A Retrospective on Datalog 1.0

#### Phokion G. Kolaitis

UC Santa Cruz and IBM Research - Almaden

Datalog 2.0 Vienna, September 2012

▲口> ▲御> ▲注> ▲注> ……注

# A Brief History of Datalog

- In the beginning of time, there was E.F. Codd, who gave us relational algebra and relational calculus.
- And then there was SQL.
- In 1979, Aho and Ullman pointed out that SQL cannot express recursive queries.
- In 1982, Chandra and Harel embarked on the study of the expressive power of Datalog.
- Between 1982 and 1995, Datalog "took the field by storm".
- After 1995, interest in Datalog waned for the most part.
- However, Datalog continued to find uses and applications in other areas, such as constraint satisfaction.
- And in recent years, Datalog has made a striking comeback!

## Aim:

• Highlight and reflect on some themes and results in the study of Datalog.

## Outline:

- Complexity and optimization issues in Datalog.
- Tools for analyzing the expressive power of Datalog.
- Datalog and constraint satisfaction.

## Disclaimer:

 This talk is not a comprehensive account of Datalog; instead, it is an eclectic mix of topics and results about Datalog that continue to be of relevance.

## Datalog: How it all got started

Aho and Ullman - 1979

- Showed that no relational algebra expression can define the Transitive Closure of a binary relation. (Shown by logicians earlier; in particular, Fagin – 1975)
- Suggested augmenting relational algebra with fixed-point operators in order to define recursive queries.

Gallaire and Minker - 1978

• Edited a volume with papers from a Symposium on Logic and Databases, held in 1977.

Chandra and Harel - 1982

 Studied the expressive power of logic programs without function symbols on relational databases.

# Datalog

## Definition

Datalog = Conjunctive Queries + Recursion
 Function, negation-free, and ≠-free logic programs
 Note: The term "Datalog" was coined by David Maier.

# Datalog

## Definition

- Datalog = Conjunctive Queries + Recursion
   Function, negation-free, and ≠-free logic programs
   Note: The term "Datalog" was coined by David Maier.
- A Datalog program is a finite set of rules given by conjunctive queries

$$T(\overline{x}) := S_1(\overline{y}_1), \ldots, S_r(\overline{y}_r).$$

- Intensional DB predicates (IDBs): Those predicates that occur both in the *heads* and the *bodies* of rules (also known as recursive predicates).
- Extensional DB predicates (EDBs): All other predicates.

## Example (TRANSITIVE CLOSURE Query TC)

 $TC(E) = \{(a, b) : \text{there is a path from } a \text{ to } b \text{ along edges in } E\}.$ 

A Datalog program for TC:

$$S(x, y) :- E(x, y)$$
  
 $S(x, y) :- E(x, z), S(z, y)$ 

Another Datalog program for TC:

$$\begin{vmatrix} S(x,y) &:- E(x,y) \\ S(x,y) &:- S(x,z), S(z,y) \end{vmatrix}$$

- E is the EDB.
- *S* is the IDB; it defines TC.

### Example (TRANSITIVE CLOSURE Query TC)

 $TC(E) = \{(a, b) : \text{there is a path from } a \text{ to } b \text{ along edges in } E\}.$ 

A Datalog program for TC (linear Datalog)

$$S(x, y) := E(x, y)$$
  
 $S(x, y) := E(x, z), S(z, y)$ 

Another Datalog program for TC (non-linear Datalog)

$$egin{array}{rcl} S(x,y) & :- & E(x,y) \ S(x,y) & :- & S(x,z), S(z,y) \end{array}$$

- E is the EDB predicate.
- S is the IDB predicate; it defines TC.

# Datalog and 2-Colorability

## Example

- Recall that a graph is 2-colorable if and only if it does not contain a cycle of odd length.
- Datalog program for NON 2-COLORABILITY:

$$\begin{array}{rcl} O(X,Y) & :- & E(X,Y) \\ O(X,Y) & :- & O(X,Z), E(Z,W), E(W,Y) \\ Q & :- & O(X,X) \end{array}$$

- E is the EDB predicate.
- O and Q are the IDB predicates.
- Q defines NON 2-COLORABILITY.

