
Learning Schema Mappings⇤

Balder ten Cate

UC Santa Cruz

btencate@ucsc.edu

Víctor Dalmau

Universitat Pompeu Fabra

victor.dalmau@upf.edu

Phokion G. Kolaitis

UC Santa Cruz &

IBM Research–Almaden

kolaitis@cs.ucsc.edu

ABSTRACT
A schema mapping is a high-level specification of the relationship
between a source schema and a target schema. Recently, a line of
research has emerged that aims at deriving schema mappings au-
tomatically or semi-automatically with the help of data examples,
i.e., pairs consisting of a source instance and a target instance that
depict, in some precise sense, the intended behavior of the schema
mapping. Several different uses of data examples for deriving, re-
fining, or illustrating a schema mapping have already been pro-
posed and studied.

In this paper, we use the lens of computational learning theory
to systematically investigate the problem of obtaining algorithmi-
cally a schema mapping from data examples. Our aim is to lever-
age the rich body of work on learning theory in order to develop a
framework for exploring the power and the limitations of the vari-
ous algorithmic methods for obtaining schema mappings from data
examples. We focus on GAV schema mappings, that is, schema
mappings specified by GAV (Global-As-View) constraints. GAV
constraints are the most basic and the most widely supported lan-
guage for specifying schema mappings.

We present an efficient algorithm for learning GAV schema map-
pings using Angluin’s model of exact learning with membership
and equivalence queries. This is optimal, since we show that nei-
ther membership queries nor equivalence queries suffice, unless the
source schema consists of unary relations only. We also obtain re-
sults concerning the learnability of schema mappings in the context
of Valiant’s well known PAC (Probably-Approximately-Correct)
learning model. Finally, as a byproduct of our work, we show that
there is no efficient algorithm for approximating the shortest GAV
schema mapping fitting a given set of examples, unless the source
schema consists of unary relations only.

Categories and Subject Descriptors
H.2.5 [Heterogeneous Databases]: Data translation
I.2.6 [Learning]: Concept learning

⇤This research was partially supported by NSF Grant IIS-0905276.
We are grateful to Vitaly Feldman and David Helmbold for helpful
discussions.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICDT 2012, March 26–30, 2012, Berlin, Germany.
Copyright 2012 ACM 978-1-4503-0791-8/12/03 ...$10.00

General Terms
Languages, Algorithms, Theory
Keywords
Schema mappings, data exchange, computational learning theory

1. INTRODUCTION
A schema mapping is a high-level specification of the relation-

ship between two database schemas, called the source schema and
the target schema. Schema mappings constitute the basic building
blocks in both data exchange and data integration (see the surveys
[10, 35, 37]). Obtaining a schema mapping between two schemas
is an indispensable first step in data exchange, data integration, and
other major data inter-operability tasks.

Several different systems for designing and deriving schema
mappings have already been built; these include Clio [29], HePToX
[13], and Microsoft’s mapping composer [11]. A common char-
acteristic of these systems is that they produce schema mappings
from visual annotations (e.g., attribute correspondences) between
the source schema and the target schema. In turn, these visual an-
notations are obtained automatically or semi-automatically using
schema matching techniques or via an interaction with the users.

In a parallel direction, researchers have investigated how schema
mappings can be illustrated, refined, or derived using data exam-
ples, where a data example is a pair consisting of a source instance
and a target instance. Papers in which data examples are used to
illustrate and refine schema mappings include [2, 43], while pa-
pers in which data examples are used to derive schema mappings
include [19, 26, 27, 4]. In particular, [27] derives a schema map-
ping from a single data example using a cost model that takes into
account several different parameters, including the size of the syn-
tactic description of the schema mapping. In general, given a set of
data examples, there may exist several pairwise logically inequiv-
alent schema mappings that “fit” the given data examples. In [4],
an algorithm was designed that, given a finite set of data exam-
ples, decides whether or not there exists a GLAV schema mapping
(i.e., a schema mapping specified by Global-and-Local-As-View
constraints) that “fits” these data examples. If such a fitting GLAV
schema mapping exists, then the algorithm returns the “most gen-
eral” one such schema mapping. Similar results are obtained in [4]
for the case of GAV schema mappings.

A related investigation has focused on the problem of which
schema mappings can be uniquely characterized via a finite set of
data examples [3, 40].

In this paper, we cast the problem of obtaining algorithmically
a schema mapping from data examples as a learning problem and
then embark on a systematic investigation of this problem using
concepts and methods of computational learning theory. Our aim
is to leverage the rich body of work on learning theory in order to

develop a framework for exploring the power and the limitations
of the various algorithmic methods for obtaining schema mappings
from data examples. Computational learning theory can be suc-
cinctly described as the mathematical analysis of machine learn-
ing problems and algorithms. It was pioneered by L. Valiant in
his 1984 seminal paper [41], in which he proposed the efficient
Probably-Approximately-Correct (PAC) learning model. Since that
time, several other learning models have been proposed and investi-
gated in depth. A particularly prominent and well-studied model is
the exact learning model, which was introduced by D. Angluin [5].

We focus on GAV schema mappings, that is, schema map-
pings specified by Global-As-View (GAV) constraints. As is well
known, GAV constraints form the most basic high-level language
for specifying schema mappings; furthermore, GAV constraints
are supported by essentially every information integration system,
be it an industrial tool or an academic prototype. We will write
GAV(S,T) to denote the class of all GAV schema mappings over
a given source schema S and target schema T.

Here, we study the learnability of GAV schema mappings in An-
gluin’s exact learning model. In this model, a learning algorithm
has to identify a “goal” concept from a class of concepts by asking
a number of queries that are answered by oracles; the main types
of queries considered in the literature are membership queries and
equivalence queries. In our context, the “goal” concept is some
schema mapping that we wish to identify up to logical equivalence.
A membership query asks whether a particular target instance is
a solution for a particular source instance, while an equivalence
query asks whether a particular schema mapping is logically equiv-
alent to the goal schema mapping. One could also consider other
types of queries, such as whether a particular target instance is a
universal solution for a particular source instance, or asking for a
universal solution for a particular source instance; however, it turns
out that, in our context, both these types of queries are equivalent
to membership queries. We say that a concept class is efficiently ex-
actly learnable with membership and equivalence queries if there is
a polynomial-time algorithm1 such that for every goal schema map-
ping, the algorithm will, after asking a number of membership and
equivalence queries, produce a candidate schema mapping that is
logically equivalent to the goal schema mapping. The notion of ef-
ficiently exactly learnable with membership queries and the notion
of efficiently exactly learnable with equivalence queries are defined
in an analogous way by restricting the type of queries asked.

