
Foundations and Applications
of

Schema Mappings

Phokion G. Kolaitis

University of California Santa Cruz
&

IBM Almaden Research Center

2

The Data Interoperability Challenge

� Data may reside

� at several different sites

� in several different formats (relational, XML, …).

� Applications need to access and process all these data.

� Growing market of enterprise data interoperability tools:

� $1.44B in 2007; 17% annual rate of growth

� 15 major vendors in Gartner’s Magic Quadrant Report

(source: Gartner, Inc., September 2008)

3

Gartner’s Magic Quadrant Report on Data
Interoperability Products

SAS

Pervasive Software

iWay Software

Sun Microsystems

Tibco Software

Sybase

Syncort

ETI

Pitney Boss Software

Open Text

Informatica

IBM (Cognos)

SAP – Business Objects

Microsoft

Oracle

Challengers Leaders

Niche Players Visionaries

Ability

to

execute

Completeness of vision

4

Theoretical Aspects of Data Interoperability

The research community has studied two different, but

closely related, facets of data interoperability:

� Data Integration (aka Data Federation)

� Formalized and studied for the past 10-15 years

� Data Exchange (aka Data Translation)

� Formalized and studied for the past 5 years

5

Data Integration
Query heterogeneous data in different sources via a virtual

global schema

I1

Global

Schema
I2

I3 Sources

query

S1

S2

S3

T

Q

6

Data Exchange

Transform data structured under a source schema into data
structured under a different target schema.

S T

Σ

I
J

Source Schema Target Schema

7

Data Exchange

Data Exchange is an old, but recurrent, database problem

� Phil Bernstein – 2003

“Data exchange is the oldest database problem”

� EXPRESS: IBM San Jose Research Lab – 1977

EXtraction, Processing, and REStructuring System

for transforming data between hierarchical databases.

� Data Exchange underlies several data interoperability tasks:

� XML Publishing, XML Storage, …

� Data Warehousing, ETL (Extract-Transform-Load).

8

The Data Interoperability Challenge

Fact:

� Data interoperability tasks require expertise, effort, and time.

� In particular, human experts have to generate complex
transformations that specify the relationship between schemas
written as programs (e.g., in Java) or as SQL/XSLT scripts.

� At present, there is relatively little automation in this area.

Question: How can we do better than this?

Answer: Introduce a higher level of abstraction that makes it possible

to separate the design of the relationship between schemas from its

implementation.

9

Schema Mappings

� Schema mappings:

High-level, declarative assertions that specify the
relationship between two database schemas.

� Schema mappings constitute the essential building blocks in
formalizing and studying data interoperability tasks, including
data integration and data exchange.

� Schema mappings help with the development of tools:

� Are easier to generate and manage (semi)-automatically;

� Can be compiled into SQL/XSLT scripts automatically.

10

Outline

� Schema Mappings as a framework for formalizing and
studying data interoperability tasks.

� Schema Mappings and Data Exchange

� Algorithmic problems in data exchange.

� Solutions, universal solutions, and the core.

� Managing schema mappings via operators:

� The composition operator

� The inverse operator and its variants

11

Acknowledgments

� Much of the work presented has been carried out in
collaboration with

� Ron Fagin, IBM Almaden

� Renee J. Miller, U. of Toronto

� Lucian Popa, IBM Almaden

� Wang-Chiew Tan, UC Santa Cruz.

Papers in ICDT 2003, PODS 2003-2008, TCS, ACM TODS.

� The work has been motivated from the Clio Project at IBM
Almaden aiming to develop a working system for schema
mapping generation and data exchange.

12

Schema Mappings & Data Exchange

Source S Target T

� Schema Mapping M = (S, T, Σ)

� Source schema S, Target schema T

� High-level, declarative assertions Σ that specify the
relationship between S and T.

� Data Exchange via the schema mapping M = (S, T, Σ)

Transform a given source instance I to a target instance J,
so that (I, J) satisfy the specifications Σ of M.

I
J

Σ

13

Schema Mapping Specification Languages

� Ideally, schema mappings should be

� expressive enough to specify data interoperability tasks;

� simple enough to be efficiently manipulated by tools.

� Question: How are schema mappings specified?

� Answer: Use a suitable logical formalism.

