It is a mapping from the variables in � to the elements of
�

, such that for each atom in � , the corresponding fact is in
�

.

Definition 3.1.2 (Chase Step)

Let
�

be an instance. We now define what to do for the two kinds of dependencies we

are dealing with, tgds and egds.

Let
�

be a tgd � ��� � � ��� � ��� ��� � . Let � be a homomorphism from � ��� � to
�

such

that there is no extension of � to a homomorphism � 0 from � ��� �!% � ��� ��� � to
�

. If there is such

a homomorphism � , we say that the tgd
�

can be applied to
�

with homomorphism � .

Now we extend
�

based on � and
�
. First, we extend � to � 0 by mapping each variable

in � to a fresh labeled null. Then, we extend
�

to
� 0 by adding the image of the atoms under

��0 . This is written as
� �

�
�

� � �
� 0 , which is read as “the result of applying

�
to
�

with � is
� 0 .”

Let
�

be an egd � ��� � � ��� � � �-� � . Let � be a homomorphism from � ��� � to
�

such

that � ��� � ��/� � ��� � � . We say that
�

can be applied to
�

with homomorphism � . There are two

cases:

� If both � ��� � � and � ��� � � are constants, then the result of applying
�

to
�

with � is “fail-

ure”, written
� �

�
�

� � �
�

.

� Otherwise, we resolve this by identifying � ��� � � with � ��� � � to form
� 0 in the following

way. If one of them is a constant and the other is a labeled null, we replace the null with

56

the constant everywhere it appears in
�

. If they are both labeled nulls, we choose one

and replace it in
�

with the other. Again, this yields
� �

�
�

� � �
� 0 .

Each transformation of
�

to
� 0 by

� �
�

�

� � �
� 0 constitutes a chase step.

Definition 3.1.3 Let � be a set of egds and tgds, and
�

be an instance. A chase sequence of
�

with � is simply a sequence of chase steps
� �

�

� �
�

�� � � �
� � � � , where ��� 	 � � ������� , � � �

� , and
� �
 � .

A finite chase is a finite chase sequence,
� �

�

� �
�

�� � � �
� � � � , � �

	 ������� � � � � , such that

either
�
� � �

, or there is no dependency
���

and no homomorphism � � such that
���

can be

applied to
�
� with � � . If

�
� � �

then the chase is said to be a failing chase. Otherwise we

say the chase is successful, and that
�
� is the result of the chase.

In general, there may be no finite chase for a given instance and schema mapping.

Fagin et al. [9] showed that if there is a finite chase, then the result of a finite chase indicates

whether there is a solution or not.

Theorem 3.1.4 [9] Let � � � � ��� ��� 	
� ��� � � be a schema mapping where � 		� is a set of tgds

and � � is the union of a set of tgds with a set of egds.

� Let �
 ��� � be the result of some successful finite chase of �
�� � with � 		� � � � .Ṫhen � is a

universal solution.

� If there exists some failing finite chase of �
 � � with � 		� � � � , then there is no solution.

This result implies that if we had a condition that guaranteed a finite chase, we would

have an algorithm to solve the existence-of-solutions problem. The sufficient condition is weak

acyclicity.

Theorem 3.1.5 ([9]) Let � � � � ��� ��� 	
� ��� � � be a schema mapping such that � 		� is a set of

s-t tgds and � � is the union of a set of target egds with a weakly acyclic set of target tgds. Then,

there is an algorithm that is based on the chase procedure and has the following properties:

(1) Given a source instance
 , the algorithm determines whether a solution for
 exists

and, if so, it constructs a solution for
 . (In fact, it constructs a universal solution.

(2) The running time of the algorithm is bounded by a polynomial in the size of the

source instance
 .

57

Note that if � � � � ��� ��� 		� ��� � � is a schema mapping such that � � is a weakly

acyclic set of target tgds (in particular, � � contains no target egds), then the existence-of-

solutions problem for � is trivial. This follows from the correctness of the chase procedure.

Because � � is a weakly acyclic set of tgds, we know that the chase procedure is finite. A failing

chase sequence results from a chase step
� �

�
�

� � �
�

, where the dependency
�

is an egd. This

means that every chase sequence must be a finite successful chase sequence. It follows that if

� � is a set of full target tgds, then the existence-of-solutions problem for � is trivial.

58

Chapter 4

Complexity of Data Exchange

Theorem 3.1.5 in the previous chapter is a result about the data complexity of data

exchange, because the schema mapping � is assumed to be fixed. In this chapter, we will

focus on the combined complexity of data exchange, in which the schema mapping is also part

of the input.

4.1 Combined Complexity

In this section, we investigate the combined complexity of the existence-of-solutions

problem; that is, we study this problem when the input consists of both a schema mapping and

a source instance. We begin by formalizing the existence-of-solutions problem for a class
�

of

schema mappings and then proceed to investigate the complexity of this problem.

Schema Mapping Existence-of-Solutions Problem
Data Fixed, set of target tgds is arbitrary Can be undecidable
Complexity Fixed, set of target tgds is weakly acyclic In PTIME; can be PTIME-complete

Combined Varies, set of target tgds is weakly acyclic In 2EXPTIME
Complexity Varies, set of target tgds is weakly acyclic,

bounded rank
In EXPTIME; can be EXPTIME-
complete

Schemas are fixed, constraints vary, all
tgds are full

In coNP; can be coNP-complete

Table 4.1: Complexity of Data Exchange

59

Definition 4.1.1 Let
�

be a class of schema mappings. The existence-of-solutions problem for
�

is the following decision problem: Given a schema mapping � in
�

, and a source instance

 , does a solution for
 under � exists?

It was shown in [20] that if we allow the set of target tgds to be non-weakly acyclic,

then the existence-of-solutions problem is potentially undecidable. In view of this, we will only

consider schema mappings in which the target tgds form a weakly acyclic set.

We begin by deriving a 2EXPTIME upper bound for the existence-of-solutions prob-

lem for a restricted class of schema mappings. To define the class of schema mappings we now

need to define an important parameter of the dependency graph. An incoming path to a position

� � �"� � in the dependency graph is a path that ends at � � �"� � . For each position � � �"� � in the

graph, define the rank of � � �"� � to be the maximum number of special edges on any incoming

path to � � �"� � . Because we assume that the dependencies are weakly acyclic, this number is

finite for each position. Define the rank of the schema mapping as the maximum rank over all

positions in the dependency graph.

Now we consider the class of all schema mappings � � � � ��� ��� 		� ��� � � , where � 	
�
is a set of s-t tgds and � � is the union of a set of target egds with a weakly acyclic set of target

tgds, such that the rank of � is bounded by a constant. We prove that in the bounded rank

setting, the complexity of the existence-of-solutions problem is in EXPTIME. Observe that the

rank of a schema mapping is less than or equal to the number of positions, which means that if

the schemas are fixed, the rank is also fixed. Moreover, we identify a family of restricted classes

of schema mappings for which this problem is in coNP. We then establish matching EXPTIME-

hard and coNP-hard lower bounds. Finally, we prove that slight relaxations of the restrictions

cause the complexity of the existence-of-solutions problem to jump from coNP-complete to

EXPTIME-complete.

4.2 Combined Complexity: Upper Bounds

It follows from [9] that if we limit ourselves to weakly acyclic sets of tgds, the

existence-of-solutions problem is in 2EXPTIME.