In the computational learning theory literature, the exact learning
model with membership queries is regarded as suitable for learn-
ing problems involving reverse engineering, that is, for problems
in which the specification of a “goal” device has to be discovered
from the behavior of that device. In our context, exact learning
with membership queries naturally captures a scenario in which we
seek to discover the description of an underlying schema mapping
from its data-exchange behavior. For this, the user may use data
examples that are available in the form of a pair of source and tar-
get instances (e.g., entries for a particular author in the DBLP and
the ACM digital library) or can directly construct small test data
examples. The oracle for the membership problem could be the
executable code for exchanging data according to some underlying
schema mapping; the schema mapping itself may have been lost or,
for proprietary reasons, only the executable code derived from that
schema mapping is made available. Exact learnability with mem-
bership and equivalence queries can be naturally viewed as exact
learning with membership queries, where, in addition, the learning
algorithm is allowed to make a number of mistakes until it finds the
1The precise definition of a polynomial-time algorithm in the con-
text of exact learning is given in Section 2.2.

“goal” concept. Intuitively, efficient exact learnability with mem-
bership and equivalence learning amounts to efficient learning with
membership queries and a bounded number of mistakes.

Our main results yield a complete picture for the efficient learn-
ability of GAV schema mappings in the exact learning model with
membership and/or equivalence queries.

THEOREM A. For every source schema S and every target
schema T, the concept class GAV(S,T) of all GAV schema map-
pings from S to T is efficiently exactly learnable with membership
and equivalence queries.

The preceding Theorem A is optimal, in the sense that both
membership and equivalence queries are needed, unless the source
schema contains unary relation symbols only.

THEOREM B. Let S be a source schema and T a target
schema.

1. If S contains a relation symbol of arity at least two, then

a. GAV(S,T) is not efficiently exactly learnable with mem-
bership queries;

b. GAV(S,T) is not efficiently exactly learnable with equiv-
alence queries,

2. If S contains only unary relation symbols, then

a. GAV(S,T) is efficiently exactly learnable with member-
ship queries;

b. GAV(S,T) is efficiently exactly learnable with equiva-
lence queries,

Besides exact learnability with membership queries and/or
equivalence queries, we also consider Valiant’s PAC learning
model [41]. In this model, roughly speaking, a learning algorithm
is presented with a number of randomly generated examples, ac-
cording to some probability distribution, where the examples are
labeled according to an unknown target GAV schema mapping, and
the algorithm has to produce a GAV schema mapping such that, on
examples generated according to the same probability distribution,
the hypothesis is approximately correct.

THEOREM C. Let S be a source schema and T a target
schema.

1. If S contains a relation symbol of arity at least two, then
GAV(S,T) is not efficiently PAC learnable, provided RP 6=
NP (where RP is randomized polynomial time).

2. If S contains only unary relation symbols, then GAV(S,T) is
efficiently PAC learnable.

As a byproduct of our negative results about PAC learnability, we
establish that, under standard complexity-theoretic assumptions, it
is not possible to efficiently compute, given a set of data examples,
a fitting GAV schema mapping whose size is within a polynomial
of the size of the smallest fitting GAV schema mapping. This is a
pure non-approximability result that is of interest in its own right
(especially in the light of the work in [27]), but is obtained via our
results on non-efficient PAC learnability.

In [40], the class GAV-CA(S,T) of all c-acyclic GAV schema
mappings was introduced. The main finding was that the c-acyclic
GAV schema mappings are precisely those GAV schema mappings
(up to logical equivalence) that are uniquely characterizable by a
finite set of universal examples. In particular, this implies that
the class GAV-CA(S,T) of c-acyclic GAV schema mappings is
learnable (but not necessarily efficiently learnable) with member-
ship queries. Nevertheless, we show that the negative results for

efficient learnability listed in Theorems B and C remain true when
GAV(S,T) is replaced by GAV-CA(S,T).

Over the years, there have been numerous uses of machine learn-
ing in data management. For example, machine learning algorithms
are ubiquitous in data mining. Furthermore, machine learning algo-
rithms have been used to discover database dependencies (e.g., see
[23, 25]) and database queries [32, 42, 30]. See also Section 2.5. In
information integration, there has been a series of investigations on
machine learning algorithms for schema matching, including [20,
21, 38]. To the best of our knowledge, the work reported here is the
first systematic effort to analyze a problem in information integra-
tion from the viewpoint of computational learning theory.

2. PRELIMINARIES

2.1 Databases and Schema Mappings
Schemas, Instances, and Homomorphisms A schema is a

nonempty finite sequence of relation symbols S = (S1, . . . , Sn

),
where each S

i

has a positive integer arity(S
i

) as its associated ar-
ity. An instance of the schema S, or S-instance, is a sequence
I = (SI

1 , . . . , S
I

n

), where each SI

i

is a relation (over some do-
main) of arity arity(S

i

). If I is a database instance and a is a tuple
belonging to the relation SI

i

, then we call S
i

(a) a fact of I . The
active domain of a database instance I , denoted by adom(I), is
the collection of all values occurring in facts of I . If I and I 0 are
instances of the same schema, then a homomorphism h : I ! I 0

is a function from adom(I) to adom(I 0), such that for every fact
S
i

(a1, . . . , ak

) of I , we have that S
i

(h(a1), . . . , h(ak

)) is a fact
of I 0. If (x) is a conjunction of atomic formulas over S, then
the canonical database for is the S-instance obtained by viewing
every atomic formula of as a fact.

The direct product I ⇥ I 0 of two S-instances I, I 0, is the
S-instance whose active domain consists of pairs ha, a0i with
a 2 adom(I) and a0 2 adom(I 0) and that contains all
facts S

i

(ha1, a
0
1i, . . . , hak

, a0
k

i) (with k = arity(S
i

)) such that
(a1, . . . , ak

) 2 SI

i

and (a0
1, . . . , a

0
k

) 2 SI

0
i

. The disjoint union
I � I 0 of two S instance I, I 0 is the (unique-up-to-isomorphism)
instance consisting of all facts that belong either to I or to I⇤, where
I⇤ is some isomorphic copy of I 0, such that I and I⇤ have disjoint
active domains. For those readers familiar with universal algebra,
direct product and disjoint union are precisely the meet and join op-
erators of the homomorphism-lattice of S-instances. An instance I
is connected if it cannot be represented as the disjoint union of two
non-empty S-instances. Every instance can be represented as the
disjoint union of its maximal connected subinstances, also called
connected components.

