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Data Exchange

Data Exchange

Transform data structured under a schema (source schema) into
data structured under another schema (target schema)
Two of the main issues:

Algorithms for materializing a “good” target instance.

Semantics and algorithms for answering target queries:

Query Answering

Earlier work has focused on the certain answers of target FO queries,
with emphasis on conjunctive queries.

In this work we consider aggregate queries over the target:
1 We give semantics for aggregate query answering.
2 We give PTIME algorithms for aggregate query answering (data

complexity).
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Our Framework

Data exchange setting considered:

source schema;

target schema;

source-to-target constraints specified by s-t tgds.

Aggregate queries considered

Scalar aggregation queries

SELECT f FROM R ,
where

f is one of the aggregate operators min(A), max(A), count(A),
sum(A), avg(A), and count(∗), and

A is an attribute of a target relation R .
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Schema Mappings and Data Exchange

Basic Notions (FKMP 2003)

M = (S,T,Σ) is a schema mapping, where Σ is a set of s-t tgds.

A source-to-target tuple-generating dependency (or an s-t tgd) is a
FO-formula ∀x(ϕ(x) → ∃yψ(x, y)), where ϕ(x) is a conjunction of
atoms over S, ψ(x, y) is a conjunction of atoms over T, and every
variable in x occurs in an atom in ϕ(x).

Each s-t tgd is a global-and-local-as-view (GLAV) constraint.

If I a is source instance, then a solution for I under M is a target
instance J such that (I , J) |= Σ.
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Schema Mappings and Data Exchange

Example

Let M be specified by the s-t tgd

∀x∀y(E (x , y) → ∃z(F (x , z) ∧ F (z , y)).

If I = {E (1, 2)}, then the following target instances are solutions for I :

J1 = {E (1, 1),E (1, 2)}.

J2 = {E (1, 2),E (2, 2)}.

J3 = {E (1,w),E (w , 2)}, where w is a labeled null.

J4 = {E (1,w1),E (w1, 2),E (1,w2),E (w2, 2)}, where w1, w2 are
labeled nulls.

There are infinitely many solutions for I .
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Universal Solutions

Definition (FKMP 2003)

A universal solution for I under M: is a solution J for I under M such
that for every solution J ′ for I under M, there is a homomorphism
h : J → J ′.

Note:

Intuitively, universal solutions are the the most general solutions in
data exchange; they carry no more and no less information than what
is specified by the constraints of the schema mapping.

Universal solutions are reminiscent of the most general unifiers in
logic programming.

Every two universal solutions are homomorphically equivalent.
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Universal Solutions

Example

Let M be specified by the s-t tgd

∀x∀y(E (x , y) → ∃z(F (x , z) ∧ F (z , y)).

If I = {E (1, 2)}, then:

J1 = {E (1, 1),E (1, 2)} is not a universal solution for I .

J2 = {E (1, 2),E (2, 2)} is not a universal solution for I .

J3 = {E (1,w),E (w , 2)} is a universal solution for I (labeled nulls can
be mapped to constants)

J4 = {E (1,w1),E (w1, 2),E (1,w2),E (w2, 2)} is a universal solution
for I (labelled nulls can be mapped to constants or to labelled nulls).

J5 = {E (1,w),E (w , 2),E (w ,w)} is not a universal solution for I ,
even though it contains one.

There are infinitely many universal solutions for I .
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Canonical Universal Solutions and the Chase Procedure

Theorem [FKMP 2003]

A canonical universal solution CanSol(I ) for I under M can be obtained
in time polynomial in the size of I using the naive chase procedure.

Naive chase

for every s-t tgd ϕ(x) → ∃yψ(x, y) in Σ and for every tuple a from I such
that I |= ϕ(a), we introduce a fresh tuple of distinct nulls u and create
new facts in the canonical universal solution so that ψ(a,u) holds.
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Canonical Universal Solutions and the Chase Procedure

Example

Let M be specified by the s-t tgd

∀x∀y(E (x , y) → ∃z(F (x , z) ∧ F (z , y)).

If I = {E (1, 2)}, then the canonical universal solution produced by the
naive chase procedure is J3 = {E (1,w),E (w , 2)}.

