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Definability circa 1931

“Mathematicians, in general, do 
not like to deal with the notion 
definability; their attitude 
towards this notion is one of 
distrust and reserve. The 
reasons for this aversion are 
quite understandable.”

“Without doubt the notion of 
definability as usually 
conceived is of a 
metamathematical origin. I 
believe that I have found a 
general method which allows 
us a rigorous 
metamathematical definition of 
this notion.”
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Definability circa 1931

“… by analyzing this 
[metamathematical] definition, it proves 
possible … to replace it by one 
formulated exclusively in mathematical 
terms. Under this new definition, the 
notion of definability does not differ 
from other mathematical notions and 
need not arouse either fears or doubts; 
it can be discussed entirely within the 
domain of normal mathematical 
reasoning.”

On Definable Sets of Real Numbers      

Alfred Tarski, 1931
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Definability circa 1980

“Beyond that, what he (the mathematician) needs to read this 
book is patience and a basic interest in the central problem of 
descriptive set theory and definability theory in general: 
to find and study the characteristic properties of definable 
objects.”

Descriptive Set Theory   (About This Book)

Yiannis N. Moschovakis, 1980
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Inductive Definability

� First-order definability: the study of the relations explicitly
definable by first-order formulas on a structure.

� Inductive definability: the study of the relations inductively 
definable by first-order formulas on a structure.

� Motivation: Augment first-order logic with recursive constructs.

� Example: Graphs  G = (V,E)
� The transitive closure T of E is not first-order definable
� Recursive specification of transitive closure:

T(x,y)  ⇔ (E(x,y) Ç ∃ z (E(x,z) Æ T(z,y))
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Inductive Definability: A Brief History

� Hyperarithmetic Theory: 1944-1961
Kleene and Spector
Study of inductively definable relations on N = (N, +, ×)

� Abstract Recursion Theory : late 1960s onward
Aczel, Barwise, Gandy, Moschovakis, …
Study of notions of computability on infinite structures
(ordinals, admissible sets, …)

� Inductive Definability on Abstract Structures
Y.N. Moschovakis’ monograph:
Elementary Induction on Abstract Structures, 1974
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Least Fixed-Points of First-Order Formulas

� Vocabulary σ, first-order formula  φ(x1,…,xk,T) over σ ∪ {T}

� On every structure A over σ, it gives rise to an operator
� Φ: P(Ak) → P(Ak), where
� Φ(T)  =  {(a1, …,ak):  A � φ(a1, …,ak,T)}

� Transfinite iteration of Φ
� φ1 =  Φ(∅)

� φα =  Φ(Uβ<α φ
β)

� If φ(x1,…,xk,S) is positive in T, then Φ is monotone in T
� φ1 ⊆ φ2 ⊆ … ⊆ φα ⊆ φα+1 ⊆ …

� Tarski-Knaster Theorem : Φ has a least fixed-point φ∞

(the smallest T such that T = Φ(T)).  Moreover, 

φ∞ = Uα φ
α
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Examples

� Transitive Closure 
� φ(x,y,T)   ≡ E(x,y) Ç ∃ z (E(x,z) Æ T(z,y))
� φn(x,y)    ≡ “there is a path of length ≤ n from x to y”
� φ∞(x,y)   ≡ “there is a path from x to y”

� Well-Founded Part 
� ψ(x,T)  ≡ ∀ y (E(y,x) → T(y))
� ψ1(x)    ≡ in-degree(x) = 0
� ψ2(x)    ≡ ∀ y (E(y,x) → in-degree(y) = 0)
� ψ∞(x)   ≡ no infinite descending chain through x 

E(x,y1), E(y1,y2), …, E(yn,yn+1), …
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Systems of Positive First-Order Formulas

Systems of Positive First-Order Formulas

� ODD(x,y)      ≡ E(x,y) Ç ∃ z (E(x,z) Æ EVEN(z,y))
EVEN(x,y)    ≡ ∃ z (E(x,z) Æ ODD(z,y))

