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What is finite model theory?

It is the study of logics on classes of finite structures.

Logics:

o First-order logic FO and various extensions of FO:
Fragments of second-order logic SO.
Logics with fixed-point operators.
Logics with generalized quantifiers.

Classes of finite structures:

o All finite structures A = (A, Ry,...R.) over a fixed vocaculary.

o All ordered finite structures A = (A, <, Ry,...,R.).

o Restricted classes of finite structures of combinatorial or of
algorithmic interest (trees, planar graphs, partial orders, ...)
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Contrast with traditional focus of logic

Study of logics on the class of all structures
o Godel’s Completeness Theorem
Truth in FO on the class of all (finite & infinite) structures

Study of logics on a fixed infinite structure
o Godel’s Incompleteness Theorem

Truth in FO on the structure N = (N, +, x) of the integers
o Tarski’s Theorem

Truth in FO on the structure R = (R, +, x) of the reals.



Brief History

Late 1940s to 1970:
o Early scattered results and problems about FO in the finite.

Early 1970s to present:
o Steady development of finite model theory in its own right.

o Extensive interaction with computational complexity,
database theory, asymptotic combinatorics, automated
verification, constraint satisfaction.

Finite model theory has had a constant presence in LICS.

o At least five times the Kleene Award for Best Student Paper
has been given for work in finite model theory.



Aims of this Talk

To reflect on finite model by
o Highlighting some of its successes;
o Examining obstacles that were encountered;

o Discussing some open problems that have resisted
solution.

This talk is
neither
o a comprehensive survey of finite model theory
nor

o a 'personal perspective” on the development of finite
model theory.



Early Beginnings:
a theorem and two problems.

Theorem: Trakhtenbrot — 1950
First-order finite validities cannot be axiomatized:
The set of finitely valid first-order sentences is not recursively

enumerable.

“Anti-completeness” theorem
Sharp contrast with Godel’s Completeness Theorem:
first-order validities can be axiomatized.



The Spectrum Problem

Definition:
A set S of positive integers is a spectrum if there is a
FO-sentence ¢ such that

S = {m: ¢ has a finite model with m elements }

Example: The set of all powers of primes is a spectrum.

The Spectrum Problem
Scholz — 1952: Characterize all spectra
Asser — 1955: Are spectra closed under complement?
Is the complement of a spectrum a spectrum?



Preservation under Substructures

Theorem: tos- Tarski — 1948

If a FO-sentence v is preserved under substructures on all
(finite and infinite) structures, then there is a universal
FO-sentence = that is equivalent to v on all structures.

Conjecture: Scott and Suppes — 1958
The Los- Tarski Theorem holds in the finite:

If a FO-sentence v is preserved under substructures on all
finite structures, then there is a universal FO-sentence y*
that is equivalent to y on all finite structures.



Main Themes in Finite Model Theory

Descriptive complexity:
computational complexity vs. uniform definability.

Expressive power of logics in the finite:
What can and what cannot be expressed in various logics on
classes of finite structures.

Logic and asymptotic probabilities on finite structures
0-1 laws and convergence laws.

Classical Model theory in the finite:
Do the classical results of model theory hold in the finite?




Notation and Terminology

o: a fixed relational vocabulary {R;, ..., R,,,}
C: a class of finite o-structures closed under isomorphisms.

A k-ary query on C is a mapping Q defined on € such that
o IfFA e C,then Q(A) is a k-ary relation on A;
a Q is invariant under isomorphisms:

if f: A— B is an isomorphism, then Q(B) = f(Q(A)).
Example: TRANSITIVE CLOSURE of a graph G = (V,E)

A Boolean query on € isa mapping Q: € — {0, 1}

that is invariant under isomorphisms
Example: CONNECTIVITY, 3-COLORABILITY, ...
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Complexity vs. Definability

Computational complexity is concerned with the
computational resources (model of computation, time,
space) needed to compute queries.

Logical definability is concerned with the logical
resources (type of quantification, number of variables,
operators extending the syntax of first-order logic, ...)
needed to express queries.

