Foundations and Applications of Schema Mappings

Phokion G. Kolaitis

University of California Santa Cruz & IBM Almaden Research Center

The Data Interoperability Challenge

Data may reside

- at several different sites
- □ in several different formats (relational, XML, ...).
- Applications need to access and process all these data.
- Growing market of enterprise data interoperability tools:
 \$1.44B in 2007; 17% annual rate of growth
 - 15 major vendors in Gartner's Magic Quadrant Report (source: Gartner, Inc., September 2008)

Gartner's Magic Quadrant Report on Data Interoperability Products

Challengers		Challengers	Leaders
			Informatica
		Microsoft	IBM (Cognos)
A I. 1		Oracle	SAP – Business Objects
Abil	-		
to exe	cute	Sybase	SAS
		Syncort	Pervasive Software
		ETI	iWay Software
		Pitney Boss Software	Sun Microsystems
		Open Text	Tibco Software
Niche Players			Visionaries

Completeness of vision

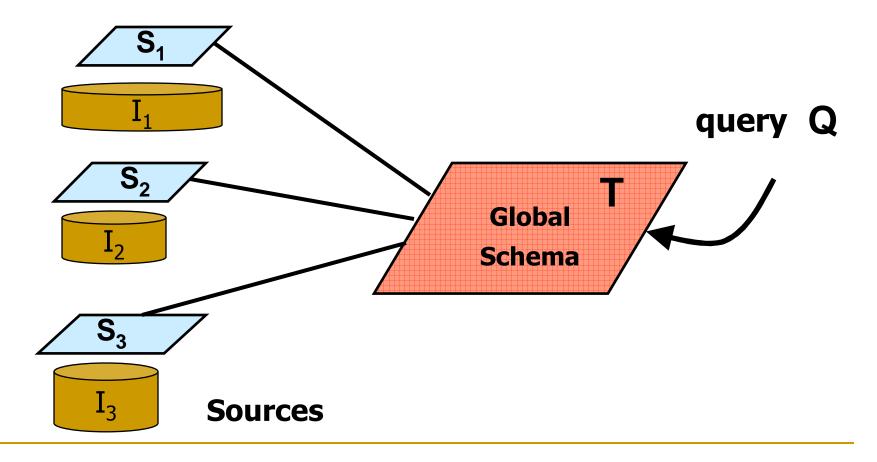
Theoretical Aspects of Data Interoperability

The research community has studied two different, but closely related, facets of data interoperability:

- Data Integration (aka Data Federation)
 Formalized and studied for the past 10-15 years
- Data Exchange (aka Data Translation)
 Formalized and studied for the past 5 years

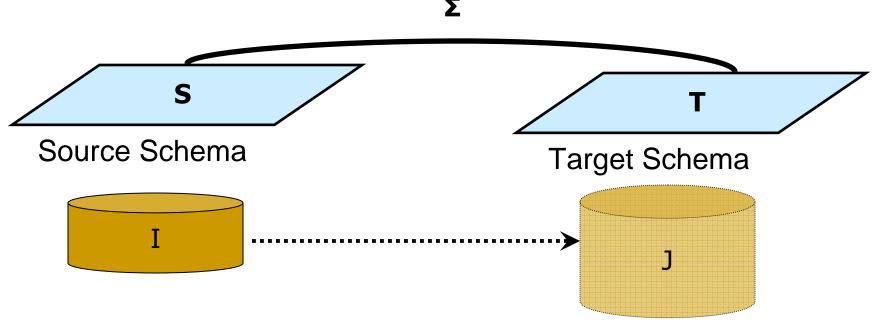
Data Integration

Query heterogeneous data in different sources via a virtual global schema



Data Exchange

Transform data structured under a source schema into data structured under a different target schema.



Σ

Data Exchange

Data Exchange is an old, but recurrent, database problem

- Phil Bernstein 2003
 "Data exchange is the oldest database problem"
- EXPRESS: IBM San Jose Research Lab 1977
 EXtraction, Processing, and REStructuring System for transforming data between hierarchical databases.
- Data Exchange underlies several data interoperability tasks:
 - XML Publishing, XML Storage, ...
 - Data Warehousing, ETL (Extract-Transform-Load).

The Data Interoperability Challenge

Fact:

- Data interoperability tasks require expertise, effort, and time.
- In particular, human experts have to generate complex transformations that specify the relationship between schemas written as programs (e.g., in Java) or as SQL/XSLT scripts.
- At present, there is relatively little automation in this area.

Question: How can we do better than this?

Answer: Introduce a higher level of abstraction that makes it possible to separate the design of the relationship between schemas from its implementation.

Schema Mappings

Schema mappings:

High-level, declarative assertions that specify the relationship between two database schemas.

- Schema mappings constitute the essential building blocks in formalizing and studying data interoperability tasks, including data integration and data exchange.
- Schema mappings help with the development of tools:
 - □ Are easier to generate and manage (semi)-automatically;
 - □ Can be compiled into SQL/XSLT scripts automatically.

Outline

- Schema Mappings as a framework for formalizing and studying data interoperability tasks.
- Schema Mappings and Data Exchange
 Algorithmic problems in data exchange.
 Solutions, universal solutions, and the core.
- Managing schema mappings via operators:
 - The composition operator
 - □ The inverse operator and its variants

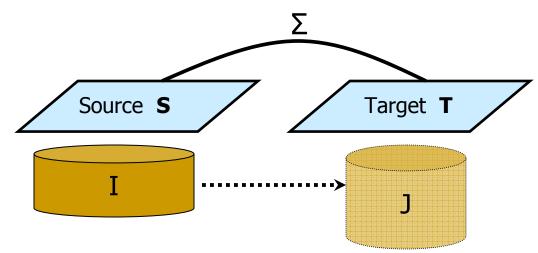
Acknowledgments

- Much of the work presented has been carried out in collaboration with
 - Ron Fagin, IBM Almaden
 - Renee J. Miller, U. of Toronto
 - Lucian Popa, IBM Almaden
 - □ Wang-Chiew Tan, UC Santa Cruz.