Theorem 4.2.1 (Implicit in [9]) Let � be the class of all schema mappings � � ��� ��� 	
� ��� � � ,
where � 		� is a set of s-t tgds, and � � is the union of a set of egds with a weakly acyclic set of

60

� ��� � 	
� : tgds � � : egds and Combined Complexity Theorem
Weakly Acyclic tgds

Upper Vary Varies Varies in 2EXPTIME 4.2.1
Bounds Vary Varies Varies; bounded rank in EXPTIME 4.2.2

Fixed Varies; Full tgds Varies; egds/full tgds in coNP 4.2.3
Vary Varies Varies; no egds Trivial -

Lower Vary Varies; full tgds Varies; egds/full tgds EXPTIME-complete 4.3.2
Bounds Fixed Varies Varies; egds EXPTIME-complete 4.3.5

Fixed Fixed; full tgds Varies EXPTIME-complete 4.3.6
Fixed Fixed; Full tgds Varies; egds coNP-complete 4.3.7
Fixed Varies; full tgds Fixed; egds coNP-complete 4.3.9

Table 4.2: Combined Complexity of Data Exchange

tgds. The existence-of-solutions problem for � is in 2EXPTIME.

Proof: This follows from the proof of Theorem 3.9 of [9]. It was shown in [9] that the length

of every chase sequence of
 with � 		� � � � is bounded by a polynomial in the size of the instance

 . This polynomial is doubly exponential in the size of � 		� � � � and � . We first consider only

tgds.

Consider the dependency graph

of � � � 	
� � � � . Let � be the number of positions

in the dependency graph, � be the number of dependencies,
�

be the maximum rank of a

position, and
�

be the maximum number of incoming special edges to any node. Note that
� �

� . We now put bounds on the maximum number of values that can appear in any instance

produced by a chase on � . We let � be the number of distinct values that appear in the instance
�

. Let
� 0 be an instance obtained from

�
after a chase sequence on � . Let � � ������� ����� be a

partition of the positions of

such that each position in � � has rank � .
We now prove, by induction on � , the following claim:

For every � , there exists a function
� � with the following properties:

1. The number of distinct values that occur in
� 0 at positions in � � is at most

� � � � � � � � � � � .

2.
� � � � � � � � � � � is polynomial in � , � , and � with maximum degree � � � � �

Base Case: For each position � � �"� � in � � , there are no incoming paths with special

edges, so the number of values that can appear is simply the number of values in the original

instance � .

61

Inductive Case: In general, a position can contain values from the original instance,

of which there are � ; values that are copied from other positions; or values generated by de-

pendencies. Values can only be copied from positions in � � ������� ��� ��� � . If there were an edge

from a node in �$4 to a node � � �"� �
 � � with �� � , then the rank of � � �"� � would have

to be at least , which contradicts the fact that � � �"� �
 � � . Therefore, the number of values

that can be copied into positions in � � is
� � � � � � � � � � �$� �

� �
����� � � � � � � � � � � � � � � . Clearly if the

� 4 � � � � � � � � � meet condition 2, then
� � � � � � � � � � � is a

polynomial in the appropriate variables, with a maximum degree of � � � ��� � � .
Now we consider how many values can be generated. Recall that

�
is the maximum

number of special edges entering any position, and the number of values that can be available is
� � � � � � � � � � � . For each position, any dependency can generate at most

� � � � � � � � � � � �

values.

This gives a maximum of �
� � � � � � � � � � � �

� values generated. Therefore, if we add up the

number of initial values, the number of copied values, and the number of generated values, we

get
� � � � � � � � � � �,� � � �

� � � � � � � � � � � �

� � � � � � � � � � � � � . By exponentiating
� � � � � � � � � � � ,

we increase the maximum degree from � � � ��� � � to � � � � � .
By substituting

�
for � , we now see that

�
� � � � � � � � � � is polynomial in � , � , and � ,

singly exponential in
�
, and doubly exponential in

�
. The maximum number of tuples that can

exist in a relation is bounded by
�
� � � � � � � � � � � , because � , being the number of positions, is a

bound on the arity of each relation. We multiply
�
� � � � � � � � � � � by the number of relations � to

get a bound on the number of tuples in an instance, � � � � � � � � � � � � � . This bound on the number

of tuples is still doubly exponential in
�
, and at worst, exponential in each other variable. Since

the chase generates a tuple at each step, the bound on the number of tuples is also a bound on

the number of chase steps, showing that this algorithm is in 2EXPTIME.

If we now consider also egds, the upper bound on the number of possible tuples does

not change. At each step, we assume, for the sake of the upper bound, that all possible tuples

occur. If an egd fires and identifies two values, it doesn’t change the maximum number of

possible values in the positions of � � . Because the firing of egds does not change our upper

bound on the number of tgds that can fire, we can bound the number of chase steps with egds

by noticing that every egd chase step removes one value from the system. This means that there

can be no more egd chase steps than the total number of values,
�
� � � � � � � � � � .

62

Corollary 4.2.2 Let
�

be a fixed integer. Let � be the class of all schema mappings � �
� � ��� ��� 		� ��� � � , where � 		� is a set of s-t tgds, � � is the union of a set of egds with a weakly

acyclic set of tgds, and the rank of � is bounded by
�
. The existence-of-solutions problem for

� is in EXPTIME.

Example 4.2.1 Here, we present an example of a schema mapping such that any successful

chase must take doubly exponential time.

The schema � consists of a single unary relation symbol � . The target schema � has

unary relation symbols
� � , � 0� , and the ternary relation symbol

� � for
	 �6� � ��� �

, where
�

is

a parameter. There is only a single tgd in � 		� , which copies the values from � to
�
� .

� � :� � ��� � �
� 0� ��� � 	 � � � �

� � ��� ��% � 0� ��� � � � � � � ��� ��� ��� � 	 � � � �
� � ��� ������� � �

� � � � ��� � �
� � � � ��� � �

� � � � �	� �
	 � � � �� � ��� ������� �.% � � ��� 0 ��� 0 ��� � � � � � 0 	 � � � �

� � ��� ������� �.% � � ����0 ���0 ��� � � �3� �.0 	 � � � �
Note that the rank of � � is

�
.

Let � be the number of values in
�
� . We show by induction that for each � , � � must

contain at least � � � � � values.

Base case: � � 	 . �
� has � values that are all constants, so

�
� has at least � � ��� � � �

values.

Inductive case: Assume that
�
� ��� � � has to contain at least � � ��� �

� ��� � values. The tgds

force there to be one row in
�
� ��� � � for every possible pair of values from

�
� ��� � � . Any attempt

to identify nulls to reduce the number of rows in
�
� ��� � � would reduce the number of values in

�
� ��� � � which is a contradiction. This gives us � � � ��� �

� ��� �	� � � � � � � � rows in
�
� � � � � . Each of these

rows must have a distinct value because of the two egds, and the fact that we cannot reduce the

number of values incoming from
�
� ��� � � . This gives us at least � � � � � values in the third column

of
�
� � � � � . These are copied to

� � .
This gives us at least � � �

� � values in
� � . This means that there are instances for

which we cannot compute a solution less than doubly exponential time, because of the size of

the instance. This does not, however, prove that we cannot compute the existence-of-solutions

problem in EXPTIME.

In contrast, for the classes of schema mappings in which the source and target schemas

are fixed, and the s-t tgds and the target tgds vary but are full, the existence-of-solutions problem

63

is in coNP.

Theorem 4.2.3 Let ��� be a fixed source schema and ��� a fixed target schema. Let
� � ��� ����� �

be the class of all schema mappings � ��� ����� ��� 	
� ��� � � such that � 	
� is a set of full s-t tgds and

� � is the union of a set of egds with a set of full tgds. The existence-of-solutions problem for
� � ��� ����� � is in coNP.