Example

Let M′ be specified by the s-t tgd

∀x∀y(E (x , y) → ∃z1∃z2(F (x , z1) ∧ F (z1, y) ∧ P(z2)).

If I = {E (1, 2),E (1, 3)}, then the canonical universal solution is

J = {F (1,w1),F (w1, 2),P(w2),F (1,w3),F (w3, 3),P(w4)}.
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Cores

Definition

A database instance J ′ is a core of a database instance J if

J ′ ⊆ J.

There is a homomorphism h : J → J ′.

There is no J∗ ⊂ J ′ such that there is a homomorphism h∗ : J → J∗.

Example

If a graph G is 3-colorable and contains a triangle K3, then K3 is a
core of G .

Kn is a core of Kn, where Kn is the n-clique, n ≥ 2.

if J = {F (1,w1),F (w1, 2),P(w2),F (1,w3),F (w3, 3),P(w4)}, then J1

and J2 are cores of J, where

J1 = {F (1,w1),F (w1, 2),P(w2),F (1,w3),F (w3, 3)}.
J2 = {F (1,w1),F (w1, 2),F (1,w3),F (w3, 3),P(w4)}.
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Properties of Cores

Facts

Every (finite) instance has a core.

All cores of an instance are unique up to isomorphism, hence we can
talk about the core of an instance.

If J and J ′ are homomorphically equivalent, then their cores are
isomorphic.

Computing the core of an instance is an NP-hard problem.

(FKP 2003) The following problem is DP-complete: Given two
undirected graphs G and H, is H the core of G?

Note: NP ∪ coNP ⊆ DP.
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The Core of the Universal Solution

Fact:

Since all universal solutions for an instance I are homomorphically
equivalent, they have isomorphic cores.

Hence, we refer to the core of the universal solutions for I .

The core of the universal solution for I is the smallest universal
solution for I .

Theorem [FKP 2003]

If M is a schema mapping specified by s-t tgds, then there is a
polynomial-time algorithm such that, given a source instance I , it
computes the core of the universal solution for I .
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Possible Worlds and Certain Answers

Definition

For every instance I over some schema R, let W(I ) be a set of instances
over some (possibly different) schema R∗ (set of possible worlds).
Let Q be a query over R∗.

A k-tuple t is a certain answer of Q w.r.t. I and W(I ) if for every
J ∈ W(I ), we have that t ∈ Q(J).

certain(Q, I ,W(I )) =
⋂

J∈W(I ) Q(J).

Note:

The certain answer semantics is the standard semantics of query
answering in the context of incomplete information.

On the face of the definition, computing the certain answers entails
taking an intersection over a potentially infinite set. In general, this is
highly non-constructive.
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Certain Answers of FO-Queries in Data Exchange

Question:

Fix a schema mapping M = (S,T,Σ) and a FO-query Q over the target
T . Given a source instance I , compute the certain answers of Q w.r.t. I .
What should the set W(I ) of the set of possible worlds for I be?

Bolzano, October 17, 2008 () Aggregate Queries in Data Exchange 14 / 34



Certain Answers of FO-Queries in Data Exchange

Question:

Fix a schema mapping M = (S,T,Σ) and a FO-query Q over the target
T . Given a source instance I , compute the certain answers of Q w.r.t. I .
What should the set W(I ) of the set of possible worlds for I be?

Three different approaches

1. The set Sol(I ) of all solutions for I . [FKMP 2003]

2. The set USol(I ) of all universal solutions for I . [FKP 2003]

3. The set Rep(CanSol(I )) derived from the collection of CWA-solutions
for I .
[Libkin 2006]
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Certain Answers of FO-Queries in Data Exchange

Theorem

Fix a schema mapping M = (S,T,Σ) specified by s-t tgds.

If Q is a union of conjunctive queries over T and I is an S-instance,
then
certain(Q, I ,Sol(I )) = certain(Q, I ,USol(I )) =
certain(Q, I ,Rep(CanSol(I ))).