Papers in ICDT 2003, PODS 2003-2008, TCS, ACM TODS.

The work has been motivated from the Clio Project at IBM Almaden aiming to develop a working system for schema mapping generation and data exchange.

Schema Mappings & Data Exchange



- Schema Mapping $\mathbf{M} = (\mathbf{S}, \mathbf{T}, \boldsymbol{\Sigma})$
 - Source schema S, Target schema T
 - High-level, declarative assertions Σ that specify the relationship between S and T.
- Data Exchange via the schema mapping M = (S, T, Σ)
 Transform a given source instance I to a target instance J, so that (I, J) satisfy the specifications Σ of M.

- Ideally, schema mappings should be
 - expressive enough to specify data interoperability tasks;
 - simple enough to be efficiently manipulated by tools.
- **Question**: How are schema mappings specified?
- **Answer:** Use a suitable logical formalism.
- Warning: Unrestricted use of first-order logic as a schema mapping specification language gives rise to undecidability phenomena.

Let us consider some simple tasks that every schema mapping specification language should support:

- Copy (Nicknaming):
 - Copy each source table to a target table and rename it.
- Projection:
 - Form a target table by projecting on one or more columns of a source table.
- Column Augmentation:
 - Form a target table by adding one or more columns to a source table.
- Decomposition:
 - Decompose a source table into two or more target tables.
- Join:
 - Form a target table by joining two or more source tables.
- Combinations of the above (e.g., "join + column augmentation + ...")

- Copy (Nicknaming):
 - $\forall \mathbf{x}_1, ..., \mathbf{x}_n(\mathsf{P}(\mathbf{x}_1, ..., \mathbf{x}_n) \to \mathsf{R}(\mathbf{x}_1, ..., \mathbf{x}_n))$
- Projection:
 - $\forall x,y,z(P(x,y,z) \rightarrow R(x,y))$
- Column Augmentation:
 - $\forall x, y (P(x,y) \rightarrow \exists z R(x,y,z))$
- Decomposition:
 - $\forall x,y,z \ (P(x,y,z) \rightarrow R(x,y) \land T(y,z))$
- Join:
 - $\forall x,y,z(E(x,z) \land F(z,y) \rightarrow R(x,y,z))$
- Combinations of the above (e.g., "join + column augmentation + ...")
 - $\forall x,y,z(E(x,z) \land F(z,y) \rightarrow \exists w (R(x,y) \land T(x,y,z,w)))$

Question: What do all these tasks (copy, projection, column augmentation, decomposition, join) have in common?

Answer:

- They can be specified using tuple-generating dependencies (tgds).
- In fact, they can be specified using a special class of tuple-generating dependencies known as source-to-target tuple generating dependencies (s-t tgds).

Database Integrity Constraints

- Dependency Theory: extensive study of integrity constraints in relational databases in the 1970s and 1980s (Codd, Fagin, Beeri, Vardi ...)
- Two main classes of constraints with a balance between high expressive power and good algorithmic properties:
 - □ Tuple-generating dependencies (tgds) $\forall \mathbf{x} (\phi(\mathbf{x}) \rightarrow \exists \mathbf{y} \psi(\mathbf{x}, \mathbf{y})), \text{ where}$ $\phi(\mathbf{x}), \psi(\mathbf{x}, \mathbf{y}) \text{ are conjunctions of atomic formulas}$
 - Equality-generating dependencies (egds) $\forall \mathbf{x} (\phi(\mathbf{x}) \rightarrow (x_i=x_j))$

Special Case: Functional dependencies (in particular, keys) $\forall x, y, z \text{ (Manages}(x,z) \land \text{Manages}(y,z) \rightarrow (x = y))$

The relationship between source and target is given by source-to-target tuple generating dependencies (s-t tgds) $\forall \mathbf{x} \ (\phi(\mathbf{x}) \rightarrow \exists \mathbf{y} \ \psi(\mathbf{x}, \mathbf{y})), \text{ where }$

- $\varphi(\mathbf{x})$ is a conjunction of atoms over the source;
- $\psi(\mathbf{x}, \mathbf{y})$ is a conjunction of atoms over the target.

Examples: (dropping the universal quantifiers in the front)

- (Student(s) \land Enrolls(s,c)) $\rightarrow \exists t \exists g (Teaches(t,c) \land Grade(s,c,g))$
- $E(x,y) \land E(y,z) \rightarrow F(x,z)$ (GAV (full) constraint)
- $E(x,y) \rightarrow \exists z (H(x,z) \land H(z,y))$ (LAV constraint)

Target Dependencies

In addition to source-to-target dependencies, we also consider target dependencies:

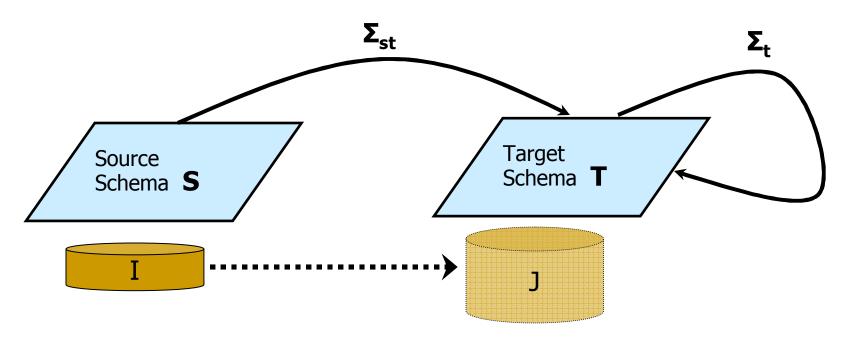
□ Target Tgds : $\phi_T(\mathbf{x}) \rightarrow \exists \mathbf{y} \psi_T(\mathbf{x}, \mathbf{y})$