Schema Mappings, Data Exchange and Universal Solutions
A schema mapping is a declarative specification of the relationship
between two database schemas. Formally, a schema mapping is
a triple M = (S,T,⌃), where S and T are database schemas,
called the source schema and the target schema, and ⌃ is a fi-
nite set of constraints in the form of formulas of some logical lan-
guage. Here, we will consider the logical language of Global-As-
View (GAV) constraints, i.e., first-order sentence of the form

8x(�(x)! (x)),

where x is a sequence of variables, �(x) is a conjunction of atomic
formulas over S, and (x) is an atomic formula over T such that
each variable x 2 x occurs in �. By an atomic formula over a
schema, here, we mean a formula of the form R(x1, . . . , xn

) (re-
peating variables is allowed), where R belongs to the schema and

has arity n. For example, the first-order sentence

8x, y, z(E(x, y) ^ F (y, z)! P (x, z))

is a GAV constraint. A GAV schema mapping is a schema mapping
specified by a finite set of GAV constraints.

We will usually assume a fixed source schema S and target
schema T. By a source instance, we will mean an instance for
the schema S; by a target instance, we will mean an instance for
the target schema T. We will make a habit to write I, I 0, . . . for
the source instances and to write J, J 0, . . . for the target instances.
We say that a target instance J is a solution for a source instance
I with respect to (w.r.t.) a schema mapping M = (S,T,⌃) if
(I, J) |= ⌃, i.e., if I and J together satisfy all the constraints of
M. Two schema mappings M,M0 over the same schemas are log-
ically equivalent, denoted by M ⌘M0, if for all source instances
I and target instances J , J is a solution for I w.r.t. M if and only
if J is a solution for I w.r.t. M0.

Data exchange is the problem of constructing a solution for a
given source instance with respect to a schema mapping. A source
instance can have many solutions, typically infinitely many. Uni-
versal solutions have been identified as the preferred solutions for
data exchange [22]. A solution J for a source instance I with re-
spect to a schema mapping M is universal if for every other so-
lution J 0 of I w.r.t. M, there is a homomorphism h : J ! J 0

that is constant on the active domain of I , i.e., such that h(a) = a
for all a 2 adom(I) \ adom(J). Intuitively, a universal solution
contains only information that necessarily belongs to a solution of
the given source instance. For example, if M is the schema map-
ping specified by the above GAV constraint and I is the source
instance consisting of the facts E(a, b), E(a, d), F (b, c), then the
target instance J consisting of just the fact P (a, c) is a universal
solution for I w.r.t. M; in contrast, the target instance J 0 consist-
ing of the facts P (a, c) and P (a, d) is a solution for I w.r.t. M,
but not a universal one. If M is a GAV schema mapping, then for
every source instance I , there is a unique target instance J with
adom(J) ✓ adom(I) that is a universal solution of I w.r.t. M.
This target instance, better known as the canonical universal solu-
tion of I and denoted by can-solM(I), is computable from I in
polynomial time [22].

Since we will work with schema mappings over a fixed source
schema and target schema, we will often identify a schema map-
ping with its set of constraints.

2.2 Exact learning models
Informally, an exact learning algorithm is an algorithm that iden-

tifies an unknown goal concept by asking a number of queries about
it. The queries are answered by an oracle that has access to the goal
concept. In this paper, we consider the two most extensively stud-
ied kinds of queries: membership queries and equivalence queries.
We will first review basic notions from computational learning the-
ory, such as the notion of a concept, and then explain what it means
for a concept class to be efficiently exactly learnable with member-
ship and/or equivalence queries. Afterwards, we will explain how
GAV schema mappings can be viewed as a concept class.

Let X be a (possibly infinite) set of examples. A labeled exam-
ple is any member of X ⇥ {0, 1}. We will refer to an example
of the form (x, 0) as a negative example and to an example of the
form (x, 1) as a positive example. A concept over X is a function
c : X ! {0, 1}, and a concept class C is a collection of concepts.
We will often implicitly identify a concept c with the set of all ex-
amples x such that c(x) = 1. It is assumed that concepts are spec-
ified using some representation system so that one can speak of the
length of the specification of a concept. More formally, a represen-

tation system for C is a string language L over some finite alphabet
⌃, together with a surjective function r : L ! C. For every con-
cept representation ` 2 L, we write |`| to denote its length (as a
string). For every concept c 2 C, we write size(c) to denote the
length of the smallest representation, i.e., min

r(`)=c

|`|. Similarly,
we assume a representation system, with a corresponding notion of
length, for the examples in X . Sometimes, when there is no risk of
confusion, we may forget about the distinction between a concept
and its representation.

As an example encountered very often in computational learning
theory, suppose that X = {0, 1}n is the set of all n-ary boolean as-
signments. Then one might consider the concept class consisting of
all Boolean functions c : {0, 1}n ! {0, 1} represented by means
of DNFs (i.e., Boolean formulas in disjunctive normal form) over
the set of variables x1, . . . , xn

.
For every concept c, we denote by MEM

c

the membership oracle
for c, that is, the oracle that takes as input an example x and returns
its label, c(x), according to c. Similarly, for every concept c 2 C,
we denote by EQ

c

, the equivalence oracle for c, that is, the oracle
that takes as input the representation of a concept h and returns
“yes”, if h = c, or a counterexample x in the symmetric difference
h� c, otherwise.

An exact learning algorithm with membership and/or equiva-
lence queries for a concept class C is an algorithm alg that takes
as input a natural number n and has access to the membership ora-
cle and/or equivalence oracle for an unknown goal concept2 c 2 C
of size3 at most n. The algorithm alg must terminate after finite
amount of time and output (some representation of) the goal con-
cept c. This notion was introduced by Angluin [5]. A little later on,
Angluin [6] also introduced the notion of a polynomial-time exact
learning algorithm. Specifically, we say that an exact learning al-
gorithm alg with membership and/or equivalence queries runs in
polynomial time if there exists a two-variable polynomial p(n,m)

such that at any point during the run of the algorithm, the time
used by alg up to that point (counting one step per oracle call) is
bounded by p(n,m), where m the size of the largest counterexam-
ple returned by calls to the equivalence oracle up to that point in
the run (m = 0 if no equivalence queries have been used).

