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Database Theory and Mihalis

� Over the years, Mihalis Yannakakis has made a number 
of highly influential and long-lasting contributions to the 
principles of database systems.

� The aim of this talk is to present an overview of some of 
these contributions (and of subsequent developments) 
with emphasis on Mihalis’ work on database query 
evaluation.
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The Relational Data Model

E.F. Codd, 1969-1971

� Relational Schema

Sequence S = (R’1,-,R’m) of relation symbols of specified 
arities.

� Relational Database over S :

Collection D = (R1, -, Rm) of finite relations (tables) of 
matching arities.

� Database Query Languages: 

� Relational Calculus (First-Order Logic)

� Relational Algebra.
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Database Queries

� Informally, database queries are questions that are posed against a 
database, and answers are retrieved. 

� A k-ary query, k ≥ 1, on a relational schema S is a function Q such 
that on every database D over S, Q(D) is a k-ary relation.

Examples:

ENROLLS(student,course), TEACHES(faculty, course)

� TAUGHT-BY  =  { (s,f): s is enrolled in some course taught by f }

� FAN-OF  =  { (s,f): s is enrolled in every course taught by f } 

� Boolean query: a 0-ary query; it returns value 1 or 0.

Examples:

� Is there a student enrolled in four different courses?

� Is there a faculty who teaches only one course?
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Database Query Languages

� A query language is a formalism for expressing queries.

� Codd introduced two different query languages, a declarative
one and a procedural one.
� Relational Calculus: A query is given by a formula of first-

order logic with quantifiers ranging over elements occurring 
in relations in the database.

� Relational Algebra: A query is given by an expression 
involving the operations  projection π, selection σ, cartesian
product ×, union ∪, and set-difference \.

� Codd showed that these two query languages have the same 
expressive power.

� SQL: The standard commercial database query language is 
based on relational algebra and relational calculus.
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Expressing Database Queries

ENROLLS(student,course), TEACHES(instructor, course)

� TAUGHT-BY(student,instructor)

� Relational calculus expression (first-order formula)

∃c (ENROLLS(s,c) Æ TEACHES(f,c))

� Relational algebra expression

π1,3(σ$2=$4(ENROLLS × TEACHES))

� FAN-OF(student,instructor)

� Relational calculus expression

∀c (TEACHES(f,c) → ENROLLS(s,c)) 
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The Query Evaluation Problem

The Query Evaluation Problem:
Given a query Q and a database D, compute Q(D).

� k-ary query, k ≥ 1:  Q(D) is the k-ary relation consisting 
of all tuples of values from D that satisfy the query.

� Boolean query: Q(D) is 1 or 0 
� Q(D) = 1  if D satisfies Q  (denoted by D � Q)

� Q(D) = 0  if D does not satisfy Q.

Note: The Query Evaluation Problem is arguably the most 
fundamental problem in database query processing.
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Complexity of Query Evaluation

Fact: The query evaluation problem for 

relational calculus/relational algebra is PSPACE-complete.

Reason:

� Upper bound: Alternating polynomial-time algorithm

� Lower bound: Reduction from QBF.

Question: Are there “useful” fragments of 

relational calculus/relational algebra for which 

the query evaluation problem is of lower complexity?
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Enter Conjunctive Queries 

Conjunctive Queries:

� Are among the most frequently asked database queries.

� Are expressible by syntactically very simple formulas of 
first-order logic.

� Are the SELECT-PROJECT-JOIN queries of relational 
algebra.

� Are directly supported in SQL.
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Conjunctive Queries 

Conjunctive Query of arity k ≥ 1:

Q(x1,-,xk):  ∃ z1 -∃ zm ϕ(x1,-,xk,z1,..zm),

where ϕ is a conjunction of atoms  Ri(y1,-,ym)

� Example:  TAUGHT-BY

TAUGHT-BY(s,f):   ∃ c(ENROLLS(s,c) Æ TEACHES(f,c))

� Example: Path of length 3:

P3(x,y):   ∃ z ∃ w (E(x,z) Æ E(z,w) Æ E(w,y))

Boolean Conjunctive Query

Q( ):   ∃ x1 -∃ xn ϕ(x1,-,xn)

� Example: Is there a triangle?