Proof: Since � 	
� � � � consists of only full tgds, any solution will have size at most �
 � , � , ,
where �
 � denotes the number distinct values in
 and � � � denotes the sum of arities of each

relation symbol in � . Since � is fixed, it is easy to see that the size of any solution is polynomial

in the size of
 .

If there is no solution, it must be that some egd in � � is violated. We can therefore

guess a failing chase sequence, where the last chase step is an application of the egd that causes

the violation. Since � 	
� and � � are full tgds, only the last chase step is an egd chase step; every

other chase step in this sequence is a tgd chase step. Because polynomially many tuples can be

generated in the target, and each tgd chase step generates at least one new tuple in the target

instance, we conclude that the length of this failing chase sequence is polynomial in the size of

 .

Clearly, verifying that this is a failing chase sequence can be done in polynomial

time: (1) for every chase step that generates
� � from

� � with tgd � and homomorphism � ,

let � be of the form � ��� � � � ��� � . We verify that every tuple in � � � ��� � � is from
� � , that

some tuple in � � � ��� � � does not exist in
� � , and that

� � is the union of
� � with the tuples

� � � ��� � � . This verification takes polynomial time. (2) For the last step, where an egd of the

form � 0 ��� � � �!� ���-� is applied on the instance
� � , we verify that every tuple in � 0 � � ��� � � is

from
� � and that � ��� � ��/� � ���-� � . Clearly, this verification step also takes polynomial time.

It is worth noting that if � � consists of only a weakly acyclic set of tgds (and no

egds), then every source instance has a solution and so the existence-of-solutions problem is

trivial. Indeed, in this case, the algorithm of [9] for computing a solution will always terminate

and produce a solution, because no finite chase is failing. This observation and the preceding

Theorems 4.2.2 and 4.2.3 are summarized in the first three rows of Table 4.2.

We now proceed to derive EXPTIME-hard and coNP-hard lower bounds; the presence

of target egds will play a crucial role in proving these results.

64

4.3 Combined Complexity: Lower Bounds

In this section, we show that the existence-of-solutions problem for the class � of

schema mappings in Corollary 4.2.2 is EXPTIME-complete. We also show that there are

fixed schema mappings � � and � � such that the existence-of-solutions problem for the class
� � � � ��� � � in Theorem 4.2.3 is coNP-complete. Moreover, we establish that if we consider

slight extensions of the classes
� � � � ��� � � , then the existence-of-solutions problem may be-

come EXPTIME-complete. Specifically, this problem may become EXPTIME-complete once

we consider at least one of the following extensions of � � � � ��� � � :
(1) Allow the schemas to vary (Theorem 4.3.2).

(2) Allow the s-t tgds to be non-full (Theorem 4.3.5).

(3) Allow the target tgds to be non-full (Theorem 4.3.6).

Actually, Theorem 4.3.5 holds even when all target dependencies are egds, and Theorem 4.3.6

holds even when the s-t tgds are fixed and full. These results are summarized in the first three

rows of the lower part of Table 4.2.

We also show that the existence-of-solutions problem may be coNP-complete even

for a class of schema mappings where the schemas are fixed, the s-t tgds are full and held fixed,

and the target dependencies are allowed to vary, but all are egds (Theorem 4.3.7). If the target

egds are also fixed, then, as we have shown earlier, the (data) complexity of the existence-of-

solutions problem for a fixed schema mapping is PTIME-complete. Hence, a slight extension

to a fixed schema mapping, by allowing the target egds to vary, may cause the complexity

to become coNP-complete. We also show that the existence-of-solutions problem for another

minimal extension may be coNP-complete; now the target egds are fixed, but we allow full s-t

tgds that can vary (Theorem 4.3.9). These results are summarized in the last two rows of Table

4.2.

4.3.1 EXPTIME-Completeness

Our EXPTIME-hardness reductions make use of a combined complexity result of

Datalog sirups from Gottlob and Papadimitriou [14], which we describe next.

Single-rule Datalog programs of [14] A single-rule program (sirup) is a Datalog program

with one rule and a number of initializations consisting of facts. We briefly review the Datalog

65

terms defined in Part 1. The rule is of the form: � � � �&� ��� � � �"� � , where each � � , 	 � � � � ,

is an atom. An atom is a formula � �
	�� ��� � � ��	
 � , where � is a predicate symbol of arity � and 	 � ,
� � � � � , is a variable or a constant. The head of the rule is � � , and ��� ��� � � �"� � is referred to as

the body of the rule. The predicate symbol that appears in � � is called an intensional database

predicate (idb) symbol; those that appear only in the body of the rule are called extensional

database predicate (edb) symbols. A rule of the form � � � , (with an empty body) is a fact.

We say the fact is ground if every term that appears in � � is a constant. The edb symbols occur

in a database
�

, and if the idb symbol also occurs in the body of a sirup rule, it is initialized

by facts. A single ground fact (SGF) sirup is a Datalog program with one rule and at most

one ground fact. Gottlob and Papadimitriou [14] investigated the combined complexity of the

following decision problem: Given a Datalog program
�

, a database
�

, and a ground fact � , is it

the case that
� ��� � ��� ? In other words, is � derivable from

�
via

�
? They showed that even if

Datalog programs are limited to SGF sirups, the combined complexity is EXPTIME-complete.

We refer to this decision problem as the SGF sirup problem.

Theorem 4.3.1 (Combined complexity of SGF sirups [14]) The combined complexity of the

SGF sirup problem is EXPTIME-complete.

Using Theorem 4.1 of [14], we show that the existence-of-solutions problem for
�

is

EXPTIME-hard, where
�

is the class of schema mappings where we allow only full s-t tgds and

� � is the union of a set of egds with a set full tgds. Note that this is only a slight extension of

the class
� � � � ��� � � of schema mappings in Theorem 4.2.3; here, the source and target schemas

are allowed to vary. Note that in this case the maximum rank of a position is 0, because there

are no special edges in the dependency graph.

Theorem 4.3.2 Let
�

be the class of all schema mappings � � ��� ��� 		� ��� � � , where �
		� is a set of

full s-t tgds and � � is the union of a set of egds with a set of full tgds. The existence-of-solutions

problem for
�

is EXPTIME-hard.

Proof: We are given an SGF sirup
�

, a database
�

, and a fact � ; we wish to determine whether
� ��� � ��� . Let the sirup rule be of the form � ��� � � � � ��� � � ������� ���
 ��� 	 � , where each

symbol � � , � � � � � , represents either an extensional database predicate or the intensional

database predicate � . If � occurs among � � ��� � � ���
 , then � is initialized by a ground fact. Let

the arity of � be � and let � denote the fact � � 	�� ��� � � � 	 � � .

66

Based on
�

,
�

, � , and the ground fact, we construct a schema mapping and a source

instance
 as follows: The source schema � consists of all the extensional database predicates

��� ��� � � � � � , as well as two relational symbols � and � . Each � � , � � � � � , has the same

arity as the corresponding relation in
�

, � has arity � , and � has arity � � � . The target schema

is isomorphic to � . It consists of the relational symbols � 0 � ������� � ��0� , ��0 , and � 0 . For � 		� , we

create � � � full s-t tgds to copy each source relation to its corresponding target relation:
� 	
� � � � ��� � � � 0� ��� � , � � � � �

� ��� � � ��0 ��� �
� ��� � � � 0 ��� �

Next, we construct two dependencies in � � . The first is a full tgd that “implements”

the sirup rule. The second is an egd that tests the existence of � .
� � � � 0 � ��� � � % ����� % � 0
 ���
 � � ��0 ��� �

� 0 ���!� �� � ������� �� � � % � 0 ���!� �� � ������� �� � ��� � � �!��� �
In the first tgd, � � represents the � th predicate symbol,

� � � � � , in the body of the

sirup rule
�

. For example, if the sirup rule is � ��� � � � ��� ���!� ��-� � � ��� ��� � �� � � �"� ��� � � , then

the first tgd in � � is ��0� ���!� �� � � % ��0� ���-� �� � ��% ��0���� � � � ��0����!� � .
We create a source instance
 as follows: First, we populate � � ������� � � � , and � with

the tuples from the corresponding relations in
�

and the ground fact, respectively. Then, we

populate � with a single tuple � 	 � � 	 � ������� � 	 � �
� � , where

�
is a fresh symbol that does not occur

elsewhere in
 .