#### **Declarative Semantics:**

Smallest (w.r.t.  $\subseteq$ ) solution to a system of relational algebra equations extracted from the Datalog program.

#### **Procedural Semantics:**

"Bottom-up" evaluation of the rules of the Datalog program, starting by assigning  $\emptyset$  to every IDB predicate.

#### **Declarative Semantics:**

Smallest (w.r.t.  $\subseteq$ ) solution to a system of relational algebra equations extracted from the Datalog program.

#### **Procedural Semantics:**

"Bottom-up" evaluation of the rules of the Datalog program, starting by assigning  $\emptyset$  to every IDB predicate.

### Fact:

The declarative semantics of a Datalog program coincides with it procedural semantics.

**Example:** Datalog program for TRANSITIVE CLOSURE:

$$S(x,y) := E(x,y)$$
  
 $S(x,y) := E(x,z), S(z,y)$ 

**Declarative Semantics:** TC is the smallest solution of the relational algebra equation

$$S = E \cup \pi_{1,4}(\sigma_{2=3}(E \times S)).$$

Procedural Semantics: "Bottom-up" evaluation

$$ig| egin{array}{rcl} S^0&=&\emptyset\ S^{m+1}&=&\{(a,b)):\exists z(E(a,z)\wedge S^m(z,b))\} \end{array}$$

Fact: The following statements are true:

$$S^m = \{(a, b) : \text{there is a path of length} \le m \text{ from } a \text{ to } b\}$$
  
TC =  $\bigcup_m S^m = S^n$ , where *n* is the number of nodes.

# Data Complexity of Datalog

## Theorem:

- The data complexity of Datalog is PTIME-complete.
- The data complexity of linear Datalog is NLOGSPACE-complete.

# Data Complexity of Datalog

## Theorem:

- The data complexity of Datalog is PTIME-complete.
- The data complexity of linear Datalog is NLOGSPACE-complete.

## **Proof:**

- Datalog:
  - The "bottom-up" evaluation of a Datalog program converges in polynomially-many steps in the size of the given database.
  - PATH SYSTEMS is expressible in Datalog.
- Linear Datalog:
  - Reduction to TC.
  - TRANSITIVE CLOSURE is expressible in Datalog.

### Definition (PATH SYSTEMS QUERY)

Given a set A of axioms and a ternary rule of inference R compute the theorems obtained from A using R.

#### Theorem: Cook - 1974

PATH SYSTEMS is a PTIME-complete problem via log-space reductions.

#### Fact:

PATH SYSTEMS is definable by the following Datalog program:

$$\begin{vmatrix} T(x) &: - & A(x) \\ T(x) &: - & R(x, y, z), T(y), T(z) \end{vmatrix}$$

| Query Language    | Data Complexity  | Combined Complexity |
|-------------------|------------------|---------------------|
| Conjunct. Queries | LOGSPACE         | NP-complete         |
| Linear Datalog    | NLOGSPACE-compl. | PSPACE-complete     |
| Datalog           | PTIME-complete   | EXPTIME-complete    |

#### Fact:

Since 1999, SQL supports Linear Datalog

## **Conclusion:**

- Datalog can express recursive queries, but this ability is accompanied by a modest increase in data complexity.
- Datalog has tractable data complexity, but not all Datalog queries are efficiently parallelizable.

## Fact:

- Datalog optimization has been extensively studied.
- Datalog optimization turned out to be a major challenge.
- Here, we will touch upon just two optimization issues in Datalog:





Let  $\pi$  be a Datalog program with a single IDB predicate *S*. We say that  $\pi$  is bounded if there is an integer *k* such that on every database, the bottom-up evaluation of  $\pi$  converges in at most *k* steps, that is,  $S^k = S^m$ , for all  $m \ge k$ .

Let  $\pi$  be a Datalog program with a single IDB predicate *S*. We say that  $\pi$  is bounded if there is an integer *k* such that on every database, the bottom-up evaluation of  $\pi$  converges in at most *k* steps, that is,  $S^k = S^m$ , for all  $m \ge k$ .