Simultaneous Inductive Definitions

� ODD∞(x,y)     ≡ “there is a path of odd length from x to y”
EVEN∞(x,y)   ≡ “there is a path of even length from x to y”
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Least Fixed-Point Logic LFP

� Definition: 
� Least Fixed-Point Logic LFP: least fixed-points of systems 

of positive first-order formulas

� If A = (A, R1, …, Rm) is a structure, then

LFP[A] = Collection of all LFP-definable relations on A

� Fact: For every structure A = (A, R1, …, Rm),

FO[A]  ⊆ LFP[A]  ⊆ Π1
1(A)
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Least Fixed-Point Logic

� Theorem (Kleene – Spector):  On N = (N, +, ×),
LFP[N]  =  Π1

1(N)
Moreover, LFP[N] is not closed under complements.

� Note: “Constructive” characterization of universal second-
order definable relations on N = (N, +, ×).

� Theorem (Moschovakis): If  A = (A, R1, …, Rm) is a 
countable structure with a first-order definable coding 
apparatus, then

LFP[A]  = Π1
1(A).

Moreover, LFP[A] is not closed under complements.
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Stage Comparison Relations

� Definition: φ(x,T) positive in T first-order formula
Stage Comparison Relations on A = (A, R1, …, Rm):
� a ≺φ b ⇔ a enters φ∞ before b
� a �φ b  ⇔ a enters φ∞ no later than b

φγ

a

b

φ∞

φ1

a ≺φ b

a must be in φ∞

b need not be in φ∞
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Stage Comparison Relations

� Example: φ(x,y,T) ≡ E(x,y) Ç ∃ z (E(x,z) Æ T(z,y))
� ≺φ and �φ are the distance comparison queries on E:
� (a,c) �φ (b,d)  ⇔ distance(a,c)  ≤ distance(b,d)

� Stage Comparison Theorem (Moschovakis):
For every positive first-order formula φ(x,T) and every 
structure A = (A, R1, …, Rm),  the stage comparison 
relations ≺φ and �φ are LFP-definable on A.
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Finite-Variable Infinitary Logics

� Definition: Infinitary Logic L∞ω

FO-logic  +  infinitary disjunctions ÇΨ and ÆΨ.

� Definition: (Barwise – 1975) 

� Lk
∞ω is the collection of all L∞ω-formulas with at most k 

distinct variables (variables may be reused), k≥ 1.

� Lω∞ω =  ∪k Lk
∞ω



16

LFP and Finite-Variable Infinitary Logic

� Fact: For every n≥ 1, there is a FO3-formula ψn(x,y) 
expressing the property:  
“there is a path of length at most n from x to y”
� ψ1(x,y)     ≡ E(x,y)
� ψn+1(x,y) ≡ ∃ z (E(x,z) Æ ∃ x (x=z Æ ψn(x,y))

� Theorem (Barwise - 1975): 
� On every structure A = (A, R1, …, Rm), 

LFP[A]  ⊆ Lω∞ω[A].

� Lk
∞ω-definability can be analyzed via k-pebble games,

i.e., families of partial isomorphisms with back-&-forth 
properties up to k (also Immerman – 1981).
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Local vs. Global Inductive Definability

� Local Inductive Definability: In Moschovakis’ monograph, 
the study of inductive definability takes place on an arbitrary,
but fixed, infinite structure.

� Global Inductive Definability: Results in local inductive 
definability often hold uniformly for classes of structures (and
with the same proof).

� Sample Result: The inductive definitions of the stage 
comparison relations ≺φ and �φ depend only on the formula φ, 
not on the structure A.
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Logic and Computer Science

� The study of abstract recursion theory and inductive definability on fixed 
infinite structures waned in the 1980s.

However,

� During the past 30 years, there has been an extensive and continuous 
interaction between logic and computer science.