Clearly, the schema mapping and source instance
 can be constructed with one pass

through the sirup input
�

,
�

, � , and the ground fact. We show next that there is no solution for

 under the constructed schema mapping if and only if
� � � � ��� . If there is no solution, then

there is a failing chase sequence that applies the egd in � � . Since any application of the egd in a

chase sequence must make use of the tuple � 0 � 	
� ��� � � � 	 � �
� � , it must be that � 0 � 	+� ��� � � � 	 � � also

exists in the target instance. Thus, we conclude that � is derivable from
�

via
�

. Conversely,

if
� � � � ��� , then chasing
 with � 	
� � � � will produce � 0 � 	+� ��� � � � 	 � � . Since � 0 � 	+� ��� � � � 	 � �

� �
exists in the target instance, the egd can be applied, and therefore the chase fails. This means

that there is no solution.

Corollary 4.3.3 Fix an integer
�
. Let

�
be the class of all schema mappings � � ��� ��� 	
� ��� � � ,

where � 	
� is a set of s-t tgds and � � is the union of a set of egds with a weakly acyclic set of tgds,

such that the maximum rank of any position is at most
�
. The existence-of-solutions problem for

�
is EXPTIME-complete.

67

The above corollary is a consequence of Corollary 4.2.2 and Theorem 4.3.2. Observe

that in the reduction of Theorem 4.3.2, a target tgd was used to implement the sirup rule. In

Theorem 4.3.5, we show that even when the schemas are kept fixed and there are no target tgds,

but we allow non-full s-t tgds, then the EXPTIME-hard lower bound continues to hold. Toward

Theorem 4.3.5, we first prove a lemma. The proof of this lemma shows how we can avoid using

a target tgd to implement the sirup rule.

Lemma 4.3.4 Let
�

be the class of all schema mappings � � ��� ��� 		� ��� � � , where � � consists of

only egds. The existence-of-solutions problem for
�

is EXPTIME-hard.

Proof: This proof is by reduction from the SGF sirup problem. The basic setup is similar to

the proof of Theorem 4.3.2. The difference is that since we only have egds in � � (no tgds are

now allowed in � �), we employ a different method to track which tuples are in the result of the

sirup. Note that since there are no tgds in � � , the maximum rank of any position is 1.

We are given an SGF sirup rule
�

, a database
�

, and a fact � ; we wish to determine

whether
� � � � � � . Let the sirup rule be of the form � ��� � � � � ��� � � ������� ���
 ��� 	 � , where

each symbol � � , � � � � � , represents either an extensional database predicate or the inten-

sional database predicate � . If � occurs among � � ��� � � ���
 , then we assume that there is a

ground fact that initializes � . Let the arity of � be � and let � denote the fact � � 	� ��� � � � 	 � � .
Based on

�
,
�

, � , and the ground fact, we construct a schema mapping and a source

instance
 as follows: The source schema � consists of all the extensional database predicates

� � ��� � � � � � , as well as four relational symbols � , � ,
�

, and � . Note that the relational symbol

� in � is the same as the intensional database predicate of the sirup
�

. Each � � , � � � � � , has

the same arity as the corresponding relation in
�

, and � has arity � , � has arity � � � , and the

relations
�

and � are unary. The target schema consists of the relational symbols � 0 � ������� � � 0� ,

� 0 , � 0 , � 0 , and � 0 . The arity of each relation in � is the same as the corresponding relation in

� except for � 0 which has arity � � � . For � 		� , we create the following s-t tgds:
� 	
� � � � ��� � � ��0� ��� �

�����
� � ��� � � ��0� ��� �� ��� � �

� 0 ��� �
� ��� � ������� �� � �� � � � 0 ���!� ������� �� � �� �� ��� � % � ��� � ������� �� � � � ��0 ��� � ������� �� � �� �� ���!� ��% ����� % � ��� � � � � ��� 0 ���!� ������� �� � ��� �

The dependencies in � � consist of the following egds:

68

� � � � 0 ��� ��% ��0 ���!� ������� �� � �� ��% � 0 � � � � ��% ����� % � 0
 � �
 � � � � �� 0 ��� ��% � 0 ���!� ������� �� � ��� ��% � 0 ���!� ������� �� � ����� � �3� �
The symbol � 0� , � � � � � , represents the underlying predicate symbols. We create

the source instance
 as follows. As in the proof of Theorem 4.3.2, we populate � � ������� � �
 ,

and � with tuples from the corresponding relations in
�

and the ground fact. For � , we create

a single tuple � 	 � � 	 � ������� � 	 � �
� � , where

�
is a fresh value that does not occur elsewhere in
 .

Finally, for
�

we create a single tuple with the value “1”, and for � we insert all distinct values

of
�

,
�

, � , and the ground fact, each as a unary tuple in � .

The first � tgds of � 	
� copy the � � to � 0� , where
� � � � � . The next two s-t

tgds copy tuples in
�

and � to
� 0 and � 0 , respectively. The last two s-t tgds in � 		� build

the relation � 0 : One tgd copies every tuple from � to � 0 along with an additional column

which contains the value “1”. The last tgd generates all possible tuples composed of values

from the source instance
 , attaches a labeled null, and puts the resulting tuple into the target

relation � 0 . Intuitively, a labeled null indicates that the tuple is not in the result of applying

the sirup rule, and a value “1” indicates otherwise. The set � � is constructed in such a way

that the last column � of a tuple �� � ��� � � �" � � � � in ��0 will be set to “1” if and only if
� � � � �

� �� (� ��� � � �" � � . The first egd in � � simulates the sirup rule. In particular, it sets the last column

� of a tuple �� �� ��� � � �" � � � � to “1” whenever �� -� ��� � � �" � � is generated by the sirup rule. For

example, if the sirup rule is � ��� � � � ��� ��� � ��-� � � ��� ���-� �� � � �"� ��� � � , then the first egd in � � is
� 0 ������% ��0 ��� � �� � % ��0� ���!� �� � ��% ��0� ���-� �� � ��% ��0���� � ����� � � � � . The second egd is similar

to the functionality of the egd in the proof of Theorem 4.3.2. It detects whether the fact � is in

the result of the sirup rule. If so, this egd will be violated because it equates “
�
” with “1”.

It is easy to see that the schema mapping and the source instance
 can be constructed

in polynomial time. Moreover, there is no solution to the schema mapping with source instance

 if and only if
� � � � � � . If there is no solution, we know that the chase must fail on one

of the egds in � � . Since the chase of
 with � 		� only adds the tuple “1” to
� 0 and no other

tuples are added to
� 0 , we know that � is always bound to the value “1” with the first egd in

� � . Since the last column of every tuple in � 0 is either a labeled null or the value “1”, this egd

cannot cause a violation. We therefore conclude that the violation is due to the second egd in

� � . Since the chase only adds the tuple � 	�� ��� � � � 	 � �
� � to � 0 and � always binds to the value

“1”, the violation must have been due to the existence of a tuple ��0 � 	+� ��� � � � 	 � �
� � . Therefore, we

conclude that
� � � � � � . It is easy to see that if

� � � � � � , then there will be no solution,

69

since the last egd of � � can never be satisfied.