**Example:** The preceding Datalog programs for TRANSITIVE CLOSURE and PATH SYSTEMS are unbounded.

Let  $\pi$  be a Datalog program with a single IDB predicate *S*. We say that  $\pi$  is bounded if there is an integer *k* such that on every database, the bottom-up evaluation of  $\pi$  converges in at most *k* steps, that is,  $S^k = S^m$ , for all  $m \ge k$ .

**Example:** The preceding Datalog programs for TRANSITIVE CLOSURE and PATH SYSTEMS are unbounded.

**Example:** The following Datalog program is bounded (k = 2).

 $\begin{vmatrix} Buys(X, Y) &: - Likes(X, Y) \\ Buys(X, Y) &: - Trendy(X), Buys(Z, Y) \end{vmatrix}$ 

**Note:** If a Datalog program  $\pi$  is bounded, then

- $\pi$  is equivalent to a finite union of conjunctive queries.
- 2 The query defined by  $\pi$  is computable in LOGSPACE.

**Problem:** Design an algorithm for deciding boundedness: Given a Datalog program  $\pi$ , is it bounded?

# **Datalog Linearizability**

#### Definition

Let  $\pi$  be a Datalog program with a single IDB predicate *S*. We say that  $\pi$  is linearizable if there is a linear Datalog program  $\pi^*$  that is equivalent to  $\pi$  (i.e.,  $\pi$  and  $\pi^*$  define the same query).

Let  $\pi$  be a Datalog program with a single IDB predicate *S*. We say that  $\pi$  is linearizable if there is a linear Datalog program  $\pi^*$  that is equivalent to  $\pi$  (i.e.,  $\pi$  and  $\pi^*$  define the same query).

**Example:** The following Datalog program for TRANSITIVE CLOSURE is linearizable.

$$S(x, y) := E(x, y)$$
  
 $S(x, y) := S(x, z), S(z, y)$ 

Let  $\pi$  be a Datalog program with a single IDB predicate *S*. We say that  $\pi$  is linearizable if there is a linear Datalog program  $\pi^*$  that is equivalent to  $\pi$  (i.e.,  $\pi$  and  $\pi^*$  define the same query).

**Example:** The following Datalog program for TRANSITIVE CLOSURE is linearizable.

$$egin{array}{rcl} S(x,y) & :- & E(x,y) \ S(x,y) & :- & S(x,z), S(z,y) \end{array}$$

**Example:** The Datalog program for PATH SYSTEMS is (provably) not linearizable.

$$\begin{vmatrix} T(x) & :- & A(x) \\ T(x) & :- & R(x, y, z), T(y), T(z) \end{vmatrix}$$

24/79

**Note:** If a Datalog program  $\pi$  is linearizable, then

- π is equivalent to a Datalog program that can be evaluated in SQL:1999 and subsequent editions of the SQL standard.
- 2 The query defined by  $\pi$  is computable in NLOGSPACE.

**Problem:** Design an algorithm for deciding linearizability: Given a Datalog program  $\pi$ , is it linearizable?

### Theorem (Gaifman, Mairson, Sagiv, Vardi - 1987)

• There is no algorithm for deciding boundedness.

Theorem (Gaifman, Mairson, Sagiv, Vardi - 1987)

- There is no algorithm for deciding boundedness.
- A Rice-type theorem holds for Datalog: If a property *P* of Datalog programs is *non-trivial*, *semantic*, *stable*, and *contains boundedness*, then *P* is undecidable.

### Theorem (Gaifman, Mairson, Sagiv, Vardi - 1987)

- There is no algorithm for deciding boundedness.
- A Rice-type theorem holds for Datalog: If a property *P* of Datalog programs is *non-trivial*, *semantic*, *stable*, and *contains boundedness*, then *P* is undecidable.
- In particular, there is no algorithm for deciding linearizability.

- ✓ Complexity and optimization issues in Datalog.
  - Tools for analyzing the expressive power of Datalog.
  - Datalog and constraint satisfaction.

## Analyzing the Expressive Power of Datalog

## **Question:**

 What tools do we have to analyze the expressive power of Datalog?