� Global inductive definability and finite-variable logics have featured 
prominently in this interaction:
� Computational Complexity
� Finite Model Theory
� Relational Database Theory
� Constraint Satisfaction
� …
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Queries on Finite Structures

� F: the class of all finite structures A = (A, R1, …, Rm) over σ
� C: a subclass of F closed under isomorphisms

� Definition: Chandra & Harel – 1980
� A k-ary query on C is a function Q on C such that

� For every A in C, we have that Q(A) ⊆ Ak

� Q is preserved under isomorphisms:
If h: A → B is an isomorphism, then Q(B) = h(Q(A)).

� A Boolean query on C is a function Q: C → {0,1} that is 
preserved under isomorphisms. 
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Examples of Queries on Graphs

� Transitive Closure : Is there a path from a to b?
� G=(V,E) → T(G), where

T(G) =  {(a,b): there is a path from a to b}
� Transitive Closure is a binary query

� 3-Colorability: Is G a 3-colorable graph?
1   if G is 3-colorable

� Q(G) = 
0  if G is not 3-colorable

� 3-Colorability is a Boolean query
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Global Definability on Finite Structures

� Definition: Let L be a logic, C a class of finite structures, 
and Q a query on C.

Q is L-definable on C if there is a formula φ(x1, …, xk) 
of L such that for every structure A in C,
Q(A)  = {(a1,…,ak):  A � φ(a1, …, ak)}

� Notation:
L[C] = class of all L-definable queries on C
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LFP on Finite Structures

Proposition: For every class C of finite structures,
FO[C]  ⊆ LFP[C]  ⊆ PTIME[C]

Proof: Let φ(x1, …, xk,T) be a positive FO-formula.
For every finite structure A = (A, R1, …, Rm), we have that
A � φ∞ = φs, for some s ≤ |A|k, because

φ1 ⊆ φ2 ⊆ … ⊆ φn ⊆ … ⊆ Ak.

Proposition : On the class F of all finite graphs,
FO[F]  � LFP[F]   � PTIME[F]

Proof:  
� Transitive Closure Query ∈ LFP[F] \ FO[F]
� Even Cardinality Query     ∈ PTIME[F] \ LFP[F] 
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LFP on Ordered Finite Structures

Theorem: Immerman – Vardi, 1982
If C is a class of ordered finite structures A = (A, <, R1, …,Rm),
then LFP[C] = PTIME[C].

Open Problem:  Gurevich, 1988 
� Is there is a logic for PTIME?
� More precisely, let F be the class of all finite structures 

A = (A, R1, …,Rm). Is there a logic L such that
L[F]  =  PTIME[F]? 
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LFP on Finite Structures

� Note: Recall that LFP(N) is not closed under complements.

� Theorem: Immerman, 1982
Let F be the class of all finite structures A = (A, R1, …, Rm).
Then LFP(F) is closed under complements
Hint of Proof: Use the Stage Comparison Theorem
� Show that Maxφ is LFP(F)-definable, where

Maxφ(A)  =  {a:  a enters φ∞ at the last stage of φ}
� Note that if A is finite, then Maxφ(A) ≠ ∅

� Hence, for every finite A,
b ∉ φ∞ ⇔ ∃ a (a ∈ Maxφ Æ a ≺φ b) 
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Finite-Variable Logics on Finite Structures

� L∞ω is uninteresting on classes of finite structures as it can express 
every query. In contrast,

� Lω∞ω turns out to be interesting and useful.
Lω∞ω has been extensively studied in finite model theory.

� Fact: On the class F of all finite structures,
FO[F]  � LFP[F]  � Lω∞ω[F].

� The k-pebble games for Lk
∞ω, k≥ 1,  have been used as a tool to 

study the expressive power of LFP on classes of finite structures:
inexpressibility results for Lω∞ω imply inexpressibility results for LFP.

� Structural results for Lω∞ω yield similar structural results for LFP.
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Logic & Asymptotic Probabilities

� Notation:
� Q:            Boolean query on the class F of all finite structures
� Fn:           Class of finite structures of cardinality n
� µn:           Probability measure on Fn, n≥ 1
� µn(Q)  =  Probability of Q on Fn with respect to µn, n≥ 1.