There is a delicate issue about this notion of polynomial time that
we now discuss. One might be tempted to relax the previous def-
inition by requiring merely that the total running time is bounded
by p(n,m). However, this change in the definition would give rise
to a wrong notion of a polynomial-time algorithms in this context
by way of a loophole in the definition. Indeed, under this change,
one could design a learning algorithm that, in a first stage, identi-
fies the goal hypothesis by (expensive) exhaustive search and that,
once this is achieved, forces —by asking equivalence queries with
appropriate modification of the goal concept— the equivalence or-
acle to return large counterexamples that would make up for the
time spent during the exhaustive search phase.

We say that the algorithm alg exactly learns a concept class
C with membership and/or equivalence queries if for all natural
numbers n and for all concepts c 2 C with size(c) n, when alg
is run on input n and with a membership oracle MEM

c

and/or an
equivalence oracle EQ

c

, it outputs a representation of c.
A concept class C is efficiently exactly learnable with member-

ship and/or equivalence queries if there is an exact learning algo-

2We use the term “goal concept” instead of the term “target concept” (the
standard term in computational learning theory), because the latter clashes
with the use of the term “target” for schema mappings.
3While standard in learning theory literature, the assumption that the learn-
ing algorithm knows the size of the goal concept in advance is not used in
any of our positive results concerning learnability.

rithm with membership and/or equivalence queries for C that runs
in polynomial time.

2.3 Approximate learning models
Next, we consider Valiant’s well known Probably Approximately

Correct (PAC) learning model [41]. The task of a PAC learning al-
gorithm is to learn an (unknown) goal concept c 2 C, or, rather,
an approximation of it, on the basis of labeled examples that have
been randomly generated according to some probability distribu-
tion. Recall that [0, 1] is the closed unit interval of the real num-
bers, and recall that a probability distribution over X is a function
D : X ! [0, 1] such that ⌃

x2X

D(x) = 1. For every concept
c 2 C and probability distribution D : X ! [0, 1], we denote
by EX

c,D

the example oracle for c and D, i.e., the oracle that,
upon request, returns a labeled example (x, c(x)), where x 2 X
is randomly chosen according to the probability distribution D.
When we speak of an example oracle, we will mean the example
oracle of some concept c 2 C and some probability distribution
D : X ! [0, 1].

A PAC algorithm is an algorithm alg that takes as input a ratio-
nal accuracy parameter 0 < ✏ < 1, a rational confidence parameter
0 < � < 1, and a natural number n, and that has access to an ex-
ample oracle for an unknown goal concept of size at most n. The
algorithm alg must terminate after a finite amount of time and out-
put (a representation of) a concept h 2 C. The output “hypothesis”
concept h produced by alg should be seen as a guess of what the
goal concept c may be. The error, error(h), for output concept h
with respect to distribution D and goal concept c is

error(h) = Pr

x2D

(c(x) 6= h(x))

Note that error(·) has an implicit dependence of c and D which
we will omit for brevity when no confusion will result. We say
that alg learns a concept class C if for all rational numbers ✏ and
� with 0 < ✏, � < 1, for all natural numbers n, for all concepts
c with size(c) n, and all probability distributions D over the
example set X of C, when alg is run with inputs ✏, �, n and oracle
EX

c,D

, alg outputs with probability at least 1 � � a concept h
with error(h) ✏. The probability above is taken over the possible
outputs of the random example oracle [9, 34].

Ideally, we would like that both the number of oracle calls and
the computation cost are small. This is formalized by the following
definition: alg runs in polynomial time if its running time (count-
ing one step per oracle call) is bounded by a fixed polynomial in
1/✏, 1/�, n, and the maximum size of a labeled example returned
by a call to the oracle.

As usual in computational learning theory, we allow also ran-
domized PAC algorithms, in other words, we allow for PAC algo-
rithm that, besides the example oracle, also have access to a coin-
flip oracle, which randomly generates 0 or 1 with equal probability.

A concept class C is PAC learnable if there is a PAC algorithm
alg that learns it. If, furthermore, alg runs in polynomial time
then we say that C is efficiently PAC learnable.

Exact learnability vs. PAC learnability. In [5], Angluin showed
that, in many cases, exact learnability with equivalence queries im-
plies PAC learnability. To state this result precisely, we need to first
introduce some definitions. The evaluation problem for a concept
class C asks: given the representation of a concept c 2 C and the
representation of an example x, does x 2 c? We say that a concept
class C is polynomial-time evaluable if there is a polynomial-time
algorithm for the evaluation problem for C. Angluin [5] showed
that if C is a polynomial-time evaluable class that is efficiently ex-
actly learnable with equivalence queries, then C is also efficiently

PAC learnable. Furthermore, this also holds if one adds member-
ship queries to both sides. The vast majority of the learning litera-
ture deals with concept classes that are polynomial-time evaluable,
such as, for example, the concept class of all DNF formulas. In con-
trast, as we will discuss later on, here we are dealing with concept
classes that are not polynomial-time evaluable. For this reason, we
will need the following generalization that can be obtained by an
straightforward adaptation of Angluin’s proof.

THEOREM 2.1. (Direct adaptation of [5]) If a concept class C
is efficiently exactly learnable with equivalence queries (respec-
tively, with equivalence and membership queries), then C is effi-
ciently PAC learnable (respectively, PAC learnable with member-
ship queries), provided the PAC algorithm has access to an oracle
that solves the evaluation problem for C.

The class of DNF formulas is one of the most studied concept
classes in computational learning theory, especially in the context
of exact learning with queries. Angluin [5, 6] proved that DNFs are
not efficiently learnable with membership or equivalence queries
alone. Later on, it was shown in [31] that DNFs are not efficiently
exactly learnable even if both membership and equivalence queries
are allowed. It is also known that, assuming RP 6= NP, DNFs are
not learnable in the PAC model [1], even if we allow membership
queries [24]. The fragment of monotone DNF, obtained by requir-
ing every clause to contain only positive literals, has a different
behavior. If only membership or only equivalence queries are al-
lowed, then monotone DNF are not efficiently exactly learnable [5,
6]. In contrast, monotone DNF are efficiently learnable with equiv-
alence and membership queries [5]; this yields an efficient PAC
learning algorithm with membership queries for monotone DNF.

2.4 Schema mappings as a concept class
Fix a source schema S and a target schema T. Let M =

(S,T,⌃) be a GAV schema mapping (where ⌃ is a finite set of
GAV constraints). A data example is a pair (I, J), where I is a
source instance, i.e., an instance for S, and J is a target instance,
i.e., an instance for T. A data example (I, J) is said to be a posi-
tive example for M if (I, J) |= ⌃, in other words if it satisfies all
constraints of M; otherwise, it is said to be a negative example for
M. Semantically, we can identify a GAV schema mapping with
the set of all its positive examples, and hence we can view it as a
concept, where the example space is the set of all data examples.
We shall denote by GAV(S,T) the concept class thus defined.