### Answer:

- Preservation under homomorphisms.
- Existential *k*-pebble games.

Let **A** and **B** be two databases.

- A homomorphism from A to B is a function
   h: adom(A) → adom(B) such that for every relation
   symbol P and every tuple (a<sub>1</sub>,..., a<sub>n</sub>) from adom(A),
   if (a<sub>1</sub>,..., a<sub>n</sub>) ∈ P<sup>A</sup>, then (h(a<sub>1</sub>),..., h(a<sub>n</sub>)) ∈ P<sup>B</sup>.
- $\mathbf{A} \rightarrow \mathbf{B}$  denotes that a homomorphism from  $\mathbf{A}$  to  $\mathbf{B}$  exists.

Let **A** and **B** be two databases.

- A homomorphism from A to B is a function
   h: adom(A) → adom(B) such that for every relation
   symbol P and every tuple (a<sub>1</sub>,..., a<sub>n</sub>) from adom(A),
   if (a<sub>1</sub>,..., a<sub>n</sub>) ∈ P<sup>A</sup>, then (h(a<sub>1</sub>),..., h(a<sub>n</sub>)) ∈ P<sup>B</sup>.
- $\mathbf{A} \rightarrow \mathbf{B}$  denotes that a homomorphism from  $\mathbf{A}$  to  $\mathbf{B}$  exists.

#### Example

- A graph **G** is 2-colorable if and only if  $\mathbf{G} \to \mathbf{K}_2$ .
- A graph **G** is 3-colorable if and only if  $\mathbf{G} \to \mathbf{K}_3$ .

**Proposition:** If a query *q* is definable by a Datalog program, then *q* is preserved under homomorphisms, that is, if  $\mathbf{A} \models q$  and  $\mathbf{A} \rightarrow \mathbf{B}$ , then  $\mathbf{B} \models q$ .

**Proposition:** If a query *q* is definable by a Datalog program, then *q* is preserved under homomorphisms, that is, if  $\mathbf{A} \models q$  and  $\mathbf{A} \rightarrow \mathbf{B}$ , then  $\mathbf{B} \models q$ . **Proof:** 

- Every Datalog program is equivalent to an infinite union of conjunctive queries.
- Every conjunctive query is preserved under homomorphisms.

**Proposition:** If a query *q* is definable by a Datalog program, then *q* is preserved under homomorphisms, that is, if  $\mathbf{A} \models q$  and  $\mathbf{A} \rightarrow \mathbf{B}$ , then  $\mathbf{B} \models q$ .

Proof:

- Every Datalog program is equivalent to an infinite union of conjunctive queries.
- Every conjunctive query is preserved under homomorphisms.

**Corollary:** To show that a query q is not expressible in Datalog, it suffices to show that q is not preserved under homomorphisms.

#### Fact:

None of the following queries is expressible in Datalog:

- "The graph is triangle-free"
   Note that this query is expressible in first-order logic.
- 2-COLORABILITY Recall that NON 2-COLORABILITY is expressible in Datalog.
- CONNECTIVITY
- DISCONNECTIVITY

• ...
## Analyzing the Expressive Power of Datalog

### **Question:**

- Suppose that *q* is preserved under homomorphisms, but we believe that *q* is not expressible in Datalog.
   What tools do we have for confirming this?
- In particular, consider NON 3-COLORABILITY:
  - NON 3-COLORABILITY is preserved under homomorphisms.
  - NON 3-COLORABILITY is coNP-complete.

How can we show that NON 3-COLORABILITY is not expressible in Datalog?

## Datalog, Finite-Variable Logics, and Pebble Games

- Datalog is a fragment of a certain infinitary logic with finitely-many variables.
- The expressive power of this infinitary logic can be captured by existential pebble games.
- Consequently, the expressive power of Datalog can be analyzed using existential pebble games.

- An old, but fruitful idea: the number of distinct variables used in formulas is a resource.
- $FO^k$ :

All first-order formulas with at most k distinct variables.