Dpt (e,d) $\rightarrow \exists p Proj(e,p)$ (a target inclusion dependency constraint)

■ Target Equality Generating Dependencies (egds): $\phi_T(\mathbf{x}) \rightarrow (x_1=x_2)$

Dpt (e, d₁) \land Dpt (e, d₂) \rightarrow (d₁ = d₂) (a target key constraint)

Data Exchange Framework



Schema Mapping $\mathbf{M} = (\mathbf{S}, \mathbf{T}, \Sigma_{st}, \Sigma_{t})$, where

- Σ_{st} is a set of source-to-target tgds
- Σ_t is a set of target tgds and target egds

Algorithmic Problems in Data Exchange

Definition: Schema Mapping $\mathbf{M} = (\mathbf{S}, \mathbf{T}, \Sigma_{st}, \Sigma_{t})$

- A target instance J is a solution for a source instance I if $(I,J) \vDash \Sigma_{st} \cup \Sigma_{t}.$
- The existence-of-solutions problem Sol(M): (decision problem) Given a source instance I, is there a solution J for I?
- The data exchange problem associated with M: (function problem)
 Given a source instance I, construct a solution J for I, provided a solution exists.

Over/Underspecification in Data Exchange

- **Fact:** A given source instance may have no solutions (overspecification)
- Fact: A given source instance may have multiple solutions (underspecification)

• Example:

Source relation E(A,B), target relation H(A,B)

 $\Sigma: \quad \mathsf{E}(x,y) \ \to \exists z \ (\mathsf{H}(x,z) \land \mathsf{H}(z,y))$

Source instance $I = \{E(a,b)\}$

Solutions: Infinitely many solutions exist

- J₁ = {H(a,b), H(b,b)}
 J₂ = {H(a,a), H(a,b)}
 - $J_3 = \{H(a,X), H(X,b)\}$
 - $J_4 = \{H(a,X), H(X,b), H(a,Y), H(Y,b)\}$
 - $J_5 = \{H(a,X), H(X,b), H(Y,Y)\}$

constants:

a, b, ... variables (labelled nulls):

X, Y, ...

Main issues in data exchange

For a given source instance, there may be multiple target instances satisfying the specifications of the schema mapping. Thus,

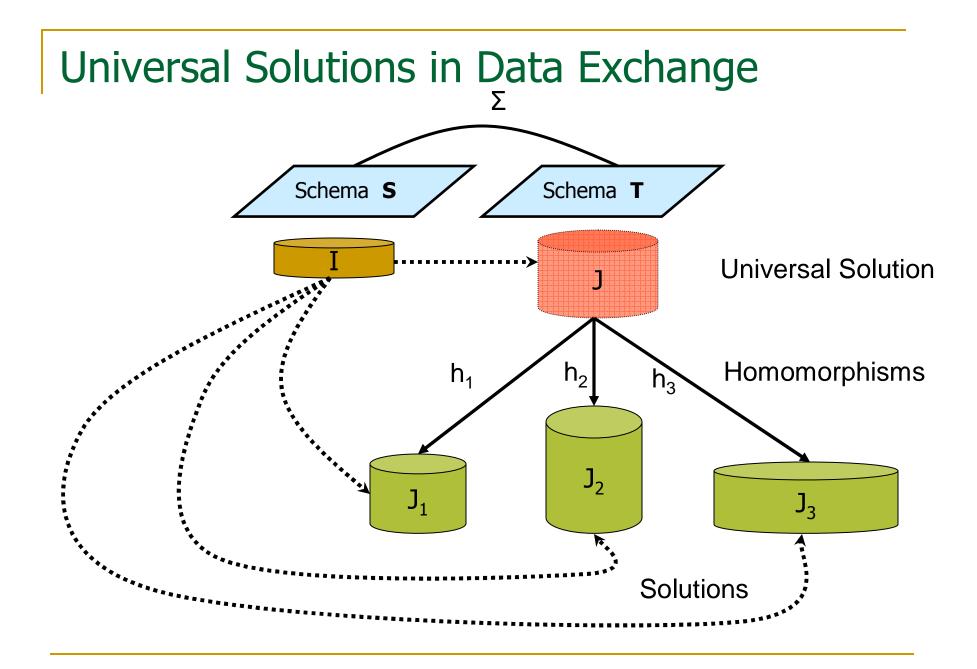
- When more than one solution exist, which solutions are "better" than others?
- How do we compute a "best" solution?
- In other words, what is the "right" semantics of data exchange?

Universal Solutions in Data Exchange

Definition (FKMP): A solution is universal if it has homomorphisms to all other solutions (thus, it is a "most general" solution).

- Constants: entries in source instances
- Variables (labeled nulls): other entries in target instances
- Homomorphism h: $J_1 \rightarrow J_2$ between target instances:
 - h(c) = c, for constant c
 - If $P(a_1,...,a_m)$ is in $J_{1,}$, then $P(h(a_1),...,h(a_m))$ is in $J_{2,}$

Claim: Universal solutions are the *preferred* solutions in data exchange.



Example - continued

Source relation S(A,B), target relation T(A,B) $\Sigma : E(x,y) \rightarrow \exists z (H(x,z) \land H(z,y))$ Source instance I = {H(a,b)}

Solutions: Infinitely many solutions exist

- $J_1 = \{H(a,b), H(b,b)\}$ is not universal
- $J_2 = \{H(a,a), H(a,b)\}$ is not universal
- $J_3 = \{H(a,X), H(X,b)\}$ is universal
- $J_4 = \{H(a,X), H(X,b), H(a,Y), H(Y,b)\}$ is universal
- $J_5 = \{H(a,X), H(X,b), H(Y,Y)\}$ is not universal

Structural Properties of Universal Solutions

- Universal solutions are akin to:
 - most general unifiers in logic programming;
 - initial models.
- Uniqueness up to homomorphic equivalence: If J and J' are universal for I, then they are homomorphically equivalent.
- Representation of the entire space of solutions: Assume that J is universal for I, and J' is universal for I'. Then the following are equivalent:
 - 1. I and I' have the same space of solutions.
 - 2. J and J' are homomorphically equivalent.