If Q is a union of conjunctive queries over T, then
certain(Q, I ,Sol(I )) = Q(CanSol(I )) ↓. Hence, certain(Q, I ,Sol(I ))
is computable in polynomial time. [FKMP 2003]

If Q is a union of conjunctive queries with inequalities 6= over T, then
certain(Q, I ,USol(I )) = Q(core(CanSol(I ))) ↓. Hence,
certain(Q, I ,USol(I )) is computable in polynomial time. [FKP 2003]
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Certain Answers of Aggregate Queries

M. Arenas, L. E. Bertossi, J. Chomicki, X. He, V. Raghavan, and J.
Spinrad: Scalar aggregation in inconsistent databases - 2003.

Definition (Q a FO-query, f an aggregate operator)

A value r is a possible answer of Q with respect to I and W(I ) if
there is an instance J in W(I ) such that f (Q)(J) = r .

poss(f (Q), I ,W(I )) denotes the set of all possible answers of the
aggregate query f (Q).

The aggregate certain answers of the aggregate query f (Q) with
respect to I and W(I ) is the interval

[glb(poss(f (Q), I ,W(I ))), lub(poss(f (Q), I ,W(I )))].

They are denoted by agg-certain(f (Q), I ,W(I )),
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Aggregate Query Answering in Inconsistent Databases

Definition (informal)

An inconsistent database is an instance that violates one or more
integrity constraints in a given set of constraints.

A repair of an inconsistent database I is an instance I ′ that satisfies
the given constraints and differs from I in a minimal way.

R(I ) is the set of all repairs of I .
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Aggregate Query Answering in Inconsistent Databases

Definition (informal)

An inconsistent database is an instance that violates one or more
integrity constraints in a given set of constraints.

A repair of an inconsistent database I is an instance I ′ that satisfies
the given constraints and differs from I in a minimal way.

R(I ) is the set of all repairs of I .

Theorem [Arenas et al. - 2003]

Computing agg-certain(avg(R .A), I ,R(I )) can be coNP-hard even if the
set of integrity constraints consists of just two functional dependencies.
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Semantics of Aggregate Queries in Data Exchange

Approach:

We will adopt the aggregate certain answers as the semantics of aggregate
target queries in data exchange.

Question:

What is the right choice of possible worlds in this case?
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Semantics of Aggregate Queries in Data Exchange

Approach:

We will adopt the aggregate certain answers as the semantics of aggregate
target queries in data exchange.

Question:

What is the right choice of possible worlds in this case?

Sets of possible worlds for FO-queries in data exchange:

The set Sol(I ) of all solutions (FKMP03).

The set USol(I ) of all universal solutions (FKP03).

The set Rep(CanSol(I )) obtained from CWA solutions (Libkin 2006).

Fact:

Each of these sets of possible worlds gives rise to rather trivial aggregate
certain answers.
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Sol(I ) and USol(I ) as Sets of Possible Worlds

Fact (Using Sol(I ) as W(I ))

If I is a source instance and f is one of min, max, sum, avg, then
agg-certain(f (R), I ,Sol(I )) = (−∞,∞).

Fact (Using USol(I ) as W(I ))
.
Let a = min(R .A)(CanSol(I )) and b = max(R .A)(CanSol(I ))

1 agg-certain(min(R .A), I ,USol(I )) = a.

2 agg-certain(max(R .A), I ,USol(I )) = b.

3 If a = b, then agg-certain(avg(R .A), I ,USol(I )) = a.

4 If a < b, then agg-certain(avg(R .A), I ,USol(I )) = (a, b).
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CWA-Solutions and Possible Worlds

Definition

Let M = (ST,Σ) be a schema mapping specified by s-t tgds.
Libkin (2006) defined the concept of a CWA-solution for a source instance
I by giving a set of “axioms” that such a solution should satisfy.

Theorem [Libkin06]

The following two statements are equivalent.

1 J is a CWA-solution for I .

2 J is a homomorphic image of CanSol(I ); moreover, there is a
homomorphism from J to CanSol(I ).
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Rep(CanSol(I )) as Sets of Possible Worlds

Definition

Rep(J) coincides with the set of null-free homomorphic images of J.

Libkin took the set
⋃

J∈CWA(I ) Rep(J) as the set of possible worlds
for the semantics of FO-queries in data exchange.

Proposition
⋃

J∈CWA(I ) Rep(J) = Rep(CanSol(I )).
In words, the set of possible worlds W(I ) considered by Libkin is simply
the set of all null-free homomorphic images of CanSol(I ).
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Rep(CanSol(I )) as Sets of Possible Worlds

Definition

Rep(J) coincides with the set of null-free homomorphic images of J.