� Definition: Asymptotic probability of query Q
µ(Q) = limn→∞ µn(Q), provided the limit exists

� Examples: For the uniform measure µ on finite graphs G:

� µ(G contains a △)  =  1.

� µ(G is connected)  =   1.
� µ(G is 3-colorable)  =  0.
� µ(G has even cardinality) does not exist.
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0-1 Laws in Finite Model Theory

� Definition: L a logic, µn a probabilty measure on Fn, n≥ 1.
L has a 0-1 law with respect to µn, n≥ 1, if

µ(Q) = 0 or µ(Q) = 1.
for every L-definable query Q on F.

� Theorem: With respect to the uniform measure on F:
� FO     has a 0-1 law (Glebskii et al.,1969 - Fagin, 1972).
� LFP   has a 0-1 law (Blass, Gurevich, Kozen, 1985)
� Lω∞ω has a 0-1 law (K .. & Vardi, 1990).

� Fact: Lω1ω
does not have a 0-1 law.
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Relational Databases

E.F. Codd, 1970-1971
� Relational Database:

Collection (R1, …, Rm) of finite relations
� Relational database ∼ Finite structure            

A = (A, R1, …, Rm)

� Relational Query Languages:
� Relational Algebra : 

operations  π, σ, ×, ∪, \

� Relational Calculus:
(safe) first-order logic

� SQL: The standard commercial database 
query language based on relational 
algebra and relational calculus.

E.F. Codd
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Datalog

� Theorem: Aho-Ullman, 1979
SQL cannot express the Transitive Closure query.

� Definition : Chandra-Harel, 1982
A Datalog program is a function-free and negation-free Prolog 
program.

� Example: Datalog program for Transitive Closure
T(x,y) :- E(x,y);
T(x,y) :- E(x,z), T(z,y).
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Datalog and Least Fixed-Point Logic

� Fact: For a query Q, the following are equivalent:
� Q is definable by a Datalog program.
� Q is definable by a system of existential, entirely positive 

first-order formulas.

� Example:
� System of existential, entirely positive first-order formulas:

ODD(x,y)      ≡ E(x,y) Ç ∃ z (E(x,z) Æ EVEN(z,y))
EVEN(x,y)    ≡ ∃ z (E(x,z) Æ ODD(z,y))

� Datalog program:
ODD(x,y)     :- E(x,y);
ODD(x,y)     :- E(x,z), EVEN(z,y);
EVEN(x,y)   :- E(x,z), ODD(z,y).
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Datalog and Least Fixed-Point Logic

� Fact: On the class F of all finite structures A = (A,R1, …, Rm),
Datalog[F]  � LFP[F]  � PTIME[F].

� Theorem:
Datalog can express PTIME-complete queries.
Proof:
� Datalog can express the Path Systems query

S = (F, A, R), where A ⊆ F and R ⊆ F3.

� Datalog program for Path Systems query:
T(x)  :- A(x);
T(x)  :- R(x,y,z), T(y), T(z).

� Cook, 1974: Path Systems is a PTIME-complete query.
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Datalog: Theory and Practice

� 1985-1995: in-depth study of Datalog and its variants.

� Little impact on commercial database systems. However,
SQL: 1999 standard supports linear Datalog.

� Transitive Closure in SQL:1999
with recursive FLY(origin,destination) as

(select origin, destination
from NonSTOP

union
select NonSTOP.origin, FLY.destination
from NonSTOP, FLY
where NonSTOP.destination = FLY.destination)

select destination
from FLY
where origin = ’Athens’
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Constraint Satisfaction

� Constraint Satisfaction Problem (CSP):
Given a set V of variables, a set D of values, and a set C of 
constraints, is there an assignment of variables to values such that 
all constraints in C are satisfied?

� CSP is a fundamental and ubiquitous problem in computer science. 
Special cases of CSP include:
� Boolean Satisfiability
� Graph Colorability
� Relational Join Evaluation
� Scene Recognition in machine vision
� Belief Revision
� ... 
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CSP and the Homomorphism Problem

� Thesis: Feder & Vardi, 1993
CSP can be formalized as the Homomorphism Problem:
Given two finite structures A = (A, R1, …, Rm) and 
B = (B, P1, …, Pm), is there a homomorphism from A to B?