 If < is a linear order, then *"there are at least m elements"*  is expressible in FO<sup>2</sup>. For example, *"there are at least* 4 *elements"* is expressible by
 (are an at (are an at (are an at (are an at (are at (are an at (are at (ar

 $(\exists x)(\exists y)(x < y \land (\exists x(y < x \land (\exists y)(x < y)))).$ 

# k-Datalog

#### Definition

A *k*-Datalog program is a Datalog program in which each rule  $t_0 := -t_1, \ldots, t_m$  has at most *k* distinct variables.

#### Example

NON 2-COLORABILITY revisited

$$\begin{array}{rcl} O(X,Y) & :- & E(X,Y) \\ O(X,Y) & :- & O(X,Z), E(Z,W), E(W,Y) \\ Q & :- & O(X,X) \end{array}$$

Therefore, NON 2-COLORABILITY is definable in 4-Datalog.
Exercise: NON 2-COLORABILITY is definable in 3-Datalog.

If *k* is a positive integer, then  $\exists L_{\infty\omega}^k$  is the collection of all formulas with at most *k* distinct variables that contains all atomic formulas and is closed under existential quantification, infinitary conjunctions  $\bigwedge$ , and infinitary disjunctions  $\bigvee$ .

If *k* is a positive integer, then  $\exists L_{\infty\omega}^k$  is the collection of all formulas with at most *k* distinct variables that contains all atomic formulas and is closed under existential quantification, infinitary conjunctions  $\bigwedge$ , and infinitary disjunctions  $\bigvee$ .

**Theorem:** *k*-Datalog  $\subseteq \exists L_{\infty\omega}^k$ , for every  $k \ge 1$ .

If *k* is a positive integer, then  $\exists L_{\infty\omega}^k$  is the collection of all formulas with at most *k* distinct variables that contains all atomic formulas and is closed under existential quantification, infinitary conjunctions  $\bigwedge$ , and infinitary disjunctions  $\bigvee$ .

**Theorem:** 
$$k$$
-Datalog  $\subseteq \exists L_{\infty\omega}^k$ , for every  $k \ge 1$ .  
**Proof:** (By example)

•  $P^n(x, y)$ : there is a path of length *n* from *x* to *y*.

If *k* is a positive integer, then  $\exists L_{\infty\omega}^k$  is the collection of all formulas with at most *k* distinct variables that contains all atomic formulas and is closed under existential quantification, infinitary conjunctions  $\bigwedge$ , and infinitary disjunctions  $\bigvee$ .

**Theorem:** 
$$k$$
-Datalog  $\subseteq \exists L_{\infty\omega}^k$ , for every  $k \ge 1$ .  
**Proof:** (By example)

- $P^n(x, y)$ : there is a path of length *n* from *x* to *y*.
- $P^n(x, y)$  is FO<sup>3</sup>-definable:

$$P^{1}(x,y) \equiv E(x,y)$$
  

$$P^{n+1}(x,y) \equiv \exists z (E(x,z) \land \exists x ((x=z) \land P_{n}(x,y)))$$

• Hence,  $\mathsf{TC} \subseteq \exists L^3_{\infty\omega}$ .

Spoiler and Duplicator play on two databases **A** and **B**. Each player uses k pebbles, labeled 1, ..., k. In each move,

- Spoiler places a pebble on or removes a pebble from an element of the active domain **A**.
- Duplicator tries to duplicate the move on **B** using the pebble with the same label.

- Spoiler wins the (∃, k)-pebble game if at some point the mapping a<sub>i</sub> → b<sub>i</sub>, 1 ≤ i ≤ l, is not a partial homomorphism.
- Duplicator wins the (∃, k)-pebble game if the above never happens.

### Fact (Cliques of Different Size)

### Let $\mathbf{K}_k$ be the *k*-clique. Then

- Duplicator wins the  $(\exists, k)$ -pebble game on  $\mathbf{K}_k$  and  $\mathbf{K}_{k+1}$ .
- Spoiler wins the  $(\exists, k)$ -pebble game on  $\mathbf{K}_k$  and  $\mathbf{K}_{k-1}$ .



