
Local Transformations and Conjunctive-Query Equivalence

Ronald Fagin
IBM Research – Almaden

fagin@us.ibm.com

Phokion G. Kolaitis
UC Santa Cruz & IBM Research – Almaden

kolaitis@cs.ucsc.edu

ABSTRACT

Over the past several decades, the study of conjunctive queries has
occupied a central place in the theory and practice of database sys-
tems. In recent years, conjunctive queries have played a prominent
role in the design and use of schema mappings for data integration
and data exchange tasks. In this paper, we investigate several dif-
ferent aspects of conjunctive-query equivalence in the context of
schema mappings and data exchange.

In the first part of the paper, we introduce and study a notion of
a local transformation between database instances that is based on
conjunctive-query equivalence. We show that the chase procedure
for GLAV mappings (that is, schema mappings specified by source-
to-target tuple-generating dependencies) is a local transformation
with respect to conjunctive-query equivalence. This means that the
chase procedure preserves bounded conjunctive-query equivalence,
that is, if two source instances are indistinguishable using conjunc-
tive queries of a sufficiently large size, then the target instances
obtained by chasing these two source instances are also indistin-
guishable using conjunctive queries of a given size. Moreover,
we obtain polynomial bounds on the level of indistinguishability
between source instances needed to guarantee indistinguishability
between the target instances produced by the chase. The locality
of the chase extends to schema mappings specified by a second-
order tuple-generating dependency (SO tgd), but does not hold for
schema mappings whose specification includes target constraints.

In the second part of the paper, we take a closer look at the com-
position of two GLAV mappings. In particular, we break GLAV
mappings into a small number of well-studied classes (including
LAV and GAV), and complete the picture as to when the composi-
tion of schema mappings from these various classes can be guaran-
teed to be a GLAV mapping, and when they can be guaranteed to
be conjunctive-query equivalent to a GLAV mapping.

We also show that the following problem is decidable: given a
schema mapping specified by an SO tgd and a GLAV mapping, are
they conjunctive-query equivalent? In contrast, the following prob-
lem is known to be undecidable: given a schema mapping specified
by an SO tgd and a GLAV mapping, are they logically equivalent?

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS ’12, May 21–23, 2012, Scottsdale, Arizona, USA.
Copyright 2012 ACM 978-1-4503-1248-6/12/05 ...$10.00.

Categories and Subject Descriptors
H.2.5 [Database Management]: Heterogeneous Databases—data
translation; H.2.4 [Database Management]: Systems—relational
databases

General Terms
Algorithms, Theory

Keywords
local transformations, continuity, conjunctive queries, schema map-
pings, chase, composition

1. Introduction
Conjunctive queries have played a major role in both the theory

and practice of relational database systems since the early days of
the relational data model. They are now ubiquitous in the study of
data inter-operability tasks, such as data exchange and data inte-
gration (see the overviews [Len02, Kol05, ABLM10]). In partic-
ular, conjunctive queries play a key role in the design of schema-
mapping languages, that is, high-level, declarative languages whose
formulas are used to describe the relationship between two database
schemas, often referred to as the source schema and the target (or
global) schema. For example, GLAV mappings, the most widely
used and extensively studied schema mappings, are specified by
a finite set of source-to-target tuple-generating dependencies (s-t
tgds) each of which, intuitively, asserts that some conjunctive query
over the source schema is contained in some conjunctive query over
the target schema. Furthermore, much of the study of query an-
swering in data exchange and data integration has focused on the
problem of computing the certain answers of conjunctive queries
over the target schema in the case of data exchange (or over the
global schema in the case of data integration).

In a different yet related direction of research, conjunctive queries
have been also used to formulate a notion of equivalence between
schema mappings that is a relaxation of the classical notion of log-
ical equivalence. Specifically, schema mappings M1 and M2 are
said to be conjunctive-query equivalent (or, in short, CQ-equivalent)
if for every conjunctive query q over the target schema and for ev-
ery source instance I , the certain answers of q on I w.r.t. M1 co-
incide with the certain answers of q on I w.r.t. M2. In [FKNP08],
CQ-equivalence was studied in the context of schema-mapping op-
timization. In particular, CQ-equivalence was shown to coincide
with logical equivalence for GLAV mappings, but to be a strict
relaxation of logical equivalence for schema mappings involving
target constraints, as well as for schema mappings specified by

second-order tuple-generating dependencies (SO tgds). Subsequent
investigations of CQ-equivalence in the context of schema-mapping
optimization include [PSS11] and [FPSS11]. Prior to all these
investigations, however, a notion of composition of two schema
mappings based on CQ-equivalence was introduced and studied in
[MH03]. More recently, a notion of an inverse of schema mapping
based on CQ-equivalence was introduced and studied in [APRR09].

Our goal in this paper is to investigate several different aspects
of conjunctive-query equivalence in the context of data exchange,
as well as in the context of composing schema mappings. We begin
by introducing and studying the notion of a CQ-local transforma-
tion between database instances, a notion that is based on bounded
conjunctive-query equivalence. Intuitively, a CQ-local transforma-
tion has the property that if two instances are indistinguishable us-
ing conjunctive queries of a sufficiently large size, then their images
under the transformation are also indistinguishable using conjunc-
tive queries of a given size. Formally, a transformation F between
database instances is CQ-local if for every positive integer n, there
is a positive integer N such that if I1 and I2 are instances that
satisfy the same Boolean conjunctive queries with at most N vari-
ables, then their imagesF(I1) andF(I2) satisfy the same Boolean
conjunctive queries with at most n variables.

We show that if M is a GLAV mapping, then the chase procedure
w.r.t. M is a CQ-local transformation. As a matter of fact, we give
two different proofs of this result. The first proof entails combining
the main technical result in Rossman’s proof of the preservation-
under-homomorphisms theorem in the finite [Ros08] with a result
from the full, unpublished version of [ABFL04] to the effect that
the chase transformation for GLAV mappings is local in a sense
of first-order equivalence. This proof yields an N that is a stack
of exponentials in n, because this type of blow-up already occurs
in Rossman’s proof [Ros08], and no smaller bounds are presently
known. We therefore give a different and direct proof of the CQ-
locality of the chase procedure for a GLAV mapping that also yields
an N that is bounded by a polynomial in the size of n. In fact,
the degree of the polynomial is equal to the maximum arity of the
relation symbols of the target schema. We also point out that the
CQ-locality of the chase procedure extends to schema mappings
specified by SO tgds, but does not hold for schema mappings whose
specification includes target constraints.

In the second part of the paper, we take a closer look at the com-
position of two GLAV mappings. In [FKPT05], it was shown that
the composition of two GLAV mappings is guaranteed to be logi-
cally equivalent to a schema mapping specified by an SO tgd, but
may not be logically equivalent to any GLAV mapping. In fact,
as also shown in [FKPT05], the composition of two GLAV map-
pings may not even be CQ-equivalent to any GLAV mapping. It
is also known, however, that the state of affairs is different for the
important cases of GAV and LAV mappings. A GAV (global-as-
view) mapping is a schema mapping specified by a finite set of s-t
tgds whose right-hand side is a single atom, while a LAV (local-
as-view) mapping is a schema mapping specified by a finite set of
s-t tgds whose left-hand side is a single atom in which no variable
occurs more than once. As regards GAV mappings, it was shown
in [FKPT05] that the composition of two GAV mappings is guar-
anteed to be logically equivalent to a GAV mapping; furthermore,
the composition of a GAV mapping with a GLAV mapping is guar-
anteed to be logically equivalent to a GLAV mapping. As regards
LAV mappings, it was shown in [AFM10] that the composition of
two LAV mappings is guaranteed to be logically equivalent to a
GLAV mapping (in fact, to a LAV mapping). Here, we generalize
this result by showing that the composition of a GLAV mapping
with a LAV mapping is guaranteed to be logically equivalent to a

GLAV mapping. After this, we consider the class of extended LAV
mappings, which are schema mappings specified by a finite set of
s-t tgds whose left-hand side is a single atom in which a variable
may occur more than once. Clearly, extended LAV mappings form
a proper extension of the class of LAV mappings. We show that
the composition of a GLAV mapping with an extended LAV map-
ping is guaranteed to be CQ-equivalent to a GLAV mapping (such
a composition may not be logically equivalent to any GLAV map-
ping [FKPT05]). With the aid of these two results, we complete
the picture as to when the composition of schema mappings taken
from the classes of GAV, LAV, extended LAV, and arbitrary GLAV
mappings can be guaranteed to be a GLAV mapping, and when it
can be guaranteed to be CQ-equivalent to a GLAV mapping.

Finally, we show that the following problem is decidable: given a
schema mapping specified by an SO tgd and a GLAV mapping, are
they CQ-equivalent? In contrast, as shown in [FPSS11] by build-
ing on results from [APR09], the following problem is undecidable:
given a schema mapping specified by an SO tgd and a GLAV map-
ping, are they logically equivalent?

2. Preliminaries
A schema R is a finite sequence 〈R1, . . . , Rk〉 of relation sym-

bols, where each Ri has a fixed arity. An instance I over R, or an
R-instance, is a sequence (RI1, . . . , R

I
k), where each RIi is a finite

relation of the same arity as Ri. We shall often use Ri to denote
both the relation symbol and the relation RIi that instantiates it. A
fact of an instance I (over R) is an expression RIi (v1, . . . , vm) (or
simply Ri(v1, . . . , vm)), where Ri is a relation symbol of R and
(v1, . . . , vm) ∈ RIi . The expression (v1, . . . , vm) is also some-
times referred to as a tuple of Ri. An instance is often identified
with its set of facts. An entry in a tuple of an instance I is an ele-
ment or value from I , and the set of elements from I is the active
domain of I .

