
A Retrospective
on

Datalog 1.0

Phokion G. Kolaitis

UC Santa Cruz and IBM Research - Almaden

Datalog 2.0
Vienna, September 2012

A Brief History of Datalog

In the beginning of time, there was E.F. Codd, who gave us
relational algebra and relational calculus.
And then there was SQL.
In 1979, Aho and Ullman pointed out that SQL cannot
express recursive queries.
In 1982, Chandra and Harel embarked on the study of the
expressive power of Datalog.
Between 1982 and 1995, Datalog “took the field by storm".
After 1995, interest in Datalog waned for the most part.
However, Datalog continued to find uses and applications
in other areas, such as constraint satisfaction.
And in recent years, Datalog has made a striking
comeback!

2 / 79

Aim and Outline

Aim:
Highlight and reflect on some themes and results in the
study of Datalog.

Outline:

Complexity and optimization issues in Datalog.
Tools for analyzing the expressive power of Datalog.
Datalog and constraint satisfaction.

Disclaimer:
This talk is not a comprehensive account of Datalog;
instead, it is an eclectic mix of topics and results about
Datalog that continue to be of relevance.

3 / 79

Datalog: How it all got started

Aho and Ullman - 1979
Showed that no relational algebra expression can define
the Transitive Closure of a binary relation.
(Shown by logicians earlier; in particular, Fagin – 1975)
Suggested augmenting relational algebra with fixed-point
operators in order to define recursive queries.

Gallaire and Minker - 1978

Edited a volume with papers from a Symposium on Logic
and Databases, held in 1977.

Chandra and Harel - 1982
Studied the expressive power of logic programs without
function symbols on relational databases.

4 / 79

Datalog

Definition
Datalog = Conjunctive Queries + Recursion
Function, negation-free, and 6=-free logic programs
Note: The term “Datalog" was coined by David Maier.

A Datalog program is a finite set of rules given by
conjunctive queries

T (x) : − S1(y1), . . . ,Sr (y r).

Intensional DB predicates (IDBs): Those predicates that
occur both in the heads and the bodies of rules
(also known as recursive predicates).
Extensional DB predicates (EDBs): All other predicates.

5 / 79

Datalog

Definition
Datalog = Conjunctive Queries + Recursion
Function, negation-free, and 6=-free logic programs
Note: The term “Datalog" was coined by David Maier.

A Datalog program is a finite set of rules given by
conjunctive queries

T (x) : − S1(y1), . . . ,Sr (y r).

Intensional DB predicates (IDBs): Those predicates that
occur both in the heads and the bodies of rules
(also known as recursive predicates).
Extensional DB predicates (EDBs): All other predicates.

6 / 79

Example (TRANSITIVE CLOSURE Query TC)

TC(E) = {(a,b) : there is a path from a to b along edges in E}.

A Datalog program for TC:∣∣∣∣ S(x , y) : − E(x , y)
S(x , y) : − E(x , z),S(z, y)

Another Datalog program for TC:∣∣∣∣ S(x , y) : − E(x , y)
S(x , y) : − S(x , z),S(z, y)

E is the EDB.
S is the IDB; it defines TC.

7 / 79

Example (TRANSITIVE CLOSURE Query TC)

TC(E) = {(a,b) : there is a path from a to b along edges in E}.

A Datalog program for TC (linear Datalog)∣∣∣∣ S(x , y) : − E(x , y)
S(x , y) : − E(x , z),S(z, y)

Another Datalog program for TC (non-linear Datalog)∣∣∣∣ S(x , y) : − E(x , y)
S(x , y) : − S(x , z),S(z, y)

E is the EDB predicate.
S is the IDB predicate; it defines TC.

8 / 79

Datalog and 2-Colorability

Example
Recall that a graph is 2-colorable if and only if it does not
contain a cycle of odd length.

Datalog program for NON 2-COLORABILITY:∣∣∣∣∣∣
O(X ,Y) : − E(X ,Y)
O(X ,Y) : − O(X ,Z),E(Z ,W),E(W ,Y)
Q : − O(X ,X)

E is the EDB predicate.

O and Q are the IDB predicates.

Q defines NON 2-COLORABILITY.

9 / 79

Semantics of Datalog Programs

Declarative Semantics:
Smallest (w.r.t. ⊆) solution to a system of relational algebra
equations extracted from the Datalog program.

Procedural Semantics:
“Bottom-up" evaluation of the rules of the Datalog program,
starting by assigning ∅ to every IDB predicate.

Fact:
The declarative semantics of a Datalog program coincides with
it procedural semantics.

10 / 79

Semantics of Datalog Programs

Declarative Semantics:
Smallest (w.r.t. ⊆) solution to a system of relational algebra
equations extracted from the Datalog program.