� Warning: Unrestricted use of first-order logic as a schema
mapping specification language gives rise to undecidability
phenomena.

14

Schema Mapping Specification Languages

Let us consider some simple tasks that every schema mapping specification

language should support:

� Copy (Nicknaming):

� Copy each source table to a target table and rename it.

� Projection:

� Form a target table by projecting on one or more columns of a source
table.

� Column Augmentation:

� Form a target table by adding one or more columns to a source table.

� Decomposition:

� Decompose a source table into two or more target tables.

� Join:

� Form a target table by joining two or more source tables.

� Combinations of the above (e.g., “join + column augmentation + …”)

15

Schema Mapping Specification Languages

� Copy (Nicknaming):

� ∀x1, …,xn(P(x1,…,xn) → R(x1,…,xn))

� Projection:

� ∀x,y,z(P(x,y,z) → R(x,y))

� Column Augmentation:

� ∀x,y (P(x,y) → ∃ z R(x,y,z))

� Decomposition:

� ∀x,y,z (P(x,y,z) → R(x,y)Æ T(y,z))

� Join:

� ∀x,y,z(E(x,z)ÆF(z,y) → R(x,y,z))

� Combinations of the above (e.g., “join + column augmentation + …”)

� ∀x,y,z(E(x,z)Æ F(z,y) → ∃ w (R(x,y) Æ T(x,y,z,w)))

16

Schema Mapping Specification Languages

� Question: What do all these tasks (copy, projection, column
augmentation, decomposition, join) have in common?

� Answer:

� They can be specified using

tuple-generating dependencies (tgds).

� In fact, they can be specified using a special class of

tuple-generating dependencies known as

source-to-target tuple generating dependencies (s-t tgds).

17

Database Integrity Constraints

� Dependency Theory: extensive study of integrity constraints in
relational databases in the 1970s and 1980s
(Codd, Fagin, Beeri, Vardi …)

� Two main classes of constraints with a balance between high
expressive power and good algorithmic properties:
� Tuple-generating dependencies (tgds)

∀ x (ϕ(x) → ∃ y ψ(x, y)), where
ϕ(x), ψ(x, y) are conjunctions of atomic formulas

� Equality-generating dependencies (egds)
∀ x (ϕ(x) → (xi=xj))

Special Case: Functional dependencies (in particular, keys)
∀ x, y, z (Manages(x,z) Æ Manages(y,z) → (x =y))

18

Schema Mapping Specification Language

The relationship between source and target is given by

source-to-target tuple generating dependencies (s-t tgds)

∀x (ϕ(x) → ∃y ψ(x, y)), where

� ϕ(x) is a conjunction of atoms over the source;

� ψ(x, y) is a conjunction of atoms over the target.

Examples: (dropping the universal quantifiers in the front)

� (Student(s) ∧ Enrolls(s,c)) → ∃t ∃g (Teaches(t,c) ∧ Grade(s,c,g))

� E(x,y) Æ E(y,z) → F(x,z) (GAV (full) constraint)

� E(x,y) → ∃ z (H(x,z)Æ H(z,y)) (LAV constraint)

19

Target Dependencies

In addition to source-to-target dependencies, we also consider

target dependencies:

� Target Tgds : ϕT(x) → ∃y ψT(x, y)

Dpt (e,d) → ∃p Proj(e,p)
(a target inclusion dependency constraint)

� Target Equality Generating Dependencies (egds):
ϕT(x) → (x1=x2)

Dpt (e, d1) ∧ Dpt (e, d2) → (d1 = d2)
(a target key constraint)

20

Data Exchange Framework

Schema Mapping M = (S, T, Σst , Σt), where

� Σst is a set of source-to-target tgds

� Σt is a set of target tgds and target egds

Source
Schema S

Target
Schema T

Σst

I J

Σt

21

Algorithmic Problems in Data Exchange

Definition: Schema Mapping M = (S, T, Σst , Σt)

� A target instance J is a solution for a source instance I if

(I,J) � Σst ∪ Σt .

� The existence-of-solutions problem Sol(M): (decision problem)

Given a source instance I, is there a solution J for I?

� The data exchange problem associated with M: (function problem)

Given a source instance I, construct a solution J for I, provided a
solution exists.