Next, we define the concepts of homomorphism and homomor-
phic equivalence. Let I1 and I2 be instances over a schema R. A
function h is a homomorphism from I1 to I2 if for every relation
symbol R in R and every tuple (a1, . . . , an) ∈ RI1 , we have that
(h(a1), . . . , h(an)) ∈ RI2 . In data exchange, it is often conve-
nient to assume the presence of two kinds of values, namely con-
stants and (labeled) nulls, and to assume as part of the definition of
a homomorphism h that h(c) = c for every constant c; however,
we do not make that assumption in this paper. We use the notation
I1 → I2 to denote that there is a homomorphism from I1 to I2.
Since we do not assume that a homomorphism necessarily maps
each constant into itself, it is sometimes important to specify that a
homomorphism h respects I for some instance I , which means that
h(x) = x for every element x of I . If there is a homomorphism
from I1 to I2 that respects I , then we may write I1

I→ I2. We say
that I1 is homomorphically equivalent to I2, written I1 ↔ I2, if
I1 → I2 and I2 → I1. The core of an instance K is the smallest
subinstance ofK that is homomorphically equivalent toK. If there
are multiple cores of K, then they are all isomorphic [HN92].

Schema mappings A schema mapping is a triple M = (S,T,Σ),
where S and T are schemas with no relation symbols in common,
and Σ is a set of constraints (typically, formulas in some logic) that
describe the relationship between S and T. We say that M is spec-
ified by Σ. We refer to S as the source schema, and T as the target
schema. Similarly, we refer to S-instances as source instances, and
T-instances as target instances. We say that schema mappings M1

and M2 are logically equivalent if the constraints that specify M1

are logically equivalent to the constraints that specify M2.

If I is a source instance and J is a target instance such that the
pair (I, J) satisfies Σ (written (I, J) |= Σ), then we say that J is
a solution of I w.r.t. M. We say that J is a universal solution for I
w.r.t. M [FKMP05] if J is a solution for I and for every solution
J ′ for I , we have J I→ J ′.

An atom is an expression R(x1, ..., xn), where R is a relation
symbol and x1, . . . , xn are variables that are not necessarily dis-
tinct. A source-to-target tuple-generating dependency (s-t tgd) is
a first-order sentence of the form ∀x(ϕ(x) → ∃yψ(x,y)), where
ϕ(x) is a conjunction of atoms over S, each variable in x occurs in
at least one atom in ϕ(x), and ψ(x,y) is a conjunction of atoms
over T with variables in x and y. For simplicity, we will often
suppress writing the universal quantifiers ∀x in the above formula.
We refer to ϕ(x) as the left-hand side, or premise, and ∃yψ(x,y)
as the right-hand side, or conclusion. Another name for s-t tgds is
global-and-local-as-view (GLAV) constraints (see [Len02]). They
contain several important special cases, which we now define.

A GAV (global-as-view) constraint is an s-t tgd in which the con-
clusion is a single atom with no existentially quantified variables,
that is, it is of the form ∀x(ϕ(x)→ P (x)),where P (x) is an atom
over the target schema.

There are several competing notions of a LAV (local-as-view)
constraint. The definition we shall use is that a LAV constraint is
an s-t tgd of the form ∀x(Q(x) → ∃yψ(x,y)), where Q(x) is a
single atom over the source schema and no repeated variables in
Q(x) are allowed. This is the notion of LAV used by Arocena,
Fuxman, and Miller [AFM10], for their result that the composi-
tion of LAV mappings is logically equivalent to a LAV mapping.
Another notion of LAV is obtained by dropping the restriction that
there are no repeated variables in the premise Q(x). We shall refer
to such constraints as extended LAV. In a number of papers, in-
cluding [ABFL04, FKMP05, Fag07, FKPT11], our notion of “ex-
tended LAV” is called simply “LAV”, and in [FKPT11], our notion
of “LAV” is called “strict LAV”. Note also that there is yet an-
other notion of “LAV” in the literature, which is defined even more
strictly than our definition, by requiring that all variables in x ap-
pear in the conclusion.

We refer to a schema mapping specified entirely by a finite set
of GLAV (respectively, GAV, LAV, extended LAV) constraints as a
GLAV (respectively, GAV, LAV, extended LAV) mapping.

On occasion, we will also consider schema mappings whose
specification also includes target constraints. A target equality gen-
erating dependency (egd) is a first-order sentence that is of the
form ∀x(ϕ(x) → (xi = xj)), where ϕ(x) is a conjunction of
atoms over T, each variable in x occurs in at least one atom in
ϕ(x), and xi, xj are among the variables in x. A target tuple-
generating dependency (tgd) is a first-order sentence of the form
∀x(ϕ(x) → ∃yψ(x,y)), where both ϕ(x) and ψ(x,y) are con-
junctions of atoms over T, and each variable in x occurs in at least
one atom in ϕ(x). A target full tgd is a target tgd whose conclusion
has no existential quantifiers.

We shall also make use of second-order tgds, or SO tgds. These
were introduced in [FKPT05], where it was shown that SO tgds are
exactly what is needed to specify the composition of an arbitrary
number of GLAV mappings. Before we formally define SO tgds,
we need to define terms.

Given collections x of variables and f of function symbols, a
term (based on x and f) is defined recursively as follows:
1. Every variable in x is a term.
2. If f is a k-ary function symbol in f and t1, . . . , tk are terms,

then f(t1, . . . , tk) is a term.

DEFINITION 2.1. Let S be a source schema and T a target

schema. A second-order tuple-generating dependency (SO tgd) is
a formula of the form:

∃f((∀x1(φ1 → ψ1)) ∧ ... ∧ (∀xn(φn → ψn))),

where
1. Each member of f is a function symbol.
2. Each φi is a conjunction of
• atoms S(y1, ..., yk), where S is a k-ary relation symbol of
schema S and y1, . . . , yk are variables in xi, not necessarily
distinct, and
• equalities of the form t = t′ where t and t′ are terms based
on xi and f .

3. Each ψi is a conjunction of atoms T (t1, ..., tl), where T is an l-
ary relation symbol of schema T and t1, . . . , tl are terms based
on xi and f .

4. Each variable in xi appears in some atomic formula of φi.
Each subformula ∀xi(φi → ψi) is a tgd part of the SO tgd.

As an example, in a personnel database, where Emp(e) means
that e is an employee, Mgr(e, e′) means that e′ is the manager of e,
and SelfMgr(e) means that e is his own manager, we might have
the following SO tgd, where, intuitively f(e) is the manager of e:

∃f(∀e(Emp(e)→ Mgr(e, f(e))) ∧ (1)
∀e(Emp(e) ∧ (e = f(e))→ SelfMgr(e))).

We now give the definition (from [FKPT05]) of the composi-
tion of schema mappings. Let M12 = (S1, S2, Σ12) and let M23

= (S2, S3, Σ23) be two schema mappings such that the schemas
S1,S2,S3 have no relation symbol in common pairwise. A schema
mapping M13 = (S1,S3,Σ13) is a composition of M12 and M23

if for every S1-instance I1 and every S3-instance I3 we have that
(I1, I3) |= Σ13 if and only if there is an S2-instance I2 such
that (I1, I2) |= Σ12 and (I2, I3) |= Σ23. We may then write
M13 = M12 ◦M23, and Σ13 = Σ12 ◦ Σ23.

Chase The chase procedure [ABU79, MMS79] has been used in a
number of settings over the years, and several variants of the chase
procedure have been considered. In this paper, we use the variant
described in [FKNP08], which is sometimes called the naive chase
or the parallel chase.. The basic idea of the naive chase procedure
on a source instance I with a GLAV mapping M = (S,T,Σ) is
that for every s-t tgd ∀x(ϕ(x) → ∃yψ(x,y)) in Σ and for every
tuple a of values from the active domain of I , such that I |= ϕ(a),
we add all facts in ψ(a,N) to the output of the chase procedure,
where N is a tuple of new, distinct values (usually called labeled
nulls) interpreting the existential quantified variables y. Note that
in the naive chase, we add these facts whether or not there is al-
ready a tuple b of values such that ψ(a,b) is in the current out-
put of the chase procedure. From now on, we refer to the naive
chase procedure as simply the chase procedure or the chase, and
we write chaseM(I) or chaseΣ(I) to denote the result of applying
the chase procedure on the instance I . It is shown in [FKMP05]
that chaseM(I) is a universal solution of I w.r.t. M.

Note that all of our results hold no matter which variant of the
chase procedure is used, because for a fixed GLAV mapping, the
results of all variants are homomorphically equivalent,

A conjunctive query over a schema R is a formula of the form
∃yφ(x,y) where φ(x,y) is a conjunction of atoms over R. If x is
empty (that is, if every variable is existentially quantified) then we
call the conjunctive query Boolean.

Let M be a schema mapping, q a k-ary query, for k ≥ 0, over
the target schema T, and I a source instance. The certain answers

of q with respect to I , denoted by certainM(q, I), is the set of all
k-tuples t of elements from I such that for every solution J for I
with respect to M, we have that t ∈ q(J). In symbols,

certainM(q, I) =
⋂
{q(J) : J is a solution for I w.r.t. M}.

If q is a Boolean query, then certainM(q, I) = true precisely when
q(J) = true , for every solution J for I w.r.t. M. If M is specified
by Σ, then we may write certainΣ(q, I) instead of certainM(q, I).

We shall make use of the following theorem from [FKMP05].

THEOREM 2.2 ([FKMP05]). Let M be an arbitrary schema
mapping and I an arbitrary source instance such that I has a uni-
versal solution U with respect to M. Let q be a conjunctive query.1

Then certainM(q, I) = q(U)↓, which is the result of evaluating q
on U and then keeping only those tuples formed entirely of values
from I .

3. Local Transformations
We begin by introducing a unifying notion of a local transfor-

mation.

DEFINITION 3.1. Let D = {Dn : n ≥ 1} be a family of
binary relations between instances such that for each n, we have
that Dn+1 ⊆ Dn, and for each I1, I2, if Dn(I1, I2), then I1 and
I2 are instances over the same schema.

Let S and T be schemas. If F is a function "preservfrom the
class of S-instances to the class of T-instances, then we say that
F is a D-local transformation if for every positive integer n, there
is a positive integer N such that for all S-instances I1 and I2 with
DN (I1, I2), we have that Dn(F(I1),F(I2)).

If F is D-local, then for every positive integer n, there is a pos-
itive integer N such that for all m ≥ N and for all S-instances I1
and I2 with Dm(I1, I2), we have that Dn(F(I1),F(I2)). This is
so because it follows from Definition 3.1 that Dm ⊆ DN when
m ≥ N . Before we give our case of greatest interest, we need
another definition.