Procedural Semantics:
“Bottom-up" evaluation of the rules of the Datalog program,
starting by assigning ∅ to every IDB predicate.

Fact:
The declarative semantics of a Datalog program coincides with
it procedural semantics.

11 / 79

Example: Datalog program for TRANSITIVE CLOSURE:∣∣∣∣ S(x , y) : − E(x , y)
S(x , y) : − E(x , z),S(z, y)

Declarative Semantics: TC is the smallest solution of the
relational algebra equation

S = E ∪ π1,4(σ$2=$3(E × S)).

Procedural Semantics: “Bottom-up" evaluation∣∣∣∣ S0 = ∅
Sm+1 = {(a,b)) : ∃z(E(a, z) ∧ Sm(z,b))}

Fact: The following statements are true:

Sm = {(a,b) : there is a path of length ≤ m from a to b}
TC =

⋃
m Sm = Sn,where n is the number of nodes.

12 / 79

Data Complexity of Datalog

Theorem:
The data complexity of Datalog is PTIME-complete.
The data complexity of linear Datalog is
NLOGSPACE-complete.

Proof:
Datalog:
– The “bottom-up" evaluation of a Datalog program
converges in polynomially-many steps in the size of the
given database.
– PATH SYSTEMS is expressible in Datalog.
Linear Datalog:
– Reduction to TC.
– TRANSITIVE CLOSURE is expressible in Datalog.

13 / 79

Data Complexity of Datalog

Theorem:
The data complexity of Datalog is PTIME-complete.
The data complexity of linear Datalog is
NLOGSPACE-complete.

Proof:
Datalog:
– The “bottom-up" evaluation of a Datalog program
converges in polynomially-many steps in the size of the
given database.
– PATH SYSTEMS is expressible in Datalog.
Linear Datalog:
– Reduction to TC.
– TRANSITIVE CLOSURE is expressible in Datalog.

14 / 79

Path Systems and Datalog

Definition (PATH SYSTEMS QUERY)
Given a set A of axioms and a ternary rule of inference R
compute the theorems obtained from A using R.

Theorem: Cook - 1974
PATH SYSTEMS is a PTIME-complete problem via log-space
reductions.

Fact:
PATH SYSTEMS is definable by the following Datalog program:∣∣∣∣ T (x) : − A(x)

T (x) : − R(x , y , z),T (y),T (z)

15 / 79

The Complexity of Datalog

Query Language Data Complexity Combined Complexity
Conjunct. Queries LOGSPACE NP-complete
Linear Datalog NLOGSPACE-compl. PSPACE-complete
Datalog PTIME-complete EXPTIME-complete

Fact:
Since 1999, SQL supports Linear Datalog

Conclusion:
Datalog can express recursive queries, but this ability is
accompanied by a modest increase in data complexity.

Datalog has tractable data complexity, but not all Datalog
queries are efficiently parallelizable.

16 / 79

Datalog Optimization

Fact:

Datalog optimization has been extensively studied.

Datalog optimization turned out to be a major challenge.

Here, we will touch upon just two optimization issues in
Datalog:

1 Boundedness.

2 Linearizability.

17 / 79

Datalog Boundedness

Definition
Let π be a Datalog program with a single IDB predicate S.
We say that π is bounded if there is an integer k such that on
every database, the bottom-up evaluation of π converges in at
most k steps, that is, Sk = Sm, for all m ≥ k .

Example: The preceding Datalog programs for TRANSITIVE

CLOSURE and PATH SYSTEMS are unbounded.

Example: The following Datalog program is bounded (k = 2).∣∣∣∣ Buys(X ,Y) : − Likes(X ,Y)
Buys(X ,Y) : − Trendy(X),Buys(Z ,Y)

18 / 79

Datalog Boundedness

Definition
Let π be a Datalog program with a single IDB predicate S.
We say that π is bounded if there is an integer k such that on
every database, the bottom-up evaluation of π converges in at
most k steps, that is, Sk = Sm, for all m ≥ k .

Example: The preceding Datalog programs for TRANSITIVE

CLOSURE and PATH SYSTEMS are unbounded.

Example: The following Datalog program is bounded (k = 2).∣∣∣∣ Buys(X ,Y) : − Likes(X ,Y)
Buys(X ,Y) : − Trendy(X),Buys(Z ,Y)

19 / 79

Datalog Boundedness

Definition
Let π be a Datalog program with a single IDB predicate S.
We say that π is bounded if there is an integer k such that on
every database, the bottom-up evaluation of π converges in at
most k steps, that is, Sk = Sm, for all m ≥ k .

Example: The preceding Datalog programs for TRANSITIVE

CLOSURE and PATH SYSTEMS are unbounded.

Example: The following Datalog program is bounded (k = 2).∣∣∣∣ Buys(X ,Y) : − Likes(X ,Y)
Buys(X ,Y) : − Trendy(X),Buys(Z ,Y)

20 / 79

Datalog Boundedness

Note: If a Datalog program π is bounded, then
1 π is equivalent to a finite union of conjunctive queries.