#### Definition

Let *k* be a positive integer and **A**, **B** be two databases. **A**  $\leq_k$  **B** if every  $\exists L_{\infty\omega}^k$ -sentence that is true on **A** is true on **B**.

**Theorem:** (K ... and Vardi - 1995) The following statements are equivalent:

- A <u></u>\_k B
- The Duplicator wins the  $(\exists, k)$ -pebble game on **A** and **B**.

**Corollary:** Let *q* be a Boolean query such that for every  $k \ge 1$ , there are databases  $\mathbf{A}_k$  and  $\mathbf{B}_k$  such that

•  $\mathbf{A}_k \models q$  and  $\mathbf{B}_k \not\models q$ .

• The Duplicator wins the  $(\exists, k)$ -game on **A** and **B**.

Then

- q is not expressible in  $\exists L_{\infty\omega}^k$ , for any  $k \ge 1$ .
- In particular, *q* is not expressible in Datalog.

**Corollary:** Let *q* be a Boolean query such that for every  $k \ge 1$ , there are databases  $\mathbf{A}_k$  and  $\mathbf{B}_k$  such that

•  $\mathbf{A}_k \models q$  and  $\mathbf{B}_k \not\models q$ .

• The Duplicator wins the  $(\exists, k)$ -game on **A** and **B**.

Then

- q is not expressible in  $\exists L_{\infty\omega}^k$ , for any  $k \ge 1$ .
- In particular, *q* is not expressible in Datalog.

**Theorem:** (Dawar - 1998) NON 3-COLORABILITY is not expressible in Datalog.

**Upper Bound:** 

• 
$$O(|\mathbf{A}|^{2k}|\mathbf{B}|^{2k}) = O(n^{2k})$$
, where  $n = \max |A|, |B|$ .

**Upper Bound:** 

• 
$$O(|\mathbf{A}|^{2k}|\mathbf{B}|^{2k}) = O(n^{2k})$$
, where  $n = \max |A|, |B|$ .

#### Lower Bounds:

Theorem: (K ... and Panttaja – 2003)

• EXPTIME-complete, when k is part of the input.

(a) < (a) < (b) < (b)

• PTIME-complete, for each fixed  $k \ge 2$ .

**Upper Bound:** 

• 
$$O(|\mathbf{A}|^{2k}|\mathbf{B}|^{2k}) = O(n^{2k})$$
, where  $n = \max |A|, |B|$ .

Lower Bounds:

Theorem: (K ... and Panttaja – 2003)

- EXPTIME-complete, when k is part of the input.
- PTIME-complete, for each fixed  $k \ge 2$ .

**Theorem:** (Berkholz – 2012)

• Not in DTIME $(n^{\frac{k-3}{12}})$ , for each fixed  $k \ge 15$ .

**Theorem:** (K ... and Vardi - 1998) For every fixed positive integer *k* and every fixed database **B**, there is a *k*-Datalog program that expresses the query: Given a database **A**, does the Spoiler win the  $(\exists, k)$ -game on **A** and **B**? **Theorem:** (K ... and Vardi - 1998) For every fixed positive integer *k* and every fixed database **B**, there is a *k*-Datalog program that expresses the query: Given a database **A**, does the Spoiler win the  $(\exists, k)$ -game on **A** and **B**?

### Note:

- This result pinpoints the descriptive complexity of determining the winner in the (∃, k)-pebble game.
- It has been used in the study of Datalog and constraint satisfaction, as we will see next.

- ✓ Complexity and optimization issues in Datalog.
- Tools for analyzing the expressive power of Datalog.
  - Datalog and constraint satisfaction.

Definition (The Constraint Satisfaction Problem - CSP)

Given a set *V* of variables, a domain *D* of values, and a set *C* of constraints on the variables and the values, is there an assignment  $s : V \to D$  so that the constraints in *C* are satisfied?

Definition (The Constraint Satisfaction Problem - CSP)

Given a set *V* of variables, a domain *D* of values, and a set *C* of constraints on the variables and the values, is there an assignment  $s : V \to D$  so that the constraints in *C* are satisfied?