DEFINITION 3.2. Assume that I1 and I2 are S-instances over a
schema S, and let n be a positive integer. We say that I1 and I2 are
CQn-equivalent, and write I1 ≡cqn I2, if I1 and I2 satisfy the same
Boolean conjunctive queries with at most n variables.

The binary relations ≡cqn , n ≥ 1, give rise to the family

CQ = {≡cqn : n ≥ 1}.

Our case of greatest interest forD-locality in Definition 3.1 is when
D = CQ. Thus, a transformation F is CQ-local if for every pos-
itive integer n, there is a positive integer N such that for all in-
stances I1 and I2, if I1 ≡cqN I2, then F(I1) ≡cqn F(I2).

We shall make use of the following simple lemma, which follows
easily from the fact that the≡cqn relationship between two instances
depends only on their homomorphism equivalence classes.

LEMMA 3.3. Assume that I1 ↔ I ′1, I2 ↔ I ′2, and I1 ≡cqn I2.
Then I ′1 ≡cqn I ′2.

We now point out that CQ-locality can be viewed as a type of
uniform continuity with respect to a natural metric that has been
studied in graph theory. We begin with a measure of similarity
between two instances.
1This theorem is shown in [FKMP05] to hold a little more generally: not just for
conjunctive queries, but also for unions of conjunctive queries.

DEFINITION 3.4. If I1 and I2 are S-instances for some schema
S, and n is a positive integer, then

sim(I1, I2) = min{|C| : ((C → I1) and (C 6→ I2)) or
((C 6→ I1) and (C → I2))},

where |C| is size of the active domain of C.

We have the following simple proposition.

PROPOSITION 3.5. Assume that I1 and I2 are S-instances over
a schema S, and n is a positive integer. Then I1 ≡cqn I2 if and only
if sim(I1, I2) > n.

This proposition is an immediate consequence of the Chandra-
Merlin Theorem [CM77]. Indeed, for every positive integer n and
for all instances I1 and I2, the following are equivalent:
• I1 and I2 satisfy the same conjunctive queries with at most n

variables.
• For every instance C with at most n elements, we have that
C → I1 if and only if C → I2.

EXAMPLE 3.6. For every positive integer m, let Cm be the
undirected cycle with m elements and let Km be the clique with
m elements. It is easy to verify that the following are true:
1. sim(C2i+1, C2j+1) = 2i+ 1, for 1 ≤ i < j.
2. sim(K2, C2j+1) = 2j + 1, for j ≥ 1

3. sim(Ki,Kj) = i + 1, for i < j. In particular, we have that
sim(K2,Kj) = 3, for j ≥ 3.

Define a distance measure d between S-instances by letting

d(I1, I2) =
1

sim(I1, I2)
.

In particular, d(I1, I2) = 0 if and only if sim(I1, I2) =∞, which
holds if and only if I1 and I2 are homomorphically equivalent.
Moreover, if I1 ↔ I ′1 and I2 ↔ I ′2, then d(I1, I2) = d(I ′1, I

′
2).

Therefore, d can be viewed as a distance between↔-equivalence
classes of S-instances, where two S-instances are in the same equiv-
alence class precisely if they are homomorphically equivalent. We
then have the first required property for a metric, namely, that the
distance between two equivalence classes is 0 if and only if they are
the same equivalence class. We now discuss the other three prop-
erties: nonnegativity, symmetry and triangle inequality. Clearly, d
is nonnegative and symmetric. As for the triangle inequality, it is
easy to see that d in fact satisfies the following strengthened version
of the triangle inequality: d(I1, I3) ≤ max{d(I1, I2), d(I2, I3)}
(this makes d not just a metric, but an ultrametric). This metric d
has been studied extensively in graph theory, where it has been used
to characterize restricted dualities (see [NdM09] for a survey).

Returning to Example 3.6, the first statement implies that C2i+1,
i ≥ 1, is a Cauchy sequence, that is, for every ε > 0, there is a posi-
tive integer n such that if i, j ≥ n, then d(C2i+1, C2j+1) < ε. The
second statement shows that limi→∞ C2i+1 = K2 (this fact has
been pointed out in [NdM09]). It is easy to see that a limit, when it
exists, is unique up to homomorphic equivalence. The third state-
ment implies that Ki, i ≥ 1, is also a Cauchy sequence. However,
there is no finite graphH such that limi→∞Ki = H . This is so be-
cause if m is the size of the biggest clique contained in some finite
graph H , then for all i > |H|, we have that sim(Ki, H) ≤ m+ 1,
hence d(Ki, H) ≥ 1/(m + 1). This shows that d is not a com-
plete metric space. The completion of d (obtained by adding limits
of all Cauchy sequences–the same way that the real numbers are
obtained from the rational numbers) plays an important role in the
characterization of restricted dualities [NdM09].

A function F is uniformly continuous if for every ε > 0, there is
δ > 0 such that if d(I1, I2) < δ, then d(F(I1),F(I2)) < ε.2 It is
easy to see that under our definitions, a function F from the class
of S-instances to the class of T-instances is CQ-local if and only if
it is uniformly continuous. This helps demonstrate the naturalness
of the notion of CQ-locality.

We shall show that for GLAV mappings, the chase is CQ-local.
We shall show this result by two different proofs. The first proof
makes use of earlier results in the literature, but gives very large
bounds on the size of N (a stack of exponentials in n) The second
proof is direct, and gives a bound on N that is polynomial in n.

We now consider D-locality for another choice of D. We first
give another definition.

DEFINITION 3.7. Assume that I1 and I2 are S-instances over a
schema S, and let n be a positive integer. We say that I1 and I2 are
FOn-equivalent, and write I1 ≡n I2, if I1 and I2 satisfy the same
first-order formulas of quantifier depth at most n.

The binary relations ≡n, n ≥ 1, give rise to the family

FO = {≡n: n ≥ 1}.

Thus, F is FO-local if for every positive integer n, there is a posi-
tive integer N such that if I1 ≡N I2, then F(I1) ≡n F(I2).

This notion of FO-locality was used, but not named, in the full,
unpublished version of [ABFL04], to help prove non-rewritability
of queries in data exchange. FO-locality is somewhat similar to the
notion in [ABFL04] of “local consistency under FO-equivalence”.

3.1 CQ-Local vs. FO-Local

In what follows, we will explore the relationship between CQ-
local transformations and FO-local transformations. In doing so,
we shall make use of the following theorem, which follows from
the proof of Theorem 1.9 of Rossman [Ros08], and which is the
main technical tool in proving his deep theorem on preservation
under homomorphisms in the finite.

THEOREM 3.8 ([ROS08]). Assume that S is a schema. For
every positive integer n, there is a positive integerN and a function
fn such that for all S-instances I1 and I2, the following hold:

1. I1 ↔ fn(I1) and I2 ↔ fn(I2).

2. If I1 ≡cqN I2, then fn(I1) ≡n fn(I2).

We say that F preserves homomorphic equivalence if whenever
I1 ↔ I2, then F(I1) ↔ F(I2). Note that this is yet another
notion of D-locality; indeed, F preserves homomorphism equiva-
lence precisely when F is H-local, where H = {Hn : n ≥ 1} and
Hn = ↔, for every n ≥ 1.

For example, if M is a GLAV mapping, then the chase procedure
w.r.t. M preserves homomorphic equivalence; that is, if I1 ↔ I2,
then chaseM(I1) ↔ chaseM(I2) This is so because, as shown in
[FKMP05], if I1 → I2, then chaseM(I1) → chaseM(I2). In fact,
the same holds true for schema mappings specified by SO tgds, as
well as for schema mappings specified by a finite set of s-t tgds and
a finite set of full target tgds. Note, however, that if target egds or
arbitrary target tgds are allowed in the specification of a schema
mapping M, then the chase procedure need not be a total function,
that is, chaseM(I) may not exist for some source instance I .

PROPOSITION 3.9. If F is CQ-local, then F preserves homo-
morphic equivalence.
2This is uniform continuity, since δ does not depend on the choice of I1 or I2. If the
choice of δ depended on I1, then we would have continuity of F at I1, rather than
uniform continuity of F .

PROOF. Assume that F is CQ-local, and that I1 ↔ I2; we
must show that F(I1) ↔ F(I2). Let n be the maximum of the
number of members of the active domains of F(I1) and F(I2).
It is easy to see that F(I1) ≡cqn F(I2) if and only if F(I1) ↔
F(I2). Since F is CQ-local, there is N such that if I1 ≡cqN I2,
then F(I1) ≡cqn F(I2). Since I1 ↔ I2, we have I1 ≡cqN I2, and
so F(I1) ≡cqn F(I2), hence F(I1)↔ F(I2), as desired.

As we shall see in Fact 3.11, the converse of Proposition 3.9 fails.
We now make use of Rossman’s Theorem (Theorem 3.8) to prove
the next result.

THEOREM 3.10. IfF preserves homomorphic equivalence and
is FO-local, then F is CQ-local.

PROOF. Assume that F is FO-local. Given the positive integer
n, let n′ be the positive integer guaranteed by FO-locality of F ,
such that whenever I1 ≡n′ I2, then F(I1) ≡n F(I2). Let N be
the positive integer guaranteed by Theorem 3.8 when the role of n
is played by n′.

Assume now that I1 ≡cqN I2; we must show that F(I1) ≡cqn
F(I2). Let fn′ be as in Theorem 3.8 when the role of n is played by
n′. Since I1 ≡cqN I2, it follows from Theorem 3.8 that fn′(I1) ≡n′

fn′(I2). It therefore follows from our choice of n′ and by FO-
locality that F(fn′(I1)) ≡n F(fn′(I2)). Since Boolean conjunc-
tive queries with at most n variables are a special case of first-order
formulas with quantifier depth at most n, it follows that

F(fn′(I1)) ≡cqn F(fn′(I2)). (2)

Now I1 ↔ fn′(I1) by Theorem 3.8 when the role of n is played
by n′. SinceF preserves homomorphic equivalence, it follows that

F(I1)↔ F(fn′(I1)). (3)

Similarly,

F(I2)↔ F(fn′(I2)). (4)

By Lemma 3.3, it follows from (2), (3), and (4) that F(I1) ≡cqn
F(I2), as desired.

