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Schema Mappings

Source  S Target  T

� Schema Mapping M = (S, T, Σ)

� Source schema  S, Target schema T

� High-level, declarative assertions Σ that specify the 
relationship between S and T. 

� Typically, Σ is a finite set of formulas in some suitable 
logical formalism.

� Schema mappings are the essential building blocks

in formalizing data integration and data exchange.

Σ
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Data Exchange

� Data exchange: transforming data structured under a source 

schema into data structured under a different target schema.

� [Fagin-K …-Miller-Popa 2003]

S T

Schema Mapping

I J

Source Schema Target Schema
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Semantics of Schema Mappings 

Source  S Target  T

M = (S, T, Σ) a schema mapping 

� Data Example: A pair (I,J) where I is a source instance 
and J is a target instance.

� Positive Data Example for M: (I,J) � Σ

� In this case, we say that J is a solution for I w.r.t. M

� From a semantic point of view,  M can be identified with

Sem(M) = { (I,J):  (I,J) is a positive data example for M } 

I
J

Σ
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Semantics of Schema Mappings 

Source  S Target  T

Note: If M = (S, T, Σ) is a schema mapping, then  

M is a finite syntactic representation of the infinite collection

Sem(M) = { (I,J):  (I,J) is a positive data example for M } 

Problem: 

� Is there a finite semantic representation of Sem(M)?

� Can M be “captured” by finitely many data examples?

I
J

Σ
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Motivation 

� In real-life applications, schema mappings can be quite 
complex, even when derived manually.

� There is a clear need to illustrate, understand, and refine 
schema mappings using “good” data examples.

� This is analogous to the venerable tradition of using test 
cases in understanding and debugging programs.

� Earlier work by the database community includes:

� Yan, Miller, Haas, Fagin – 2001 

“Understanding and Refinement of Schema Mappings”

� Olston, Chopra, Srivastava – 2009

“Generating Example Data for Dataflow Programs”.
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Goals

� Develop a foundation for the systematic investigation of 
“good” data examples for schema mappings.

� Obtain technical results that shed light on both the 
capabilities and limitations of data examples in capturing 
schema mappings.
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GLAV Schema Mappings

� Here, we focus on GLAV schema mappings, that is, 

schema mappings M = (S, T, Σ), where Σ is a finite set of 

Global-And-Local-As-View (GLAV) constraints,

also known as 

source-to-target tuple-generating dependencies

(s-t tgds).

Note:

GLAV schema mappings are the most extensively studied 

and widely used class of schema mappings to date.
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GLAV Schema Mappings

� The relationship between source and target is given by 
Global-And-Local-As-View (GLAV) constraints, 
also known as 
source-to-target tuple generating dependencies (s-t tgds):

∀x (ϕ(x) → ∃y ψ(x, y)), where

� ϕ(x)     is a conjunction of atoms over the source; 

� ψ(x, y) is a conjunction of atoms over the target. 

� Examples:

1. ∀s ∀c (Student (s) ∧ Enrolls(s,c) → ∃g Grade(s,c,g))

2.
∀s ∀c (Student (s) ∧ Enrolls(s,c) → ∃t ∃g (Teaches(t,c) ∧ Grade(s,c,g)))
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LAV and GAV Schema Mappings

Fact: GLAV constraints:

(1) Generalize LAV (local-as-view) constraints:

∀x ( P(x)  → ∃y ψ(x, y)), where P is a source relation.

(2) Generalize GAV (global-as-view) constraints:

∀x (ϕ(x)  → R(x)),  where R is a target relation.
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LAV and GAV Constraints

Examples of LAV (local-as-view) constraints:

� Copy:  ∀x ∀y (P(x,y) → R(x,y))

� Decomposition:  ∀x ∀y ∀z (Q(x,y,z) → R(x,y) Æ T(y,z))

� ∀x ∀y (E(x,y) → ∃ z (H(x,z)Æ H(z,y))) 

Examples of GAV (global-as-view) constraints:

� Copy:  ∀x ∀y (P(x,y) → R(x,y)) 

� Projection:  ∀ x∀ y∀ z (Q(x,y,z) → T(y,z))

� Join:   ∀x ∀y ∀z (E(x,y) Æ E(y,z) → H(x,z))

Note:  

∀s ∀c (Student (s) ∧ Enrolls(s,c) → ∃g Grade(s,c,g))

is a GLAV constraint that is neither a LAV nor a GAV constraint
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GLAV Mappings and Universal Solutions

Note:  A key property of GLAV schema mappings is the

existence of universal solutions; intuitively, they are the 

most general solutions.