C3( ):   ∃ x ∃ y ∃ z (E(x,y) Æ E(y,z) Æ E(z,x))
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Conjunctive Queries and SQL

Fact: SQL provides direct support for conjunctive queries

Example: Consider the conjunctive query

� TAUGHT-BY(s,f):   ∃ c(ENROLLS(s,c) Æ TEACHES(f,c))

Recall that 

TAUGHT-BY = π1,3(σ$2=$4(ENROLLS × TEACHES))

� SQL expression for this query:

SELECT student, instructor                                      

FROM ENROLLS, TEACHES                               

WHERE ENROLLS.course = TEACHES.course

(SELECT = π;  WHERE = σ; FROM = ×)
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More on Conjunctive Queries

Recall also the query 

FAN-OF(student,instructor),

which is expressible by the first-order logic formula

∀c (TEACHES(f,c) → ENROLLS(s,c)) 

Fact: FAN-OF is not equivalent to any conjunctive query

Reason:

� Conjunctive queries are monotone.

� FAN-OF is not monotone.
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The Conjunctive Query Evaluation Problem

The Conjunctive Query Evaluation Problem:

Given a conjunctive query Q and a database D, compute Q(D).

Theorem: Chandra and Merlin – 1977

The conjunctive query evaluation problem is NP-complete.

Proof:

� NP-hardness: Reduction from CLIQUE

� G contains a k-clique iff G � ∃ x1 -∃ xk Æi≠ j E(xi,xj)

� Membership in NP is a consequence of the following result.



14

Complexity of Conjunctive Query Evaluation

Theorem: Chandra and Merlin – 1977
Boolean Conjunctive Query Evaluation is “equivalent” to the
Homomorphism Problem. More precisely,

For a Boolean conjunctive query Q and a database D, the
following statements are equivalent:
� D � Q   (i.e., Q(D) = 1).

� There is a homomorphism h : DQ →→→→ D , where DQ is the 
canonical database of Q.

Example: Conjunctive query and canonical database
� Q( ):  ∃ x ∃ y ∃ z(E(x,y) Æ E(y,z) Æ E(z,x))
� DQ = { E(X,Y), E(Y,Z), E(Z,Y) }
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Islands of Tractability

Major Research Program:
Identify tractable cases of conjunctive query evaluation.

Note:
Over the years, this program has been pursued by two different 
research communities:

� The Database Theory community.

� The Constraint Satisfaction community.
Explanation:
As pointed out by Feder & Vardi (1993),
the Constraint Satisfaction Problem can be identified
with the Homomorphism Problem.



16

A Large and Useful Island of Tractability

� In 1981, Mihalis Yannakakis discovered a large and 
useful tractable case of the Conjunctive Query 
Evaluation Problem.

Specifically, 

� Mihalis showed that the Query Evaluation Problem is 
tractable for Acyclic Conjunctive Queries.
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Acyclic Conjunctive Queries

Definition: A conjunctive query Q is acyclic if it has a join tree.

Definition: Let Q be a conjunctive query of the form

Q(x) :  ∃ y (R1(z1) Æ R2(z2) Æ ... Æ Rm(zm)).

A join tree for Q is a tree T such that

� The nodes of T are the atoms Ri(zi), 1≤ i ≤ m, of Q.

� For every variable w occurring in Q, the set of the nodes of 
T that contain w forms a subtree of T; 

in other words, if a variable w occurs in two different atoms 
Rj(zj) and Rk(zk) of Q, then it occurs in each atom on the 
unique path of T joining Rj(zj) and Rk(zk) .
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Acyclic Conjunctive Queries

� Path of length 4 is acyclic

P4(x1,x4) :  ∃ x2 x3 (E(x1,x2) Æ E(x2,x3) Æ E(x3,x4))

� Join tree is a path

� Cycle of length 4 is cyclic 

C4( ) :   ∃ x1 x2 x3 x4(E(x1,x2) Æ E(x2,x3) Æ E(x3,x4) Æ E(x4,x1))