Descriptive complexity studies the connections between
computational complexity and logical definability.
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Descriptive Complexity

Main Finding:

All major computational complexity classes, including P, NP,
and PSPACE, can be characterized in terms of definability in
various logics on classes of finite structures.

Reinforces the unity of computation and logic.

Yields machine-independent characterizations of
computational complexity classes.
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Descriptive Complexity: Characterizing NP

Theorem: Fagin — 1974
Let F be the class of all finite o-structures and let Q be a
query on F. Then the following are equivalent:
Q isis NP.
Q is definable by an existential second-order formula
1S, ... 350(Sy, .-, Sy)-
In symbols, NP = ESO on F.

Example: 3-COLORABILITY of a graph (V,E) is definable by
4B 3R 3G ((B,R,G) form a partition of V

AV X VY (E(X,y) — X, vy are in different
parts)).
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Descriptive Complexity: Characterizing NP

Corollary: The following are equivalent:
NP is closed under complement (i.e., NP = coNP).

ESO is closed under complement on the class G of all finite
graphs.

NON 3-COLORABILITY is ESO-definable on G.

Proof:
Fagin's Theorem and NP-completeness of 3-COLORABILITY.
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Descriptive Complexity & Spectrum Problem

Theorem: Jones and Selman, Fagin — 1974.
The following are equivalent for a set S of positive integers in binary
notation:

S is a spectrum.

S is in NEXPTIME.

Corollary: The following are equivalent:
Spectra are closed under complement.
NEXPTIME is closed under complement.

Conclusion: Asser’s question is equivalent to a major open problem
in computational complexity.
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Descriptive Complexity: Characterizing P

Theorem: Immerman — 1982, Vardi — 1982

Let O be the class of all ordered finite o-structures A = (A, <, Ry,...,R.)

and let Q be a query on 0. Then the following are equivalent:
QisinP.
Q is definable in least-fixed point logic LFP.

In symbols, P = LFPon O.

Note: LFP = (FO + Least fixed-points of positive FO-formulas)

Example: The TRANSITIVE CLOSURE query is definable by the
least fixed point of the FO-formula E(x,y) Vv 3 z(E(x,z) A T(z,y))

T(x,y) = E(x,y) v 3 z(E(x,2) A T(z,y))
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Descriptive Complexity Results

Two groups of results:

Group I: A complexity class (typically, NP or higher) can
be characterized in terms of uniform definability in a logic
on the class F of all finite o-structures

(and, hence, on all subclasses of F).

Group II: A complexity class (typically, P or lower) can be
characterized in terms of definability in a logic on the class O of
all ordered finite o-structures A = (A, <, Ry,...,R.).

Note: LFP cannot express counting queries on F
(eg., EVEN CARDINALITY).
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The Quest for a Logic for P

Problem: Chandra and Harel — 1982
Is there an effective enumeration of all polynomial-time
computable queries on the class F of all finite o-structures?

Conjecture: Gurevich — 1988
There is no logic that captures P on the class F of all finite
o-structures.

Note:
If P = NP, then there is logic for P (namely, ESO).
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he Quest for a Logic for P

Has motivated numerous investigations in finite model theory:

= Systematic study of various extensions of first-order logic,
including generalized quantifiers and fixed-point operators.

= Systematic development of tools to delineate the expressive
power of extensions of first-order logic in the finite, such as

Ehrenfeucht — Fraissé games and their variants:
Ehrenfeucht — Fraissé games for ESO, pebble games, and
games for logics with generalized quantifiers.

However,
Chandra and Harel’s Problem and Gurevich’s Conjecture
remain outstanding open problems in finite model theory.
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Restricted Classes of Finite Structures

Progressive shift of emphasis from the class of all finite
structures to restricted classes of finite structures.

Theorem: Let (IFP + C) be the extension of FO with
inflationary fixed-points and counting quantifiers.

o Grohe — 1998
P = (IFP + C) on the class P of all planar graphs.
o Grohe and Marino — 1999
P = (IFP + C) on the class T (k) of graphs of treewidth < k.