FACT 3.11. As we now discuss, neither assumption in Theo-
rem 3.10 can be dropped. First, the assumption that F is FO-local
is needed. That is, there is F that preserves homomorphic equiva-
lence, but is not CQ-local (so the converse of Proposition 3.9 fails).
Here is the reason. If M is a schema mapping specified by a finite
set of s-t tgds and full target tgds, then as we noted, the chase with
M preserves homomorphic equivalence. However, such a chase
need not be CQ-local, as we shall show in Theorem 3.20.

We now show that the assumption in Theorem 3.10 that F pre-
serves homomorphic equivalence is needed. That is, there is F that
is FO-local, but is not CQ-local. Let F be a function that maps ev-
ery graph with at least two nodes (where a node is a member of the
active domain) to a triangle (a cycle of length 3), and every graph
with one node to a single edge. It is easy to see that F is FO-local
– in fact, we can always take N = 2, since if I1 ≡2 I2, then I1 has
at least two nodes if and only if I2 has at least two nodes, and so if
I1 ≡2 I2, then F(I1) and F(I2) are isomorphic.

To show that F is not CQ-local, we need only show (by Propo-
sition 3.9) that F does not preserve homomorphic equivalence. Let
I1 consist of a single node with a self-loop, and let I2 consist of
two nodes, each with a self-loop. It is easy to see that I1 ↔ I2.
However, F(I1) is a single edge, and F(I2) is a triangle, and so
F(I1) 6↔ F(I2).

The next proposition states what we have just shown.

PROPOSITION 3.12. There is a transformation F that is FO-
local but not CQ-local.

We now show that the converse of Theorem 3.10 fails. While it is
true that CQ-locality implies preservation of homomorphic equiv-
alence (Proposition 3.9), the next proposition says that CQ-locality
does not imply FO-locality.

PROPOSITION 3.13. There is a transformation F that is CQ-
local but not FO-local.

PROOF. Define Fcore by letting Fcore(I) be the core of I . We
now show that Fcore is CQ-local, where we let N = n. Thus, as-
sume that I1 ≡cqn I2; we must show that Fcore(I1) ≡cqn Fcore(I2).
Now Fcore(I1)↔ I1, and Fcore(I2)↔ I2. Since also I1 ≡cqn I2,
it follows from Lemma 3.3 that Fcore(I1) ≡cqn Fcore(I2).

We now show that Fcore is not FO-local. Assume that it is;
we shall derive a contradiction. Since by assumption Fcore is FO-
local, there isN such that if I1 ≡N I2, thenFcore(I1) ≡2 Fcore(I2)
(thus, we are taking n = 2, and finding N corresponding to n). It
is well known that given N , there is N ′ such that if I1 and I2 are
each undirected cycles with at least N ′ nodes, then I1 ≡N I2 (this
follows, for example, from Theorem 4.3 of [FSV95]). Take I1 to
be an odd undirected cycle with at least N ′ nodes, and I2 to be an
even undirected cycle with at least N ′ nodes, It is straightforward
to verify that Fcore(I1) = I1, and Fcore(I2) consists of a single
edge of I2. It follows easily that Fcore(I1) 6≡2 Fcore(I2). This is
our desired contradiction.

We feel that Propositions 3.12 and 3.13, along with Theorem 3.10,
show an interesting relationship between two notions of locality:
FO-locality and CQ-locality. We proved Theorem 3.10 using Ross-
man’s Theorem. We do not know whether there is a proof of The-
orem 3.10 that does not require the depth of Rossman’s Theorem.

3.2 CQ-Locality of the Chase Procedure for GLAV Mappings

To give our first proof of the CQ-locality of the chase for GLAV
mappings, we make use of the following theorem, which is a spe-
cial case of a result in the full, unpublished version of [ABFL04].

THEOREM 3.14. Let M be a GLAV mapping. Then the chase
with respect to M is FO-local.

Our first proof that the chase with respect to GLAV mappings is
CQ-local follows immediately by combining Theorem 3.10 with
Proposition 3.9 and Theorem 3.14.

THEOREM 3.15. Let M be a GLAV mapping. Then the chase
with respect to M is CQ-local.

We now show that Theorem 3.15 generalizes from schema map-
pings specified by a finite set of s-t tgds to schema mappings spec-
ified by a second-order tgd (SO tgd). It is shown in [FKPT05] that
SO tgds have a chase procedure, that produces a universal solution.

COROLLARY 3.16. If M is a schema mapping specified by an
SO tgd, then the chase with respect to M is CQ-local.

PROOF. We first show that the composition of CQ-local trans-
formations is CQ-local. Assume that F1 and F2 are CQ-local, and
let n be a positive integer. Since F1 is CQ-local, we know that
there is n′ such that if F2(I1) ≡cqn′ F2(I2), then F1(F2(I1)) ≡cqn
F1(F2(I2)). Since F2 is CQ-local, there is N such that if I1 ≡cqN
I2, then F2(I1) ≡cqn′ F2(I2). Therefore, if I1 ≡cqN I2, then we
have F1(F2(I1)) ≡cqn F1(F2(I2)), and so F1 ◦ F2 is CQ-local.

Since the schema mapping M is specified by an SO tgd, it fol-
lows from [AFN11] that there are GLAV mappings M1 and M2

such that M = M1 ◦M2.3 It is shown in [Fag07, Proposition 7.2]
that chaseM2(chaseM1(I)) is a universal solution for I with re-
spect to M1 ◦M2. Further, it is shown in [FKPT05, Theorem 6.8]
that chaseM(I) is universal for I with respect to M. Since M =
M1 ◦M2, and since all universal solutions are homomorphically
equivalent, it follows that chaseM(I)↔ chaseM2(chaseM1(I)).

Since (1) the chase with respect to M1 and the chase with respect
to M2 are each CQ-local (by Theorem 3.15), (2) the composition
of CQ-local transformations is CQ-local, and (3) chaseM(I) ↔
chaseM2(chaseM1(I)), it follows that the chase with respect to M
is CQ-local, which was to be shown.

Theorem 3.15 tells us that for every positive integer n, there is
a positive integer N(n) (that, in general, depends on n) such that
if I1 ≡cqN(n) I2, then chaseM(I1) ≡cqn chaseM(I2). The proof
of Theorem 3.15 yields an N(n) that is a stack of exponentials in
n, because this blow-up occurs in the proof of Rossman’s Theo-
rem (Theorem 3.8) and, to date, no smaller bounds are known. In
what follows, we give a direct proof of Theorem 3.15 with much
improved bounds that does not make use of Rossman’s Theorem.
In fact, our direct proof gives N(n) as a polynomial in n whose
degree is equal to the maximum arity of the relation symbols in the
target schema.

We begin by introducing a new family of binary relations be-
tween instances.

DEFINITION 3.17. Assume that I1 and I2 are S-instances over
a schema S, and let n be a positive integer. We write I1 →cq

n

I2 to denote that every Boolean conjunctive query with at most n
variables that is true on I1 is also true on I2.

Intuitively,→cq
n is about preservation of conjunctive queries with

at most n variables. As such, →cq
n is a relaxation of ≡cqn , since

I1 ≡cqn I2 if and only if I1 →cq
n I2 and I2 →cq

n I1. The binary
relations→cq

n , n ≥ 1, give rise to the family

PCQ = {→cq
n : n ≥ 1},

where PCQ stands for “preservation of conjunctive queries”.
The next theorem, which is the key step in our direct proof of

Theorem 3.15, tells us that for GLAV mappings, the chase is PCQ-
local, and also gives a polynomial bound on N .

THEOREM 3.18. Assume that M = (S,T,Σ) is a GLAV map-
ping specified by a finite set Σ of s-t tgds.

• The chase with respect to M is PCQ-local.

• Let k be the number of relation symbols in the target schema
T, let r be the maximum arity of the relation symbols in T,
and let m be the maximum number of universally quantified
variables in the s-t tgds in Σ. For every natural number n,
let N(n) = mknr . If I1, I2 are source instances such that
I1 →cq

N(n) I2, then chaseM(I1)→cq
n chaseM(I2).

PROOF. Let I1 and I2 be S-instances such that I1 →cq
N(n) I2.

Put J1 = chaseM(I1) and J2 = chaseM(I2). We have to show
that J1 →cq

n J2. In order to show this, it suffices to show that
if ∃z1 · · · ∃znθ(z1, . . . , zn) is a Boolean conjunctive query such
that J1 |= ∃z1 · · · ∃znθ(z1, . . . , zn), then we also have that J2 |=
3Our proof of Corollary 3.16 could simply make use of the weaker fact, proved in
[FKPT05], that a schema mapping M specified by an SO tgd is the composition of a
finite numberm of GLAV mappings, but we may as well use the stronger fact that we
can takem = 2.

∃z1 · · · ∃znθ(z1, . . . , zn). Let a1, . . . , an be (not necessarily dis-
tinct) elements from J1 such that J1 |= θ(a1, . . . , an). Note that
θ(a1, . . . , an) can be viewed as a collection of facts from the T-
instance J1. Since T has k relation symbols, each of which is of
arity at most r, it follows that θ(a1, . . . , an) consists of at most
knr distinct facts f1, . . . , fknr from J1. Since J1 = chaseM(I1),
it follows that for each such fact fj , where 1 ≤ j ≤ knr , there
are an s-t tgd ∀xj(ϕj(xj) → ∃yjψj(xj ,yj)) in Σ, a tuple cj of
elements from I1, and a tuple dj of elements from J1 such that
• I1 |= ϕj(cj);
• J1 |= ψj(cj ,dj);
• fj is one of the facts occurring in ψj(cj ,dj).

By renaming variables as needed, we may assume that the tuples xj
and xj′ have no variables in common if j 6= j′ (for 1 ≤ j ≤ knr

and 1 ≤ j′ ≤ knr). Since every s-t tgd in Σ has at most m
universally quantified variables, it follows that the total number of
variables in x1, . . . ,xknr is at most mknr . Note that each ai is
either a null in J1 that is not in I1 or it is equal to an element oc-
curring in at least one tuple cj . Furthermore, if it is a null in J1

that is not in I1, then ai is the witness to one and only one exis-
tentially quantified variable in one of the above s-t tgds from Σ.
Note also that two tuples cj and cl may have elements in com-
mon. Let χ(x1, . . . ,xknr) be a conjunction of equalities such that
χ(c1, . . . , cknr) is a complete list of all equalities that hold be-
tween the elements from I1 that occur in the tuples c1, . . . , cknr .
Consequently,

I1 |= ∃x1 · · · ∃xknr ((

knr∧
j=1

ϕj(xj)) ∧ χ(x1, . . . ,xknr)).