22

Over/Underspecification in Data Exchange

� Fact: A given source instance may have no solutions (overspecification)
� Fact: A given source instance may have multiple solutions

(underspecification)

� Example:
Source relation E(A,B), target relation H(A,B)

Σ: E(x,y) → ∃z (H(x,z) ∧ H(z,y))

Source instance I = {E(a,b)}

Solutions: Infinitely many solutions exist

� J1 = {H(a,b), H(b,b)} constants:

� J2 = {H(a,a), H(a,b)} a, b, …

� J3 = {H(a,X), H(X,b)} variables (labelled nulls):

� J4 = {H(a,X), H(X,b), H(a,Y), H(Y,b)} X, Y, …

� J5 = {H(a,X), H(X,b), H(Y,Y)}

23

Main issues in data exchange

For a given source instance, there may be multiple target
instances satisfying the specifications of the schema mapping.
Thus,

� When more than one solution exist, which solutions are
“better” than others?

� How do we compute a “best” solution?

� In other words, what is the “right” semantics of data
exchange?

24

Universal Solutions in Data Exchange

Definition (FKMP): A solution is universal if it has

homomorphisms to all other solutions

(thus, it is a “most general” solution).

� Constants: entries in source instances

� Variables (labeled nulls): other entries in target instances

� Homomorphism h: J1 → J2 between target instances:

� h(c) = c, for constant c

� If P(a1,…,am) is in J1,, then P(h(a1),…,h(am)) is in J2.

Claim: Universal solutions are the preferred solutions in

data exchange.

25

Universal Solutions in Data Exchange

Schema S Schema T

I
J

Σ

J1
J2

J3

Universal Solution

Solutions

h1 h2 h3
Homomorphisms

26

Example - continued

Source relation S(A,B), target relation T(A,B)

Σ : E(x,y) → ∃z (H(x,z) ∧ H(z,y))

Source instance I = {H(a,b)}

Solutions: Infinitely many solutions exist

� J1 = {H(a,b), H(b,b)} is not universal

� J2 = {H(a,a), H(a,b)} is not universal

� J3 = {H(a,X), H(X,b)} is universal

� J4 = {H(a,X), H(X,b), H(a,Y), H(Y,b)} is universal

� J5 = {H(a,X), H(X,b), H(Y,Y)} is not universal

27

Structural Properties of Universal Solutions

� Universal solutions are akin to:
� most general unifiers in logic programming;
� initial models.

� Uniqueness up to homomorphic equivalence:
If J and J’ are universal for I, then they are homomorphically
equivalent.

� Representation of the entire space of solutions:
Assume that J is universal for I, and J’ is universal for I’.
Then the following are equivalent:
1. I and I’ have the same space of solutions.
2. J and J’ are homomorphically equivalent.

28

Algorithmic Problems in Data Exchange

Question: What can we say about the complexity of
� The existence-of-solutions problem Sol(M)

and
� The data exchange problem (construct a universal solution)
for a fixed schema mapping M = (S, T, Σst,Σt) specified by s-t tgds and
target tgds and egds?

Answer: Depending on the target constraints in Σt:
� Sol(M) is trivial (solutions always exist) /

Universal solutions can be constructed in PTIME (in fact, in LOGSPACE).
…

� Sol(M) can be in PTIME (in fact, it can be PTIME-complete) /
Universal solutions can be constructed in PTIME (if solutions exist)
…

� Sol(M) can be undecidable /
Universal solutions may not exist (even if solutions exist)

29

Algorithmic Problems in Data Exchange

Proposition: If M = (S, T, Σst) is a schema mapping such that Σst is

a set of s-t tgds (i.e., no target dependencies), then:

� Solutions always exist; hence, Sol(M) is trivial.

� For every source instance I, a universal solution J can be
constructed in PTIME using the naïve chase procedure.

Naïve Chase Procedure for M = (S, T, Σst) : given a source

instance I, build a target instance J* that satisfies each s-t tgd in Σst

� by introducing new facts in J* as dictated by the RHS of the s-t tgd

and

� by introducing new values (variables) in J* each time existential
quantifiers need witnesses.

30

Naïve Chase Procedure

Example: Expanding edges to paths of length 2

Σst: E(x,y) → ∃ z(H(x,z)Æ H(z,y))

The naïve chase returns a relation H* obtained from E by
adding a new node between every edge of E.