2 The query defined by π is computable in LOGSPACE.

Problem: Design an algorithm for deciding boundedness:
Given a Datalog program π, is it bounded?

21 / 79

Datalog Linearizability

Definition
Let π be a Datalog program with a single IDB predicate S.
We say that π is linearizable if there is a linear Datalog program
π∗ that is equivalent to π (i.e., π and π∗ define the same query).

Example: The following Datalog program for TRANSITIVE

CLOSURE is linearizable.∣∣∣∣ S(x , y) : − E(x , y)
S(x , y) : − S(x , z),S(z, y)

Example: The Datalog program for PATH SYSTEMS is
(provably) not linearizable.∣∣∣∣ T (x) : − A(x)

T (x) : − R(x , y , z),T (y),T (z)

22 / 79

Datalog Linearizability

Definition
Let π be a Datalog program with a single IDB predicate S.
We say that π is linearizable if there is a linear Datalog program
π∗ that is equivalent to π (i.e., π and π∗ define the same query).

Example: The following Datalog program for TRANSITIVE

CLOSURE is linearizable.∣∣∣∣ S(x , y) : − E(x , y)
S(x , y) : − S(x , z),S(z, y)

Example: The Datalog program for PATH SYSTEMS is
(provably) not linearizable.∣∣∣∣ T (x) : − A(x)

T (x) : − R(x , y , z),T (y),T (z)

23 / 79

Datalog Linearizability

Definition
Let π be a Datalog program with a single IDB predicate S.
We say that π is linearizable if there is a linear Datalog program
π∗ that is equivalent to π (i.e., π and π∗ define the same query).

Example: The following Datalog program for TRANSITIVE

CLOSURE is linearizable.∣∣∣∣ S(x , y) : − E(x , y)
S(x , y) : − S(x , z),S(z, y)

Example: The Datalog program for PATH SYSTEMS is
(provably) not linearizable.∣∣∣∣ T (x) : − A(x)

T (x) : − R(x , y , z),T (y),T (z)

24 / 79

Datalog Linearizability

Note: If a Datalog program π is linearizable, then
1 π is equivalent to a Datalog program that can be evaluated

in SQL:1999 and subsequent editions of the SQL standard.

2 The query defined by π is computable in NLOGSPACE.

Problem: Design an algorithm for deciding linearizability:
Given a Datalog program π, is it linearizable?

25 / 79

Undecidability in Datalog

Theorem (Gaifman, Mairson, Sagiv, Vardi - 1987)
There is no algorithm for deciding boundedness.

A Rice-type theorem holds for Datalog: If a property P of
Datalog programs is non-trivial, semantic, stable, and
contains boundedness, then P is undecidable.

In particular, there is no algorithm for deciding
linearizability.

26 / 79

Undecidability in Datalog

Theorem (Gaifman, Mairson, Sagiv, Vardi - 1987)
There is no algorithm for deciding boundedness.

A Rice-type theorem holds for Datalog: If a property P of
Datalog programs is non-trivial, semantic, stable, and
contains boundedness, then P is undecidable.

In particular, there is no algorithm for deciding
linearizability.

27 / 79

Undecidability in Datalog

Theorem (Gaifman, Mairson, Sagiv, Vardi - 1987)
There is no algorithm for deciding boundedness.

A Rice-type theorem holds for Datalog: If a property P of
Datalog programs is non-trivial, semantic, stable, and
contains boundedness, then P is undecidable.

In particular, there is no algorithm for deciding
linearizability.

28 / 79

Progress Report

X Complexity and optimization issues in Datalog.

• Tools for analyzing the expressive power of
Datalog.

• Datalog and constraint satisfaction.

29 / 79

Analyzing the Expressive Power of Datalog

Question:

What tools do we have to analyze the expressive power of
Datalog?

Answer:

Preservation under homomorphisms.

Existential k -pebble games.

30 / 79

Homomorphisms

Definition
Let A and B be two databases.

A homomorphism from A to B is a function
h : adom(A)→ adom(B) such that for every relation
symbol P and every tuple (a1, . . . ,an) from adom(A),
if (a1, . . . ,an) ∈ PA, then (h(a1), . . . ,h(an)) ∈ PB.
A→ B denotes that a homomorphism from A to B exists.

Example
A graph G is 2-colorable if and only if G→ K2.

A graph G is 3-colorable if and only if G→ K3.

31 / 79

Homomorphisms

Definition
Let A and B be two databases.

A homomorphism from A to B is a function
h : adom(A)→ adom(B) such that for every relation
symbol P and every tuple (a1, . . . ,an) from adom(A),
if (a1, . . . ,an) ∈ PA, then (h(a1), . . . ,h(an)) ∈ PB.
A→ B denotes that a homomorphism from A to B exists.