Note: Deeper properties of the restricted classes are used to
find an (IFP + C)-definable linear order on structures in the
restricted class.
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Reflecting on Descriptive Complexity

Early Optimism:
Descriptive complexity results reduce the separation of
complexity classes to the separation of logics in the finite.

Combinatorial games (Ehrenfeucht — Fraissé games and their
variants) provide a sound and complete method for delineating
the expressive power of logics in the finite.

Use logic to resolve open problems in computational
complexity.

Example: Recall that the following are equivalent:
NP is not closed under complement (i.e., NP = coNP).
NON 3-COLORABILITY is not ESO-definable on G.
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Reflecting on Descriptive Complexity

Reality: The implementation of this approach is confronted with
seemingly insurmountable combinatorial obstacles.

Combinatorial games have been successfully used to analyze
the expressive power of monadic ESO

35, ... 354(S4, ..., S,), where the S/s are unary symbols.
The expressive power of binary ESO is poorly understood.

Problem: Fagin — 1990
Prove or disprove that there is a query Q on graphs such that
= Q is ESO-definable.
= Qis not definable in binary ESO with a single existentially
quantified binary symbol
1S ¢(S), where S is a binary relation symbol.
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Reflecting on Descriptive Complexity

Reality:

The expressive power of FO on the class F of all finite
structures is well understood.

The expressive power of FO on classes of ordered finite
structures A = (A, <, Ry,...,R,,) is poorly understood.

The Ordered Conjecture: K... and Vardi — 1992

If Cis a class of ordered finite structures of arbitrarily large
cardinalities, then FO = LFP on € (i.e., FO=Pon C).

Note: Either way of resolving the Ordered Conjecture has
complexity-theoretic implications.
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Main Themes in Finite Model Theory

v’ Descriptive complexity:

computational complexity vs. uniform definability.

v’ Expressive power of logics in the finite:

What can and what cannot be expressed in various logics on
classes of finite structures.

Logic and asymptotic probabilities on finite structures
0-1 laws and convergence laws.

Classical Model theory in the finite:
Do the classical results of model theory hold in the finite?
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Logic and Asymptotic Probabilities

Notation:

o Q: Boolean query on the class Fof all finite structures
o F.: Class of finite structures of cardinality n

SIS Probability measureon £, n>1

o u,(Q) = Probability of Q on F, with respectto p, n > 1.

Definition: Asymptotic probability of query Q
wQ) = lim p, . (Q) (provided the limit exists)

Examples: For the uniform measure u on finite graphs G:
(G contains a triangle) = 1.

(G is connected) = 1.

(G is 3-colorable) = 0.

(G has even cardinality) does not exist.

U 0O 0O O
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0-1 Laws and Convergence Laws

Question: Is there a connection between the definability of a
query Q in some logic L and its asymptotic probability?

Definition: Let L be a logic
The 0-1 law holds for L w.r.t. to a measure p,, n> 1, if

wQ) =0 or wQ) =1,

for every L-definable Boolean query Q.

The convergence law holds for L w.r.t. to a measure p,, n> 1,
if u(Q) exists, for every L-definable Boolean query Q.
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0-1 Law for First-Order Logic

Theorem: Glebskii et al. — 1969, Fagin — 1972
The 0-1 law holds for FO w.r.t. to the uniform measure.

Transfer Theorem: Fagin — 1972
There is a unique countable graph R such that for every

FO-sentence vy, we have that
uw(y) =1 ifand only if R E .

Note:
R is Rado’s graph: the unique countable, homogeneous, and
universal graph.
R is characterized by a set of first-order extension axioms.
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Decision Problem for 0-1 Law

Problem: Given a FO-sentence v, tell whether
u(y) =0 or u(y) = 1.

Note:
By the Transfer Theorem, this is equivalent to deciding

first-order truth on R.
Fagin’s proof shows it is a decidable problem.