It is worth noting that GAV(S,T) has a different character-
istic when compared with most concept classes that have been
studied in computational learning theory literature, namely, it is
not polynomial-time evaluable. Indeed, the following problem is
coNP-complete: given a data example (I, J) and a GAV schema
mapping M, is (I, J) a positive or a negative example for M?

Besides positive and negative examples, it is natural to consider
also universal examples, i.e., data examples (I, J) such that J is a
universal solution for I with respect to the schema mapping that is
to be learned. We will come back to this in Section 6.2, and for the
time being we will consider only positive and negative examples.

2.5 Related Work
A GAV constraint can be equivalently represented by a pair con-

sisting of a target relation and a conjunctive query over the source
schema (where the target relation and the query have the same ar-
ity), or, alternatively, can be viewed as a non-recursive Datalog rule.
The PAC-learnability of the latter types of concepts has been stud-
ied in [16, 32, 42, 30]. The learning model considered in these
papers differs from ours in several important ways.

The simple instance uniform PAC-learnability model used in
[16], when recast in terms of our present terminology, can be para-
phrased roughly as follows: the learning algorithm receives, as in-
put, a single source instance I . The algorithm might request any
number of random labelled examples, which are facts over the tar-
get schema labelled according to whether they do or do not belong
to the universal solution, Jg , of I with respect to a goal schema
mapping Mg (over a target schema consisting of a single relation).
The algorithm is required to terminate and output a GAV schema
mapping Mh such that the universal solution Jh, with respect to
Mh is probably approximately equal to Jg , under the usual confi-
dence and error conditions of the PAC model. Our learning model
is more demanding, since we require the schema mapping produced
by the algorithm to perform well on arbitrary source instances. The
work in [32] considers, in addition, a variant of the previous model,
called extended instance uniform PAC-learnability. This model
was previously considered in the study of learnability of Prolog
programs [17, 18].

The papers [16, 32] also consider the PAC-prediction model (also
known as improper PAC-learnability). The PAC-prediction model
is more relaxed in the sense that the hypothesis produced by the
algorithm does not need to belong to the concept class (i.e., in our
case, does not need to be a GAV schema mapping). However, in
the PAC-prediction model, the output concept class is required to
be polynomial-time evaluable; since GAV schema mappings are
not polynomial-time evaluable, it follows that one cannot derive
hardness of PAC-learning from hardness of PAC-prediction for the
concept class of GAV schema mappings. In particular, the stan-
dard techniques for showing hardness in the context of the PAC-
prediction model, as in [39, 8, 33], cannot be used directly in order
to prove PAC hardness results for GAV schema mappings.

Other differences with the work we present here are that the re-
sults in [16, 32] concern almost exclusively the problem of learning
(what corresponds to) a single GAV constraint and that in [16, 32]
the target schema is not fixed but is treated as part of the input of
the learning problem.

A simple learning algorithm for “polynomially generable” sub-
classes of the class of unions of conjunctive queries is presented and
analyzed in [42]. Unions of conjunctive queries over a fixed finite
schema consisting of unary relations only are an example of such a
class. With minor modifications the algorithm given in [42] could
therefore be adapted to learn, in the PAC model, GAV schema map-
pings over a unary source schema (Theorem C.2, cf. also Corol-
lary 5.3).

In [30], the PAC learnability of conjunctive queries is studied.
However, in order to circumvent the issue of non-polynomial time
evaluability, a uniform bound is assumed on the number of ele-
ments of examples, and on the number of existentially quantified
variables in the conjunctive queries.

GAV constraints can also be viewed as a special subclass of the
first-order universal Horn formulas. The learnability of proposi-
tional Horn formulas has been investigated before in [7], where
it was shown that this concept class is efficiently exactly learn-
able with membership and equivalence queries, while it is not ef-
ficiently learnable with membership queries alone, or with equiva-
lence queries alone.

3. EFFICIENT EXACT LEARNABILITY
WITH EQUIVALENCE AND MEMBER-
SHIP QUERIES

We shall design a polynomial time algorithm alg that identifies
(up to logical equivalence) a goal GAV schema mapping Mg using

equivalence and membership queries. The algorithm alg works by
maintaining an internal hypothesis, which is a GAV schema map-
ping H consisting of constraints that are critically sound with re-
spect to the goal schema mapping Mg . We say that a GAV con-
straint C is critically sound with respect to Mg if Mg |= C (i.e.,
C is logically implied by the GAV constraints of Mg) and for ev-
ery GAV constraint C0 obtained by removing one of the conjuncts
of the left-hand side of C, we have that Mg 6|= C0.

In what follows, we will often identify a GAV constraint 8x(�!
) with the pair (I

�

, J

) where I
�

, J

are the canonical instances
of � and of (observe that J

must consist of a single fact). We
also identify the GAV constraint 8x(� !) with the (S[T)-
instance I

�

[J

. In this way, a homomorphism h : C ! C0

between GAV constraints is a function that maps atomic formulas
occurring in the left-hand side or right-hand size of C to atomic
formulas occurring in the left-hand-side or right-hand side of C0.

The following lemma is a direct generalization of a result by
Chandra and Merlin [14].

LEMMA 3.1. For all GAV constraints C = (I, F), the follow-
ing are equivalent:

1. Mg |= C

2. C0 ! C for some C0 2 Mg .

3. F 2 can-solMg
(I)

LEMMA 3.2. Given a source instance I , one can compute
can-solMg

(I) with at most poly(|I|) many membership queries.

PROOF. For each potential target fact F , ask a membership
query to test if the target instance containing all possible facts ex-
cept F is a solution to I . Finally, take can-solMg

(I) to be the
set of all facts for which the answer to the membership query is
“no”.

LEMMA 3.3. Given a GAV constraint C, one can test if Mg |=
C with at most poly(|C|) many membership queries.

PROOF. Let C = (I, F). It suffices to use Lemma 3.2 and test
if can-solMg

(I) contains F .

LEMMA 3.4. If Mg |= C, then by asking at most poly(|C|)
many membership queries, one can compute in polynomial time a
GAV constraint critMg

(C) with the following properties:

1. critMg
(C) ✓ C (when critMg

(C) and C are viewed as in-
stances), and

2. critMg
(C) is critically sound with respect to Mg .