Using Lemma 4.3.4, we are now ready to show that the EXPTIME-hard lower bound

continues to hold even when we fix the source and target schemas.

Theorem 4.3.5 There exists a fixed source schema � � and a fixed target schema ��� such that

the existence-of-solutions problem for
�
� is EXPTIME-hard, where

�
� is the class of all schema

mappings � � � ����� ��� 	
� ��� � � such that � 		� consists of s-t tgds with at most two existentially-

quantified variables and � � consists of only two egds.

Proof: We prove this by a reduction from the SGF sirup problem. We are given an SGF sirup
�

, a database
�

, and a fact � ; we wish to determine whether
� � � � � � . Let the sirup rule

be of the form: � ��� � � � � ��� � � ������� ���
 ��� 	 � , where each symbol � � , � � � � � , represents

either an extensional database predicate or the intensional database predicate � . If � occurs

among � � ��� � � ���
 , then there is a ground fact that initializes � . Let the arity of � be � and let

� denote the fact � � 	5� ��� � � � 	 � � .
The source schema � contains the relational symbols � ,

, � , � ,

�
, and � , where

� is a binary relation that stores a linear order of the relations involved,

is a relation symbol

of arity 5 that stores all tuples of each relation, � is a ternary relation that stores the fact � ,
and � is a ternary relation that stores the initialization tuples. Note that the relational symbol

� in � is the same as the intensional database predicate of the sirup
�

. The relations
�

and

� are unary, where
�

stores the single value “1” and � stores all possible values that occur in
� � � � � � . The target schema � is an isomorphic copy of � and consists of the relational

symbols �&0 ,
 0 , � 0 , ��0 , � 0 , and �&0 .
Next, we show how the source instance
 is constructed based on

�
,
�

, � , and the

ground fact before we describe the construction of � 		� and � � . Suppose � � ������� � � � are the

extensional database predicates, and � is the only intensional database predicate. We now

construct � to contain a linear order on the relational symbols that occur in
�

. That is, we define

� � � � ��� � ��� � ��� � � � � � � � � � � � �
� � � � � � �"� �

�
, Next, we construct the relation � . We use �

to hold the test tuple � by defining � � � � � � � � 	�� � � � � � � � 	 � � ������� � � ����� � � � 	 � �
� � � � � � � ��� �

� � � � � . Intuitively, the ordering of the values in � is maintained by the pair of numbers in the

first two columns of each tuple. The value
�

is not used anywhere else and is stored as an extra

column to the tuple � . We will subsequently use the existence of
�

to test if a solution was found.

70

Finally, we construct the relation

. For every tuple �� !� ������� �" � � � of a relation � � , where � � has

arity � � , we create � � tuples in

: � � � � � � � � � �" �� � � � � � � � � � � � �" .� � ������� � � � � ��� � ��� � � � � � �" � � � .
The value in the first column of a tuple is used to distinguish among tuples from different

relations. The fourth column holds a value � , which is a unique identifier for the tuple; every

tuple has a different identifier. Since the tuple is now split among � � tuples, the second and third

column of the tuple � is used to encode the ordering of values in the original tuple. We repeat

this process for the ground fact, if it exists. We create a single tuple “1” in
�

, and for � we

insert all distinct values of
�

,
�

, � , and the ground fact, each as a unary tuple in � .

We describe next the construction of � 		� and � � with an example first. Suppose the

sirup rule
�

is � ��� � � � � � ��� � �� � ��% � � ��� � �� � ��% � ��� � � . Then, the set � 	
� consists of the

following s-t tgds:
1)

 � � � � �� ������� � �

 0�� � � � �� ������� �

2)
� ��� � �

� 0 ��� �
3) � ��� � ��-� ����� � � 0 ���!� ��-� �����
4) � ��� ����� � �$0 ��� �����
5)

� ������% � � � � � � � � % ����� % � � �

� � � � �

� ��% � �
�

� �
�
� � %
 � �

� � � � � �+� ��� � �� � ��% ����� %
 � �
� � � � � � ��� � ��� � �� � �

�

 0 � �

� � � � � � � ��� � �� � ��% ����� %
 0 � �
� � � � � � ��� � ��� � �� � � %
 0 � �

� � � ��� � � � ��� � ��� � ��� �
6) � ��� � � % ����� % � ��� � � %� � � � � � � ��% ����� % � � �

� � � � �

� � % � �
�

� �
�
� �

� � � � � �
 0 � �
� � ��� � �+� ��� �� � ��% ����� %
 0 � �

� � � � � � ��� � ��� �� � ��%

 0 � �

� � � ��� � � � ��� � ��� � � � �
The first four s-t tgds copy the relations

,
�

, � , and � to

 0 , � 0 , � 0 , and �$0 ,

respectively. The fifth and sixth s-t tgds build the relation � in

 0 . The fifth s-t tgd copies every

tuple in

that belongs to � over to

 0 and extends the tuple with a value “1” at the � � � � � th

column. The sixth s-t tgd generates every possible output tuple of the sirup rule along with a

labeled null � that is the identifier of the output tuple. An additional labeled null � is also

generated at the � � � � � th column; it will be used to indicate whether this tuple exists in the

result of the sirup rule. The dependencies in � � consists of the following two egds:

71

1)
� 0 ��� ��% ��0 � � � � � � � % ����� % �$0 � �

� � � � �

� ��% �$0 �
�

� �
�
� � %
 0 � �

� � � � � �
� ��� � ��!� � % ����� %
 0 � �
� � � � � � ��� � ��� � �� � � %
 0�� �

� � � � � � � � ��� � ��� � ��� � %
 0�� � � � � �� � � �� ��� � �� �� ��% ����� %
 0�� � �� � � � � ��� � ��� � ��
�
� � �

...
 0 � � 	 � �
 � � �
 � ���
 ��
 � � % ����� %
 0 � � 	 � � � � � ��� � ���
 ��
 � � �
� ��� �

2)
� 0 ��� ��% ��0 � � � � � � � % ����� % �$0 � �

� � � � �

� ��% �$0 �
�

� �
�
� � %

� 0 ��� � � � � �� � ��% ����� % � 0 ��� � � � ��� � �� � � %
� 0 ��� ��� � � � ��� � ��� � %
 0�� �

� � �!� � �-� ��� � �� � � % ����� %
 0�� �
� � � � � � � � � ��� � �� � � %
 0 � �

� � � ��� � � � ��� � ��� � ��� �
� �3� �

The first egd is a rewriting of the first tgd in � � of the proof of Lemma 4.3.4 based

on the fixed schema � . It simulates the sirup rule. In particular, it sets the last column of

a tuple in

 0 to “1” whenever the tuple is generated by the sirup rule. The second and third

line above represent the original relational atom �&0���� � ��� � � �� � ��� � , the fourth line represents the

original relational atom � � ��� � � , and so on. Similarly, the ��0 relational atoms above repre-

sent the original relational atom � 0 ��� � ��� � � �� � ��� � and the second and third line of the last egd

above represent the original relational atom � 0 ���!� ��� � � �� � ����� . For example, if the sirup rule is

� ���!� � � ��� ���!� �� � � � ��� ���-� �� � � �"� ��� � � , then the first egd in � � is� 0 ��� � % � � � � � � � � % � � � � � �
� � %
 0�� �

� � � � � �
� ��� � ��!� ��%
 0 � �
� � �
� � � � ��� � ��� � %
 0�� � � � � � � � � ��� � �� � ��%
 0�� � � � � � � � � ��� � �� � � %
 0 � � � � ��� � � � ��� � ��-� ��%
 0 � � � � � � � � � ��� � �� � � %
 0�� �

� � � � � � � ��� � �� � � � �3� �
and the second egd is� 0���� � % � � � � � � � � % � � � � � �

� � %
� 0 ��� � � � � �� ��% � 0 ��� � � � � ��� �
 0 � �

� � � � � � � ��� � �� ��%
 0 � �
� � � � � � � ��� � ��� � � � � �

It is easy to see that an argument similar to that in the proof of Lemma 4.3.4 shows

that there is no solution to the schema mapping with source instance
 if and only if
� � � � ��� .