Libkin took the set
⋃

J∈CWA(I ) Rep(J) as the set of possible worlds
for the semantics of FO-queries in data exchange.

Proposition
⋃

J∈CWA(I ) Rep(J) = Rep(CanSol(I )).
In words, the set of possible worlds W(I ) considered by Libkin is simply
the set of all null-free homomorphic images of CanSol(I ).

Fact (Using Rep(CanSol(I )) as W(I ))

If CanSol(I ) contains at least one fact R(t) in which t[A] is a null, then
agg-certain(f (R), I ,Rep(CanSol(I )) = (−∞,∞).
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Endomorphic Images of CanSol(I )

Notation

If I is a source instance, then Endom(I ) stands for the set of all
endomorphic images of CanSol(I ).
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Endomorphic Images of CanSol(I )

Notation

If I is a source instance, then Endom(I ) stands for the set of all
endomorphic images of CanSol(I ).

Example

Let M′ be specified by the s-t tgd

∀x∀y(E (x , y) → ∃z1∃z2(F (x , z1) ∧ F (z1, y) ∧ P(z2)).

If I = {E (1, 2),E (1, 3)}, then Endom(I ) consists of

J = {F (1,w1),F (w1, 2),P(w2),F (1,w3),F (w3, 3),P(w4)}

J1 = {F (1,w1),F (w1, 2),P(w2),F (1,w3),F (w3, 3)}

J2 = {F (1,w1),F (w1, 2),F (1,w3),F (w3, 3),P(w4)}.

Bolzano, October 17, 2008 () Aggregate Queries in Data Exchange 22 / 34



Endomorphic Images of CanSol(I )

Proposal

Use Endom(I ) as sets of possible worlds W(I ) for the semantics of
aggregate queries in data exchange.

Properties

Endom(I ) contains both CanSol(I ) and core(CanSol(I )) as
members. Moreover, Endom(I ) ⊆ USol(I).

Every member of Endom(I ) is a sub-instance of CanSol(I ); the
converse, however, need not hold.

Every member of Endom(I ) is a CWA-solution for I ; the converse,
however, need not hold.
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Endom(I ) as Sets W(I ) of Possible Worlds

Some reasons for this choice:

The members of Endom(I ) adhere to a strict closed world
assumption.

If Endom(I ) are used as sets of possible worlds for the semantics of
conjunctive queries Q, then

certain(Q, I ,Endom(I )) = certain(Q, I ,Sol(I )).

agg-certain(f (Q), I ,Endom(I )) is non-trivial semantics for aggregate
queries f (Q).
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PTIME Algorithms for max, min, count

Proposition

CanSol(I ) and core(CanSol(I )) suffice for max, min, count, and a special
case of sum.

For every instance T ∈ Endom(I ), we have that
max(R .A)(T ) = max(R .A)(CanSol(I )) = a. Similarly for min.

agg-certain(count(R .A), I ,Endom(I )) =
[count(R .A)(core(CanSol(I ))), count(R .A)(CanSol(I ))].

If all numeric constants in I are non-negative integers, then
agg-certain(sum(R .A), I ,Endom(I )) = .
[sum(R .A)(core(CanSol(I ))), sum(Q)(CanSol(I ))].

Note

For sum in the general case, we use a simpler version of the technique that
we will use for the average.
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Exponentially Many Endomorphic Images

Example

Schema mapping M consisting of

∀x , y(P(x , y) → T (x , y))

∀x , y(Q(x , y) → ∃zT (x , z)).

Source instance
In = {P(a1, b1), . . . ,P(an, bn),Q(a1, c1), . . . ,Q(an, cn)}.

CanSol(In) is

Jn = {T (a1, b1), . . . ,T (an, bn),T (a1, u1), . . . ,T (an, un)}.

Every subset K of {1, . . . , n} determines an endomorphism hK of Jn,
and vice versa.

Thus, Endom(I ) consists of exponentially many endomorphic images,
one for each subset of {1, . . . , n}.
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Non-trivial Semantics for Aggregate Queries

Example (Continued)

K ⊆ {1, . . . , n}.

count((T .A)JK ) = n + |K | and
sum((T .A)JK = (

∑
n

i=1 ai ) + (
∑

i∈K
ai).