Theorem (FKMP 2003) M = (S, T, Σ) a GLAV schema mapping. 

� Every source instance I has a universal solution J w.r.t. M, 
i.e., a solution J for I such that if J’ is another solution for I, 
then there is a homomorphism h: J → J’ that is constant on 
adom(I) (h(c)=c, for c ∈ adom(I)).

� Moreover, the chase procedure can be used to construct, 
given a source instance I, a canonical universal solution 
chaseM(I) for I in polynomial time.
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Universal Solutions in Data Exchange

Defn: A homomorphism h: J → J’ is  a 

function sending every constant (non-null) 

value to itself, and preserving facts

(P(a1...an)∈J ⇒ P(h(a1)...h(an))∈J’)
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Example 

� Consider the schema mapping M = ({E}, {F}, Σ), where  

Σ = { E(x,y) → ∃z (F(x,z) ∧ F(z,y)) }

� Source instance I = { E(1,2) }

� Solutions for I :

� J1  =  { F(1,X), F(X,2) }                    (universal)

� J2  =  { F(1,2), F(2,2) }                    (not universal)

� J3  =  { F(1,X), F(X,2), F(Y,Y) }         (not universal)

(where X and Y are labeled null values)

� …
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Unique Characterizations via Universal 
Examples

Definition: Let M = (S, T, Σ) be a GLAV schema mapping.

� A universal example for M is a data example (I,J) such that 
J is a universal solution for I w.r.t. M.

� Let U be a finite set of universal examples for M, and let C  
be a class of GLAV constraints. 

We say that U uniquely characterizes M w.r.t. C if 

for every finite set  Σ’ ⊆ C such that U is a set of universal

examples for the schema mapping M’ = (S, T, Σ’),

we have that Σ ≡ Σ’.
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Unique Characterizations via Universal 
Examples

Question:

Which GLAV schema mappings can be uniquely

characterized by a finite set of universal examples?
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Unique Characterizations Warm-Up

Theorem: Let M be the schema mapping specified by the 

binary copy constraint  ∀x ∀y (E(x,y)→ F(x,y)).

� There is a finite set U of universal examples that uniquely 
characterizes M w.r.t. the class of all LAV constraints.

� There is a finite set U’ of universal examples that uniquely 
characterizes M w.r.t. the class of all GAV constraints.

� There is no finite set of universal examples that uniquely 
characterizes M w.r.t. the class of all GLAV constraints.
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Unique Characterizations Warm-Up

The set U’ = { (I1,J1), (I2,J2), (I3,J3) } uniquely characterizes the 

copy schema mapping w.r.t. to the class of all GAV constraints.

a b

c d

e

I
1

a b

c d

e

J
1

I
2

J
2

a b a b

I
3

J
3

a a



20

Summary of Main Results

PODS 2010 paper (Alexe, K …, Tan):

� Connection between unique characterizations and Armstrong 
bases.

� Every LAV schema mapping is uniquely characterizable by a finite 
set of universal examples w.r.t. the class of all LAV constraints.

� There are GAV schema mappings that are not uniquely 
characterizable by any finite set of universal examples w.r.t. the 
class of all GAV constraints.

CP 2010 Paper (ten Cate, K …, Tan):

� Necessary and sufficient condition for a GAV schema mapping to 
be uniquely characterizable by a finite set of universal examples 
w.r.t. to the class of all GAV constraints.

� Algorithmic criterion for such a unique characterizability of GAV 
schema mappings.
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Unique Characterizations of LAV Mappings

Theorem: If M = (S, T, Σ) is a LAV schema mapping,

then there is a finite set U of universal examples that

uniquely characterizes M w.r.t. the class of all LAV 

constraints.

Hint of Proof: 

� Let d1, d2, …, dk be k distinct elements, where 

k = maximum arity of the relations in S.

� U consists of all universal examples (I, J) with

I = { R(c1,…,cm) }  and J = chaseM({ R(c1,…,cm) }), 
where  each ci is one of the dj’s.
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Further Unique Characterizations 

Definition: (ten Cate, K … - 2009) Let n be a positive integer. 

A schema mapping M = (S, T, Σ) is n-modular if for every data 

example (I,J) that does not satisfy Σ, there is a sub-instance I’

of I with |adom(I’)| ≤ n such that (I’,J) does not satisfy Σ.

Theorem: If M = (S, T, Σ) is a n-modular GLAV schema 

mapping, then there is a finite set U of universal examples that 

uniquely characterizes M w.r.t. the class of all n-modular

constraints.