PROOF. Let C = (I, F), and let J be the target instance con-
taining all possible facts (over the active domain of I) except for F .
Clearly, (I, J) will be a negative example for Mg . Repeatedly, try
to remove facts from I while the example remains negative, until a
minimal subinstance of I is reached. The source instance I 0 ✓ I
obtained in this way is such that (I 0, F) is critically sound with
respect to Mg .

For two GAV constraints C,C0 that contain the same target rela-
tion, we denote by C ⇥ C0 the GAV constraint that, viewed as an
instance, is the direct product of C and C0, if well defined. It may
happen that C ⇥ C0 is not well defined even if C and C0 have the
same target relation. For example, if C and C0 are the GAV con-
straints E(x, y) ! T (x) and E(y, x) ! T (x) respectively, then

H := ;
while the equivalence query H ⌘ Mg fails do

Let (I, J) be a counterexample to H ⌘ Mg

// As we will prove below, (I, J) is guaranteed to be a
// positive example for H and a negative example for Mg

// In particular, can-solMg (I) 6✓ J
Choose a fact F 2 can-solMg (I) \ J
// Note that, by Lemma 3.1, Mg |= (I, F)
if there is a C 2 H such that Mg |= (I, F)⇥ C, then

Let C 2 H be the most recently added GAV
constraint for which it holds that Mg |= (I, F)⇥ C

C0 := (I, F)⇥ C.
else

C0 := (I, F)
end if
Add critMg (C0) to H // using Lemma 3.4

end while
return(H)

Figure 1: Algorithm for learning GAV schema mappings using
equivalence and membership queries

their direct product, E(hx, yi, hy, xi) ! T (hx, xi), is not a well-
defined GAV constraint as the variable hx, xi occurs in the right
side but not in the left side.

However, in what follows, whenever we take a product of two
GAV constraints, the result is well-defined, as will be guaranteed
by the following lemma.

LEMMA 3.5. Let C,C1, C2 be GAV constraints, such that there
are homomorphisms h1 : C ! C1 and h2 : C ! C2. Then
C1 ⇥ C2 is well defined.

PROOF. Let T (x1, . . . , xn

) be the right-hand side
of C. It follows that the right-hand side of C1 is
T (h1(x1), . . . , h1(xn

)) and the right-hand side of C2 is
T (h2(x1), . . . , h2(xn

)). Thus, the right-hand side of C1 ⇥ C2 is
T (hh1(x1), h2(x1)i, . . . , hh1(xn

), h2(xn

)i). Therefore, it suf-
fices to show that each pair hh1(xi

), h2(xi

)i occurs in some source
fact of C1 ⇥ C2. This is indeed the case: since C is a well-defined
GAV constraint, x

i

occurs in some source tuple in C, and applying
the homomorphisms h1 and h2 to this tuple yields a source tuple
belonging to C1 ⇥ C2 that contains hh1(xi

), h2(xi

)i.
The promised algorithm alg is now given in Figure 1.
Let us denote by H

i

the value of the variable H after the i-th
iteration of the while loop, where H0 = ;, and H

i

is undefined if
i is larger than the total number of iterations of the while loop; let
us also denote by C

i

the GAV constraint that was added at the i-th
iteration, i.e., H

i

= H
i�1 [{C

i

}.
For every GAV schema mapping H, and for every C 2 Mg , let

H(C) = {C0 2 H | C ! C0}.

LEMMA 3.6. For every i � 0 such that H
i

is defined, the fol-
lowing statements are true.

1. H
i

consists of GAV constraints that are critically sound with
respect to Mg . In particular, a counterexample for the equiv-
alence H

i

⌘ Mg must be a positive example for H
i

and a
negative example for Mg .

2. If i > 0, then there is no C 2 H
i�1 such that C ! C

i

. In
other words, H

i�1 6|= C
i

.

3. If C 2 Mg , then the set H
i

(C) is either empty or has a mini-
mal element with respect to the homomorphism preorder !.

PROOF. (1) Follows directly from the definition of the algo-
rithm, together with Lemma 3.1 and Lemma 3.4.

(2) Let I , J , F and C0 be as computed in the i-th iteration of the
algorithm. In particular, (I, J) is a counterexample to the equiv-
alence H

i�1 ⌘ Mg . Since by the previous item we know that
each constraint of H

i�1 is sound with respect to Mg , we know
that (I, J) is a positive example for H

i�1 and a negative exam-
ple for Mg . Since F 62 J , it follows that H

i�1 6|= (I, F), i.e.,
there is no C 2 H

i�1 such that C ! (I, F) (cf. Lemma 3.1).
By well known basic properties of direct products, it follows that
there is no C 2 H

i�1 such that C ! C00; consequently, since
C

i

= critMg
(C0

), which is a subinstance of C0, there is no
C 2 H

i�1 with C ! C
i

.
(3) By induction on i. Let C 2 Mg . If C

i

62 H
i

(C), then
the result follows from the induction hypothesis. Therefore, let
C

i

2 H
i

(C) , i.e., C ! C
i

. We will show that, in this case, C
i

is a minimal element of H
i

(C) with respect to the homomorphism
preorder!.

We distinguish two cases:
1. There is no C

j

2 H
i�1 such that C ! C

j

. In this case, C
i

is the only GAV constraint of H
i

into which C maps and hence the
result holds trivially.

2. There are C
j

2 H
i�1 such that C ! C

j

. By induction hy-
pothesis, we then know that there is such a C

j

2 H
i�1 that is min-

imal with respect to the homomorphism preorder, i.e., C
j

! C
k

for all C
k

2 H
i�1 that have the property that C ! C

k

. In par-
ticular, by the previous item, we have that C

j

is the most recently
added GAV constraint with the property that C ! C

j

. Now, let I ,
J , F , and C0 be as in the i-th iteration of the algorithm. From the
description of the algorithm and from the above remarks, it follows
that C

i

= critMg
((I, F)⇥C

k

) for some C
k

that was added no less
recently than C

j

. Since C ! C
i

, we have that C ! C
k

. Hence,
C

j

was added no less recently than C
k

. In fact, this means that
C

j

= C
k

and hence C
i

= critMg
((I, F) ⇥ C

j

). It follows that
C

i

! C
j

and, since, by item (2), C
j

6! C
i

, we can infer that C
i

is a minimal element of H
i

(C) with respect to the homomorphism
preorder!. This concludes the proof.

THEOREM 3.7. The algorithm alg terminates after at most
|Mg| many iterations and returns a GAV schema mapping H that
is logically equivalent to Mg .

