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What is finite model theory?

It is the study of logics on classes of finite structures.

� Logics:

� First-order logic FO and various extensions of FO:

� Fragments of second-order logic SO.

� Logics with fixed-point operators.

� Logics with generalized quantifiers. 

� Classes of finite structures:

� All finite structures A = (A, R1,…Rm) over a fixed vocaculary.

� All ordered finite structures A = (A, <, R1,…,Rm). 

� Restricted classes of finite structures of combinatorial or of 
algorithmic interest (trees, planar graphs, partial orders, …).
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Contrast with traditional focus of logic

� Study of logics on the class of all structures

� Gödel’s Completeness Theorem

Truth in FO on the class of all (finite & infinite) structures

� Study of logics on a fixed infinite structure 

� Gödel’s Incompleteness Theorem

Truth in FO on the structure N = (N, +, x) of the integers

� Tarski’s Theorem

Truth in FO on the structure R = (R, +, x) of the reals.



4

Brief History

� Late 1940s to 1970:

� Early scattered results and problems about FO in the finite.

� Early 1970s to present:

� Steady development of finite model theory in its own right.

� Extensive interaction with computational complexity, 
database theory, asymptotic combinatorics, automated 
verification, constraint satisfaction.

� Finite model theory has had a constant presence in LICS.

� At least five times the Kleene Award for Best Student Paper 
has been given for work in finite model theory.
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Aims of this Talk

To reflect on finite model by

� Highlighting some of its successes;

� Examining obstacles that were encountered;

� Discussing some open problems that have resisted 
solution.

This talk is 

neither

� a comprehensive survey of finite model theory

nor

� a “personal perspective” on the development of finite 
model theory.
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Early Beginnings:
a theorem and two problems.

Theorem: Trakhtenbrot – 1950

First-order finite validities cannot be axiomatized:

The set of finitely valid first-order sentences is not recursively 

enumerable.

� “Anti-completeness” theorem

� Sharp contrast with Gödel’s Completeness Theorem:

first-order validities can be axiomatized.
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The Spectrum Problem

Definition: 

A set S of positive integers is a spectrum if there is a 

FO-sentence φ such that 

S = {m: φ has a finite model with m elements }

Example: The set of all powers of primes is a spectrum.

The Spectrum Problem

� Scholz – 1952: Characterize all spectra

� Asser – 1955: Are spectra closed under complement?

Is the complement of a spectrum a spectrum?
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Preservation under Substructures

� Theorem: Łoś- Tarski – 1948

If a FO-sentence ψ is preserved under substructures on all 

(finite and infinite) structures, then there is a universal 

FO-sentence ψ∗ that is equivalent to ψ on all structures.

� Conjecture: Scott and Suppes – 1958

The Łoś- Tarski Theorem holds in the finite:

If a FO-sentence ψ is preserved under substructures on all 
finite structures, then there is a universal FO-sentence ψ* 
that is equivalent to ψ on all finite structures.



9

Main Themes in Finite Model Theory

� Descriptive complexity: 

computational complexity vs. uniform definability.

� Expressive power of logics in the finite:

What can and what cannot be expressed in various logics on

classes of finite structures.

� Logic and asymptotic probabilities on finite structures

0-1 laws and convergence laws.

� Classical Model theory in the finite:

Do the classical results of model theory hold in the finite?
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Notation and Terminology

� σ: a fixed relational vocabulary {R1, …, Rm}

� C : a  class of finite σ-structures closed under isomorphisms.

� A k-ary query on C  is a mapping Q defined on C such that
� If A ∈ C , then Q(A) is a k-ary relation on A;

� Q is invariant under isomorphisms: 

if f: A→ B is an isomorphism, then Q(B) = f(Q(A)).

� Example: TRANSITIVE CLOSURE of a graph G = (V,E)

� A Boolean query on C  is a mapping Q:  C → {0, 1}

that is invariant under isomorphisms

� Example: CONNECTIVITY,  3-COLORABILITY, …
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Complexity vs. Definability

� Computational complexity is concerned with the 
computational resources (model of computation, time, 
space) needed to compute queries.

� Logical definability is concerned with the logical 
resources (type of quantification, number of variables, 
operators extending the syntax of first-order logic, …)  
needed to express queries.