Algorithmic Problems in Data Exchange

Question: What can we say about the complexity of

- The existence-of-solutions problem Sol(M) and
- The data exchange problem (construct a universal solution)

for a fixed schema mapping $\mathbf{M} = (\mathbf{S}, \mathbf{T}, \Sigma_{st}, \Sigma_t)$ specified by s-t tgds and target tgds and egds?

Answer: Depending on the target constraints in Σ_t :

- Sol(M) is trivial (solutions always exist) / Universal solutions can be constructed in PTIME (in fact, in LOGSPACE).
- Sol(M) can be in PTIME (in fact, it can be PTIME-complete) / Universal solutions can be constructed in PTIME (if solutions exist)
- Sol(M) can be undecidable / Universal solutions may not exist (even if solutions exist)

Algorithmic Problems in Data Exchange

Proposition: If $\mathbf{M} = (\mathbf{S}, \mathbf{T}, \Sigma_{st})$ is a schema mapping such that Σ_{st} is a set of s-t tgds (i.e., no target dependencies), then:

- Solutions always exist; hence, Sol(M) is trivial.
- For every source instance I, a universal solution J can be constructed in PTIME using the naïve chase procedure.

Naïve Chase Procedure for $\mathbf{M} = (\mathbf{S}, \mathbf{T}, \Sigma_{st})$: given a source

instance I, build a target instance J* that satisfies each s-t tgd in Σ_{st}

- by introducing new facts in J* as dictated by the RHS of the s-t tgd and
- by introducing new values (variables) in J* each time existential quantifiers need witnesses.

Naïve Chase Procedure

Example: Expanding edges to paths of length 2 Σ_{st} : E(x,y) $\rightarrow \exists z(H(x,z) \land H(z,y))$ The naïve chase returns a relation H* obtained from E by

adding a new node between every edge of E.

- If E = {(1,2),(2,3)}, then H* = {(1,M),(M,2),(2,N),(N,3)} Universal solution for E **Example :** Collapsing paths of length 2 to edges Σ_{st} : E(x,z) \wedge E(z,y) \rightarrow F(x,y)
- If $E = \{(1,3), (2,4), (3,4)\}$, then $F^* = \{F(1,4)\}$ Universal Solution for E

Undecidability in Data Exchange

Theorem (K ..., Panttaja, Tan):

There is a schema mapping $\mathbf{M} = (\mathbf{S}, \mathbf{T}, \Sigma^*_{st}, \Sigma^*_t)$ such that:

- Σ^*_{st} consists of a single s-t tgd;
- Σ_t^* consists of one target egd and two target tgds.
- □ The existence-of-solutions problem **Sol(M)** is undecidable.

Hint of Proof:

Reduction from the

Embedding Problem for Finite Semigroups

Given a finite partial semigroup, can it be embedded to a finite semigroup?

(undecidability implied by results of Evans and Gurevich).

The Embedding Problem & Data Exchange

Reducing the Embedding Problem for Semigroups to Sol(M)

- $\Sigma_{st}: R(x,y,z) \rightarrow R'(x,y,z)$
 - Σ_t : • R' is a partial function: R'(x,y,z) ∧ R'(x,y,w) → z = w
 - R' is associative $R'(x,y,u) \land R'(y,z,v) \land R'(u,z,w) \rightarrow R'(x,u,w)$
 - R' is a total function $\begin{array}{l} \mathsf{R}'(\mathsf{x},\mathsf{y},\mathsf{z}) \land \mathsf{R}'(\mathsf{x}',\mathsf{y}',\mathsf{z}') \to \exists \mathsf{w}_1 \dots \exists \mathsf{w}_9 \\ & (\mathsf{R}'(\mathsf{x},\mathsf{x}',\mathsf{w}_1) \land \mathsf{R}'(\mathsf{x},\mathsf{y}',\mathsf{w}_2) \land \mathsf{R}'(\mathsf{x},\mathsf{z}',\mathsf{w}_3) \\ & \mathsf{R}'(\mathsf{y},\mathsf{x}',\mathsf{w}_4) \land \mathsf{R}'(\mathsf{y},\mathsf{y}',\mathsf{w}_5) \land \mathsf{R}'(\mathsf{x},\mathsf{z}',\mathsf{w}_6) \\ & \mathsf{R}'(\mathsf{z},\mathsf{x}',\mathsf{w}_7) \land \mathsf{R}'(\mathsf{z},\mathsf{y}',\mathsf{w}_8) \land \mathsf{R}'(\mathsf{z},\mathsf{z}',\mathsf{w}_9)) \end{array}$

Tractability in Data Exchange

Question: Are there broad structural conditions on the target constraints that guarantee tractability? (that is,

The existence of solutions problem is in PTIME

and

A universal solution can be constructed in PTIME, if a solution exists.)

Algorithmic Properties of Universal Solutions

Theorem (FKMP): Schema mapping $\mathbf{M} = (\mathbf{S}, \mathbf{T}, \Sigma_{st}, \Sigma_{t})$ such that:

- Σ_{st} is a set of source-to-target tgds;
- Σ_t is the union of a weakly acyclic set of target tgds with a set of target egds.

Then:

- Universal solutions exist if and only if solutions exist.
- Sol(M) is in PTIME.
- A canonical universal solution (if a solution exists) can be produced in PTIME using the chase procedure.