� The following query Q is acyclic

Q( ) :    ∃ x y z u v w 

(A(x,y,z) Æ B(y,v) Æ C(y,z,v) Æ D(z,u,v) Æ F(u,v,w))



19

Acyclic Conjunctive Queries

Q( ) :   ∃ x y z u v w 

(A(x,y,z) Æ B(y,v) Æ C(y,z,v) Æ D(z,u,v) Æ F(u,v,w))

D(z,u,v)

C(y,z,v) F(u,v,w)

A(x,y,z) B(y,v)

Join Tree for Q
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Acyclic Conjunctive Queries

Q( ) :  ∃ x y z u v w 

(A(x,y,z) Æ B(y,v) Æ C(y,z,v) Æ D(z,u,v) Æ F(u,v,w))

D(z,u,v)

C(y,z,v) F(u,v,w)

A(x,y,z) B(y,v)

Join Tree for Q
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Acyclic Conjunctive Queries

Theorem (Yannakakis – 1981)

The Acyclic Conjunctive Query Evaluation Problem is tractable.

More precisely, there is an algorithm for this problem having the

following properties:

� If Q is a Boolean acyclic conjunctive query, then the algorithm 
runs in time O(|Q||D|).

� If Q is a k-ary acyclic conjunctive query, k ≥ 1, then the

algorithm runs in time O(|Q||D||Q(D)|), i.e., it runs in   

input/output polynomial time

(which is the “right” notion of tractability in this case).
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Yannakakis’ Algorithm

Dynamic Programming Algorithm

Input: Boolean acyclic conjunctive query Q, database D

1. Construct a join tree T of Q

2. Populate the nodes of T with the matching relations of D.

3. Traverse the tree T bottom up:

For each node Rk(zk), compute the semi-joins of the

(current) relation in the node Rk(zk) with the (current)

relations in the children of the node Rk (zk).

4. Examine the resulting relation R at the root of T

� If R is non-empty, then output Q(D) = 1 (D satisfies Q).

� If R is empty, then output Q(D) = 0 (D does not satisfy Q).
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Yannakakis’ Algorithm

Q( ) :  ∃ x y z u v w 

(A(x,y,z) Æ B(y,v) Æ C(y,z,v) Æ D(z,u,v) Æ F(u,v,w))

D(z,u,v)

C(y,z,v) F(u.v,w)

A(x,y,z) B(y,v)

C(y,z,v) semi-join A(x,y,z)                  
=                     

all triples (y,z,v) in C that 
“match” a triple (x,y,z) in A
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More on Yannakakis’ Algorithm

� The join tree makes it possible to avoid exponential explosion 
in intermediate computations.

� The algorithm can be extended to non-Boolean conjunctive 
queries using two more traversals of the join tree.

� There are efficient algorithms for detecting acyclicity and  
computing a join tree.
� Tarjan and Yannakakis – 1984
Linear-time algorithm for detecting acyclicity and computing
a join tree.

� Gottlob, Leone, Scarcello – 1998
Detecting acyclicity is in SL (hence, it is in L).
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Subsequent Developments

Yannakakis’ algorithm became the catalyst for numerous

subsequent investigations in different directions, including:

� Direction 1: Identify the exact complexity of 

Boolean Acyclic Conjunctive Query Evaluation.

� Yannakakis’ algorithm is sequential (e.g., if the join tree is a 
path of length n, then n-1 semi-joins in sequence are needed).

� Is Boolean Acyclic Conjunctive Query Evaluation P-complete? 
Is it in some parallel complexity class?

� Direction 2: Identify other tractable cases of 

Conjunctive Query Evaluation.
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Complexity of Acyclic Conjunctive Query Evaluation

Theorem (Dalhaus – 1990)

Boolean Acyclic Conjunctive Query Evaluation is in NC2 .

Theorem (Gottlob, Leone, Scarcello - 1998)

Boolean Acyclic Conjunctive Query Evaluation is 

LOGCFL-complete, where LOGCFL is the class of all problems

having a logspace-reduction to some context-free language.