� Descriptive complexity studies the connections between 
computational complexity and logical definability.
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Descriptive Complexity

Main Finding:

All major computational complexity classes, including P, NP, 

and PSPACE, can be characterized in terms of definability in

various logics on classes of finite structures.

� Reinforces the unity of computation and logic.

� Yields machine-independent characterizations of 
computational complexity classes.
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Descriptive Complexity: Characterizing NP

Theorem: Fagin – 1974

Let F be the class of all finite σ-structures and let Q be a

query on F.  Then the following are equivalent:

� Q is is NP.

� Q is definable by an existential second-order formula

∃ S1 … ∃ Skφ(S1, …, Sk).

In symbols,   NP = ESO on F .

Example: 3-COLORABILITY of a graph (V,E) is definable by

∃ B ∃ R ∃ G ((B,R,G) form a partition of V 

Æ ∀ x ∀ y (E(x,y) → x, y are in different 
parts)).
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Descriptive Complexity: Characterizing NP

Corollary: The following are equivalent:

� NP is closed under complement (i.e., NP = coNP).

� ESO is closed under complement on the class G of all finite 
graphs.

� NON 3-COLORABILITY is ESO-definable on G.

Proof: 

Fagin’s Theorem and NP-completeness of 3-COLORABILITY.



15

Descriptive Complexity & Spectrum Problem

Theorem: Jones and Selman,  Fagin – 1974.

The following are equivalent for a set S of positive integers in binary 

notation:

� S is a spectrum. 

� S is in NEXPTIME.

Corollary: The following are equivalent:

� Spectra are closed under complement.

� NEXPTIME is closed under complement.

Conclusion: Asser’s question is equivalent to a major open problem

in computational complexity.
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Descriptive Complexity: Characterizing P

Theorem: Immerman – 1982, Vardi – 1982

Let O be the class of all ordered finite σ-structures A = (A, <, R1,…,Rm)

and let Q be a query on O.  Then the following are equivalent:

� Q is in P.

� Q is definable in least-fixed point logic LFP.

In symbols,     P =  LFP on O.

Note: LFP = (FO + Least fixed-points of positive FO-formulas)

Example: The TRANSITIVE CLOSURE query is definable by the 

least fixed point of the FO-formula E(x,y) Ç ∃ z(E(x,z) Æ T(z,y))

T(x,y)  ≡ E(x,y) Ç ∃ z(E(x,z) Æ T(z,y))
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Descriptive Complexity Results

Two groups of results:

Group I: A complexity class (typically, NP or higher) can 
be characterized in terms of uniform definability in a logic 
on the class F of all finite σ-structures 
(and, hence, on all subclasses of F ).

Group II: A complexity class (typically, P or lower) can be 
characterized in terms of definability in a logic on the class O of 
all ordered finite σ-structures A = (A, <, R1,…,Rm).

Note: LFP cannot express counting queries on F
(eg., EVEN CARDINALITY). 
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The Quest for a Logic for P

Problem: Chandra and Harel – 1982

Is there an effective enumeration of all polynomial-time 

computable queries on the class F of all finite σ-structures?

Conjecture: Gurevich – 1988

There is no logic that captures P on the class F of all finite 

σ-structures.

Note:

If P = NP, then there is logic for P (namely, ESO).
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The Quest for a Logic for P

� Has motivated numerous investigations in finite model theory:

� Systematic study of various extensions of first-order logic, 
including generalized quantifiers and fixed-point operators.

� Systematic development of tools to delineate the expressive 
power of extensions of first-order logic in the finite, such as

Ehrenfeucht – Fraïssé games and their variants:

Ehrenfeucht – Fraïssé games for ESO, pebble games, and 

games for logics with generalized quantifiers.

� However,  

Chandra and Harel’s Problem and Gurevich’s Conjecture

remain outstanding open problems in finite model theory.
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Restricted Classes of Finite Structures

� Progressive shift of emphasis from the class of all finite 
structures to restricted classes of finite structures.

� Theorem: Let (IFP + C) be the extension of FO with 
inflationary fixed-points and counting quantifiers.

� Grohe – 1998

P = (IFP + C) on the class P of all planar graphs.

� Grohe and Mariño – 1999

P = (IFP + C) on the class T (k) of graphs of treewidth ≤ k.