Chase Procedure for Tgds and Egds

Given a source instance I,

- **1.** Use the naïve chase to chase I with Σ_{st} and obtain a target instance J*.
- **2.** Chase J * with the target tgds and the target egds in Σ_t to obtain a target instance J as follows:
 - **2.1.** For target tgds introduce new facts in J as dictated by the RHS of the s-t tgd and introduce new values (variables) in J each time existential quantifiers need witnesses.
 - **2.2.** For target egds $\phi(x) \rightarrow x_1 = x_2$
 - **2.2.1**. If a variable is equated to a constant, replace the variable by that constant;
 - **2.2.2.** If one variable is equated to another variable, replace one variable by the other variable.
 - **2.2.3** If one constant is equated to a different constant, stop and report "failure".

Weakly Acyclic Sets of Tgds

Weakly acyclic sets of tgds contain as special cases:

Sets of full tgds (GAV constraints)

 $\varphi_{\mathsf{T}}(\mathbf{X},\mathbf{X}') \rightarrow \psi_{\mathsf{T}}(\mathbf{X}),$

where $\phi_T(\mathbf{x},\mathbf{x'})$ and $\psi_T(\mathbf{x})$ are conjunctions of target atoms.

Acyclic sets of inclusion dependencies

Large class of dependencies occurring in practice.

Weakly Acyclic Sets of Tgds: Definition

Position graph of a set Σ of tgds:

- □ **Nodes:** R.A, with R relation symbol, A attribute of R
- □ **Edges:** for every $\phi(\mathbf{x}) \rightarrow \exists \mathbf{y} \ \psi(\mathbf{x}, \mathbf{y})$ in Σ , for every x in **x** occurring in ψ , for every occurrence of x in ϕ in R.A:
 - For every occurrence of x in ψ in S.B, add an edge R.A \longrightarrow S.B
- Σ is weakly acyclic if the position graph has no cycle containing a special edge.
- A tgd θ is weakly acyclic if so is the singleton set $\{\theta\}$.

Weakly Acyclic Sets of Tgds: Examples

Example 1: { D(e,m) → M(m), M(m) → ∃ e D(e,m) } is weakly acyclic, but cyclic.

Example 2: { $E(x,y) \rightarrow \exists z E(y,z)$ }

is not weakly acyclic.

Weak Acyclicity and Chase Termination

Note: If the set of target tgds is **not** weakly acyclic, then the chase procedure may **never** terminate.

Example: $E(x,y) \rightarrow \exists z E(y,z)$ is not weakly acyclic

$$\begin{array}{l} \mathsf{E}(1,2) \Rightarrow \\ \mathsf{E}(2,\mathsf{X}_1) \Rightarrow \\ \mathsf{E}(\mathsf{X}_1,\mathsf{X}_2) \Rightarrow \\ \mathsf{E}(\mathsf{X}_2,\mathsf{X}_3) \Rightarrow \end{array}$$

infinite chase

. . .

Complexity of Data Exchange

$\mathbf{M} = (\mathbf{S}, \mathbf{T}, \boldsymbol{\Sigma}_{st}, \boldsymbol{\Sigma}_{t})$ $\boldsymbol{\Sigma}_{st} \text{ a set of s-t}$ tgds	Existence-of- Solutions Problem	Existence-of- Universal Solutions Problem	Computing a Universal Solution
$\Sigma_t = \emptyset$ No target constraints	Trivial	Trivial	PTIME
Σ_t : Weakly acyclic set of target tgds + egds	PTIME It can be PTIME- complete	PTIME Univ. solutions exist if and only if solutions exist	PTIME
Σ_t : target tgds + egds	Undecidable, in general	Undecidable, in general	No algorithm exists, in general

The Smallest Universal Solution

- **Fact:** Universal solutions need not be unique.
- **Question**: Is there a "best" universal solution?
- Answer: In joint work with R. Fagin and L. Popa, we took a "small is beautiful" approach:

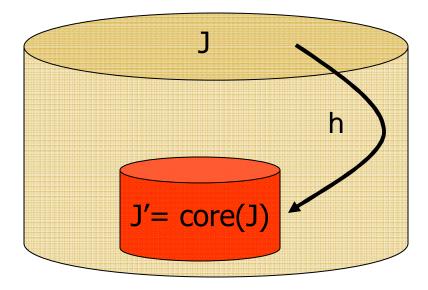
There is a smallest universal solution (if solutions exist); hence, the most compact one to materialize.

 Definition: The core of an instance J is the smallest subinstance J' that is homomorphically equivalent to J.

Fact:

- Every finite database has a core.
- The core is unique up to isomorphism.

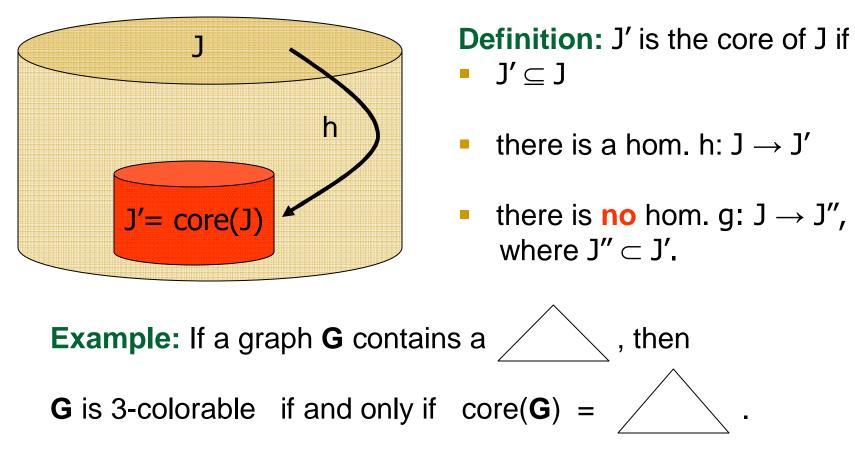
The Core of a Structure



Definition: J' is the core of J if $J' \subseteq J$

- there is a hom. h: $J \rightarrow J'$
- there is no hom. g: $J \rightarrow J''$, where $J'' \subset J'$.