Fact:

� NL  ⊆ LOGCFL  ⊆ AC1 ⊆ NC2 ⊆ P

� LOGCFL is closed under complements (Borodin et al. - 1989)
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Tractable Conjunctive Query Evaluation

� Extensive pursuit of tractable cases of conjunctive query 
evaluation during the past three decades.

� Two different branches of investigation

� The relational vocabulary S is fixed in advance; 

in this case, the input conjunctive query is over S.

� Both the relational schema and the query are part of the 
input.

� Note that in Yannakakis’ algorithm both the relational schema 
and the query are part of the input.
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Enter Tree Decompositions and Treewidth

Definition: S a fixed relational schema, D a database over S.

� A tree decomposition of D is a tree T such that

� Every node of T is labeled by a set of values from D.

� For every relation R of D and every tuple (d1,-dm) ∈ R, 
there is a node of T whose label contains {d1, -, dm }.

� For every value d in D, the set X of nodes of T whose 
labels include d forms a subtree of T.

� width(T) =  max(cardinality of a label of T)  – 1

� Treewidth:  tw(D) = min {width(T): T tree decomposition of D}
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Conjunctive Queries and Treewidth

Definition: S a fixed relational schema, 
Q a Boolean conjunctive query over S.
� tw(Q) = tw(QD), where 

QD is the canonical database of Q.

� TW(k,S) = All Boolean conjunctive queries Q over S with 
tw(Q) ≤ k.

Note: Fix a relational schema S.
� If Q is a Boolean acyclic conjunctive query over S, then 

tw(Q)  ≤ max {arity(R): R is a relation symbol of S} - 1.

� The converse is not true. For every n ≥ 3, the query 
Cn = “is there a cycle of length n?” is cyclic, yet  tw(Cn) = 2. 
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Conjunctive Queries and Treewidth

Theorem (Dechter & Pearl – 1989, Freuder 1990)

� For every relational schema S and every k ≥ 1, 

the query evaluation problem for TW(k,S) is tractable. 

� In words, there is a polynomial-time algorithm for the following

problem: given a database D and a Boolean conjunctive 

query Q over S of treewidth at most k, does D � Q?

Note: 

This result was obtained in the quest for islands of tractability of 

the Constraint Satisfaction Problem.
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Beyond Bounded Treewidth

Question: Are there islands of tractability for conjunctive query 

evaluation larger than bounded treewidth?

Definition: Two queries Q and Q are equivalent, denoted Q ≡ Q’,

if Q(D) = Q’(D), for every database D.

Fact: Let Q and Q be Boolean conjunctive queries. Then

Q ≡ Q’ if and only if DQ and DQ’ are homomorphically equivalent,

i.e., there are homomorphisms h: DQ → DQ’ and h’: DQ’ → DQ.

Note: This follows from the Chandra-Merlin Theorem.
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Beyond Bounded Treewidth

Definition: S a fixed relational schema, 
Q a Boolean conjunctive query over S.
� HTW(k,S) = All Boolean conjunctive queries Q over S such  

that Q ≡ Q’, for some Q’ ∈ TW(k,S). 

Fact: Q ∈ HTW(k,S) if and only if core(Q) ∈ TW(k,S), 
where core(Q) is the minimization of Q, i.e., 
the smallest subquery of Q that is equivalent to Q.

Note: TW(k,S)  is properly contained in HTW(k,S)
Reason:
The k × k grid has treewidth k, but it is 2-colorable, hence it is  
homomorphically equivalent to K2, which has treewidth 1. 
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Beyond Bounded Treewidth

Theorem (Dalmau, K -, Vardi – 2002)
� For every relational schema S and every k ≥ 1, the evaluation

problem for HTW(k,S) is tractable.
� In words, there is a polynomial-time algorithm for the following

problem: given a database D and a Boolean conjunctive 
query Q that is equivalent to some conjunctive query of 
treewidth at most  k, does D � Q?

� In fact, this problem is in Least Fixpoint Logic.

Algorithm:
� Determine the winner in a certain pebble game, known as the

existential k-pebble game.
� No tree decomposition is used (actually, computing tree 

decompositions is hard).
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A Logical Characterization of Treewidth

Definition: S a relational vocabulary, k positive integer.
Lk is the collection of all first-order formulas with k variables, 
containing all atoms of S, and closed under Æ and ∃.