Example
A graph G is 2-colorable if and only if G→ K2.

A graph G is 3-colorable if and only if G→ K3.

32 / 79

Preservation under Homomorphisms

Proposition: If a query q is definable by a Datalog program,
then q is preserved under homomorphisms, that is,
if A |= q and A→ B, then B |= q.

Proof:
Every Datalog program is equivalent to an infinite union of
conjunctive queries.
Every conjunctive query is preserved under
homomorphisms.

Corollary: To show that a query q is not expressible in
Datalog, it suffices to show that q is not preserved under
homomorphisms.

33 / 79

Preservation under Homomorphisms

Proposition: If a query q is definable by a Datalog program,
then q is preserved under homomorphisms, that is,
if A |= q and A→ B, then B |= q.
Proof:

Every Datalog program is equivalent to an infinite union of
conjunctive queries.
Every conjunctive query is preserved under
homomorphisms.

Corollary: To show that a query q is not expressible in
Datalog, it suffices to show that q is not preserved under
homomorphisms.

34 / 79

Preservation under Homomorphisms

Proposition: If a query q is definable by a Datalog program,
then q is preserved under homomorphisms, that is,
if A |= q and A→ B, then B |= q.
Proof:

Every Datalog program is equivalent to an infinite union of
conjunctive queries.
Every conjunctive query is preserved under
homomorphisms.

Corollary: To show that a query q is not expressible in
Datalog, it suffices to show that q is not preserved under
homomorphisms.

35 / 79

Preservation under Homomorphisms: Applications

Fact:
None of the following queries is expressible in Datalog:

"The graph is triangle-free"
Note that this query is expressible in first-order logic.

2-COLORABILITY

Recall that NON 2-COLORABILITY is expressible in Datalog.

CONNECTIVITY

DISCONNECTIVITY

...

36 / 79

Analyzing the Expressive Power of Datalog

Question:

Suppose that q is preserved under homomorphisms, but
we believe that q is not expressible in Datalog.
What tools do we have for confirming this?

In particular, consider NON 3-COLORABILITY:

NON 3-COLORABILITY is preserved under homomorphisms.
NON 3-COLORABILITY is coNP-complete.

How can we show that NON 3-COLORABILITY is not
expressible in Datalog?

37 / 79

Datalog, Finite-Variable Logics, and Pebble Games

Datalog is a fragment of a certain infinitary logic with
finitely-many variables.

The expressive power of this infinitary logic can be
captured by existential pebble games.

Consequently, the expressive power of Datalog can be
analyzed using existential pebble games.

38 / 79

Finite-Variable Logics

An old, but fruitful idea: the number of distinct variables
used in formulas is a resource.

FOk :
All first-order formulas with at most k distinct variables.

If < is a linear order, then
“there are at least m elements"

is expressible in FO2. For example,
“there are at least 4 elements"

is expressible by
(∃x)(∃y)(x < y ∧ (∃x(y < x ∧ (∃y)(x < y)))).

39 / 79

k -Datalog

Definition
A k -Datalog program is a Datalog program in which each rule
t0 : − t1, . . . , tm has at most k distinct variables.

Example

NON 2-COLORABILITY revisited∣∣∣∣∣∣
O(X ,Y) : − E(X ,Y)
O(X ,Y) : − O(X ,Z),E(Z ,W),E(W ,Y)
Q : − O(X ,X)

Therefore, NON 2-COLORABILITY is definable in 4-Datalog.
Exercise: NON 2-COLORABILITY is definable in 3-Datalog.

40 / 79

Finite-Variable Logics and Datalog

Definition (K ... and Vardi - 1995)

If k is a positive integer, then ∃Lk
∞ω is the collection of all

formulas with at most k distinct variables that contains all
atomic formulas and is closed under existential quantification,
infinitary conjunctions

∧
, and infinitary disjunctions

∨
.

Theorem: k -Datalog ⊆ ∃Lk
∞ω, for every k ≥ 1.

Proof: (By example)

Pn(x , y): there is a path of length n from x to y .
Pn(x , y) is FO3-definable:

P1(x , y) ≡ E(x , y)
Pn+1(x , y) ≡ ∃z(E(x , z) ∧ ∃x((x = z) ∧ Pn(x , y))).

Hence, TC ⊆ ∃L3
∞ω.

41 / 79

Finite-Variable Logics and Datalog

Definition (K ... and Vardi - 1995)

If k is a positive integer, then ∃Lk
∞ω is the collection of all

formulas with at most k distinct variables that contains all
atomic formulas and is closed under existential quantification,
infinitary conjunctions

∧
, and infinitary disjunctions

∨
.

Theorem: k -Datalog ⊆ ∃Lk
∞ω, for every k ≥ 1.