#### Examples:

- *k*-COLORABILITY, for  $k \ge 2$ .
- *k*-SAT, for *k* ≥ 2

Definition (The Constraint Satisfaction Problem - CSP)

Given a set *V* of variables, a domain *D* of values, and a set *C* of constraints on the variables and the values, is there an assignment  $s : V \to D$  so that the constraints in *C* are satisfied?

#### Examples:

- *k*-COLORABILITY, for  $k \ge 2$ .
- *k*-SAT, for *k* ≥ 2

Fact: (Feder and Vardi – 1993) CSP can be identified with the HOMOMORPHISM PROBLEM: Given two databases **A** and **B**, is  $\mathbf{A} \rightarrow \mathbf{B}$ ? **Problem:** CSP  $\equiv$  The Homomorphism Problem: Given two databases **A** and **B**, is **A**  $\rightarrow$  **B**?

Fact: CSP is NP-complete

**Problem:** CSP  $\equiv$  The Homomorphism Problem: Given two databases **A** and **B**, is **A**  $\rightarrow$  **B**?

Fact: CSP is NP-complete

#### Definition (Non-Uniform CSP)

Let **B** be a fixed database. CSP(B) is the following decision problem: Given a database **A**, is  $A \rightarrow B$ ?

#### Examples:

- $CSP(K_2) = 2$ -Colorability (in PTIME)
- $CSP(K_3) = 3$ -COLORABILITY (NP-complete)

## The Complexity of the Constraint Satisfaction Problem

**Dichotomy Conjecture:** Feder and Vardi – 1993 For every fixed database **B**, one of the following holds:

- CSP(**B**) is NP-complete.
- CSP(**B**) is in PTIME.



## The Complexity of the Constraint Satisfaction Problem

**Dichotomy Conjecture:** Feder and Vardi – 1993 For every fixed database **B**, one of the following holds:

- CSP(**B**) is NP-complete.
- CSP(**B**) is in PTIME.



#### Note:

- The Feder-Vardi Dichotomy Conjecture is still open.
- Extensive interaction between complexity, database theory, logic, and universal algebra towards its resolution.

## Constraint Satisfaction and Datalog

Question: When is CSP(B) tractable?

Question: When is CSP(B) tractable?

- Fact: Feder and Vardi 1993
  - Expressibility in Datalog provides a unifying explanation for many (but not all) tractable cases of CSP(**B**).
  - More precisely, consider

 $\neg CSP(\mathbf{B}) = \{\mathbf{A} : \mathbf{A} \not\to \mathbf{B}\}.$ 

It is often the case that CSP(B) is in PTIME because  $\neg CSP(B)$  is expressible in Datalog.

Question: When is CSP(B) tractable?

Fact: Feder and Vardi – 1993

- Expressibility in Datalog provides a unifying explanation for many (but not all) tractable cases of CSP(B).
- More precisely, consider

 $\neg CSP(\mathbf{B}) = \{\mathbf{A} : \mathbf{A} \not\rightarrow \mathbf{B}\}.$ 

It is often the case that CSP(B) is in PTIME because  $\neg CSP(B)$  is expressible in Datalog.

Note:

- CSP(**B**) is not preserved under homomorphisms.
- $\neg CSP(\mathbf{B})$  is preserved under homomorphisms.

## Constraint Satisfaction and Datalog

Fact: NON 2-COLORABILITY is expressible in Datalog

## Constraint Satisfaction and Datalog

- Fact: NON 2-COLORABILITY is expressible in Datalog
- Fact: HORN 3-UNSAT is expressible in Datalog
  - Horn 3-CNF formula  $\varphi$  viewed as a finite structure  $\mathbf{A}^{\varphi} = (\{x_1, \dots, x_n\}, U, P, N), \text{ where}$ 
    - U is the set of unit clauses;
    - *P* is the set of clauses of the form  $(\neg x \lor \neg y \lor z)$ ;
    - *N* is the set of clauses of the form  $(\neg x \lor \neg y \lor \neg z)$ .
  - Datalog program for HORN 3-UNSAT:

$$\begin{array}{rcl} T(z) & :- & U(z) \\ T(z) & :- & P(x,y,z), T(x), T(y) \\ Q & :- & N(x,y,z), T(x), T(y), T(z) \end{array}$$

Unit propagation algorithm for Horn Satisfiability.