PROOF. For every n � 1, define s
n

to be
P

C2Mg s
C

n

, where
sC
n

is 0 if H
n

(C) is empty, and the number of variables occurring
in the minimal element of H

n

(C), otherwise (this is well defined
by Lemma 3.6(3)). We claim that, for every n � 1, s

n+1 > s
n

.
This shows that alg terminates after at most as many iterations as
the total number of variables in the constraints of Mg . That the
schema mapping H returned is logically equivalent to Mg follows
directly from the definition of the algorithm.

We now prove the claim. Assume that H
n+1 = H

n

[{C
n+1}.

Since C
n+1 is critically sound w.r.t Mg , there is some C 2 T

such that C ! C
n+1. By Lemma 3.6(2) and 3.6(3), C

n+1 is the
minimum of H

n+1(C). It follows that sC
n+1 is the domain size of

C
n+1. If H

n

(C) = ;, then there is nothing to prove. Otherwise,
let C0 be its minimal element. We know that C

n+1 ! C0. In fact,
the homomorphism in question must be surjective, in other words,
C0 must be the homomorphic image of C, for otherwise, we could
obtain a non-surjective homomorphism from C to C0 contradicting,
via Lemma 3.1, the fact that C0 is critically sound with respect to
Mg . We also know by Lemma 3.6(2) that C is not isomorphic to
C0. It follows that the domain size of C

n+1 is larger than that of
C0 and we are done.

We have just proved the following result, which was stated as
Theorem A in the Introduction.

THEOREM 3.8. For every source schema S and every target
schema T, the concept class GAV(S,T) of all GAV mappings
from S to T is efficiently exactly learnable with equivalence and
membership queries.

By Theorem 2.1, an efficient algorithm with equivalence and
membership queries can be transformed into a PAC algorithm with
membership queries, provided the PAC algorithm has access to an
oracle that solves the evaluation problem. This leads to the follow-
ing result.

COROLLARY 3.9. For every source schema S and every target
schema T, the concept class GAV(S,T) is efficiently PAC learn-
able with membership queries and an oracle for NP.

As we will see in Section 4, GAV(S,T) is not efficiently PAC
learnable in the standard PAC model without membership queries.
We could not establish or refute the necessity of the NP oracle.

4. HARDNESS OF LEARNING RESULTS
We show that if the source schema S contains a relation of arity

at least 2, then GAV(S,T) is not efficiently exactly learnable with
equivalence queries alone, is not efficiently exactly learnable with
membership queries alone, and is not efficiently PAC learnable.

We first need to introduce some auxiliary results and definitions.
An oriented path is a directed graph (digraph) that can be obtained
from an undirected path by orienting each edge in exactly one way.
For every k � 1, let G

k

be the oriented path

3�! 1 � 2�! · · · 1 � 2�!| {z }
k times

4 �,

that is, the oriented path consisting of 3 forward edges, followed by
k segments each consisting of a backward edge and two forward
edges, and ending with 4 backward edges.

We choose this family of digraphs because there are homomor-
phically incomparable. Formally, if we use the notation G ! G0

to denote the existence of a homomorphism from G to G0, we have

LEMMA 4.1. For all k, k0 � 1, if k 6= k0 then G
k

6! G
k

0 .

We omit the proof of Lemma 4.1, which is straightforward (it
uses the fact that every homomorphism h : G

k

! G
k

0 has to send
the sequence of 4 backward edge of G

k

to the sequence of 4 back-
ward edges of G

k

0).
Since the digraphs constructed are oriented paths, we have the

following lemma.

LEMMA 4.2. [28] There is a polynomial time algorithm that,
given digraphs A and G

k

, k � 1, decides correctly whether A !
G

k

. This implies also that it is possible to decide in polynomial time
whether, given digraphs A,G

k

,G
k

0 , we have that A! G
k

⇥G
k

0 .

Throughout this section, R will be a relation in S of arity r � 2

and T will be a relation in T. The following construction is a tech-
nicality necessary to reduce to the case in which R has arity exactly
2. For every digraph G = (V,E), let bG be the S-instance contain-
ing for every (x, y) 2 E, the fact R(x, y, z1, . . . , zr�2), where
z1, . . . , zr�2 are fresh elements (which are different for every tu-
ple). The following easy fact is used often in our proofs: for every
digraphs G and G0, G! G0 if and only if bG! cG0.

4.1 Hardness of efficient learning with mem-
bership queries

It was shown in [3] that there are GAV schema mappings that
cannot be uniquely characterized by any finite set of data exam-
ples. In particular, if M is the schema mapping defined by the
GAV constraint 8x, y(S(x) ^ R(y, y) ! T (x)), then for every
finite set X of data examples, there is a schema mapping M0 that
is not logically equivalent to M and such that for each data exam-
ple (I, J) 2 X , (I, J) is a positive example for M0 if and only if
(I, J) is a positive example for M. It follows that GAV(S,T) is
not exactly learnable by a learning algorithm that uses only mem-
bership queries and that does not know the size of the goal schema
mapping in advance (since such a learning algorithm will never be
able to establish with certainty that M is the goal schema map-
ping). The next theorem shows that GAV(S,T) is not efficiently
exactly learnable with membership queries, even when the learning
algorithm knows the size of the goal schema mapping in advance
(recall that we defined exactly learnability this way in Section 2).
In the Introduction, this result was stated as Part 1a of Theorem B.

THEOREM 4.3. Let S be a source schema and T a target
schema. If S contains a relation symbol of arity at least two, then
GAV(S,T) is not efficiently exactly learnable with membership
queries.

PROOF. (Sketch) We adapt an argument used in the proof of
Theorem 2 in [5]. Fix N > 0. For every N -ary boolean tuple
(i.e., bitstring) b = (b0, . . . , bN�1) 2 {0, 1}N , we construct a
GAV schema mapping Mb containing the following GAV con-
straints:
• For every 0 k < N , a GAV constraint stating that, if dG2k and

\G2k+1 are homomorphic to the source instance, and the source
instance contains a tuple R(u0, . . . , ur�1), then T (u0 . . . u0)

holds in the target instance.
It is easy to write this GAV constraint using the canonical
queries for dG2k and \G2k+1. In particular, it can be written as

8x0,x1,y(qdG2k
(x0) ^ q \G2k+1

(x1) ^R(y)! T (y0 . . . y0)),

where y0 is the first variable in y and q \G2k+i
(xi) is the canoni-

cal query of the digraph \G2k+i

, i 2 {0, 1}. In what follows we
will not usually spell out GAV constraints but rather describe
their intended meaning. In all cases it would be easy to write
down the GAV constraint by using canonical queries as in the
example above.