� If E = {(1,2),(2,3)}, then H* = {(1,M),(M,2),(2,N),(N,3)}

Universal solution for E

Example : Collapsing paths of length 2 to edges

Σst: E(x,z)Æ E(z,y) → F(x,y)

� If E = {(1,3}, (2,4), (3,4)}, then F* = {F(1,4)}

Universal Solution for E

31

Undecidability in Data Exchange

Theorem (K …, Panttaja, Tan):

There is a schema mapping M= (S, T, Σ*st, Σ*t) such that:

� Σ*st consists of a single s-t tgd;

� Σ*t consists of one target egd and two target tgds.

� The existence-of-solutions problem Sol(M) is undecidable.

Hint of Proof:

Reduction from the

Embedding Problem for Finite Semigroups

Given a finite partial semigroup, can it be embedded to a
finite semigroup?

(undecidability implied by results of Evans and Gurevich).

32

The Embedding Problem & Data Exchange

Reducing the Embedding Problem for Semigroups to Sol(M)
� Σst: R(x,y,z) → R’(x,y,z)

� Σt:
• R’ is a partial function:

R’(x,y,z) Æ R’(x,y,w) → z = w

• R’ is associative
R’(x,y,u) Æ R’(y,z,v) Æ R’(u,z,w) → R’(x,u,w)

• R’ is a total function
R’(x,y,z) Æ R’(x’,y’,z’) → ∃ w1 …∃ w9

(R’(x,x’,w1) Æ R’(x,y’,w2) Æ R’(x,z’,w3)
R’(y,x’,w4) Æ R’(y,y’,w5) Æ R’(x,z’,w6)
R’(z,x’,w7) Æ R’(z,y’,w8) Æ R’(z,z’,w9))

33

Tractability in Data Exchange

Question: Are there broad structural conditions on the target

constraints that guarantee tractability?

(that is,

� The existence of solutions problem is in PTIME

and

� A universal solution can be constructed in PTIME, if a solution
exists.)

34

Algorithmic Properties of Universal Solutions

Theorem (FKMP): Schema mapping M= (S, T, Σst, Σt) such
that:

� Σst is a set of source-to-target tgds;

� Σt is the union of a weakly acyclic set of target tgds with
a set of target egds.

Then:

� Universal solutions exist if and only if solutions exist.

� Sol(M) is in PTIME.

� A canonical universal solution (if a solution exists) can be
produced in PTIME using the chase procedure.

35

Chase Procedure for Tgds and Egds

Given a source instance I,

1. Use the naïve chase to chase I with Σst and obtain a

target instance J*.

2. Chase J * with the target tgds and the target egds in Σt to obtain a target
instance J as follows:

2.1. For target tgds introduce new facts in J as dictated by the RHS of the

s-t tgd and introduce new values (variables) in J each time existential

quantifiers need witnesses.

2.2. For target egds φ(x) → x1 = x2

2.2.1. If a variable is equated to a constant, replace the variable by
that constant;

2.2.2. If one variable is equated to another variable, replace one

variable by the other variable.

2.2.3 If one constant is equated to a different constant, stop and
report “failure”.

36

Weakly Acyclic Sets of Tgds

Weakly acyclic sets of tgds contain as special cases:

� Sets of full tgds (GAV constraints)

ϕT(x,x’) → ψT(x),

where ϕT(x,x’) and ψT(x) are conjunctions of target atoms.

� Acyclic sets of inclusion dependencies

Large class of dependencies occurring in practice.

37

Weakly Acyclic Sets of Tgds: Definition

� Position graph of a set Σ of tgds:

� Nodes: R.A, with R relation symbol, A attribute of R

� Edges: for every ϕ(x) → ∃y ψ(x, y) in Σ, for every x in x
occurring in ψ, for every occurrence of x in ϕ in R.A:

� For every occurrence of x in ψ in S.B,

add an edge R.A S.B

� In addition, for every existentially quantified y that occurs in ψ

in T.C, add a special edge R.A T.C

� Σ is weakly acyclic if the position graph has no cycle
containing a special edge.

� A tgd θ is weakly acyclic if so is the singleton set {θ} .