� Note: Deeper properties of the restricted classes are used to 
find an (IFP + C)-definable linear order on structures in the 
restricted class.



21

Reflecting on Descriptive Complexity

Early Optimism:

� Descriptive complexity results reduce the separation of 
complexity classes to the separation of logics in the finite.

� Combinatorial games (Ehrenfeucht – Fraïssé games and their 
variants) provide a sound and complete method for delineating 
the expressive power of logics in the finite.

� Use logic to resolve open problems in computational 
complexity.

Example: Recall that the following are equivalent:

� NP is not closed under complement (i.e., NP ≠ coNP).

� NON 3-COLORABILITY is not ESO-definable on G.
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Reflecting on Descriptive Complexity

Reality: The implementation of this approach is confronted with 

seemingly insurmountable combinatorial obstacles.

� Combinatorial games have been successfully used to analyze 
the expressive power of monadic ESO 

∃ S1 … ∃ Skφ(S1, …, Sk), where the Si’s are unary symbols.

� The expressive power of binary ESO is poorly understood.

Problem: Fagin – 1990

Prove or disprove that there is a query Q on graphs such that

� Q is ESO-definable.

� Q is not definable in binary ESO with a single existentially

quantified binary symbol

∃ S φ(S), where S is a binary relation symbol.
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Reflecting on Descriptive Complexity

Reality:

� The expressive power of FO on the class F  of all finite 
structures is well understood.

� The expressive power of FO on classes of ordered finite 
structures A = (A, <, R1,…,Rm) is poorly understood.

The Ordered Conjecture: K … and Vardi – 1992

If C is a class of ordered finite structures of arbitrarily large

cardinalities, then FO ≠ LFP on C   (i.e., FO ≠ P on C ).

Note: Either way of resolving the Ordered Conjecture has 

complexity-theoretic implications. 
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Main Themes in Finite Model Theory

� Descriptive complexity: 

computational complexity vs. uniform definability.

� Expressive power of logics in the finite:

What can and what cannot be expressed in various logics on

classes of finite structures.

� Logic and asymptotic probabilities on finite structures

0-1 laws and convergence laws.

� Classical Model theory in the finite:

Do the classical results of model theory hold in the finite?
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Logic and Asymptotic Probabilities

� Notation:

� Q:            Boolean query on the class F of all finite structures

� Fn:           Class of finite structures of cardinality n

� µn:           Probability measure on Fn,  n ≥ 1

� µn(Q)  =   Probability of Q on Fn with respect to µn,  n ≥ 1.

� Definition:  Asymptotic probability of query Q

µ(Q) = lim µn→ ∞(Q)  (provided the limit exists)

� Examples: For the uniform measure µ on finite graphs G:

� µ(G contains a triangle)  =  1.

� µ(G is connected)  =   1.

� µ(G is 3-colorable)  =  0.

� µ(G has even cardinality) does not exist.
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0-1 Laws and Convergence Laws

Question: Is there a connection between the definability of a 

query Q in some logic L and its asymptotic probability?

Definition: Let L be a logic

� The 0-1 law holds for L w.r.t. to a measure µn, n≥ 1, if

µ(Q) = 0  or  µ(Q) = 1, 

for every L-definable Boolean query Q.

� The convergence law holds for L w.r.t. to a measure µn, n≥ 1, 
if µ(Q) exists, for every L-definable Boolean query Q.
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0-1 Law for First-Order Logic

Theorem: Glebskii et al. – 1969, Fagin – 1972

The 0-1 law holds for FO w.r.t. to the uniform measure.

Transfer Theorem: Fagin – 1972

There is a unique countable graph R such that for every 

FO-sentence ψ, we have that
µ(ψ) = 1  if and only if R � ψ.

Note:

� R is Rado’s graph: the unique countable, homogeneous, and  

universal graph.

� R is characterized by a set of first-order extension axioms.
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Decision Problem for 0-1 Law

Problem: Given a FO-sentence ψ, tell whether

µ(ψ) = 0  or µ(ψ) = 1.

Note:

� By the Transfer Theorem, this is equivalent to deciding 

first-order truth on R.

� Fagin’s proof shows it is a decidable problem.