Note that the formula in the preceding expression is logically equiv-
alent to a conjunctive query with (at most) N(n) = mknr vari-
ables. Since I1 →cq

N(n) I2, we have that

I2 |= ∃x1 · · · ∃xknr ((

knr∧
j=1

ϕj(xj)) ∧ χ(x1, . . . ,xknr)).

Let c′1, . . . , c′knr be tuples of elements from I2 such that I2 |=
(
∧knr

j=1 ϕj(c
′
j)) ∧ χ(c′1, . . . , c

′
knr). As a result of the chase pro-

cedure, there are tuples d′
1, . . . ,d

′
knr from J2 such that J2 |=∧knr

j=1 ψj(c
′
j ,d

′
j).

We will show that J2 |= ∃z1 · · · ∃znθ(z1, . . . , zn). In fact, we
will show that the existential quantifiers ∃zi, 1 ≤ i ≤ n, in this
conjunctive query can be witnessed by elements bi, 1 ≤ i ≤ n,
chosen from the tuples c′1, . . . , c

′
knr ,d

′
1, . . . ,d

′
knr in a way that

we now describe. For i ≤ n, let ai be the element that witnessed
the existential quantifier ∃zi in J1. We distinguish two cases.

Case 1: The element ai is a null in J1 that is not in I1. In
this case, every occurrence of ai in the facts f1, . . . , fknr arises
from only one tuple cj and from only one s-t tgd ∀xj(ϕj(xj) →
∃yjψj(xj ,yj)) in Σ; moreover, ai witnesses one and only one
existential quantifier, say ∃y, in the tuple ∃yj . In this case, we take
bi to be the element from the tuple d′

j that witnesses ∃y in J2. Note
that bi is a null in J2 that is not in I2.

Case 2: The element ai is in I1. In this case, ai may occur in
several different tuples cj . Pick one of them, say cr . Let bi be the
element of I2 that occurs in the tuple c′r and in the same position
as ai does in cr . Note that bi is an element of J2. Moreover, if a
tuple cs different from cr had been chosen where ai occurs in cs,
then the same element bi would have been obtained.

Since J1 satisfying
∧knr

j=1 ψj(cj ,dj) has the effect that J1 sat-

isfies θ(a1, . . . , an), and since J2 satisfies
∧knr

j=1 ψj(c
′
j ,d

′
j), this

tells us (from our mimicking construction, where bi mimics ai) that
J2 satisfies θ(b1, . . . , bn). Hence, J2 |= ∃z1 · · · ∃znθ(z1, . . . , zn),
as desired.

As an immediate consequence of Theorem 3.18, we obtain a sig-
nificantly improved version of Theorem 3.15 in which N has a
polynomial dependence on n. In fact, the degree of the polyno-
mial is equal to the maximum arity of the target schema.

THEOREM 3.19. (Theorem 3.15 revisited) Assume that M =
(S,T,Σ) is a GLAV mapping specified by a finite set Σ of s-t tgds.
Let k be the number of relation symbols in the target schema T,
let r be the maximum arity of the relation symbols in T, and let m
be the maximum number of universally quantified variables in the
s-t tgds in Σ. For every natural number n, let N(n) = mknr .
If I1 and I2 are source instances such that I1 ≡cqN(n) I2, then
chaseM(I1) ≡cqn chaseM(I2).

3.3 Failures of CQ-Locality

The next theorem says that Theorem 3.15 cannot be extended to
allow target dependencies.

THEOREM 3.20. There is a schema mapping M specified by
three s-t tgds and by a full target tgd such that the chase with re-
spect to M is not CQ-local.

PROOF. Define the schema mapping M as follows. The source
schema consists of a binary relation symbol P , and unary relation
symbols R and S. The target schema consist of a binary relation
symbol P ′, and unary relation symbols R′ and S′. The dependen-
cies of M are:

P (x, y)→ P ′(x, y), R(x)→ R′(x), S(x)→ S′(x),

P ′(x, y) ∧ P ′(y, z)→ P ′(x, z).

In the full version of this paper, we show that M is not CQ-local.

In Corollary 3.16, we showed that if M is a schema mapping
specified by an SO tgd, then the chase with respect to M is CQ-
local. However, as a corollary of Theorem 3.20, we now show that
this is not true when the schema mapping is specified by an st-SO
dependency, as defined in [AFN11]. These st-SO dependencies are
similar to SO tgds, but allow equalities in the conclusion. A notion
of the chase for st-SO dependencies, which produces a universal
solution, is defined in [AFN11].

COROLLARY 3.21. There is a schema mapping M specified by
an st-SO dependency such that the chase with respect to M is not
CQ-local.

PROOF. Let M be as in the proof of Theorem 3.20, where the
chase with respect to M is not CQ-local. Let M′ be the “copy”
schema mapping specified by the s-t tgds P ′(x, y) → P ′′(x, y),
R′(x)→ R′′(x), and S′(x)→ S′′(x). Let M′′ = M ◦M′. Then
M′′ is the same as M, up to a renaming of relation symbols. It is
shown in [AFN11] that if M1 is a schema mapping specified by s-t
tgds, target egds, and a weakly acyclic [FKMP05] set of target tgds,
and M2 is a schema mapping specified by s-t tgds, then M1 ◦M2

is a schema mapping specified by an st-SO dependency. Therefore,
M′′ is specified by an st-SO dependency. The result of the chase
using the st-SO dependency that specifies M′′ is a universal solu-
tion w.r.t. dM′′. But the universal solutions for M′′ are the same as

the universal solutions for M, up to a renaming of relation symbols,
since M′′ is the same as M, up to a renaming of relation symbols.
Since the chase with respect to M is not CQ-local, it follows easily
that the chase with respect to M′′ is not CQ-local.

4. Degrees of Equivalence of Schema Mappings
Schema mappings M1 and M2 are CQ-equivalent [FKNP08]

if certainM1(q, I) = certainM2(q, I) for every (not necessarily
Boolean) conjunctive query q and every source instance I . As men-
tioned in the Introduction, Madhavan and Halevy [MH03] based
their notion of composition on CQ-equivalence. Later on, Fagin
et al. [FKNP08] studied CQ-equivalence in the context of schema
mapping optimization, while Arenas et al. [APRR09] studied CQ-
equivalence in the context of inverting schema mappings.

The two main questions we will focus on in this section are:
• When is the composition of two GLAV mappings logically equiv-

alent to a GLAV mapping?
• When is the composition of two GLAV mappings CQ-equivalent

to a GLAV mapping?
The way we deal with these problems is to divide GLAV mappings
into a small number of well-studied classes, namely GAV, LAV,
extended LAV, and general GLAV (of course, these classes are not
mutually exclusive), and see when the composition of schema map-
pings from these various classes can be guaranteed to be a GLAV
mapping, and also to see when they can be guaranteed to be CQ-
equivalent to a GLAV mapping. It turns out that up to now, there
has been one gap in each of these scenarios, and we will fill both of
these gaps, in order to obtain a complete picture.

We also consider a bounded form of CQ-equivalence. If n is a
positive integer and M1, M2 are two schema mappings, then M1

and M2 are CQn-equivalent if certainM1(q, I) = certainM2(q, I)
for every (not necessarily Boolean) conjunctive query q with at
most n variables and for every source instance I . It follows from
[MH03, Proposition 3] that for every n ≥ 1, the composition of
two GLAV mappings is always CQn-equivalent to some GLAV
mapping. We feel that it is useful to give a direct proof of this
fact, which we do in Section 4.3.

4.1 Logical Equivalence

In the case of logical equivalence, the gap in our knowledge un-
til now has been the question as to whether the composition of a
GLAV mapping with a LAV mapping is necessarily logically equiv-
alent to a GLAV mapping. Our next theorem answers this pos-
itively. This generalizes a result of Arocena, Fuxman, and Miller
[AFM10], that the composition of LAV mappings is logically equiv-
alent to a GLAV mapping (in fact, to a LAV mapping). Our proof
also provides an alternative proof that the composition of LAV
mappings is logically equivalent to a LAV mapping, since in our
proof that a GLAV mapping composed with a LAV mapping is
GLAV, it happens that if the first mapping is LAV, then the com-
position is actually specified by LAV constraints.

We begin with a lemma. Recall that an element, or value, is an
entry of a tuple of a relation. If f is a function on the elements,
and I is an instance, then we write f(I) for the result of replacing
every element x in every tuple of I by f(x).

LEMMA 4.1. Let M be a LAV mapping. If J is a solution for I
with respect to M, and f is an arbitrary function on the elements,
then f(J) is a solution for f(I) with respect to M.

PROOF. This follows fairly easily from the viewpoint that f is
simply a renaming of elements (not necessarily one-to-one), and

LAV tgds are indifferent to renamings (thus, they fire in the same
way on tuples whether or not some entries of the tuple are equal).
The feature of LAV tgds that we used in this argument is that no
variable appears twice in a premise.

We now define a restriction of a tgd α → ∃ȳβ. Let X be the
set of variables that appear in α, let X ′ be a subset of X , and let
F be a function from X to X ′ that maps every variable in X ′ into
itself. Let α′ → ∃ȳβ′ be the result of modifying α → ∃ȳβ by
replacing every variable x in X by F (x). Then we call the tgd
α′ → ∃ȳβ′ a restriction of the tgd α → ∃ȳβ. For example,
the tgd R(x, x, z, x) → ∃yQ(x, x, y) is a restriction of the tgd
R(w, x, z, w)→ ∃yQ(w, x, y), where w is mapped to x.

THEOREM 4.2. If M12 is a GLAV mapping and M23 is a LAV
mapping, then M12 ◦M23 is logically equivalent to a GLAV map-
ping.