Proof: (By example)

Pn(x , y): there is a path of length n from x to y .
Pn(x , y) is FO3-definable:

P1(x , y) ≡ E(x , y)
Pn+1(x , y) ≡ ∃z(E(x , z) ∧ ∃x((x = z) ∧ Pn(x , y))).

Hence, TC ⊆ ∃L3
∞ω.

42 / 79

Finite-Variable Logics and Datalog

Definition (K ... and Vardi - 1995)

If k is a positive integer, then ∃Lk
∞ω is the collection of all

formulas with at most k distinct variables that contains all
atomic formulas and is closed under existential quantification,
infinitary conjunctions

∧
, and infinitary disjunctions

∨
.

Theorem: k -Datalog ⊆ ∃Lk
∞ω, for every k ≥ 1.

Proof: (By example)

Pn(x , y): there is a path of length n from x to y .

Pn(x , y) is FO3-definable:

P1(x , y) ≡ E(x , y)
Pn+1(x , y) ≡ ∃z(E(x , z) ∧ ∃x((x = z) ∧ Pn(x , y))).

Hence, TC ⊆ ∃L3
∞ω.

43 / 79

Finite-Variable Logics and Datalog

Definition (K ... and Vardi - 1995)

If k is a positive integer, then ∃Lk
∞ω is the collection of all

formulas with at most k distinct variables that contains all
atomic formulas and is closed under existential quantification,
infinitary conjunctions

∧
, and infinitary disjunctions

∨
.

Theorem: k -Datalog ⊆ ∃Lk
∞ω, for every k ≥ 1.

Proof: (By example)

Pn(x , y): there is a path of length n from x to y .
Pn(x , y) is FO3-definable:

P1(x , y) ≡ E(x , y)
Pn+1(x , y) ≡ ∃z(E(x , z) ∧ ∃x((x = z) ∧ Pn(x , y))).

Hence, TC ⊆ ∃L3
∞ω.

44 / 79

Existential k -Pebble Games

Spoiler and Duplicator play on two databases A and B. Each
player uses k pebbles, labeled 1, . . . , k . In each move,

Spoiler places a pebble on or removes a pebble from an
element of the active domain A.

Duplicator tries to duplicate the move on B using the
pebble with the same label.

A : a1 a2 . . . al
↓ ↓ · · · ↓

B : b1 b2 . . . bl l ≤ k

Spoiler wins the (∃, k)-pebble game if at some point the
mapping ai 7→ bi , 1 ≤ i ≤ l , is not a partial homomorphism.

Duplicator wins the (∃, k)-pebble game if the above never
happens.

45 / 79

Fact (Cliques of Different Size)
Let Kk be the k -clique. Then

Duplicator wins the (∃, k)-pebble game on Kk and Kk+1.
Spoiler wins the (∃, k)-pebble game on Kk and Kk−1.

Example

v v

v
v

v

�
�
�
�
��
Q

Q
Q

Q
QQ��

�
�
��
B
B
B
B
BB

b
b
b
b
b
b
b
b
bb

�
�
�
�
�
�
�
�
��

L
L
L
L
L
L
L
L
LL

"
"
"

"
"

"
"
"

""

v v

vv

@
@
@
@
@
@
@@

�
�
�

�
�
�

��

K4 K5

46 / 79

Existential Pebble Games and Finite-Variable Logics

Definition
Let k be a positive integer and A, B be two databases.
A �k B if every ∃Lk

∞ω-sentence that is true on A is true on B.

Theorem: (K ... and Vardi - 1995)
The following statements are equivalent:

A �k B

The Duplicator wins the (∃, k)-pebble game on A and B.

47 / 79

Methodology for Expressibility in Datalog

Corollary: Let q be a Boolean query such that for every k ≥ 1,
there are databases Ak and Bk such that

Ak |= q and Bk 6|= q.
The Duplicator wins the (∃, k)-game on A and B.

Then
q is not expressible in ∃Lk

∞ω, for any k ≥ 1.
In particular, q is not expressible in Datalog.

Theorem: (Dawar - 1998)
NON 3-COLORABILITY is not expressible in Datalog.

48 / 79

Methodology for Expressibility in Datalog

Corollary: Let q be a Boolean query such that for every k ≥ 1,
there are databases Ak and Bk such that

Ak |= q and Bk 6|= q.
The Duplicator wins the (∃, k)-game on A and B.

Then
q is not expressible in ∃Lk

∞ω, for any k ≥ 1.
In particular, q is not expressible in Datalog.

Theorem: (Dawar - 1998)
NON 3-COLORABILITY is not expressible in Datalog.

49 / 79

Complexity of the Existential Pebble Game

Problem: Given two databases A and B, does the Spoiler win
the (∃, k)-pebble game on A and B?