### Problems:

- Fix a positive integer *k*. Can we characterize when ¬CSP(B) is expressible in *k*-Datalog?
- Fix a positive integer k. Is there an algorithm for deciding whether, given B, ¬CSP(B) is expressible in k-Datalog?
- Is there an algorithm for deciding whether, given B, there is some k such that ¬CSP(B) is expressible in k-Datalog?

**Theorem:** (K ... and Vardi – 1998) Let *k* be a positive integer and **B** a database. The following statements are equivalent:

- $\neg$ CSP(**B**) is expressible in *k*-Datalog.
- $\neg \text{CSP}(\mathbf{B})$  is expressible in  $\exists L_{\infty\omega}^k$ .
- $CSP(\mathbf{B}) =$ 
  - $\{\mathbf{A} : \text{Duplicator wins the } (\exists, k) \text{-pebble game on } \mathbf{A} \text{ and } \mathbf{B} \}.$

**Theorem:** (K ... and Vardi – 1998) Let *k* be a positive integer and **B** a database. The following statements are equivalent:

- $\neg$ CSP(**B**) is expressible in *k*-Datalog.
- $\neg \text{CSP}(\mathbf{B})$  is expressible in  $\exists L_{\infty\omega}^k$ .
- $CSP(\mathbf{B}) =$ 
  - $\{\mathbf{A} : \text{Duplicator wins the } (\exists, k)\text{-pebble game on } \mathbf{A} \text{ and } \mathbf{B}\}.$

### Note:

- In general, *k*-Datalog  $\subset \exists L_{\infty\omega}^k$ .
- Single *canonical* PTIME-algorithm for all CSP(B)'s that are expressible in *k*-Datalog, for fixed *k*, namely: Determine the winner in the (∃, *k*)-pebble game.

#### **Theorem:** (Barto and Kozik – 2009)

- Expressibility of  $\neg$ CSP(**B**) in Datalog can be characterized in terms of *tame congruence theory* in universal algebra.
- There is an EXPTIME-algorithm for the following problem: Given B, is there some k such that ¬CSP(B) is expressible in k-Datalog?
- There is a PTIME-algorithm for the following problem: Given a *core* B, is there some k such that ¬CSP(B) is expressible in k-Datalog?

**Note:** Deep and *a priori* unexpected connection between constraint satisfaction, Datalog, and universal algebra.
# CSP and the Collapse of the *k*-Datalog Hierarchy

### Fact:

*k*-Datalog is strictly more expressive than k'-Datalog, for k > k'.

## Fact:

*k*-Datalog is strictly more expressive than k'-Datalog, for k > k'.

**Theorem:** (Barto – 2012; implicit in Barto and Kozik – 2009) Let **B** be a fixed database over a schema of maximum arity r. The following statements are equivalent:

- $\neg$ CSP(**B**) is expressible in *k*-Datalog, for some *k*.
- $\neg$ CSP(**B**) is expressible in max(3, *r*)-Datalog.

**Note:** This is a theorem about logic whose only known proof is via universal algebra!

#### Fact:

If  $\neg CSP(B)$  is expressible in linear Datalog, then CSP(B) is in NLOGSPACE.

#### Fact:

If  $\neg CSP(B)$  is expressible in linear Datalog, then CSP(B) is in NLOGSPACE.

## **Open Problems:**

- Is there a database B such that CSP(B) is in NLOGSPACE, but ¬CSP(B) is not expressible in linear Datalog?
- Is there an algorithm for deciding whether, given B, ¬CSP(B) is expressible in linear Datalog?

**Note:** Universal algebra methods have been applied towards these problems and partial results have been recently obtained.

- The study of Datalog has been a meeting point of database theory, computational complexity, logic, universal algebra, and constraint satisfaction. It has resulted into a fruitful interaction between these areas.
- One can only hope that the next thirty years of Datalog will be as fruitful as the first thirty.