Corollary: Every self-join-free on the source GLAV schema

mapping  is uniquely characterizable via universal examples. 
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Unique Characterizations of GAV Mappings

Note: Recall that for the schema mapping specified by the 

binary copy constraint  ∀x ∀y (E(x,y)→ F(x,y)), there is a finite

set of universal examples that uniquely characterizes it w.r.t. the

class of all GAV constraints.  

In contrast, 

Theorem: Let M be the GAV schema mapping specified by 

∀x ∀y ∀u ∀v ∀w (E(x,y)Æ E(u,v) Æ E(v,w)Æ E(w,u) → F(x,y)).

There is no finite set of universal examples that uniquely

characterizes M w.r.t. the class of all GAV constraints.
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Unique Characterizations of GAV Mappings

Theorem: Let M be the GAV schema mapping specified by 

∀x ∀y ∀u ∀v ∀w (E(x,y)Æ E(u,v) Æ E(v,w)Æ E(w,u) → F(x,y)).

There is no finite set of universal examples that uniquely

characterizes M w.r.t. the class of all GAV constraints.

Note: 

� This extends to every GAV schema mapping specified by

∀x ∀y (E(x,y) Æ QG → F(x,y)),  where QG is the

canonical conjunctive query of a graph G containing a cycle.

� The proof uses a generalization, due to Nešetřil and Rödl, of 
Erdös’ result about the existence of graphs of arbitrarily large 
girth and chromatic number.
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(Non-)Characterizable GAV Mappings

� E(x,y) → F(x,y) 

is uniquely characterizable

by these 3 universal examples:

In contrast,

� E(x,y) Æ E(u,v) Æ E(v,w) Æ E(w,u) → E(u,v)

is not uniquely characterizable.
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Characterizing GAV Schema Mappings

� Question:

� What is the reason that some GAV schema mappings are
uniquely characterizable w.r.t. the class of all GAV 
constraints while some others are not?

� Is there an algorithm for deciding whether or not a given 
GAV schema mapping is uniquely characterizable w.r.t. the 
class of all GAV constraints?

� Answer:

� The answers to these questions are closely connected to 
database constraints and homomorphism dualities.
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Homomorphisms

Notation: A, B relational structures (e.g., graphs)

� A → B means there is a homomorphism h from A to B, 

i.e., a function h from the universe of A to the universe of B
such that if P(a1,…,am) is  a fact of A, then 

P(h(a1), …, h(am)) is a fact of B.

� Example: G → K2 if and only if G is 2-colorable

� →A = {B : B → A } 

� Example: →K2 =  Class of 2-colorable graphs

� A→ = {B: A → B}

� Example: K2→ =  Class of graphs with at least one edge.



28

Homomorphism Dualities

� Definition: Let D and F be two relational structures

� (F,D) is a duality pair if for every structure A

A → D if and only if  (F ↛ A).

In symbols,   →D =  F↛
� In this case, we say that F is an obstruction for D.

� Examples:

� For graphs,  (K2, K1) is a duality pair, since

G → K1 if and only if  K2 ↛ G.

� Gallai-Hasse-Roy-Vitaver Theorem (~~~~1965) for directed graphs

Let Tk be the linear order with k elements, Pk+1 be the path with 

k+1 elements.  Then (Pk+1,Tk) is a duality pair, since for every H

H → Tk if and only  if Pk+1 ↛ H.
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Homomorphism Dualities

� Theorem (König 1936): A graph is 2-colorable if and only if it

contains no cycle of odd length.

In symbols,    →K2 = ∩i≥0 (C2i+1↛).

� Definition: Let F and D be two sets of structures. We say that 

(F, D) is a duality pair if for every structure A, TFAE

� There is a structure D in D such that A →→→→ D.

� For every structure F in F, we have F↛ A.

In symbols,    UD ∈ D (→D) = IF ∈ F ( F↛).

In this case, we say that F is an obstruction set for D.
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Homomorphism Dualities

The Yin

“Dreams”: UUUUi ( →→→→Di ) 

The Yang

“Fears”:  UUUUi ( Fi→→→→)

Duality Pair (F,D),where

F = {F1,F2,…}

D = {D1,D2,…}
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Homomorphism Dualities and Constraint 
Satisfaction

� Theorem (Atserias 2005, Rossman 2005)

� For every structure D, TFAE
� →D is first-order definable.

� {D} has a finite obstruction set.