Upper Bound:

O(|A|2k |B|2k) = O(n2k), where n = max |A|, |B|.

Lower Bounds:
Theorem: (K ... and Panttaja – 2003)

EXPTIME-complete, when k is part of the input.
PTIME-complete, for each fixed k ≥ 2.

Theorem: (Berkholz – 2012)

Not in DTIME(n
k−3
12), for each fixed k ≥ 15.

50 / 79

Complexity of the Existential Pebble Game

Problem: Given two databases A and B, does the Spoiler win
the (∃, k)-pebble game on A and B?

Upper Bound:

O(|A|2k |B|2k) = O(n2k), where n = max |A|, |B|.

Lower Bounds:
Theorem: (K ... and Panttaja – 2003)

EXPTIME-complete, when k is part of the input.
PTIME-complete, for each fixed k ≥ 2.

Theorem: (Berkholz – 2012)

Not in DTIME(n
k−3
12), for each fixed k ≥ 15.

51 / 79

Complexity of the Existential Pebble Game

Problem: Given two databases A and B, does the Spoiler win
the (∃, k)-pebble game on A and B?

Upper Bound:

O(|A|2k |B|2k) = O(n2k), where n = max |A|, |B|.

Lower Bounds:
Theorem: (K ... and Panttaja – 2003)

EXPTIME-complete, when k is part of the input.
PTIME-complete, for each fixed k ≥ 2.

Theorem: (Berkholz – 2012)

Not in DTIME(n
k−3
12), for each fixed k ≥ 15.

52 / 79

Complexity of the Existential Pebble Game

Problem: Given two databases A and B, does the Spoiler win
the (∃, k)-pebble game on A and B?

Upper Bound:

O(|A|2k |B|2k) = O(n2k), where n = max |A|, |B|.

Lower Bounds:
Theorem: (K ... and Panttaja – 2003)

EXPTIME-complete, when k is part of the input.
PTIME-complete, for each fixed k ≥ 2.

Theorem: (Berkholz – 2012)

Not in DTIME(n
k−3
12), for each fixed k ≥ 15.

53 / 79

Descriptive Complexity of the Existential Pebble Game

Theorem: (K ... and Vardi - 1998)
For every fixed positive integer k and every fixed database B,
there is a k -Datalog program that expresses the query:
Given a database A, does the Spoiler win the (∃, k)-game on A
and B?

Note:

This result pinpoints the descriptive complexity of
determining the winner in the (∃, k)-pebble game.

It has been used in the study of Datalog and constraint
satisfaction, as we will see next.

54 / 79

Descriptive Complexity of the Existential Pebble Game

Theorem: (K ... and Vardi - 1998)
For every fixed positive integer k and every fixed database B,
there is a k -Datalog program that expresses the query:
Given a database A, does the Spoiler win the (∃, k)-game on A
and B?

Note:

This result pinpoints the descriptive complexity of
determining the winner in the (∃, k)-pebble game.

It has been used in the study of Datalog and constraint
satisfaction, as we will see next.

55 / 79

Progress Report

X Complexity and optimization issues in Datalog.

X Tools for analyzing the expressive power of
Datalog.

• Datalog and constraint satisfaction.

56 / 79

The Constraint Satisfaction Problem

Definition (The Constraint Satisfaction Problem - CSP)
Given a set V of variables, a domain D of values, and a set C
of constraints on the variables and the values, is there an
assignment s : V → D so that the constraints in C are satisfied?

Examples:
k -COLORABILITY, for k ≥ 2.
k -SAT, for k ≥ 2

Fact: (Feder and Vardi – 1993)
CSP can be identified with the HOMOMORPHISM PROBLEM:
Given two databases A and B, is A→ B?

57 / 79

The Constraint Satisfaction Problem

Definition (The Constraint Satisfaction Problem - CSP)
Given a set V of variables, a domain D of values, and a set C
of constraints on the variables and the values, is there an
assignment s : V → D so that the constraints in C are satisfied?

Examples:
k -COLORABILITY, for k ≥ 2.
k -SAT, for k ≥ 2

Fact: (Feder and Vardi – 1993)
CSP can be identified with the HOMOMORPHISM PROBLEM:
Given two databases A and B, is A→ B?

58 / 79

The Constraint Satisfaction Problem

Definition (The Constraint Satisfaction Problem - CSP)
Given a set V of variables, a domain D of values, and a set C
of constraints on the variables and the values, is there an
assignment s : V → D so that the constraints in C are satisfied?

Examples:
k -COLORABILITY, for k ≥ 2.
k -SAT, for k ≥ 2

Fact: (Feder and Vardi – 1993)
CSP can be identified with the HOMOMORPHISM PROBLEM:
Given two databases A and B, is A→ B?

59 / 79

The Constraint Satisfaction Problem

Problem: CSP ≡ The Homomorphism Problem:
Given two databases A and B, is A→ B?