The Core of a Structure



Fact: Computing cores of graphs is an NP-hard problem.

Example - continued

Source relation E(A,B), target relation H(A,B)

 $\Sigma: (\mathsf{E}(\mathsf{x},\mathsf{y}) \to \exists \mathsf{z} (\mathsf{H}(\mathsf{x},\mathsf{z}) \land \mathsf{H}(\mathsf{z},\mathsf{y})))$

Source instance $I = \{E(a,b)\}$.

Solutions: Infinitely many universal solutions exist.

•
$$J_3 = \{H(a,X), H(X,b)\}$$
 is the core.

- J₄ = {H(a,X), H(X,b), H(a,Y), H(Y,b)} is universal, but not the core.
- $J_5 = \{H(a,X), H(X,b), H(Y,Y)\}$ is not universal.

Core: The smallest universal solution

Theorem (FKP): $\mathbf{M} = (\mathbf{S}, \mathbf{T}, \Sigma_{st}, \Sigma_t)$ a schema mapping: a All universal solutions have the same core.

- The core of the universal solutions is the smallest universal solution.
- If every target constraint is an egd, then the core is polynomial-time computable.

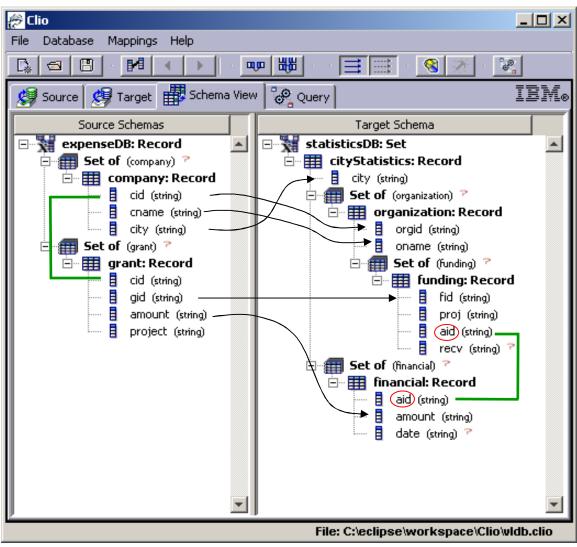
Theorem (Gottlob & Nash): Let $\mathbf{M} = (\mathbf{S}, \mathbf{T}, \Sigma_{st}, \Sigma_t)$ be such that Σ_t is the union of a set of weakly acyclic target tgds with a set of target egds. Then the core is polynomial-time computable.

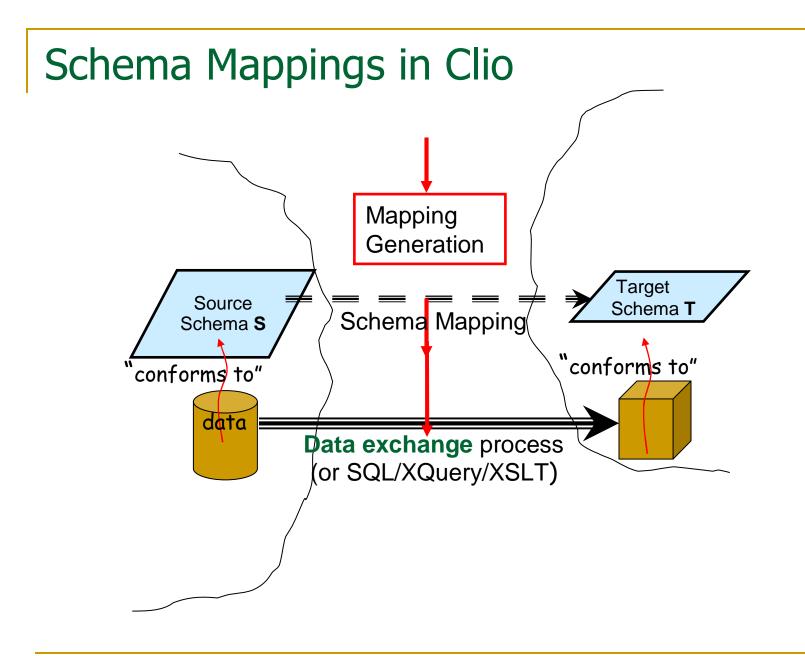
From Theory to Practice

- Clio Project at IBM Almaden managed by Howard Ho.
 - Semi-automatic schema-mapping generation tool;
 - Data exchange system based on schema mappings.
- Universal solutions used as the semantics of data exchange.
- Universal solutions are generated via SQL queries extended with Skolem functions (implementation of chase procedure), provided there are no target constraints.
- Clio technology is now part of IBM Rational® Data Architect.

Some Features of Clio

- Supports nested structures
 - Nested Relational Model
 - Nested Constraints
- Automatic & semiautomatic discovery of attribute correspondence.
- Interactive derivation of schema mappings.
- Performs data exchange





Outline

 Schema Mappings as a framework for formalizing and studying data interoperability tasks.

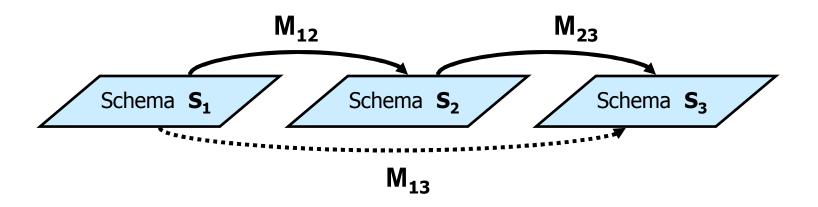
Schema Mappings and Data Exchange
 Algorithmic problems in data exchange.
 Solutions, universal solutions, and the core.