Theorem (Dalmau, K -, Vardi – 2002) 
S a relational schema, Q a Boolean conjunctive query over S.
Then the following are equivalent:
� Q ∈ HTW(k,S)
� core(Q) ∈ TW(k,S) 
� Q is equivalent to some Lk+1-sentence.

Example: The query Cn : “is there a cycle of length n?”
can be expressed in L3.  For instance, C5 is equivalent to
∃x(∃y(E(x,y) Æ ∃z (E(y,z) Æ ∃y (E(z,y) Æ ∃z (E(y,z) ÆE(z,x))))) 
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The Largest Islands of Tractability

Question: Are there islands of tractability larger than HTW(k,S)?

Answer: “No”, modulo a complexity-theoretic hypothesis.

Theorem (Grohe – 2007)

Assume that FPT ≠ W[1].

Let S be a relational vocabulary and C a recursively enumerable

collection of Boolean conjunctive queries over S such that the

query evaluation problem for C is tractable. Then there is a 

positive integer k such that C ⊆ HTW(k,S).

Proof: Use the Excluded Grid Theorem by Robertson & Seymour
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Fixed vs. Variable Relational Schemas

� The preceding results assume that we have a fixed relational 
schema S, and the conjunctive queries are over S.

� As mentioned earlier, in Yannakakis’ algorithm both the 
relational schema and the query are part of the input.

� When the relational schema is part of the input, then acyclic 
queries may have (cores of) unbounded treewidth.

� Qn( ):  ∃ x1 -∃ xnRn(x1,-,xn)

� Thus, the preceding results do not subsume Yannakakis’ work 
in the case in which the relational schema is part of the input.
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Variable Relational Schemas

� Extensive pursuit of tractable cases of conjunctive query 
evaluation when the relational schema is part of the input.
� Several extensions of treewidth have been explored.
� Hypertree decomposition notions have been studied.

� Chekuri & Rajaraman – 1997: query-width

� Gottlob, Leone, Scarcello – 2000 on: hypertree-width: 
� Acyclicity amounts to hypertree-width = 1.
� Tractable conjunctive query evaluation for conjunctive 

queries of bounded hypertree-width.

� No analog of Grohe’s Theorem for this set-up has been found.
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Combined Complexity vs. Data Complexity

� In the definition of the query evaluation problem, the input 
consists of the query and the database.

� In 1982, Vardi introduced a useful taxonomy in the study of 
the query evaluation problem.

� Combined Complexity of Query Evaluation:

The input consists of the query and the database.

� Data Complexity of Query Evaluation:

A separate problem for each fixed query Q:

Given a database Q, compute Q(D).
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Combined Complexity vs. Data Complexity

Fact: The combined complexity of Boolean conjunctive query
evaluation is NP-complete (restating Chandra & Merlin – 1997).

Fact: The data complexity of Boolean conjuctive query 
evaluation is in AC0. In other words: 
For each fixed Boolean conjunctive query Q, the following 
problem is in AC0: given a database D, does D � Q?

Note:
� The low data complexity of conjunctive query evaluation is 
often viewed as an explanation as to why database systems can
efficiently evaluate conjunctive queries.
� However, this is not the end of the story of query evaluation.
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Parameterized Complexity

Theorem (Papadimitriou & Yannakakis – 1997)
For both fixed and variable relational schemas, 
and with the query size as the parameter:
� The parameterized complexity of conjunctive query evaluation 

is W[1]-complete.
� The parameterized complexity of relational calculus query 

evaluation is W[t]-hard, for all t.

Note: Several subsequent investigations of the parameterized 
complexity of query evaluation by
� Downey, Fellows and Taylor
� Flum, Frick and Grohe
� -
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Database Theory and Mihalis

� Mihalis’ work in database theory extends well beyond the 

query evaluation problem. In fact, over the years, he 

has contributed to a number of different areas, including

� Database transactions

� Concurrency control

� Database design

� Datalog.

� Database theory is a meeting point of algorithms, complexity,

graph theory, and logic. Mihalis’ contributions to database

theory have been long lasting and influential.