PROOF. (Sketch) Let M12 = (S1, S2, Σ12) and M23 = (S2, S3,
Σ23), where Σ12 is a finite set of s-t tgds, and Σ23 is a finite set of
LAV s-t tgds. For convenience, we assume that Σ12 is closed under
restriction (this is without loss of generality, since a tgd logically
implies each of its restrictions). We now define Σ13, and we shall
show that for the schema mapping M13 = (S1, S3, Σ13), we have
M13 = M12 ◦M23. Our definition of Σ13 is different from that
given in [AFM10]. We describe our construction of Σ13 somewhat
informally, by speaking about chasing formulas to get other formu-
las. For each tgd α → ∃ȳβ in Σ12, we chase β with Σ23, call the
result δ, and let α→ ∃q̄δ be a member of Σ13, where q̄ consists of
the variables in δ but not α.

We now show that Σ13 specifies the composition. We first show
that if (I1, I2) |= Σ12 and (I2, I3) |= Σ23, then (I1, I3) |= Σ13.
This is immediate, since the result of a chase is “forced”. We con-
clude by showing that if (I1, I3) |= Σ13, then there is I2 such that
(I1, I2) |= Σ12 and (I2, I3) |= Σ23. To simplify the discussion,
assume without loss of generality that I1 contains only constants.

Let us define a restricted chase of an instance I to be one where
a tgd α → ∃ȳβ is applied only when there is a one-to-one homo-
morphism of α into I . Since by assumption, Σ12 is closed under
restriction, it follows easily that a restricted chase of I is a univer-
sal solution for I with respect to Σ. Let J2 be the result of doing
a restricted chase of I1 with Σ12. We shall discuss how to assign
a value f(n) (which may be a constant or a null) to each null n
in J2 to obtain I2. Assume that the tgd α → ∃ȳβ fires in the re-
stricted chase of I1 with Σ12. Let J ′

2 be the subset of J2 that is
obtained by one firing of this tgd. We now define a function f that
assigns values to the nulls of J ′

2. The s-t tgd α → ∃ȳβ yields J ′
2

in the restricted chase of I1 with Σ12 because of a one-to-one ho-
momorphism h from α to I1. Since h is one-to-one, the relation
corresponding to the formula β in our identification of formulas
with instances is J ′

2, up to a one-to-one renaming of variables by
values. Let α→ ∃q̄δ be the member of Σ13 that arises from the tgd
α → ∃ȳβ in our construction of Σ13. Since (I1, I3) |= α → ∃q̄δ,
it follows from our construction of α → ∃q̄δ that there is a homo-
morphism h′ from U , the result of chasing J ′

2 with Σ23, into I3,
where h′ respects I1 (maps constants into themselves). Define f to
agree with h′ on the active domain of U , and to be the identity oth-
erwise. Since U is a solution for J ′

2 with respect to Σ23, it follows
from Lemma 4.1 that f(U) is a solution for f(J ′

2) with respect to
Σ23. That is, (f(J ′

2), f(U)) |= Σ23. Since f(U) = h′(U) ⊆ I3,
it follows that (f(J ′

2), I3) |= Σ23.
If a different J ′

2 (call it J ′′
2) arises from a different step of the

restricted chase, then the active domains of J ′
2 and J ′′

2 have in com-
mon at most constants, on which f is the identity. So if we repeat

this process to define f(n) for every null n in J2, we obtain a well-
defined function f . Let I2 = f(J2). Since (1) (f(J ′

2), I3) |= Σ23

for each J ′
2 in our construction, (2) I2 is the union of these in-

stances f(J ′
2), and (3) Σ23 is extended LAV (all we need for this

argument is that the premises of the s-t tgds are singletons), it fol-
lows that (I2, I3) |= Σ23. Furthermore, (I1, I2) |= Σ12, since
J2 is a solution for I1 (it is even universal), and I2 is a homomor-
phic image of J2 under a homomorphism (namely, f) that respects
I1 (and the solutions of I1 w.r.t. Σ12 are closed under homomor-
phisms that respect I1). Since we have shown that (I1, I2) |= Σ12

and (I2, I3) |= Σ23, this completes the proof.

COROLLARY 4.3 ([AFM10]). If both M12 and M23 are LAV
mappings, then M12 ◦M23 is logically equivalent to a LAV map-
ping.

PROOF. In the construction of the composition formula Σ13 in
the proof of Theorem 4.2, each premise of Σ13 is a premise of Σ12.
So if Σ12 is LAV, then so is Σ13.

Let us now consider Table 1, about the results of composition.
When an entry under the “Logical Equivalence" column is GLAV,
this means that the composition is guaranteed to be logically equiv-
alent to a GLAV mapping. For example, the entry under “Logical
Equivalence” for the row GAV ◦ GLAV says “GLAV”, and this
means that the composition of a GAV mapping with a GLAV map-
ping is always logically equivalent to a GLAV mapping. When an
entry is “Not GLAV”, this means that there is an example where
that composition is not logically equivalent to any GLAV mapping.
For example, the entry under “Logical Equivalence” for the row
LAV ◦ ex. LAV says “Not GLAV”, and this means that there is a
LAV mapping M12 and an extended LAV mapping M23 such that
M12 ◦M23 is not logically equivalent to any GLAV mapping.

If we now look at the first two columns (“Composition” and
“Logical Equivalence”) of Table 1, it is straightforward to verify
that we have covered all combinations of composing LAV, extended
LAV, GAV, and GLAV up to logical equivalence (that is, they are
easily inferred from what is in the table). For example, the case of
GAV ◦ extended LAV is covered by the case of GAV ◦ GLAV, in
the sense that because GAV ◦ GLAV is necessarily logically equiv-
alent to a GLAV mapping, so is GAV ◦ extended LAV. As another
example, the case of extended LAV ◦ extended LAV is covered by
the case of LAV ◦ extended LAV, in the sense that because there is
an example of LAV ◦ extended LAV where the result is not logi-
cally equivalent to any GLAV mapping, this negative example cov-
ers also extended LAV ◦ extended LAV.

4.2 CQ-equivalence

Let us consider an example from [FKPT05]. There are three
schemas S1, S2 and S3. Schema S1 consists of a single unary re-
lation symbol Emp of employees. Schema S2 consists of a single
binary relation symbol Mgr1, that associates each employee with a
manager. Schema S3 consists of a similar binary relation symbol
Mgr, that is intended to provide a copy of Mgr1. and an additional
unary relation symbol SelfMgr, that is intended to store employ-
ees who are their own manager. Consider now the schema map-
pings M12 = (S1, S2,Σ12) and M23 = (S2,S3,Σ23), where

Σ12 = { ∀e (Emp(e)→ ∃mMgr1(e,m)) }

Σ23 = { ∀e∀m (Mgr1(e,m)→ Mgr(e,m)),
∀e(Mgr1(e, e)→ SelfMgr(e)) }.

The SO tgd that specifies the composition M12 ◦M23 is given
in (1) in Section 2. It is shown in [FKPT05] that this SO tgd is not

logically equivalent to any finite (or even infinite) set of s-t tgds.
Note that M12 is LAV, and M23 is extended LAV. Can we say
anything positive about the composition of a LAV mapping with
an extended LAV mapping? In Theorem 4.6, we show that such a
composition (and even more, the composition of an arbitrary GLAV
mapping with an extended LAV mapping) is always CQ-equivalent
to a GLAV mapping. The proof of this theorem depends on a char-
acterization in [FKNP08] about when a schema mapping specified
by an SO tgd is CQ-equivalent to a GLAV mapping. We begin with
some definitions from [FKNP08].

DEFINITION 4.4. Assume that M = (S,T,Σ) is a schema
mapping, where Σ is either a finite set of s-t tgds or an SO tgd.
• Let I be a source instance and K a target instance.

The Gaifman graph of facts ofK w.r.t. I is a graph whose nodes
are the facts of K, and with an edge between two facts if they
have in common some element not in the active domain of I .4

A fact block (or simply f-block) of K w.r.t. I is a connected
component of the Gaifman graph of facts of K w.r.t. I .
The f-block size of K w.r.t. I is the maximum size of the f-
blocks of K w.r.t. I .
When I is understood from the context, we simply refer to the
Gaifman graph of facts ofK, the f-blocks ofK, and the f-block
size of K.
• We say that M (or Σ) has bounded f-block size if there is a

positive integer b such that for every source instance I , the f-
block size of core(chaseM(I)) w.r.t. I is at most b. We then
refer to the minimal such b as the f-block size of M (or of Σ).

We have the following theorem from [FKNP08].

THEOREM 4.5 ([FKNP08]). A schema mapping M speci-
fied by an SO tgd is CQ-equivalent to a schema mapping specified
by a finite set of s-t tgds if and only if M has bounded f-block size.

We can now prove that the composition of a GLAV mapping with
an extended LAV mapping is CQ-equivalent to a GLAV mapping.

THEOREM 4.6. If M12 is a GLAV mapping and M23 is an ex-
tended LAV mapping, then M12◦M23 is CQ-equivalent to a GLAV
mapping.

PROOF. Let M12 = (S1, S2, Σ12) and M23 = (S2,S3,Σ23)
be schema mappings, where Σ12 is a finite sets of s-t tgds, and Σ23

is a finite set of extended LAV constraints. Let M13 = M12◦M23.
We must show that M13 is CQ-equivalent to a GLAV mapping.

By [FKPT05], we know that there is an SO tgd Σ13 such that
M13 = (S1, S3, Σ13). It follows from Theorem 4.5 that to prove
the theorem, it is sufficient to show that core(chaseΣ13(I)) has
bounded f-block size w.r.t. I . Since, as shown in the proof of
Corollary 3.16, chaseΣ13(I) and chaseΣ23(chaseΣ12(I)) are ho-
momorphically equivalent, and since homomorphically equivalent
instances have the same core (up to isomorphism), it is sufficient
for us to show that core(chaseΣ23(chaseΣ12(I))) has bounded f-
block size.w.r.t. I . So it suffices to show that the f -blocks of
chaseΣ23(chaseΣ12(I)) have sizes bounded by a constant that de-
pends only on Σ12 and Σ23 (this is so because the core of an in-
stance K is a subinstance of K, hence a bound on the sizes of the
f -blocks of K is inherited by the core of K).
4In [FKNP08], it was assumed that the source instance I consists only of constants,
and so the Gaifman graph of K was defined not w.r.t. I , but instead by defining the
Gaifman graph of facts of K to be a graph whose nodes are the facts of K, and with
an edge between two facts if they have a null value in common,

Let n be the maximum number of atoms in the conclusions of
the s-t tgds in Σ12, let m be the maximum number of atoms in the
conclusions of the s-t tgds in Σ23, and let s be the number of s-t
tgds in Σ23. Let I be an S1-instance. We claim that every f -block
of chaseΣ23(chaseΣ12(I)) is of size at most nms. To see this, first
note that every f -block of chaseΣ12(I) is of size at most n. Fix now
an s-t tgd, say τ , in Σ23. Since τ is an extended LAV s-t tgd (that is,
it has a singleton premise), when we chase chaseΣ12(I) with Σ23,
we produce f -blocks that have size at most nm. By going over all
tgds in Σ23, we have that the f -blocks of chaseΣ23(chaseΣ12(I))
are of size at most nms.