� Theorem (Feder - Vardi 1993, K … - Vardi – 1998)

For every structure D, TFAE

� →D is definable in co-Datalog (hence, it is in PTIME).

� {D}  has an obstruction set of bounded treewidth.

� →D is definable in finite-variable infinitary logic.

Illustration: 2-Colorability 
� {C2i+1: i≥ 1} is an obstruction set for K2. 
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Unique Characterizations and 
Homomorphism Dualities

Theorem: Let M = (S, T, Σ) be a GAV schema mapping.

Then the following statements are equivalent:

� M is uniquely characterizable via universal examples 
w.r.t. the class of all GAV constraints.

� For every target relation symbol R, the set F (M,R) of 
the canonical structures of the GAV constraints in Σ
with R as their head is the obstruction set of some finite 

set of structures.
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Canonical Structures of GAV Constraints

Definition:

� The canonical structure of a GAV constraint

∀x (ϕ1(x) ∧ ... ∧ ϕκ(x) → R(xi1
,…,xim

)) 

is the structure consisting of the atomic facts ϕ1(x), ..., ϕκ(x)
and having constant symbols c1,…,cm interpreted by the 
variables xi1

,…,xim
in the atom R(xi1

,…,xim
).

� Let M = (S, T, Σ) be a GAV schema mapping.

For every relation symbol R in T, let F (M,R) be the set of all 
canonical structures of GAV constraints in Σ with the target 
relation symbol R in their head. 
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Canonical Structures

Examples:

� GAV constraint σ

(E(x,y)Æ E(y,z) → F(x,z))

� Canonical structure: A
σ

= ({x,y,z}, {(E(x,y),E(y,z)},x,z)

� Constants c1 and c2 interpreted by the distinguished elements x and z.

� GAV constraint τ

(E(x,y)Æ E(z,z) → F(x,y))

� Canonical structure: A
τ
= ({x,y,z}, {E(x,y),E(z,z)},x,y)

� Constants c1 and c2 interpreted by the distinguished elements x and y.

� GAV constraint θ

(E(x,y)Æ E(z,z) → F(x,x))

� Canonical structure: A
τ
= ({x,y,z}, {E(x,y),E(z,z)},x,x)

� Constants c1 and c2 both interpreted by the distinguished element x.
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Unique Characterizations and 
Homomorphism Dualities

Theorem: Let  M = (S, T, Σ) be a GAV schema mapping.

Then the following statements are equivalent:

� M is uniquely characterizable via universal examples w.r.t. the 
class of all GAV constraints.

� For every target relation symbol R, the set F (M,R) of the 
canonical structures of the GAV constraints in Σ with R as 
their head is the obstruction set of some finite set of 
structures.

Note: For structures A and B with distinguished elements, a 

homomorphism h: A → B maps each distinguished element of 

A to the corresponding distinguished element of B.
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Unique Characterizations and 
Homomorphism Dualities

Question:

� Is there an algorithm to tell when a GAV schema mapping 
is uniquely characterizable via a finite set of universal 
examples w.r.t. to the class of all GAV constraints?

Equivalently,

� Is there an algorithm to tell when a finite set of structures 
with constants is the obstruction set of some finite set of 
structures with constants? 
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When do Homomorphism Dualities Exist?

Theorem (Foniok, Nešetřil, Tardif – 2008):

Let F be a finite set of relational structures (without constants) 

consisting of homomorphically incomparable core structures.  

� Then the following statements are equivalent:

� F is an obstruction set of some finite set D of structures.

� Each structure F in F is “acyclic”.

� Moreover, there is an algorithm that, given such a set F

consisting of acyclic structures, computes a finite set D of 

structures such that (F, D ) is a duality pair.
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Acyclicity

Definition: Let A = (A,R1,..,Rm) be a relational structure (no 
constants)

� The incidence graph inc(A) of A is the bipartite graph with

� nodes the elements of A and the facts of A

� edges between elements and facts in which they occur

� The structure A is acyclic if 

� Inc(A) is an acyclic graph, and

� No element occurs in the same fact twice.

Example:

� A = ({1,2,3}, {R(1,2,3), P(1)})  is acyclic.

� A = ({1,2,3}, {R((1,2,3), Q(1,2)}) is not acyclic

because 1 , R(1,2,3) , 2, Q(1,2), 1 form a cycle.
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c-Acyclicity

Definition: Let A = (A, R1,…,rm,c1,…ck) be a relational structure with 
constants c1,…,ck.