38

Weakly Acyclic Sets of Tgds: Examples

� Example 1: { D(e,m) → M(m), M(m) → ∃ e D(e,m) }

is weakly acyclic, but cyclic.

D.1 M.1 D.2

� Example 2: { E(x,y) → ∃ z E(y,z) }

is not weakly acyclic.

E.1 E.2

39

Weak Acyclicity and Chase Termination

Note: If the set of target tgds is not weakly acyclic, then the

chase procedure may never terminate.

Example: E(x,y) → ∃ z E(y,z) is not weakly acyclic

E(1,2) ⇒

E(2,X1) ⇒

E(X1,X2) ⇒

E(X2, X3) ⇒

…

infinite chase

40

Complexity of Data Exchange

No algorithm
exists, in
general

Undecidable, in
general

Undecidable, in
general

Σt:

target tgds +
egds

PTIMEPTIME

Univ. solutions
exist if and only
if solutions exist

PTIME

It can be
PTIME-
complete

Σt:

Weakly acyclic
set of target tgds
+ egds

PTIMETrivialTrivialΣt = ∅

No target
constraints

Computing a
Universal
Solution

Existence-of-
Universal
Solutions
Problem

Existence-of-
Solutions
Problem

M = (S, T, Σst , Σt)

Σst a set of s-t
tgds

41

The Smallest Universal Solution

� Fact: Universal solutions need not be unique.

� Question: Is there a “best” universal solution?

� Answer: In joint work with R. Fagin and L. Popa, we took a

“small is beautiful” approach:

There is a smallest universal solution (if solutions exist); hence,

the most compact one to materialize.

� Definition: The core of an instance J is the smallest subinstance J’
that is homomorphically equivalent to J.

� Fact:

� Every finite database has a core.

� The core is unique up to isomorphism.

42

The Core of a Structure

J’= core(J)

J Definition: J’ is the core of J if
� J’ ` J

� there is a hom. h: J → J’

� there is no hom. g: J → J’’,
where J’’ _ J’.

h

43

The Core of a Structure

J’= core(J)

J Definition: J’ is the core of J if
� J’ ` J

� there is a hom. h: J → J’

� there is no hom. g: J → J’’,
where J’’ _ J’.

h

Example: If a graph G contains a , then

G is 3-colorable if and only if core(G) = .

Fact: Computing cores of graphs is an NP-hard problem.

44

Example - continued

Source relation E(A,B), target relation H(A,B)

Σ : (E(x,y) → ∃z (H(x,z) ∧ H(z,y)))

Source instance I = {E(a,b)}.

Solutions: Infinitely many universal solutions exist.

� J3 = {H(a,X), H(X,b)} is the core.

� J4 = {H(a,X), H(X,b), H(a,Y), H(Y,b)} is universal, but not

the core.

� J5 = {H(a,X), H(X,b), H(Y,Y)} is not universal.

45

Core: The smallest universal solution

Theorem (FKP): M = (S, T, Σst , Σt) a schema mapping:

� All universal solutions have the same core.

� The core of the universal solutions is the smallest universal
solution.

� If every target constraint is an egd, then the core is
polynomial-time computable.

Theorem (Gottlob & Nash): Let M = (S, T, Σst , Σt) be

such that Σt is the union of a set of weakly acyclic target tgds

with a set of target egds. Then the core is polynomial-time

computable.

46

From Theory to Practice

� Clio Project at IBM Almaden managed by Howard Ho.

� Semi-automatic schema-mapping generation tool;

� Data exchange system based on schema mappings.

� Universal solutions used as the semantics of data exchange.

� Universal solutions are generated via SQL queries extended
with Skolem functions (implementation of chase procedure),
provided there are no target constraints.

� Clio technology is now part of IBM Rational® Data Architect.

47

� Supports nested structures

� Nested Relational

Model

� Nested Constraints

� Automatic & semi-

automatic discovery of

attribute correspondence.

� Interactive derivation of

schema mappings.

� Performs data exchange

Some Features of Clio

48

Source
Schema S

“conforms to”

data
Data exchange process
(or SQL/XQuery/XSLT)

“conforms to”

Schema Mappings in Clio

Mapping
Generation

Schema Mapping

Target
Schema T

49

Outline

�Schema Mappings as a framework for formalizing and
studying data interoperability tasks.