Consequently,
agg-certain(count(T .A), In,Endom(In)) = [n, 2n]

and
agg-certain(sum(T .A), In,Endom(In)) = [

∑
n

i=1 ai , 2
∑

n

i=1 ai ].

Moreover, the endpoints of these intervals are obtained by evaluating
count(T .A) and sum(T .A) on core(CanSol(In)) and on CanSol(In).
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Non-trivial Semantics for Aggregate Queries

Example (Continued)

Answering queries with the average, however, is more complicated. Take
the source instance

I = {(1, b1), (2, b2), (3, b3)}.

Then

agg-certain(avg(T .A), I ,Endom(I )) = [7/4, 9/4].

avg(T .A)(core(CanSol(I ))) = 2 = avg(T .A)(CanSol(I )).
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PTIME Algorithm for avg

Theorem

Let M = (S,T,Σ) be a schema mapping in which Σ is a set of s-t tgds,
let R be a target relation, and let A an attribute of R .
Then there is a PTIME algorithm for the following problem: given a
source instance I , compute agg-certain(avg(R .A), I ,Endom(I )).

Proof Hint:

Will only describe some of the concepts and the ingredients for the
algorithm.
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Blocks and Block Homomorphisms

Definition (FKP 2003)

Let K be a target instance.

The Gaifman graph of the nulls of K has the nulls of K as nodes; two
nulls are connected via an edge if they occur in some fact of K .

A block of K is a a connected component of the Gaifman graph of K .

A block homomorphism of B is a homomorphism from B to K .

Fact

There is a polynomial p(n) such that, for every source instance I , the
number of blocks of CanSol(I ) is bounded by p(|I |).

Let c be the maximum number of existential quantifiers ∃y appearing
in a s-t tgd ∀x(ϕ(x) → ∃yϕ(x, y)) in Σ. If I is a source instance, then
every block B of CanSol(I ) has size at most constant c .
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PTIME Algorithm for avg

Basic Ingredients

We design a PTIME algorithm for avg that, given I , finds
endomorphic images J and J ′ of CanSol(I ) that realize the optimum
(minimum and maximum) values for avg.

We can partition the set of integers in polynomially many critical
intervals determined by the blocks.

For each critical interval, we can decide which block homomorphism
is optimum, supposing that the value of the optimum avg is in this
interval.

We can find the optimum endomorphic image by assembling the
optimum block homomorphisms.

Assembling block homomorphisms requires care.
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PTIME Algorithm for avg

Example

Revisit M consisting of

∀x , y(P(x , y) → T (x , y))

∀x , y(Q(x , y) → ∃zT (x , z)).

For every source instance I , each block of CanSol(I ) is of size one.

Critical intervals are determined by the values of the attribute A.

The problem of finding an endomorphic image with the minimum
average is literally equivalent to the following combinatorial problem:
Given a bag S of positive integers, find a sub-bag S ′ of S such that:
(a) S and S ′ have the same set of distinct numbers; and
(b) the average of the members of S ′ is minimized.

Thus, computing agg-certain(avg(T .A), I ,Endom(I )) is an
algorithmically interesting problem, even for seemingly very simple
schema mappings M.
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Intractability of Aggregate Possible Answers

In contrast to the aggregate certain answers, computing the possible
answers of scalar aggregation queries with the average operator turns out
to be an NP-complete problem.

Theorem

There is a schema mapping M = (S,T,Σ) in which Σ is a finite set of s-t
tgds and such that the following problem is NP-complete: given a source
instance I and a number r , is there a target instance J ∈ Endom(I ) such
that avg(R .A)(J) = r?

Hint of Proof:

Reduction from the Partition Problem.
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Concluding Remarks

Summary of Contributions

We have given semantics for aggregate queries in data exchange.

We have given polynomial algorithms to compute the aggregate
certain answers under these semantics and for schema mappings
specified by s-t tgds.

More recently, we have shown that computing the aggregate certain
answers for schema mappings specified by SO tgds is NP-hard.

Next Steps

Study aggregate queries for schema mappings specified by s-t tgds
and target tgds.

Semantics and the complexity of richer aggregate queries with
GROUP BY constructs.
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