The last result of this section shows that a slight extension of the classes
� � � � ��� � � of

schema mappings with a non-full but weakly acyclic target tgd may also cause the complexity

of the existence-of-solutions problem to become EXPTIME-hard. In fact, this EXPTIME-hard

lower bound holds even when the s-t tgds are held fixed.

72

Theorem 4.3.6 There exist a fixed source schema � � , a fixed target schema ��� , and a fixed set

� �		� such that

� � ��� �	
� consists of full s-t tgds.

� � � The existence-of-solutions problem for
�
� is EXPTIME-hard, where

�
� is the

class of all schema mappings � � � ��� � ��� �		� ��� � � in which � � consists of one egd and one weakly

acyclic tgd with one existentially-quantified variable.

Proof: We prove this by a reduction from the SGF sirup problem. We are given a SGF sirup
�

, a database
�

, and a fact � ; we wish to determine whether
� � � � � � . Let the sirup rule

be of the form � ��� � � � � ��� � � ������� ���
 ���
	�� , where each symbol � � , � � � � � , represents

either an extensional database predicate or the intensional database predicate � . If � occurs

among � � ��� � � ���
 , then we assume that there is a ground fact that initializes � . Let the arity of

� be � and let � denote the fact � � 	�� ��� � � � 	 � � .
The source schema � consists of three relational symbols � , � , and

, where � is a

binary relation symbol that holds a linear order on the relation symbols that occur in
�

, � is a

ternary relational symbol that is used to hold the fact � to be tested, and

is a relation symbol

of arity � that is used to hold all tuples in
�

. The target schema � is an isomorphic copy of �
with the relational symbols � 0 , � 0 , and

 0 .
The s-t tgds in � 		� are fixed, and they simply copy each source relation to its corre-

sponding relation in the target. Hence, � 	
� consists of three full s-t tgds:
� 	
� � � ��� ����� � � ��� �����

� ��� ��� ��� � � � 0 ��� ��� ��� �
 � � � � �� ��� ��� � �

 0 � � � � �� ��� ��� �

Next, we show how the source instance
 is constructed based on
�

,
�

, � , and the

ground fact before we describe the construction of � � . Let � � ������� � � � be the extensional

database predicates, and � be the intensional database predicate. We now construct � to contain

a linear order on the relational symbols. That is, we define � � � � � � � � � � ��� � � � � � � � � � � � �
� �

� � � � �"� �
�
. Next, we construct the relation � . We use � to hold the test tuple � by defining

� � � � � � � � 	+� � � � � � � � 	 � � ������� � � ����� � � � 	 � �
� � � � � � � ��� � � � � � � . Intuitively, the ordering

of the values in � is maintained by the pair of numbers in the first two columns of each tuple.

The value
�

is not used anywhere else and is stored as an extra column to the tuple � . We will

subsequently use the existence of
�

to test if a solution was found. Finally, we construct the

relation

. For every tuple �� � ������� �" � � � of every relation � � , where � � has arity � � , we create

73

� � tuples in

: � � � � � � � � � �" �� � � � � � � � � � � � �" .� � ������� � � � � ��� � ��� � � � � � �" ��� � . The value in the

first column of a tuple is used to distinguish among tuples from different relations. The fourth

column holds a value � , which is a unique identifier for the tuple; every tuple has a different

identifier. Since the tuple is now split among � � tuples, the second and third columns of the

tuple � are used to encode the ordering of values in the original tuple. We repeat this process

for the ground fact, if it exists.

Now we describe the construction of � � . Before we present the encoding, it is in-

structive to first look at an example. As described earlier, suppose our sirup rule is � ����� ���
��� ���!� ��-� ��% ��� ��� � �� � ��% � ��� � � ; then � � contains the tgd:

��0�� � � � � � ��% ��0 � � � � �

� � %
 0 � � � � �!� � �-� ��� � �� ����%
 0 � � � � �-� � � � ��� � �� � � %
 0�� � � � � � � �
� ��� � ��-� ��%
 0 � � � � �
� � � � ��� � �� � � %
 0�� �

� � � � � � � ��� � �� � � � � �
 0 � �

� � � � � � � ��� �� � �
This tgd implements the sirup rule. There is also an egd in � � that detects whether �

has been produced:
��0�� � � � � � ��% ��0 � � � � �

� � %

 0�� �

� � ��� � � � ��� � �� � %
� 0 ��� � � � � �� ��% � 0 ��� � � � � ��� � � � � �

Recall that in general,
�

is a rule of the form � ��� � ��� � � �� � � � � � ����� � ������� ���
 ��� 	�� ,
where: �-� , � � � � � , are variables that occur among the � � s, and ��� ; 	 � � � � , are vectors

of variables; � occurs among � � ��� � � ���
 ; and the predicate symbols represented by � � ��� � � ���

are not necessarily all distinct. Our first tgd in � � is a tgd that implements the sirup rule and is

generally of the form:
��0�� � � � � � ��% � � � % ��0�� �

� � � � �

� � % ��0 �
�

� �� � %
 0 � � � ��� �� ��� �� ��� � �� �� ��% ����� %
 0 � � � ��� �� � ���
�
� � � � ��� � ��

�
� � � %
 0�� ��� ��� �� ��� �� ��� � �� � � ��% ����� %
 0�� ��� ��� �� � ���

�
� � � � ��� � ��

�
� � � %�����
 0 � � 	 ���
� ���
� ���
 ��
 � � % ����� %
 0 � � 	 ���
��� ���
��� � � ���
 ��
 ��� � %

�

� �
 0 ��� ��� 4 � ��� 4� ��� ��� � � % ����� %
 0 ��� ��� 4� ���
4
��� � ��� ��� � �

The first line above instantiates the variables � � ��� � � � �

� to the ordering of our � dis-

tinct relations, and binds � to “ � ”. Each subsequent line on the left-hand side of the tgd simu-

lates the atoms � � ��� � � ������� ���
 ��� 	 � in the body of the sirup rule. In the tgd, � � denotes the ar-

ity of � � , � � � � � . For example, the second line above is about the atom � � ��� � � of the sirup

rule. The vector of variables ��� �� ��� � � �� �� � � denotes the vector of variables � � , and the symbol � �
represents the variable ��� if � � represents the symbol � � . The variables � � ��� �� ��� �� ��� � � ��� �� � are

used to ensure that the variables � �� ��� � � �� �� � bind to values of the same tuple and in this order.

74

The right-hand side of the tgd creates a new tuple ��� � ��� � � ��� � � , where � � s are variables among

� 4 � s, and � is the arity of � . An existentially quantified variable � is used to generate a new

tuple identifier for this tuple. Assuming that � occurs as the th atom in the body of the sirup

rule, the variables � 4 � ��� � � ��� 4��� � are from the � � th line in the above tgd. It is easy to verify that

this tgd is weakly acyclic because every special edge leads to a node in the dependency graph

without any outgoing edges. Hence, there cannot be a cycle that contains a special edge.