Fact: CSP is NP-complete

Definition (Non-Uniform CSP)
Let B be a fixed database.
CSP(B) is the following decision problem:
Given a database A, is A→ B?

Examples:
CSP(K2) = 2-COLORABILITY (in PTIME)
CSP(K3) = 3-COLORABILITY (NP-complete)

60 / 79

The Constraint Satisfaction Problem

Problem: CSP ≡ The Homomorphism Problem:
Given two databases A and B, is A→ B?

Fact: CSP is NP-complete

Definition (Non-Uniform CSP)
Let B be a fixed database.
CSP(B) is the following decision problem:
Given a database A, is A→ B?

Examples:
CSP(K2) = 2-COLORABILITY (in PTIME)
CSP(K3) = 3-COLORABILITY (NP-complete)

61 / 79

The Complexity of the Constraint Satisfaction Problem

Dichotomy Conjecture: Feder and Vardi – 1993
For every fixed database B, one of the following holds:

CSP(B) is NP-complete.

CSP(B) is in PTIME.

↗ NP-complete
CSP(B) NP− PTIME, not NP-complete

↘ PTIME

Note:
The Feder-Vardi Dichotomy Conjecture is still open.
Extensive interaction between complexity, database theory,
logic, and universal algebra towards its resolution.

62 / 79

The Complexity of the Constraint Satisfaction Problem

Dichotomy Conjecture: Feder and Vardi – 1993
For every fixed database B, one of the following holds:

CSP(B) is NP-complete.

CSP(B) is in PTIME.

↗ NP-complete
CSP(B) NP− PTIME, not NP-complete

↘ PTIME

Note:
The Feder-Vardi Dichotomy Conjecture is still open.
Extensive interaction between complexity, database theory,
logic, and universal algebra towards its resolution.

63 / 79

Constraint Satisfaction and Datalog

Question: When is CSP(B) tractable?

Fact: Feder and Vardi – 1993
Expressibility in Datalog provides a unifying explanation for
many (but not all) tractable cases of CSP(B).
More precisely, consider

¬CSP(B) = {A : A 6→ B}.
It is often the case that CSP(B) is in PTIME because
¬CSP(B) is expressible in Datalog.

Note:
CSP(B) is not preserved under homomorphisms.
¬CSP(B) is preserved under homomorphisms.

64 / 79

Constraint Satisfaction and Datalog

Question: When is CSP(B) tractable?

Fact: Feder and Vardi – 1993
Expressibility in Datalog provides a unifying explanation for
many (but not all) tractable cases of CSP(B).
More precisely, consider

¬CSP(B) = {A : A 6→ B}.
It is often the case that CSP(B) is in PTIME because
¬CSP(B) is expressible in Datalog.

Note:
CSP(B) is not preserved under homomorphisms.
¬CSP(B) is preserved under homomorphisms.

65 / 79

Constraint Satisfaction and Datalog

Question: When is CSP(B) tractable?

Fact: Feder and Vardi – 1993
Expressibility in Datalog provides a unifying explanation for
many (but not all) tractable cases of CSP(B).
More precisely, consider

¬CSP(B) = {A : A 6→ B}.
It is often the case that CSP(B) is in PTIME because
¬CSP(B) is expressible in Datalog.

Note:
CSP(B) is not preserved under homomorphisms.
¬CSP(B) is preserved under homomorphisms.

66 / 79

Constraint Satisfaction and Datalog

Fact: NON 2-COLORABILITY is expressible in Datalog

Fact: HORN 3-UNSAT is expressible in Datalog

Horn 3-CNF formula ϕ viewed as a finite structure
Aϕ = ({x1, . . . , xn},U,P,N), where

U is the set of unit clauses;
P is the set of clauses of the form (¬x ∨ ¬y ∨ z);
N is the set of clauses of the form (¬x ∨ ¬y ∨ ¬z).

Datalog program for HORN 3-UNSAT:∣∣∣∣∣∣
T (z) : − U(z)
T (z) : − P(x , y , z),T (x),T (y)
Q : − N(x , y , z),T (x),T (y),T (z)

Unit propagation algorithm for Horn Satisfiability.

67 / 79

Constraint Satisfaction and Datalog

Fact: NON 2-COLORABILITY is expressible in Datalog

Fact: HORN 3-UNSAT is expressible in Datalog

Horn 3-CNF formula ϕ viewed as a finite structure
Aϕ = ({x1, . . . , xn},U,P,N), where

U is the set of unit clauses;
P is the set of clauses of the form (¬x ∨ ¬y ∨ z);
N is the set of clauses of the form (¬x ∨ ¬y ∨ ¬z).