Theorem: Grandjean — 1983
The decision problem for the 0-1 law for FO is PSPACE-complete.
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'FO Truth vs. FO Almost Sure Truth

Somewhere true &
Somewhere false

= First-Order Truth
Testing if a FO-sentence is
true on all finite graphs is an
undecidable problem.

= Almost Sure First-Order
Truth

Testing if a FO-sentence is

almost surely true on all
finite graphs is a decidable
problem; in fact, it is PSPACE-
complete.
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hree Directions of Research on 0-1 Laws

0-1 laws for extensions of FO w.r.t. the uniform measure.

0-1 laws for FO on restricted classes of finite structures

0-1 laws on graphs under variable probability measures.
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0-1 Laws for Fragments of ESO

Fact:
The convergence law fails for ESO
= EVEN CARDINALITY is ESO-definable.

Many natural NP-complete problems have probability 0 or 1:
= 3-COLORABILITY

= HAMILTONIAN PATH

= SATISFIABILITY

= KERNEL

Question: Do 0-1 laws hold for fragments of ESO?
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0-1 Laws for Fragments of ESO

Idea:

Pursue 0-1 laws for fragments of ESO obtained by restricting the

quantifier pattern in the FO-part ¢(S) of ESO-sentences 4 S
o(S).

Guiding Principle: Skolem Normal Form for ESO:

1S 3dxVydzo(S, x,y, 2),
where S is a tuple of SO-variables, x, y, and z are tuples of
FO-variables, and 0(S, x, y, z) is a quantifier-free formula.

Thus, it suffices to consider first-order prefix classes that are
subelasses-of 33~
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0-1 Laws for Fragments of ESO

Theorem: K ... and Vardi — 1987
For every ESO(3"V")-sentence v, we have that
w(y) =1 ifandonly if RE .

The 0-1 law holds for ESO(Z*v*).

Theorem: K ... and Vardi — 1988
For every ESO(3"V3")-sentence v, we have that
w(y) =1 ifandonly if RE .

The 0-1 law holds for ESO(3*v3").

Theorem: Pacholski and Szwast — 1991
The convergence law fails for ESO(VVv3).
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0-1 Laws for Fragments of ESO

ESO Fragment 0-1 Law Decision Problem
ESO(T*V™) Yes NEXPTIME-complete
ESO(T*vV3") Yes NEXPTIME-complete
ESO(Vv3) No Undecidable

Classification Theorem:

The Bernays-Schonfinkel Class 3*v*3" and the Ackermann Class 3*v3*
are the only prefix classes ¥ of FO such that the 0-1 law holds
for the corresponding fragment ESO(¥) of ESO.
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0-1 Laws for Fragments of ESO

Note:
The Bernays-Schonfinkel Class 3°v*3* and the Ackermann
Class 3"v3* are the only prefix classes of FO (with equality) for

which the satisfiability problem is decidable.

Theorem: GoOdel — 1932
The satisfiability problem for the prefix class Vvd without

equality is decidable.

Theorem: Le Bars— 1998
The convergence law fails for ESO(VVv3) without equality.
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Reflecting on 0-1 Laws

On the positive side:

0-1 laws are new phenomena that are meaningful only in the
context of finite structures.

Finiteness is a feature, not a limitation.

The study of 0-1 laws gave rise to an extensive interaction
between finite model theory and asymptotic combinatorics

(genuine two-way interaction; e.g., 0-1 laws for restricted
classes of finite structures: partial orders, clique-free graphs).
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Reflecting on 0-1 Laws

On the negative side:

The study of 0-1 laws had less interaction with and impact on
computer science than other areas of FMT.

N. Immerman — 1999: 0-1 laws are “inimical to computation”.

There was early speculation that the analysis of the asymptotic
properties of logically definable queries may be useful in the
average-case analysis of algorithms.

This early optimism and expectation remains largely unrealized.
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Main Themes in Finite Model Theory

v’ Descriptive complexity:
computational complexity vs. uniform definability.

v’ Expressive power of logics in the finite:
What can and what cannot be expressed in various logics on
classes of finite structures.

v’ Logic and asymptotic probabilities on finite structures
0-1 laws and convergence laws.