Theorem: Grandjean – 1983

The decision problem for the 0-1 law for FO is PSPACE-complete.
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FO Truth vs. FO Almost Sure Truth 

� First-Order Truth

Testing if a FO-sentence is

true on all finite graphs is an

undecidable problem.

� Almost Sure First-Order 
Truth

Testing if a FO-sentence is 

almost surely true on all 
finite graphs is a decidable 
problem; in fact, it is PSPACE-
complete.

Everywhere false (contradiction)

Somewhere true &

Somewhere false

Everywhere true (valid)

Almost surely false

Almost surely true
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Three Directions of Research on 0-1 Laws

� 0-1 laws for extensions of FO w.r.t. the uniform measure.

� 0-1 laws for FO on restricted classes of finite structures 

� 0-1 laws on graphs under variable probability measures.
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0-1 Laws for Fragments of ESO

Fact:

� The convergence law fails for ESO

� EVEN CARDINALITY is ESO-definable.

� Many natural NP-complete problems have probability 0 or 1:

� 3-COLORABILITY

� HAMILTONIAN PATH

� SATISFIABILITY

� KERNEL

� …

Question: Do 0-1 laws hold for fragments of ESO?
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0-1 Laws for Fragments of ESO

Idea:  

Pursue 0-1 laws for fragments of ESO obtained by restricting the

quantifier pattern in the FO-part φ(S) of ESO-sentences ∃ S
φ(S).

Guiding Principle:  Skolem Normal Form for ESO:

∃ S ∃ x ∀ y ∃ z θ(S, x, y, z),

where S is a tuple of SO-variables, x, y, and z are tuples of 

FO-variables, and θ(S, x, y, z) is  a quantifier-free formula.

Thus, it suffices to consider first-order prefix classes that are

subclasses of ∃* ∀* ∃*.
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0-1 Laws for Fragments of ESO

Theorem: K … and Vardi – 1987

� For every ESO(∃*∀*)-sentence ψ, we have that 
µ(ψ) = 1  if and only if  R � ψ.

� The 0-1 law holds for ESO(∃*∀*).

Theorem: K … and Vardi – 1988

� For every ESO(∃*∀∃*)-sentence ψ, we have that 
µ(ψ) = 1  if and only if  R � ψ.

� The 0-1 law holds for ESO(∃*∀∃*).

Theorem: Pacholski and Szwast – 1991

The convergence law fails for ESO(∀∀∃).
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0-1 Laws for Fragments of ESO

Classification Theorem:

The Bernays-Schönfinkel Class ∃*∀*∃* and the Ackermann Class ∃*∀∃*

are the only prefix classes Ψ of FO such that the 0-1 law holds

for the corresponding fragment ESO(Ψ) of ESO.

UndecidableNoESO(∀∀∃)

NEXPTIME-completeYesESO(∃*∀∃*)

NEXPTIME-completeYesESO(∃*∀*)

Decision Problem0-1 LawESO Fragment
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0-1 Laws for Fragments of ESO

Note:

The Bernays-Schönfinkel Class ∃*∀*∃* and the Ackermann

Class ∃*∀∃* are the only prefix classes of FO (with equality) for

which the satisfiability problem is decidable.

Theorem: Gödel – 1932

The satisfiability problem for the prefix class ∀∀∃ without

equality is decidable.

Theorem: Le Bars – 1998
The convergence law fails for ESO(∀∀∃) without equality.
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Reflecting on 0-1 Laws

On the positive side:

� 0-1 laws are new phenomena that are meaningful only in the 
context of finite structures.

� Finiteness is a feature, not a limitation. 

� The study of 0-1 laws gave rise to an extensive interaction 
between finite model theory and asymptotic combinatorics

(genuine two-way interaction; e.g., 0-1 laws for restricted 
classes of finite structures: partial orders, clique-free graphs).
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Reflecting on 0-1 Laws 

On the negative side:

� The study of 0-1 laws had less interaction with and impact on 
computer science than other areas of FMT.

N. Immerman – 1999: 0-1 laws are “inimical to computation”.

� There was early speculation that the analysis of the asymptotic 
properties of logically definable queries may be useful in the 
average-case analysis of algorithms.

This early optimism and expectation remains largely unrealized. 
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Main Themes in Finite Model Theory

� Descriptive complexity: 

computational complexity vs. uniform definability.