Datalog program for HORN 3-UNSAT:∣∣∣∣∣∣
T (z) : − U(z)
T (z) : − P(x , y , z),T (x),T (y)
Q : − N(x , y , z),T (x),T (y),T (z)

Unit propagation algorithm for Horn Satisfiability.

68 / 79

Constraint Satisfaction and Datalog

Problems:

Fix a positive integer k . Can we characterize when
¬CSP(B) is expressible in k -Datalog?

Fix a positive integer k . Is there an algorithm for deciding
whether, given B, ¬CSP(B) is expressible in k -Datalog?

Is there an algorithm for deciding whether, given B, there is
some k such that ¬CSP(B) is expressible in k -Datalog?

69 / 79

Constraint Satisfaction and Datalog

Theorem: (K ... and Vardi – 1998)
Let k be a positive integer and B a database. The following
statements are equivalent:

¬CSP(B) is expressible in k -Datalog.

¬CSP(B) is expressible in ∃Lk
∞ω.

CSP(B) =
{A : Duplicator wins the (∃, k)-pebble game on A and B}.

Note:
In general, k -Datalog ⊂ ∃Lk

∞ω.
Single canonical PTIME-algorithm for all CSP(B)’s that are
expressible in k -Datalog, for fixed k , namely:
Determine the winner in the (∃, k)-pebble game.

70 / 79

Constraint Satisfaction and Datalog

Theorem: (K ... and Vardi – 1998)
Let k be a positive integer and B a database. The following
statements are equivalent:

¬CSP(B) is expressible in k -Datalog.

¬CSP(B) is expressible in ∃Lk
∞ω.

CSP(B) =
{A : Duplicator wins the (∃, k)-pebble game on A and B}.

Note:
In general, k -Datalog ⊂ ∃Lk

∞ω.
Single canonical PTIME-algorithm for all CSP(B)’s that are
expressible in k -Datalog, for fixed k , namely:
Determine the winner in the (∃, k)-pebble game.

71 / 79

CSP, Datalog, and Universal Algebra

Theorem: (Barto and Kozik – 2009)

Expressibility of ¬CSP(B) in Datalog can be characterized
in terms of tame congruence theory in universal algebra.

There is an EXPTIME-algorithm for the following problem:
Given B, is there some k such that ¬CSP(B) is expressible
in k -Datalog?

There is a PTIME-algorithm for the following problem:
Given a core B, is there some k such that ¬CSP(B) is
expressible in k -Datalog?

Note: Deep and a priori unexpected connection between
constraint satisfaction, Datalog, and universal algebra.

72 / 79

CSP and the Collapse of the k -Datalog Hierarchy

Fact:
k -Datalog is strictly more expressive than k ′-Datalog, for k > k ′.

Theorem: (Barto – 2012; implicit in Barto and Kozik – 2009)
Let B be a fixed database over a schema of maximum arity r .
The following statements are equivalent:

¬CSP(B) is expressible in k -Datalog, for some k .

¬CSP(B) is expressible in max(3, r)-Datalog.

Note: This is a theorem about logic whose only known proof is
via universal algebra!

73 / 79

CSP and the Collapse of the k -Datalog Hierarchy

Fact:
k -Datalog is strictly more expressive than k ′-Datalog, for k > k ′.

Theorem: (Barto – 2012; implicit in Barto and Kozik – 2009)
Let B be a fixed database over a schema of maximum arity r .
The following statements are equivalent:

¬CSP(B) is expressible in k -Datalog, for some k .

¬CSP(B) is expressible in max(3, r)-Datalog.

Note: This is a theorem about logic whose only known proof is
via universal algebra!

74 / 79

CSP and Linear Datalog

Fact:
If ¬CSP(B) is expressible in linear Datalog, then CSP(B) is in
NLOGSPACE.

Open Problems:

Is there a database B such that CSP(B) is in NLOGSPACE,
but ¬CSP(B) is not expressible in linear Datalog?

Is there an algorithm for deciding whether, given B,
¬CSP(B) is expressible in linear Datalog?

Note: Universal algebra methods have been applied towards
these problems and partial results have been recently obtained.

75 / 79

CSP and Linear Datalog

Fact:
If ¬CSP(B) is expressible in linear Datalog, then CSP(B) is in
NLOGSPACE.

Open Problems:

Is there a database B such that CSP(B) is in NLOGSPACE,
but ¬CSP(B) is not expressible in linear Datalog?

Is there an algorithm for deciding whether, given B,
¬CSP(B) is expressible in linear Datalog?

Note: Universal algebra methods have been applied towards
these problems and partial results have been recently obtained.

76 / 79

Concluding Remarks

The study of Datalog has been a meeting point of
database theory, computational complexity, logic, universal
algebra, and constraint satisfaction. It has resulted into a
fruitful interaction between these areas.

One can only hope that the next thirty years of Datalog will
be as fruitful as the first thirty.

77 / 79