�Schema Mappings and Data Exchange

� Algorithmic problems in data exchange.

� Solutions, universal solutions, and the core.

� Managing schema mappings via operators:

� The composition operator

� The inverse operator and its variants

50

Managing Schema Mappings

� Schema mappings can be quite complex.

� Methods and tools are needed to automate or semi-automate
schema-mapping management.

� Metadata Management Framework – Bernstein 2003

based on generic schema-mapping operators:

� Match operator

� Merge operator

� …

� Composition operator

� Inverse operator

51

Composing Schema Mappings

� Given M12 = (S1, S2, Σ12) and M23 = (S2, S3, Σ23), derive

a schema mapping M13 = (S1, S3, Σ13) that is “equivalent”

to the sequential application of M12 and M23.

� M13 is a composition of M12 and M23

M13 = M12 ◦ M23

Schema S1 Schema S2 Schema S3

M12 M23

M13

52

Inverting Schema Mapping

� Given M12, derive M21 that “undoes” M12

M21 is an inverse of M12

Schema S1 Schema S2

M12

M21

53

Composing Schema Mappings

� Given ΜΜΜΜ12 = (S1, S2, Σ12) and ΜΜΜΜ23 = (S2, S3, Σ23), derive a

schema mapping ΜΜΜΜ13 = (S1, S3, Σ13) that is “equivalent”

to the sequence ΜΜΜΜ12 and ΜΜΜΜ23.

Schema S1 Schema S2 Schema S3

ΜΜΜΜ12 ΜΜΜΜ23

ΜΜΜΜ13

What does it mean for ΜΜΜΜ13 to be “equivalent” to the
composition of ΜΜΜΜ12 and ΜΜΜΜ23?

54

Earlier Work

� Metadata Model Management (Bernstein in CIDR 2003)

� Composition is one of the fundamental operators

� However, no precise semantics is given

� Composing Mappings among Data Sources

(Madhavan & Halevy in VLDB 2003)

� First to propose a semantics for composition

� However, their definition is in terms of maintaining the
same certain answers relative to a class of queries.

� Their notion of composition depends on the class of
queries; it may not be unique up to logical equivalence.

55

Semantics of Composition

� Every schema mapping M = (S, T, Σ) defines a binary relationship

Inst(M) between instances:

Inst(M) = { (I,J) | (I,J) ~ Σ }.

� Definition: (FKPT)

A schema mapping M13 is a composition of M12 and M23 if

Inst(M13) = Inst(M12) ° Inst(M23), that is,

(I1,I3) ~ Σ13

if and only if

there exists I2 such that (I1,I2) ~ Σ12 and (I2,I3) ~ Σ23.

� Note: Also considered by S. Melnik in his Ph.D. thesis

56

The Composition of Schema Mappings

Fact: If both ΜΜΜΜ = (S1, S3, Σ) and ΜΜΜΜ’ = (S1, S3, Σ’) are

compositions of ΜΜΜΜ12 and ΜΜΜΜ23, then Σ are Σ’ are logically

equivalent. For this reason:

� We say that ΜΜΜΜ (or ΜΜΜΜ’) is the composition of ΜΜΜΜ12 and ΜΜΜΜ23.

� We write ΜΜΜΜ12 ° ΜΜΜΜ23 to denote it

57

Issues in Composition of Schema Mappings

� The semantics of composition was the first main issue.

Some other key issues:

� Is the language of s-t tgds closed under composition?

If ΜΜΜΜ12 and ΜΜΜΜ23 are specified by finite sets of s-t tgds, is

ΜΜΜΜ12 ° ΜΜΜΜ23 also specified by a finite set of s-t tgds?

� If not, what is the “right” language for composing schema
mappings?

58

Composition: Expressibility

may not be definable:

by any set of s-t tgds;

in FO-logic;

in Datalog.

finite set of s-t tgds

ϕ(x) → ∃y ψ(x, y)

finite set of s-t tgds

ϕ(x) → ∃y ψ(x,y)

finite set of s-t tgds

ϕ(x)→∃yψ(x,y)

finite set of s-t tgds

ϕ(x) → ∃y ψ(x, y)

finite set of GAV

(full) s-t tgds

ϕ(x) → ψ(x)

ΜΜΜΜ12 ° ΜΜΜΜ23

Σ13

ΜΜΜΜ23

Σ23

ΜΜΜΜ12

Σ12

59

Employee Example

� Σ12 :

� Emp(e) → ∃m Rep(e,m)

� Σ23 :

� Rep(e,m) → Mgr(e,m)

� Rep(e,e) → SelfMgr(e)

� Theorem: This composition is not definable by any finite set
of s-t tgds.