= Classical Model theory in the finite:
Do the classical results of model theory hold in the finite?
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Classical Model Theory in the Finite

The Skolem-Lowenheim Theorem is meaningless in the finite.

The Compactness Theorem fails in the finite.

The Craig Interpolation Theorem fails in the finite:
the EVEN CARDINALITY query is not FO-definable.

Conjecture: Scott and Suppes — 1958
The Ltos- Tarski Theorem holds in the finite:

If a FO-sentence v is preserved under substructures on all
finite structures, then there is a universal FO-sentence y*
that is equivalent to y on all finite structures
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Classical Model Theory in the Finite

Theorem: Tait — 1959
The Los- Tarski Theorem fails in the finite.
(rediscovered by Gurevich and Shelah in the 1980s)

Theorem: Ajtai and Gurevich — 1987

Lyndon’s Positivity Theorem fails in the finite:

There is a FO-sentence y(S) that is monotone in S on all finite
structures, but is not equivalent to any positive-in-S FO-sentence
on all finite structures.

Question: Do any of the classical results of model theory
survive the passage to the finite?
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Classical Model Theory in the Finite

Preservation-under-Homomorphisms Theorem:

If a FO-sentence v is preserved under homomorphisms on all
structures, then there is an existential positive FO-sentence
v™ that is equivalent to v on all structures.

Problem: Does the preservation-under-homomorphisms
theorem hold in the finite?

Suppose that a FO-sentence v is preserved under
homomorphisms on all finite structures. Is there a FO-sentence
v™ that is equivalent to v on all finite structures?

This problem had remained open for a long time ...
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Classical Model Theory in the Finite

Theorem: Rossman — 2005

If a FO-sentence v is preserved under homomorphisms on all
finite structures, then there is an existential positive
FO-sentence y™ that is equivalent to y on all finite structures.

So, finally, we have a positive result about classical model
theory in the finite.

And there is more ...
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Model Theory of Restricted Classes

Theorem: Atserias, Dawar, K ... — 2004
Let 7 (k) be the class of graphs of treewidth at most k.
If a FO-sentence is preserved under homomorphisms on

T (k), then it is equivalent to some existential-positive FO-
sentence on T (k).

If a FO-sentence is preserved under homomorphims on all
planar graphs, then it is equivalent to some existential-
positive FO-sentence on all planar graphs.

Note: Preservation theorems do not relativize to subclasses.
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Model Theory of Restricted Classes

Theorem: Atserias, Dawar, Grohe — 2005
Let 7 (k) be the class of graphs of treewidth at most k.
If a FO-sentence is preserved under substructures on
T (k), then it is equivalent to some universal FO-sentence
on 7T (k).

There is a FO-sentence that is preserved under substructures
on all planar graphs, but it is not equivalent to any universal
FO-sentence on all planar graphs.
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Abstract Model Theory in the Finite

Theorem: Lindstrom — 1969
First-order logic is a maximal logic possessing both the
Compactness Theorem and the Skolem-Lowenheim Theorem.

Problem: K ... and Vaananen - 1992

Is there a Lindstrom-type characterization of first-order logic
on finite structures?

Is there a Lindstrom-type characterization of least fixed-point
logic on finite structures?
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Concluding Remarks

Many topics were not covered in this talk:
Finite-variable logics and analysis of k-types.
Logics with generalized quantifiers.

Interaction with modal logics, connections with the p-calculus
and automated verication.

Applications to database theory and to constraint databases.

Interaction with constraint satisfaction.
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Concluding Remarks

Finite model theory has come a long way from a collection of
early sporadic results to a mature research area.

There have been numerous successes, but also frustrations:
o Lack of progress on resolving open problems in complexity.
o Limited impact of 0-1 laws on other areas of CS.

On the positive side,

o Shift of focus on restricted classes of structures is bearing
fruit.

o Growing connections with constraint satisfaction.

One can only hope that the next 30 years of finite model
theory will be at least as fruitful as the past 30.
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