� Expressive power of logics in the finite:

What can and what cannot be expressed in various logics on

classes of finite structures.

� Logic and asymptotic probabilities on finite structures

0-1 laws and convergence laws.

� Classical Model theory in the finite:

Do the classical results of model theory hold in the finite?



39

Classical Model Theory in the Finite

� The Skolem-Löwenheim Theorem is meaningless in the finite.

� The Compactness Theorem fails in the finite.

� The Craig Interpolation Theorem fails in the finite:

the EVEN CARDINALITY query is not FO-definable.

� Conjecture: Scott and Suppes – 1958

The Łoś- Tarski Theorem holds in the finite:

If a FO-sentence ψ is preserved under substructures on all 
finite structures, then there is a universal FO-sentence ψ* 
that is equivalent to ψ on all finite structures
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Classical Model Theory in the Finite

Theorem: Tait – 1959

The Łoś- Tarski Theorem fails in the finite.

(rediscovered by Gurevich and Shelah in the 1980s)

Theorem: Ajtai and Gurevich – 1987

Lyndon’s Positivity Theorem fails in the finite: 

There is a FO-sentence ψ(S) that is monotone in S on all finite 

structures, but is not equivalent to any positive-in-S FO-sentence

on all finite structures.

Question: Do any of the classical results of model theory

survive  the passage to the finite?
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Classical Model Theory in the Finite

Preservation-under-Homomorphisms Theorem:

If a FO-sentence ψ is preserved under homomorphisms on all 

structures,  then there is an existential positive FO-sentence

ψ* that is equivalent to ψ on all structures. 

Problem: Does the preservation-under-homomorphisms

theorem hold in the finite?

Suppose that a  FO-sentence ψ is preserved under

homomorphisms on all finite structures. Is there a FO-sentence

ψ* that is equivalent to ψ on all finite structures? 

This problem had remained open for a long time …
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Classical Model Theory in the Finite

Theorem: Rossman – 2005

If a FO-sentence ψ is preserved under homomorphisms on all 

finite structures,  then there is an existential positive 

FO-sentence ψ* that is equivalent to ψ on all finite structures. 

� So, finally, we have a positive result about classical model 
theory in the finite.

� And there is more  …
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Model Theory of Restricted Classes

Theorem: Atserias, Dawar, K … – 2004

� Let T (k) be the class of graphs of treewidth at most k. 

If a FO-sentence is preserved under homomorphisms on

T (k), then it is equivalent to some existential-positive FO-
sentence on T (k). 

� If a FO-sentence is preserved under homomorphims on all 
planar graphs, then it is equivalent to some existential-
positive FO-sentence on all planar graphs.

Note: Preservation theorems do not relativize to subclasses. 
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Model Theory of Restricted Classes

Theorem: Atserias,  Dawar, Grohe – 2005

� Let T (k) be the class of graphs of treewidth at most k. 

If a FO-sentence is preserved under substructures on

T (k), then it is equivalent to some universal FO-sentence 

on T (k). 

� There is a FO-sentence that is preserved under substructures 
on all planar graphs, but it is not equivalent to any universal 
FO-sentence on all planar graphs.
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Abstract Model Theory in the Finite

Theorem: Lindström – 1969

First-order logic is a maximal logic possessing both the

Compactness Theorem and the Skolem-Löwenheim Theorem.

Problem: K … and Väänänen - 1992

� Is there a Lindström-type characterization of first-order logic 
on finite structures?

� Is there a Lindström-type characterization of least fixed-point 
logic on finite structures?
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Concluding Remarks

Many topics were not covered in this talk:

� Finite-variable logics and analysis of k-types.

� Logics with generalized quantifiers.

� Interaction with modal logics, connections with the µ-calculus 
and automated verication.

� Applications to database theory and to constraint databases.

� Interaction with constraint satisfaction.
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Concluding Remarks

� Finite model theory has come a long way from a collection of 
early sporadic results to a mature research area.

� There have been numerous successes, but also frustrations:

� Lack of progress on resolving open problems in complexity.

� Limited impact of 0-1 laws on other areas of CS.

� On the positive side,

� Shift of focus on restricted classes of structures is bearing 
fruit.

� Growing connections with constraint satisfaction.

� One can only hope that the next 30 years of finite model 
theory will be at least as fruitful as the past 30. 