The preceding result enables us to complete the picture on CQ-
equivalence, as given in the third column (“CQ-equivalence”) of
Table 1. For this CQ-equivalence column, just as for the Log-
ical Equivalence column, it is straightforward to verify that we
have covered all combinations of composing LAV, extended LAV,
GAV, and GLAV up to CQ-equivalence (that is, they are easily
inferred from what is in the table). The first three entries in the
CQ-equivalence column of Table 1 (those with no citation) follow
immediately from the corresponding entries in the Logical Equiv-
alence column of the table. The fourth and fifth entries in the CQ-
equivalence column of Table 1 follow from Theorem 4.6.

4.3 Bounded CQ-Equivalence

Again, let us begin with an example from [FKPT05]. Consider
the following three schemas S1, S2 and S3. Schema S1 consists
of a single binary relation symbol Takes, that associates student
names with the courses they take. Schema S2 consists of a similar
binary relation symbol Takes1, that is intended to provide a copy
of Takes, and of an additional binary relation symbol Student,
that associates each student name with a student id. Schema S3

consists of one binary relation symbol Enrollment, that asso-
ciates student ids with the courses the students take. Consider now
the schema mappings M12 = (S1, S2, Σ12) and M23 = (S2, S3,
Σ23), where

Σ12 = { ∀n∀c(Takes(n, c)→ Takes1(n, c)),

∀n∀c(Takes(n, c)→ ∃sStudent(n, s)) }
Σ23 = { ∀n∀s∀c(Student(n, s) ∧ Takes1(n, c)→

Enrollment(s, c)) }

It is shown in [FKPT05] that the composition M12 ◦M23 is not
CQ-equivalent to any GLAV mapping. Note that M12 is LAV, and
M23 is GAV. Can we say anything positive about the composition
of a LAV mapping with a GAV mapping? The next proposition says
that in fact the composition of any pair of GLAV mappings is al-
ways CQn-equivalent to a GLAV mapping. As we noted, this result
follows from [MH03, Proposition 3]. We feel that it is useful to give
a direct proof of this result, which we now do. In the fourth col-
umn (“CQn-equivalence) of Table 1, all entries are GLAV, which
follows since the last entry is GLAV.

PROPOSITION 4.7. Let n be a positive integer. The composi-
tion of GLAV mappings is CQn-equivalent to a GLAV mapping.

PROOF. Let M12 = (S1, S2, Σ12) and M23 = (S2,S3,Σ23)
be schema mappings, where Σ12 and Σ23 are finite sets of s-t tgds.
By [FKPT05], we know that there is an SO tgd σ that specifies
M12 ◦M23. Let I be an S1-instance, and let J be a result of
chasing I with σ. Let c1, . . . , cr be the distinct elements of I , and
let d1, . . . , dm be the distinct remaining elements of J . Let φI be
the formula that is the conjunction of all atoms over x1, . . . , xr

that hold in I when xi plays the role of ci, for each i. For ex-
ample, if R(c3, c7) holds in I , then one conjunct is R(x3, x7).
Let ψI be the formula that is the conjunction of all atoms over
x1, . . . , xr, y1, . . . , ym that hold in J when xi plays the role of ci,
and yj plays the role of dj , for each i, j. For example, if S(c3, d9)
holds in J , then one conjunct is S(x3, y9). Let τI be the s-t tgd

∀x1 · · · ∀xr(φI → ∃y1 · · · ∃ymψI).

Intuitively, τI describes exactly a result of chasing I with σ.
Let n be as in the statement of the proposition, let d be the num-

ber of relation symbols in S3, let r be the maximum arity of a
relation symbol of S3, and let N = dnr . It is easy to see that
each conjunctive query over S3 with at most n variables has at
most N distinct atoms. Let k be the maximum number of atoms
in a premise of a conjunct (“tgd part”) of σ. Let Σ be the set of
s-t tgds τI′ where I ′ has at most Nk facts. Let q be an arbitrary
conjunctive query over S3 with at most n variables, and let I be a
source instance. By definition of CQn-equivalence, we need only
show that certainΣ(q, I) = certainσ(q, I). Now certainΣ(q, I) ⊆
certainσ(q, I), since Σ is a logical consequence of σ. We now
show the opposite inclusion. Assume that ē ∈ certainσ(q, I); we
wish to show that ē ∈ certainΣ(q, I). Let J be a result of chasing
I with σ. So ē ∈ q(J). Since q has at most N atoms, there is J ′

with at mostN facts such that J ′ ⊆ J and ē ∈ q(J ′). There is then
I0 with at most Nk facts such that J ′ is in the result of chasing I0
with σ. Let J0 be the result of chasing I0 with σ. Since J ′ ⊆ J0,
it follows that ē ∈ q(J0). Let J1 be the result of chasing I with Σ.
So J1 contains the result of chasing I0 with Σ, which contains the
result of chasing I0 with τI0 , which contains J0. We just showed
that J0 ⊆ J1. Since ē ∈ q(J0), it then follows that ē ∈ q(J1).
Hence, since J1 is a universal solution for I with respect to Σ, it
follows from Theorem 2.2 that ē ∈ certainΣ(q, I), as desired.

5. Deciding CQ-equivalence
Let M1 and M2 be two given schema mappings, each specified

by either a finite set of s-t tgds or by an SO tgd. Assume that we
wish to tell whether M1 and M2 are logically equivalent, and also
whether they are CQ-equivalent. For each of these two decision
problems, there are three cases to consider.
1. M1 and M2 are both GLAV: It follows from Proposition 3.14

of [FKNP08] that two such mappings are CQ-equivalent if and
only if they are logically equivalent. Moreover, telling whether
two given finite sets of s-t tgds are logically equivalent is a de-
cidable problem, by using the chase [ABU79, MMS79].

2. M1 and M2 are both specified by SO tgds: Telling whether two
given SO tgds are logically equivalent is an undecidable prob-
lem [FPSS11, Theorem 1]. The decidability status of telling
whether two given SO tgds are CQ-equivalent is not known.
However, as also shown in [FPSS11], this problem does be-
come undecidable in the presence of additional source key con-
straints, that is, in the case where M1 and M2 are each speci-
fied by an SO tgd and a finite set of source key constraints.

3. One of M1 or M2 is specified by an SO tgd, and the other
is GLAV: Telling whether a given SO tgd and a given finite
set of s-t tgds are logically equivalent is an undecidable prob-
lem. This follows by examining the proof of Theorem 1 in
[FPSS11], which actually is derived from an undecidability re-
sult in [APR09] about inverses of schema mappings. In con-
trast, here we show that telling whether a given SO tgd and
a given finite set of s-t tgds are CQ-equivalent is a decidable
problem.

Table 1: Results of composition
Composition Logical Equivalence CQ-Equivalence CQn-Equivalence
GAV ◦GAV GLAV (even GAV) GLAV (even GAV) GLAV (even GAV)

[FKPT05]
GAV ◦GLAV GLAV GLAV GLAV

[FKPT05]
GLAV ◦ LAV GLAV GLAV GLAV

Theorem 4.2; [AFM10] for LAV ◦ LAV
LAV ◦ ex. LAV Not GLAV GLAV GLAV

[FKPT05] Theorem 4.6
GLAV ◦ ex. LAV Not GLAV GLAV GLAV

[FKPT05] Theorem 4.6
LAV ◦GAV Not GLAV Not GLAV GLAV

[FKPT05] [FKPT05]
GLAV ◦GLAV Not GLAV Not GLAV GLAV

[FKPT05] [FKPT05] [MH03]; Proposition 4.7

As the first step in showing our decidability result, we prove the
next proposition. An f-block is defined in Definition 4.4.

PROPOSITION 5.1. The following two decision problems are
reducible to each other.

• Given an SO tgd σ and a finite set Σ of s-t tgds, is σ CQ-
equivalent to Σ?

• Given an SO tgd σ and a positive integer b, is the f -block size
of σ bounded by b?

PROOF. The proof of Theorem 4.10 in [FKNP08] shows that,
given an SO tgd σ and a positive integer b, we can construct a finite
set Σσ,b of s-t tgds with the following property: the f -block size of
σ is bounded by b if and only if σ is CQ-equivalent to Σσ,b.5

We now show that the first problem is reducible to the second.
Suppose we are given an SO tgd σ and a finite set Σ of s-t tgds, and
we want to test whether or not σ is CQ-equivalent to Σ. Let b be
the maximum number of atoms in the conclusions of the tgds in Σ;
as pointed out in [FKNP08], the f -block size of Σ is bounded by
b. We first test whether or not the f -block size of σ is bounded by
b. If the answer is “no", then σ is not CQ-equivalent to Σ. This is
because if σ and Σ were CQ-equivalent, then it follows from The-
orem 3.5 of [FKNP08] that for each source instance I , necessarily
core(chaseσ(I)) and core(chaseΣ(I)) would be isomorphic, and
so the f-block sizes of σ and Σ would be the same. So assume
that the answer is ‘yes”. By our earlier comment, it follows that
σ is CQ-equivalent to Σσ,b. So σ is CQ-equivalent to Σ if and
only if Σ is CQ-equivalent to Σσ,b. As we noted earlier, it follows
from Proposition 3.14 of [FKNP08] that for finite sets of s-t tgds,
logical equivalence coincides with CQ-equivalence. So Σ is CQ-
equivalent to Σσ,b if and only if Σ is logically equivalent to Σσ,b.
But it is decidable whether Σ is logically equivalent to Σσ,b, by
using the chase [ABU79, MMS79].