� The incidence graph inc(A) of A is the bipartite graph with
� nodes the elements of A and the facts of A
� edges between elements and facts in which they occur

� The structure A is c-acyclic if 
� Every cycle of Inc(A) contains at least one constant ci, and
� Only constants may occur more than once in the same fact.

Example:
� A = ({1,2,3}, {R((1,2,3), Q(1,2), 1}) is c-acyclic

� the cycle 1 , R(1,2,3) , 2, Q(1,2), 1 contains the constant 1,
and it is the only cycle of inc(A).

� A = ({1,2,3}, {R((1,2,3), Q(1,2), 3}) is not c-acyclic
� the cycle 1 , R(1,2,3) , 2, Q(1,2), 1 contains no constant.
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When do Homomorphism Dualities Exist?

Theorem:

Let F be a finite set of relational structures with constants 

consisting of homomorphically incomparable core structures.  

� Then the following statements are equivalent:

� F is an obstruction set of some finite set D of 
structures.

� Each structure F in F is c-acyclic.

� Moreover, there is an algorithm that, given such a set F

consisting of c-acyclic structures, computes a finite set D of 

structures such that (F, D ) is a duality pair.

Proof:

A (lengthy) reduction to the Foniok- Nešetřil, Tardif Theorem.
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Unique Characterizations and
Homomorphism Dualities

Theorem: Let  M = (S, T, Σ) be a GAV schema mapping such 

that for every target relation symbol R, the set F (M,R) of the

canonical structures of the GAV constraints in Σ with R as 

their head consists of homomorphically incomparable cores.

Then the following statements are equivalent:

� M is uniquely characterizable via universal examples
w.r.t. the class of all GAV constraints.

� For every target relation symbol R, the set F (M,R) is the 
obstruction set of some finite set of structures.

� For every target relation symbol R, the set F (M,R) consists 
entirely of c-acyclic structures.
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Applications

� The  GAV schema mapping M specified by 
∀ x ∀ y (E(x,y) → F(x,y)) 

is uniquely characterizable (the canonical structure is c-acyclic).
� More generally, if M is a GAV schema mapping specified by a tgd

in which all variables in the LHS are exported to the RHS, then M 
is uniquely characterizable.

� The GAV schema mapping M specified by 
∀x ∀y ∀u ∀v ∀w (E(x,y)Æ E(u,v) Æ E(v,w)Æ E(w,u) → F(x,y)).
is not uniquely characterizable: 
the canonical structure contains a cycle with no constant on it, 
namely,

u, E(u,v), v, E(v,w), w, E(w,u), u
� The GAV schema mapping M specified by 

∀ x ∀ y ∀ u (E(x,y) Æ E(u,u) → F(x,y)) 
is not uniquely characterizable.
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Applications

Let M be the GAV schema mappings specified by the constraints 

� σ: ∀x ∀ y ∀ z (E(x,y) ∧ E(y,z) Æ E(z,x) → F(x,z)) 

� τ:        ∀x ∀ y (E(x,y) ∧ E(y,x) → F(x,x)) 

� The canonical structures of these constraints are

� Aσ = ({x,y,x} {E(x,y), E(y,z), E(z,x)}, x, z)

� Aτ = ({x,y}, {E(x,y), E(y,x)}, x, x)

� Both are c-acyclic; hence {Aσ, Aτ} is an obstruction set of a finite 

set of structures.

� Therefore, M is uniquely characterizable via universal examples.
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Algorithmic Consequences

Note: Every GAV schema mapping M is logically equivalent to

one in normal form, i.e., to a GAV schema mapping M* such 

that for every target relation symbol R, the set F (M*,R) of

The canonical structures of the GAV constraints in Σ with as 

their head consists of homomorphically incomparable cores.

Theorem: The following problem is NP-complete:

Given a GAV schema mapping M, is it uniquely 

characterizable w.r.t. the class of all GAV constraints?

The same problem is in LOGSPACE for GAV schema

mappings M in normal form.
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Synopsis

� Introduced and studied the notion of unique characterization 
of a schema mapping by a finite set of universal examples.

� Every LAV (n-modular) schema mapping is uniquely 
characterizable via universal examples w.r.t. the class of all 
LAV (n-modular) constraints.

� There are GAV schema mappings that are not uniquely 
characterizable by any set of universal examples w.r.t. the 
class of all GAV constraints.

� Necessary and sufficient condition, and an algorithmic 
criterion for a GAV schema mapping to be uniquely 
characterizable via universal examples w.r.t. the class of all 
GAV constraints.

� Open Problem:

Unique characterizations of GLAV schema mappings?