- Managing schema mappings via operators:
 - The composition operator
 - □ The inverse operator and its variants

Managing Schema Mappings

- Schema mappings can be quite complex.
- Methods and tools are needed to automate or semi-automate schema-mapping management.
- Metadata Management Framework Bernstein 2003 based on generic schema-mapping operators:
 - Match operator
 - Merge operator
 - •••••
 - Composition operator
 - Inverse operator

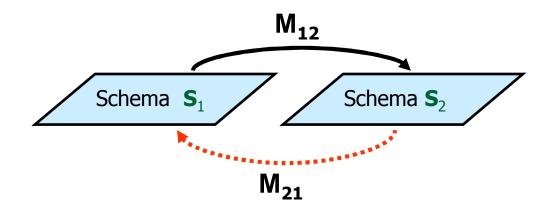
Composing Schema Mappings



- Given $\mathbf{M_{12}} = (\mathbf{S_1}, \mathbf{S_2}, \Sigma_{12})$ and $\mathbf{M_{23}} = (\mathbf{S_2}, \mathbf{S_3}, \Sigma_{23})$, derive a schema mapping $\mathbf{M_{13}} = (\mathbf{S_1}, \mathbf{S_3}, \Sigma_{13})$ that is "equivalent" to the sequential application of $\mathbf{M_{12}}$ and $\mathbf{M_{23}}$.
- M₁₃ is a composition of M₁₂ and M₂₃

$$\mathbf{M_{13}} = \mathbf{M_{12}} \circ \mathbf{M_{23}}$$

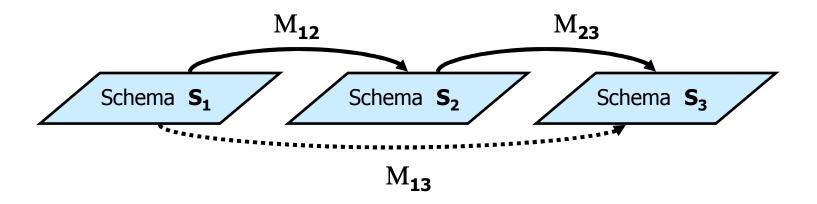
Inverting Schema Mapping



Given M₁₂, derive M₂₁ that "undoes" M₁₂

M₂₁ is an inverse of M₁₂

Composing Schema Mappings



• Given $M_{12} = (\mathbf{S}_1, \mathbf{S}_2, \Sigma_{12})$ and $M_{23} = (\mathbf{S}_2, \mathbf{S}_3, \Sigma_{23})$, derive a schema mapping $M_{13} = (\mathbf{S}_1, \mathbf{S}_3, \Sigma_{13})$ that is "equivalent" to the sequence M_{12} and M_{23} .

What does it mean for M_{13} to be "equivalent" to the composition of M_{12} and M_{23} ?

Earlier Work

- Metadata Model Management (Bernstein in CIDR 2003)
 - Composition is one of the fundamental operators
 - □ However, no precise semantics is given
- Composing Mappings among Data Sources (Madhavan & Halevy in VLDB 2003)
 - □ First to propose a semantics for composition
 - However, their definition is in terms of maintaining the same certain answers relative to a class of queries.
 - Their notion of composition *depends* on the class of queries; it may *not* be unique up to logical equivalence.

Semantics of Composition

 Every schema mapping M = (S, T, Σ) defines a binary relationship Inst(M) between instances:

Inst(**M**) = { (I,J) | (I,J) $\models \Sigma$ }.

Definition: (FKPT)

A schema mapping \mathbf{M}_{13} is a composition of \mathbf{M}_{12} and \mathbf{M}_{23} if

Inst(
$$\mathbf{M}_{13}$$
) = Inst(\mathbf{M}_{12}) ° Inst(\mathbf{M}_{23}), that is,
(I_1, I_3) $\models \Sigma_{13}$
if and only if
there exists I_2 such that (I_1, I_2) $\models \Sigma_{12}$ and (I_2, I_3) $\models \Sigma_{23}$

• Note: Also considered by S. Melnik in his Ph.D. thesis

The Composition of Schema Mappings

Fact: If both $M = (S_1, S_3, \Sigma)$ and $M' = (S_1, S_3, \Sigma')$ are compositions of M_{12} and M_{23} , then Σ are Σ' are logically equivalent. For this reason:

- We say that M (or M') is *the* composition of M_{12} and M_{23} .
- We write $M_{12} \circ M_{23}$ to denote it

Issues in Composition of Schema Mappings

The semantics of composition was the first main issue.

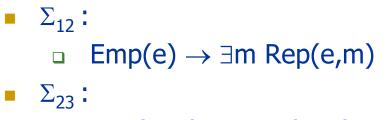
Some other key issues:

- Is the language of s-t tgds *closed under composition*?
 If M₁₂ and M₂₃ are specified by finite sets of s-t tgds, is
 M₁₂ ° M₂₃ also specified by a finite set of s-t tgds?
- If not, what is the "right" language for composing schema mappings?