The egd constructed in � � has the form:
� 0 � � � � � � ��% ����� % � 0 � �

� � � � �

� ��% � 0 �
�

� �� � %
 0���� ����� ���
� ��� � ��!� ��% ����� %
 0���� ��� � � ��� � � � � ��� � �� � � %
� 0 ��� � � �
� ��!� � % ����� % � 0 ��� � � � ��� � �� � � % � 0 ��� ��� � � � ��� � � � �
� � ��� �

This egd detects whether the tuple � 	�� ��� � � � 	 � � is a tuple in � . If the tuple is in � , the

egd becomes applicable and it equates the dummy value “
�
” from the tuple in � 0 with some

other constant and thus causes a failure.

It is easy to see that the reduction can be performed in polynomial time in the size of
�

,
�

, � , and the ground fact. To perform this reduction, we must make a single pass through the

input, and record a polynomial amount of information for every tuple in the input. The target

dependencies in � � can also be constructed in polynomial time. Next, we show that
� � � � � �

if and only if there is no solution for the instance
 under the schema mapping that we have

constructed.

Consider the target instance � 0 that is the result of chasing the source instance
 with

� 		� . Surely, � 0 contains � � � tuples in � 0 that conceptually represent the tuple � 	 � ��� � � � 	 � �
� �

with � � � columns. Next, consider a run of the sirup rule. It is easy to see that whenever the

sirup rule is applied, we can make a corresponding chase step with the tgd in � � . Hence, in

effect, the tgd simulates the behavior of the sirup rule. If the fact � is produced by the sirup

rule at some stage, then in the relation

 0 , � tuples will be created that conceptually represent

the tuple � � 	+� ��� � � � 	 � � . Hence, the egd in � � will become applicable and the chase will fail;

therefore, there is no solution.

For the converse, since there is no solution, there must be a failing chase sequence.

Suppose again that � 0 is the result of chasing the source instance
 with � 	
� . As before, � 0
contains � � � tuples in � 0 that conceptually represent the tuple � 	�� ��� � � � 	 � �

� � with ��� �

columns. Since � 	
� consists of full tgds that copy the source relations, we have, by construction,

that � 0 is conceptually a copy of the instance
�

and � . It is easy to see that if the tgd in � � can

75

be applied, then the sirup rule can be applied as well, and both will produce the same tuple.

In the former case, however, the tuple is encoded as � separate tuples in the relation

 0 . Since

there is no solution, the chase must fail due to the egd in � � . This can only happen if there are �
tuples in

 0 that represents the tuple � � 	�� ��� � � � 	 � � . In other words, we have that
� � � � � � .

4.3.2 coNP-Completeness

Our next result shows that the existence-of-solutions problem may be coNP-hard even

when the schemas are held fixed and each consists of a single relation, and � 		� is fixed and

consists of only a single full s-t tgd. Furthermore, our reduction constructs only a single egd

in � � to arrive at this lower bound. Thus, a slight extension from a fixed schema mapping

immediately gives us the coNP-hard lower bound.

Theorem 4.3.7 There exist a fixed source schema � � , a fixed target schema ��� , and a fixed set

� �		� with the following properties:

� � � Each schema consists of a single relational symbol.

� � ��� �	
� consists of a single full s-t tgd.

� � � The existence-of-solutions problem for
�
� is coNP-hard, where

�
� is the class of

all schema mappings � � � ��� � ��� �		� ��� � � such that � � consists of a single egd.

Proof: We give a reduction from 3SAT. The source schema � and target schema � each con-

tain a single relation of arity 5, known as � and � 0 , respectively. There is only a single full s-t

tgd � � � � � �� ������� � � � 0 � � � � �� ��� ��� � in � 		� that copies � to � 0 . Given a 3SAT formula � with

� clauses, we let �6� � ��� ������� � �
 denote the � clauses. We create the instance
 ��� � as follows.

For each clause � � , ��� � � � , we create seven tuples in � . For example, if ��� is the clause

��� " ��" ' � � , then the following seven tuples are created in � : (��� , ��� � � ,1,1,1), (��� , ��� � � ,1,1,0),

(��� , ��� � � ,1,0,1), (��� , ��� � � ,0,1,1), (��� , ��� � � ,1,0,0), (��� , ��� � � ,0,1,0), (��� , ��� � � ,0,0,0). There is

one tuple for every satisfying assignment for � � . The last three columns contain the satisfying

assignment and the first two columns of every tuple contain the values � � and � � � � , to denote

that this satisfying assignment belongs to the clause � � . Hence, the tuple � � � � � � � � �
	 � 	 � � �

does not occur in � since � 	 � 	 � � � is not a satisfying assignment for � � . After generating seven

tuples for each clause, we add a “dummy” tuple to � : � �
 � � � �
 � � �
� � � � � � . The value “

�
” is

different from any other value in the relation � .

76

Finally, we construct an egd � ��� � � � � � �-� for � � based on � . The left-hand

side � ��� � is constructed as follows: There is a relational atom � 0 � �

 � � �
�

 � � ��� ��� ��� � in

� ��� � , where � is a fresh variable not used anywhere else in � ��� � . Then, for each clause � �
there is a relational atom � 0 � � � � � � � � �� � ��� � ��� � � , where � � , � � and � � are variables that represent

the literals in � � . The right-hand side of the egd is � � � , where � is one of the variables

representing a literal that occur in � ��� � . As an example, suppose � is the 3SAT formula ������"
�-�!" � � � % ��� ��" '�� � " '�� � � . The following egd � 0 � � � � � � ��!� ��-� �� � � % � 0 �

� � � �

� ��-� �� � �� � � %
� 0 � �

� �
�

� ��� ��� ��� � � �!��� � will be constructed.

Clearly, the schema mapping � ��� � and the source instance
 ��� � can be constructed

in polynomial time in the size of � . It is also easy to see that there is no solution for
���� � under

� ��� � if and only if � is satisfiable.

Theorem 4.2.3 and Theorem 4.3.7 yield the following corollary.

Corollary 4.3.8 Let ��� be a fixed source schema and ��� a fixed target schema. Let
� � ��� ����� �

be the class of all schema mappings � � � ����� ��� 		� ��� � � , where � 	
� is a set of full s-t tgds, and

� � is the union of a set of egds with a set of full tgds. The existence-of-solutions problem for
� � ��� ����� � is coNP-complete.

A slight variation of the proof of Theorem 4.3.7 would yield the same lower bound,

where � � is now kept fixed, while � 	
� is allowed to vary but consists of only full s-t tgds.

Theorem 4.3.9 There exist a fixed source schema � � , a fixed target schema ��� , and a fixed set

� �� with the following properties:

� � � Each schema consists of a single relation symbol.

� � ��� �� consists of a single egd.

� � � The existence-of-solutions problem for
�
� is coNP-hard, where

�
� is the class of

all schema mappings � ��� ����� ��� 		� ��� �� � such that � 		� consists of a single full s-t tgd.

Proof: We use the same source and target relations used in the proof of Theorem 4.3.7. We also

construct the same source instance used in that proof. For � 		� , we create a full s-t tgd � ��� � �

� 0 � �

 � � �
�

 � � ��� ��� ��� � , where �

 � � and � are variables that occur in � , and � ��� � is the same

as the left-hand side of the egd constructed in the proof of Theorem 4.3.7, except that we use

the relation symbol � instead of � 0 . More precisely, � ��� � is constructed as follows: There is a

77

relational atom ��� �

 � � �
�

 � � ��� ��� ��� � in � ��� � , where � is a variable not used anywhere else

in � ��� � . For each clause � � , � � � � � , there is a relational atom � � � � � � � � � �� � ��� � ��� � � in

� ��� � , where � � , � � , and � � are variables that represent the literals in � � . As an example, suppose

the 3SAT formula ��� �#" � � " � � � % ���-� " ' � � " '�� � � . Then, the following s-t tgd is constructed:

� � � � � � � �� � ��-� �� � � % ��� � � � �

� ��-� �� � �� � ��% � � �

� �
�

� ��� ��� ��� � � � 0 � �

� �
�

� ��� ��� ��� � . Fi-

nally, � � consists of a single fixed egd � 0 � � � � ��� ��� ��� � � � � � . It is easy to see that the

3SAT formula is satisfiable if and only if there is no solution for the source instance under the

schema mapping.