� Definition: Homomorphism h: A → B
If (a1, …, ak) ∈ Ri, then (h(a1), …, h(ak)) ∈ Pi

� Example: The following are equivalent for a graph G:
� G is 3-colorable

� There is a homomorphism from G to △. 
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Computational Complexity of CSP

� Fact: CSP is NP-complete.

� Definition: CSP(C,D) is the restriction of CSP to classes C and D:
Given A ∈ C and B ∈ D, is there a homomorphism from A to B?

� Research Program: 
� Islands of Tractability of CSP: 

For which classes C and D, is CSP(C,D) in PTIME?
� Unifying Explanations: Are there any unifying explanations for the 

tractability of CSP(C,D) for various C and D?

� Fact (Feder & Vardi, 1993): Expressibility in Datalog is a unifying 
explanation for numerous islands of tractability of CSP.
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Treewidth

� Fact: Many intractable algorithmic problems on arbitrary graphs are 
solvable in polynomial time on trees.

� Question: Can the concept of tree be relaxed to a “tree-like”
concept, while maintaining good algorithmic behavior?

� Answer (Robertson and Seymour): Bounded Treewidth

� “Definition”: The treewidth of a graph G, denoted tw(G), is a    
positive integer that measures how much “tree-like” G is.

� Examples:
� tw(T)   =  1,      for every tree T
� tw(C)   =  2,      for every cycle C.
� tw(Kk)  =  k-1,  where Kk is the complete graph with k nodes
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Bounded Treewidth and CSP

� Definition: T(k) = Class of finite structures B with tw(B) < k.

� Theorem: Dechter & Pearl, 1989
CSP(T(k), F) is in PTIME, for each k.

� Theorem:  Dalmau, K .., Vardi, 2002
� ¬ CSP(T(k), {B}) is definable in k-Datalog, for each k and B
� CSP(T(k), F) is LFP-definable, for every k.
� Different polynomial-time algorithm for CSP(T(k), F):  

determine who wins the existential k-pebble game.
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Finite-Variable Logics

� Definition: If A is a finite structure, then QA is an existential 
positive first-order sentence describing the positive atomic 
diagram of A.

� Example: If C4 is the 4-cycle, then QC4 is

∃ x1∃ x2∃ x3 ∃ x4 (E(x1,x2) Æ E(x2,x3) Æ E(x3,x4) Æ E(x4,x1))

� Definition: Lk is the class of all first-order variables with at 
most k distinct variables built from atomic formulas, Æ, and ∃.

� Example: QC4 is logically equivalent to the L3-sentence:

∃ x1∃ x2∃ x3(E(x1,x2) Æ E(x2, x3) Æ ∃ x2 (E(x3,x2) Æ E(x2, x1)))



39

Treewidth and Finite-Variable Logics

� Theorem:  Dalmau, K .., Vardi, 2002
For every k≥ 2 and every finite structure A, the following are 
equivalent
� QA is logically equivalent to some Lk-sentence.
� A is homomorphically equivalent to a structure B in T(k).
� core(A) ∈ T(k).

� Conclusion: The combinatorial concept of treewidth can be 
characterized in terms of definability in finite-variable logics.
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Synopsis

� Inductive definability and finite-variable logics were 
originally studied on infinite structures.

� Inductive definability and finite-variable logics turned out 
to have numerous uses in several different areas in the 
interface between logic and computer science, including:
� computational complexity
� database theory
� finite model theory
� constraint satisfaction. 
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Yiannis N. Moschovakis as Advisor

� Each time I was stuck on a problem:
“You go home now and think about it.”

� When I was attempting naïve approaches:
“You cannot solve a hard problem by reformulating it.”

� When I was about to defend my Ph.D. thesis and was whining 
that the results were rather trivial:
“This happens to everyone. Ten years from now, you will look 
back and say: how smart was I then!”
He was, of course, quite right.