Next we show that the second problem is reducible to the first.
For this, given an SO tgd σ and a bound b, we first construct the set
Σσ,b and then test whether or not σ is CQ-equivalent to Σσ,b. As
we noted, σ is CQ-equivalent to Σσ,b if and only if the f -block size
of σ is bounded by b.

We now prove the decidability of the question in the second bul-
let of Proposition 5.1.
5This property of Σσ,b is not stated explicitly in that proof, but it can be derived from
that proof by in particular noting that the f -block size of Σσ,b is bounded by b. We
remark that Σσ,b consists of s-t tgds of the form τI , as defined in Proposition 4.7.

PROPOSITION 5.2. There is an algorithm for the following prob-
lem: Given an SO tgd σ and a positive integer b, is the f -block size
of σ bounded by b?

PROOF. Let σ be an SO tgd, and let r(σ) be the maximum
number of atoms in any of the premises inside of σ. It is shown
in the proof of Proposition 4.8 in [FKNP08] that r(σ) witnesses
that σ has bounded support, that is to say, for every source in-
stance I and every target instance J , if J I→ core(chaseσ(I)),
then there is a subinstance I ′ of I such that |I ′| ≤ r(σ)|J | and

J
I′→ core(chaseσ(I ′)). 6

Consider the following algorithm: given an SO tgd σ and a pos-
itive integer b, go over all source instances I ′ such that |I ′| ≤
r(σ)(b + 1) (there are only finitely many such instances, and they
can be computed from σ and b). For each such instance I ′, compute
the f -block size of core(chaseσ(I ′)). If one of these f -block sizes
is bigger than b, report that the f -block size of σ is bigger than b;
otherwise, report that the f -block size of σ is at most b.

For the correctness of the algorithm, it is clear that if one of the
computed f -block sizes is bigger than b, then the f -block size of σ
is greater than b. For the other direction, we will show that if the
f -block size of σ is bigger than b, then there is an instance I ′ such
that |I ′| ≤ r(σ)(b + 1) and the f -block size of core(chaseσ(I ′))
is bigger than b. So, assume that the f -block size of σ is big-
ger than b. Then there is a source instance I such that the f -
block size of core(chaseσ(I)) is at least b + 1. Consider an f -
block C of core(chaseσ(I)) of size at least b + 1. Let J be a
subset of C such that |J | = b + 1 and J is a connected sub-
graph of the Gaifman graph of facts of core(chaseσ(I)) w.r.t. I .
Since J ⊆ core(chaseσ(I)), we have J I→ core(chaseσ(I)), and
so by our earlier comments, there is a subinstance I ′ of I such
that |I ′| ≤ r(σ)|J | = r(σ)(b + 1) and J I→ core(chaseσ(I ′)).
Let h be the homomorphism from J to core(chaseσ(I ′)) that re-
spects I . Since I ′ ⊆ I , it follows that h is a homomorphism
from J to core(chaseσ(I)). Therefore, since J is a part of an
f -block in core(chaseσ(I)), it follows that h cannot map J into
anything smaller than J , so h simply renames the nulls in a one-
to-one manner. Moreover, the image of J under this homomor-
phism h is a connected subgraph of the Gaifman graph of facts

6In [FKNP08] it was assumed that I consists only of constants, and that homomor-

phisms map each constant onto itself, and so → rather than I→ was used in the defini-
tion of bounded support.

of core(chaseσ(I ′)), since the facts of J form a connected graph.
Hence, core(chaseσ(I ′)) contains a f -block of size at least b + 1,
which was to be shown.

By combining Proposition 5.1 with Proposition 5.2, we obtain
the following result.

THEOREM 5.3. There is an algorithm for the following deci-
sion problem: Given a schema mapping M1 specified by an SO
tgd and a GLAV mapping M2, is M1 CQ-equivalent to M2?

COROLLARY 5.4. There is an algorithm for the following deci-
sion problem: Given three GLAV mappings M1, M2, and M3, is
M1 ◦M2 CQ-equivalent to M3?

PROOF. In [FKPT05], there is algorithm for finding an SO tgd
σ that is logically equivalent to M1 ◦M2. We then check whether
σ is CQ-equivalent to M3, by making use of the algorithm guaran-
teed by Theorem 5.3.

Madhavan and Halevy [MH03] claim without proof that the de-
cision problem in Corollary 5.4 is in Πp

2 . This claim would imply
Theorem 5.3, since it is shown in [AFN11] that given a schema
mapping M specified by an SO tgd, there is a procedure for find-
ing GLAV mappings M1 and M2 such that M = M1 ◦M2.

6. Concluding Remarks
We have introduced the notion of a CQ-local transformation. In-

tuitively, a CQ-local transformation has the property that if two
instances are indistinguishable using conjunctive queries of a suf-
ficiently large size N , then their images under the transformation
are also indistinguishable using conjunctive queries of a given size
n. We proved that for GLAV mappings, the chase is CQ-local, and
showed that N can be taken to be polynomial in n. One way of
looking at the CQ-locality of the chase is that the chase is “uni-
formly continuous”. We showed that if target dependencies are
allowed, then CQ-locality of the chase may fail.

We investigated several different notions of equivalence of schema
mappings and completed the picture as to when the composition
of schema mappings from various subclasses of GLAV mappings
is guaranteed to be logically equivalent to a GLAV mapping, and
when it is guaranteed to be CQ-equivalent to a GLAV mapping.

Finally, we proved that the following problem is decidable: given
an SO tgd and a finite set of s-t tgds, are they CQ-equivalent? This
result sheds light on the differences between CQ-equivalence and
logical equivalence, since the following problem is known to be
undecidable: given an SO tgd and a finite set of s-t tgds, are they
logically equivalent?

There are several interesting issues to pursue. A concrete tech-
nical question is the decidability of the following problem: given
an SO tgd, is it CQ-equivalent to some GLAV mapping? It follows
from results in [AFN11] that this is equivalent to the decidability of
the following problem: given two GLAV mappings, is their com-
position CQ-equivalent to some GLAV mapping? More broadly,
we feel that the notion of CQ-locality (and its alternate interpreta-
tion as uniform continuity) is potentially a valuable tool, with much
more to be explored.

7. References
[ABFL04] M. Arenas, P. Barceló, R. Fagin, and L. Libkin. Locally

consistent transformations and query answering in data
exchange. In ACM Symp. on Principles of Database Systems,
pages 229–240, 2004.

[ABLM10] M. Arenas, P. Barceló, L. Libkin, and F. Murlak. Relational
and XML Data Exchange. Synthesis Lectures on Data
Management. Morgan & Claypool Publishers, 2010.

[ABU79] A. V. Aho, C. Beeri, and J. D. Ullman. The theory of joins in
relational databases. ACM Trans. on Database Systems,
4(3):297–314, 1979.

[AFM10] P.C. Arocena, A. Fuxman, and R.J. Miller. Composing
local-as-view mappings: closure and applications. In Int.
Conf. on Database Theory, pages 209–218, 2010.

[AFN11] M. Arenas, R. Fagin, and A. Nash. Composition with target
constraints. Logical Methods in Computer Science,
7(3:13):1–38, 2011.

[APR09] M. Arenas, J. Pérez, and C. Riveros. The recovery of a schema
mapping: Bringing exchanged data back. ACM Trans. on
Database Systems, 34(4), 2009.

[APRR09] M. Arenas, J. Pérez, J.L. Reutter, and C. Riveros. Inverting
schema mappings: Bridging the gap between theory and
practice. PVLDB, 2(1):1018–1029, 2009.

[CM77] A. K. Chandra and P. M. Merlin. Optimal implementation of
conjunctive queries in relational data bases. In ACM Symp. on
Theory of Computing, pages 77–90, 1977.

[Fag07] R. Fagin. Inverting schema mappings. ACM Trans. on
Database Systems, 32(4), 2007.

[FKMP05] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data
exchange: Semantics and query answering. Theoretical
Computer Science, 336(1):89–124, 2005.

[FKNP08] R. Fagin, P. G. Kolaitis, A. Nash, and L. Popa. Towards a
theory of schema-mapping optimization. In ACM Symp. on
Principles of Database Systems, pages 33–42, 2008.

[FKPT05] R. Fagin, P. G. Kolaitis, L. Popa, and W.-C. Tan. Composing
schema mappings: Second-order dependencies to the rescue.
ACM Trans. on Database Systems, 30(4):994–1055, 2005.

[FKPT11] R. Fagin, P.G. Kolaitis, L. Popa, and W-C. Tan. Schema
mapping evolution through composition and inversion. In
Z. Bellahsene, A. Bonifati, and E. Rahm, editors, Schema
Matching and Mapping, pages 191–222. Springer, 2011.

[FPSS11] I. Feinerer, R. Pichler, E. Sallinger, and V. Savenkov. On the
undecidability of the equivalence of second-order tuple
generating dependencies. In Alberto Mendelzon Workshop,
2011.

[FSV95] R. Fagin, L. Stockmeyer, and M. Y. Vardi. On monadic NP vs.
monadic co-NP. Inf. and Computation, 120(1):78–92, July
1995.

[HN92] P. Hell and J. Nešetřil. The core of a graph. Discrete
Mathematics, 109:117–126, 1992.

[Kol05] P. G. Kolaitis. Schema mappings, data exchange, and metadata
management. In ACM Symp. on Principles of Database
Systems, pages 61–75, 2005.

[Len02] M. Lenzerini. Data integration: A theoretical perspective. In
ACM Symp. on Principles of Database Systems, pages
233–246, 2002.

[MH03] J. Madhavan and A. Y. Halevy. Composing mappings among
data sources. In Int. Conf. on Very Large Data Bases, pages
572–583, 2003.

[MMS79] D. Maier, A. O. Mendelzon, and Y. Sagiv. Testing implications
of data dependencies. ACM Trans. on Database Systems,
4(4):455–469, 1979.

[NdM09] Jaroslav Nešetřil and Patrice Ossona de Mendez. From sparse
graphs to nowhere dense structures: Decompositions,
independence, dualities and limits. In Proc. of the Fifth
European Congress of Mathematics, 2009.

[PSS11] R. Pichler, E. Sallinger, and V. Savenkov. Relaxed notions of
schema mapping equivalence revisited. In Int. Conf. on
Database Theory, pages 90–101, 2011.

[Ros08] B. Rossman. Homomorphism preservation theorems. J. ACM,
55(3), 2008.