� Fact: This composition is definable in a well-behaved
fragment of second-order logic, called SO tgds, that extends
s-t tgds with Skolem functions.

Emp
e

Rep
e
m

Mgr
e
m

SelfMgr
e

60

Employee Example - revisited

Σ12 :

� ∀e (Emp(e) → ∃m Rep(e,m))

Σ23 :

� ∀e∀m(Rep(e,m) → Mgr(e,m))

� ∀e (Rep(e,e) → SelfMgr(e))

Fact: The composition is definable by the SO-tgd

Σ13 :

� ∃f (∀e(Emp(e) → Mgr(e,f(e)) ∧
∀e(Emp(e) ∧ (e=f(e)) → SelfMgr(e)))

61

Second-Order Tgds

Definition: Let S be a source schema and T a target schema.

A second-order tuple-generating dependency (SO tgd) is a
formula of the form:

∃f1 … ∃fm((∀x1(φ1 → ψ1)) ∧ … ∧ (∀xn(φn → ψn))), where

� Each fi is a function symbol.

� Each φi is a conjunction of atoms from S and equalities of

terms.

� Each ψi is a conjunction of atoms from T.

Example: ∃f (∀e(Emp(e) → Mgr(e,f(e)) ∧

∀e(Emp(e) ∧ (e=f(e)) → SelfMgr(e)))

62

Composing SO-Tgds and Data Exchange

Theorem (FKPT):

� The composition of two SO-tgds is definable by a SO-tgd.

� There is an algorithm for composing SO-tgds.

� The chase procedure can be extended to SO-tgds;

it produces universal solutions in polynomial time.

� Every SO tgd is the composition of finitely many finite sets of
s-t tgds. Hence, SO tgds are the “right” language for the
composition of s-t tgds

63

Synopsis of Schema Mapping Composition

� s-t tgds are not closed under composition.

� SO-tgds form a well-behaved fragment of second-order logic.

� SO-tgds are closed under composition; they are

the “right” language for composing s-t tgds.

� SO-tgds are “chasable”:

Polynomial-time data exchange with universal solutions.

� SO-tgds and the composition algorithm have been
incorporated in Clio’s Mapping Specification Language (MSL).

64

Inverting Schema Mapping

� Given M12, derive M21 that “undoes” M12

M21 is an inverse of M12

� What is the “right” semantics of the inverse operator?

Schema S1 Schema S2

M12

M21

65

Inverting Schema Mappings

In recent years, three different approaches to inverting schema

mappings have been proposed and investigated:

� A notion of inverse introduced by Fagin in 2006;

� A notion of quasi-inverse introduced by

Fagin, K …, Popa, and Tan in 2007.

� A notion of maximum recovery introduced by

Arenas, Pérez, and Riveros in 2008.

Thus far, no definitive notion of the inverse operator has

emerged.

So the research goes on …

66

Some Directions of Research

� Inverting schema mappings requires further study.

� Detailed study of other schema mapping operators (Diff,
Merge, …) remains to be carried out.

� Applications of schema-mapping operators to:

� Study of schema evolution;

� Modeling and analysis of ETL via schema mappings.

67

Related Work (very partial list)

� XML Data Exchange

(Arenas and Libkin – 2005).

� Schema mappings with arithmetic comparisons

(Afrati, Li, Pavlaki – 2008).

� Composing richer schema mappings

(Nash, Bernstein, Melnik – 2007)

� Peer data exchange

(Fuxman, K …, Miller, Tan – 2007)

� Schema-mapping optimization

(FKNP – 2008)

68

Data Interoperability:
The Elephant and the Six Blind Men

� Data interoperability remains a
major challenge:

“Information integration is a
beast.” (L. Haas – 2007)

� Schema mappings specified by
tgds offer a formalism that
covers only some aspects of
data interoperability.

� However, theory and practice
can inform each other.