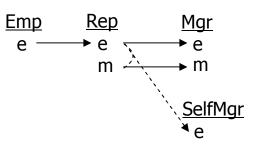
Composition: Expressibility

M ₁₂ Σ ₁₂	M ₂₃ Σ ₂₃	$M_{12} \circ M_{23}$ Σ_{13}
finite set of GAV (full) s-t tgds $\phi(\mathbf{x}) \rightarrow \psi(\mathbf{x})$	finite set of s-t tgds $\phi(\mathbf{x}) \rightarrow \exists \mathbf{y} \ \psi(\mathbf{x}, \mathbf{y})$	finite set of s-t tgds $\phi(\mathbf{x}) \rightarrow \exists \mathbf{y} \psi(\mathbf{x}, \mathbf{y})$
finite set of s-t tgds $\phi(\mathbf{x}) \rightarrow \exists \mathbf{y} \ \psi(\mathbf{x}, \mathbf{y})$	finite set of s-t tgds $\phi(\mathbf{x}) \rightarrow \exists \mathbf{y} \ \psi(\mathbf{x}, \mathbf{y})$	may not be definable: by any set of s-t tgds; in FO-logic; in Datalog.

Employee Example



- □ Rep(e,m) \rightarrow Mgr(e,m)
- $\square Rep(e,e) \rightarrow SelfMgr(e)$



- Theorem: This composition is not definable by any finite set of s-t tgds.
- Fact: This composition is definable in a well-behaved fragment of second-order logic, called SO tgds, that extends s-t tgds with Skolem functions.

Employee Example - revisited

$$Σ_{12}$$
:
□ \forall e (Emp(e) → \exists m Rep(e,m))
Σ ...

 Σ_{23} :

- □ $\forall e \forall m(\text{Rep}(e,m) \rightarrow Mgr(e,m))$
- □ $\forall e (\text{Rep}(e,e) \rightarrow \text{SelfMgr}(e))$

Fact: The composition is definable by the SO-tgd Σ_{13} : $\exists \mathbf{f} (\forall e(\text{Emp}(e) \rightarrow \text{Mgr}(e, \mathbf{f}(e)) \land \forall e(\text{Emp}(e) \land (\mathbf{e}=\mathbf{f}(e)) \rightarrow \text{SelfMgr}(e)))$

Second-Order Tgds

Definition: Let **S** be a source schema and **T** a target schema. A second-order tuple-generating dependency (SO tgd) is a formula of the form:

 $\exists f_1 \ ... \ \exists f_m(\ (\forall \textbf{x_1}(\phi_1 \rightarrow \psi_1)) \land ... \land (\forall \textbf{x_n}(\phi_n \rightarrow \psi_n)) \), \ \text{where}$

- Each f_i is a function symbol.
- Each ϕ_i is a conjunction of atoms from **S** and equalities of terms.
- Each ψ_i is a conjunction of atoms from **T**.

Example: $\exists f (\forall e(Emp(e) \rightarrow Mgr(e, f(e)) \land \forall e(Emp(e) \land (e=f(e)) \rightarrow SelfMgr(e)))$

Composing SO-Tgds and Data Exchange

Theorem (FKPT):

- □ The composition of two SO-tgds is definable by a SO-tgd.
- There is an algorithm for composing SO-tgds.
- The chase procedure can be extended to SO-tgds;
 it produces universal solutions in polynomial time.
- Every SO tgd is the composition of finitely many finite sets of s-t tgds. Hence, SO tgds are the "right" language for the composition of s-t tgds

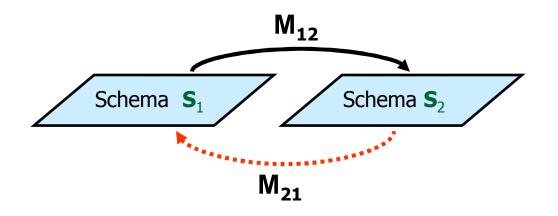
Synopsis of Schema Mapping Composition

- s-t tgds are not closed under composition.
- SO-tgds form a well-behaved fragment of second-order logic.
 - SO-tgds are closed under composition; they are the "right" language for composing s-t tgds.
 - SO-tgds are "chasable":

Polynomial-time data exchange with universal solutions.

 SO-tgds and the composition algorithm have been incorporated in Clio's Mapping Specification Language (MSL).

Inverting Schema Mapping



Given M₁₂, derive M₂₁ that "undoes" M₁₂

 M_{21} is an inverse of M_{12}

What is the "right" semantics of the inverse operator?

Inverting Schema Mappings

In recent years, three different approaches to inverting schema mappings have been proposed and investigated:

- A notion of inverse introduced by Fagin in 2006;
- A notion of quasi-inverse introduced by Fagin, K ..., Popa, and Tan in 2007.
- A notion of maximum recovery introduced by Arenas, Pérez, and Riveros in 2008.

Thus far, no definitive notion of the inverse operator has emerged.

So the research goes on ...

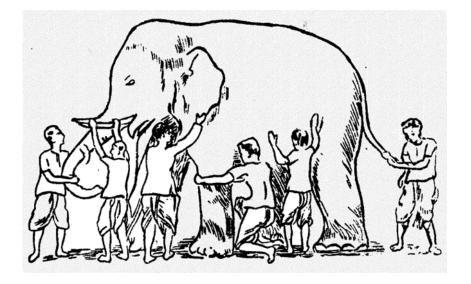
Some Directions of Research

- Inverting schema mappings requires further study.
- Detailed study of other schema mapping operators (Diff, Merge, ...) remains to be carried out.
- Applications of schema-mapping operators to:
 - Study of schema evolution;
 - Modeling and analysis of ETL via schema mappings.

Related Work (very partial list)

- XML Data Exchange (Arenas and Libkin – 2005).
- Schema mappings with arithmetic comparisons (Afrati, Li, Pavlaki – 2008).
- Composing richer schema mappings (Nash, Bernstein, Melnik – 2007)
- Peer data exchange (Fuxman, K ..., Miller, Tan – 2007)
- Schema-mapping optimization (FKNP – 2008)

Data Interoperability: The Elephant and the Six Blind Men



- Data interoperability remains a major challenge: "Information integration is a beast." (L. Haas – 2007)
- Schema mappings specified by tgds offer a formalism that covers only some aspects of data interoperability.
- However, theory and practice can inform each other.