4.4 Concluding Remarks

4.4.1 Summary of Results

The results presented here shed light on both the data complexity and the combined

complexity of data exchange for schema mappings � � � � ��� ������� ����� � in which � 		� is a set

of s-t tgds and � � is a set of target egds and target tgds. Earlier work on the data complexity of

data exchange had shown that the existence-of-solutions problem is polynomial-time solvable,

assuming that the target tgds form a weakly acyclic set. Regarding the combined complexity of

data exchange, we showed that there is a provable exponential gap between the data complexity

and the combined complexity of the existence-of-solutions problem for schema mappings � �
� � ��� ������� ����� � in which � 		� is a set of s-t tgds and � � is the union of a set of target egds with a

weakly acyclic set of target tgds.

4.4.2 Future Work

We have shown that in restricted settings, the existence-of-solutions problem can be

coNP-complete or EXPTIME-complete. For the general case, however, we do not have a tight

lower bound to match the 2EXPTIME upper bound. To make this bound tight, we need either to

produce a new EXPTIME algorithm for solving the existence-of-solutions problem in general,

or to produce a reduction from a known 2EXPTIME-complete problem.

In general there may be infinitely many solutions to a data exchange instance. Fa-

gin et al. presented, in [9], the concept of a universal solution, which is a solution that makes

the smallest number of assumptions about the data. Given a schema mapping � and an in-

78

stance
 , a universal solution � for
 is a solution for
 that has a homomorphism to every other

solution for
 . They then proved that a universal solution could be computed in polynomial

time.

There may still be infinitely many universal solutions, and so in [10] Fagin et al.

discussed using the core of the universal solutions as the desired goal. The core of a relational

structure � is a structure � such that � � � , there is a homomorphism from � to � , and

there is no proper substructure
�

of � such that there is a homomorphism from � to
�

. This

means that the core of � is the smallest substructure of � that is homomorphically equivalent

to � . It turns out that if you compute the core of any two universal solutions, you will get

isomorphic structures. Thus we have a unique case of the universal solutions of an instance of

data exchange. There are a number of results about the computation complexity of computing

the core, but the general complexity is still unknown.

79

Bibliography

[1] J. Barwise. On Moschovakis closure ordinals. Journal of Symbolic Logic, 42:292–296,

1977.

[2] A. A. Bulatov. A dichotomy theorem for constraints on a three-element set. In FOCS ’02:

Proceedings of the 43rd Symposium on Foundations of Computer Science, pages 649–658,

Washington, DC, USA, 2002. IEEE Computer Society.

[3] S. A. Cook. The complexity of theorem-proving procedures. In STOC ’71: Proceedings of

the Third Annual ACM Symposium on Theory of Computing, pages 151–158, New York,

NY, USA, 1971. ACM Press.

[4] M. C. Cooper. An optimal � -consistency algorithm. Artificial Intelligence, 41:89–95,

1989.

[5] R. Dechter. From local to global consistency. Artificial Intelligence, 55:87–107, 1992.

[6] R. Dechter. Bucket elimination: A unifying framework for reasoning. Artificial Intelli-

gence, 113(1-2):41–85, 1999.

[7] A. Deutsch and V. Tannen. Reformulation of XML Queries and Constraints. In Interna-

tional Conference on Database Theory (ICDT), pages 225–241, 2003.

[8] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer - Verlag, 1998.

[9] R. Fagin, Ph. G. Kolaitis, R. J. Miller, and L. Popa. Data Exchange: Semantics and Query

Answering. Theoretical Computer Science (TCS), 336(1):89–124, 2005.

[10] R. Fagin, Ph. G. Kolaitis, and L. Popa. Data Exchange: Getting to the Core. ACM

Transactions on Database Systems (TODS), 30(1):174–210, 2005.

80

[11] T. Feder and M. Y. Vardi. Monotone monadic SNP and constraint satisfaction. In STOC

’93: Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing,

pages 612–622, New York, NY, USA, 1993. ACM Press.

[12] T. Feder and M.Y. Vardi. The Computational Structure of Monotone Monadic SNP and

Constraint Satisfaction: A Study through Datalog and Group Theory. SIAM J. on Com-

puting, 28:57–104, 1998. Preliminary version in Proc. 25th ACM Symp. on Theory of

Computing, May 1993, pp. 612–622.

[13] E. C. Freuder. A sufficient condition for backtrack-free search. Journal of the ACM

(JACM), 29(1):24–32, 1982.

[14] G. Gottlob and C. Papadimitriou. On the complexity of single-rule datalog queries. Infor-

mation and Computation, 183(1):104–122, 2003.

[15] M. Grohe. Equivalence in finite-variable logics is complete for polynomial time. Combi-

natorica, 19(4):507–523, 1999.

[16] P. Jeavons, D. Cohen, and M. Gyssens. Closure properties of constraints. Journal of the

ACM (JACM), 44(4):527–548, 1997.

[17] T. Kasai, A. Adachi, and S. Iwata. Classes of pebble games and complete problems. SIAM

Journal of Computing, 8(4):574–586, 1979.

[18] S. Kasif. On the parallel complexity of discrete relaxation in constraint satisfaction net-

works. Artificial Intelligence, 45(3):275–286, 1990.

[19] Ph. G. Kolaitis and J. Panttaja. On the complexity of existential pebble games. In Pro-

ceedings of Computer Science Logic CSL ’03, Lecture Notes in Computer Science 2803,

pages 314–329. Springer, 2003.

[20] Ph. G. Kolaitis, J. Panttaja, and W. Tan. The complexity of data exchange. In Proceed-

ings of the 25th ACM SIGACT SIGMOD SIGART Symposium on Principles of Database

Systems (PODS’06), pages 30–39, 2006.

[21] Ph. G. Kolaitis and M. Y. Vardi. On the expressive power of Datalog: Tools and a case

study. Journal of Computer and System Sciences, 51:110–134, 1995.

81

[22] Ph. G. Kolaitis and M. Y. Vardi. Conjunctive-query containment and constraint satisfac-

tion. Journal of Computer and System Sciences, 61:302–332, 2000.

[23] Ph. G. Kolaitis and M. Y. Vardi. A game-theoretic approach to constraint satisfaction.

In Proceedings of the Seventeenth National Conference on Artificial Intelligence, pages

175–181, 2000.

[24] Ph. G. Kolaitis and Moshe Y. Vardi. Conjunctive-query containment and constraint sat-

isfaction. In Proceedings of the 17th ACM SIGACT SIGMOD SIGART Symposium on

Principles of Database Systems (PODS’98), pages 205–213, 1998.

[25] E. Pezzoli. Computational complexity of Ehrenfeucht-Fraı̈ssé games on finite structures.

In Computer Science Logic. 12th International Workshop, CSL’98., pages 159–170, 1999.

[26] T.J. Schaefer. The Complexity of Satisfiability Problems. In ACM Symposium on Theory

of Computing (STOC), pages 216–226, 1978.

82