• A GAV constraint stating that, if for every 1 k < N , G2k+bk

is homomorphic to the source instance, and the source instance
contains tuple R(u0, . . . , ur�1), then T (u0 . . . u0) holds in the
target instance.

Let us define L
N

to be the set containing all Mb, where b is
a N -ary boolean tuple. It is easy to see that every pair of GAV
schema mappings in L

N

is logically non-equivalent.
We claim that every example can be labeled in such a way that at

most one element in L
N

is inconsistent with the labeling. It follows
that, for any learning algorithm that makes less than 2

N � 1 mem-
bership queries, an adversary could pick a target concept in L

N

for
which the algorithm would fail. Since the size of the GAV schema
mappings in L

N

is bounded by a polynomial in N , it follows that
there does not exists any algorithm that learns GAV(S,T) using a
polynomial number of queries even if we allow unbounded compu-
tational power.

It remains to prove the claim. Let (I, J) be any example. First,
if for every tuple R(u0, . . . , ur�1) holding in I we have that

T (u0, . . . u0) holds in J or for some 0 k < N none of dG2k

and \G2k+1 is homomorphic to I , then we label the example posi-
tively. Clearly, in this case, all GAV schema mappings in L

N

are
consistent with the labeling. Otherwise, we label the example neg-
atively. If, for some 0 k < N , dG2k and \G2k+1 are homo-
morphic to I , then, again, all GAV schema mappings in L

N

are
consistent with the labeling. We are left in the case in which, for
every 0 k < N , exactly one of dG2k and \G2k+1 is homomorphic
to I and, furthermore, I contains a tuple R(u0, . . . , ur�1) such
that T (u0 . . . u0) does not hold in J . In this case, there is exactly
one GAV schema mapping in L

N

inconsistent with the labeling,
namely, M(b0,...,bN�1) where b

k

2 {0, 1}, 0 k < N is such
that G2k+bk ! I .

4.2 Hardness of efficient learning with equiv-
alence queries

Next, we prove Part 1b of Theorem B in the Introduction.

THEOREM 4.4. Let S be a source schema and T a target
schema. If S contains a relation symbol of arity at least two, then
GAV(S,T) is not efficiently exactly learnable with equivalence
queries.

PROOF. (Sketch) We will derive the non-learnability result from
an analogous result for Monotone DNF formulas (i.e., formulas of
propositional logic that are disjunctions of conjunctions of atoms)
proven by Angluin [6]. We will show how, out of a hypotheti-
cal efficient exact learning algorithm with equivalence queries for
GAV(S,T), we can construct an efficient exact learning algorithm
with equivalence queries for Monotone DNF formulas.

In the proof, we can assume that the number N of variables of
the target monotone DNF formula is known (as it can be obtained
from a counterexample of an equivalence query). Let us fix a set
p1, p2, . . . , pN be a set of proposition letters, out of which Mono-
tone DNF formulas are built.

Define G1 to be the disjoint union of all digraphs G
i

⇥G
j

, with
1 i < j N . It is a well known property of homomorphisms
that if H is a digraph such that H ! G

i

and H ! G
j

with
1 i < j N , then H ! G

i

⇥G
j

(and hence H ! G1).
Furthermore, it is also known that if 1 i < j N , then there
are homomorphisms from G

i

⇥G
j

to G
i

and to G
j

; this implies
that that G

i

6! G1, for all 1 i N , since if G
i

! G1, it
would follow that G

i

! G
j

for some 1 j N with j 6= i,
which we know not to be the case.

To each propositional valuation (i.e., a truth assignment from
proposition letters p1, . . . , pN to truth values) V , we associate a
source instance I

V

defined to be a disjoint union of dG1 with all
cG
k

with k � 1 such that V (p
k

) = 1. Furthermore, to every la-
beled valuation (V, `), we associate the labeled GAV(S,T) exam-
ple ((I

V

, ;),¬`), where ¬` is the opposite of `, i.e., ¬0 = 1 and
¬1 = 0.

Similarly, to every Monotone DNF formula �, we associate a
corresponding GAV schema mapping M

�

, namely, the schema
mapping that contains for each disjunct p

k1 ^ · · · ^ p
ki of �,

the GAV constraint stating that, if I
k1 , . . . , Iki all homomorphi-

cally map into the source instance, and the source instance con-
tains a tuple R(u0, . . . , ur�1), then T (u0 . . . u0) holds in the tar-
get instance. Recall that such a GAV constraint can be easily con-
structed using the canonical conjunctive queries of the instances
I
k1 , . . . , Iki .

It is easy to see that the following holds.

FACT 4.5. A propositional valuation V is a positive example
for a Monotone DNF formula � if and only if (I

V

, ;) is a negative
example for M

�

.

In what follows, we will be interested only in data examples
(I, J) such that I = I

V

for some valuation V and J = ;. It
turns out that every GAV schema mapping M can be simplified to
a GAV schema mapping cM of a special form, such that M and
cM behave the same on such data examples. Intuitively, what will
be special about cM is that the left-hand side of each constraint is
isomorphic to (the canonical query of) bG for some digraph G. Con-
cretely, for every GAV constraint C of the form 8x(�!), let bC
be the following GAV constraint: if � contains an atom with a re-
lation other than R, then bC is undefined. Otherwise, bC is the result
of replacing, in every atom (which must necessarily be over pred-
icate R) the last r � 2 variables by new fresh variables. For every
GAV schema mapping M, we let cM be the GAV schema mapping
consisting of all GAV constraints bC (if defined) with C 2M. It is
easy to see that the following holds.

FACT 4.6. For every valuation V , we have that (I
V

, ;) satisfies
M if and only it satisfies cM.

For every GAV schema mapping M, we define �M to be the
monotone DNF formula constructed as follows: For each GAV
constraint of cM, we take its left-hand side, and split it into con-
nected components. For each connected component, which will
be of the form bX for some digraph X , we check if (i) X maps
homomorphically into G

k

for some 1 k N , and (ii) if X
maps homomorphically into G1. Note that if (i) is the case for two
distinct values 1 k n, then (ii) holds, as we have observed
earlier. Now, if (ii) holds, then we disregard this component bX .
Otherwise, if (i) does not hold for any natural number k, we write
down ?. Otherwise, there is a unique value 1 k N for which
X maps into G

k

, and in this case, we write down proposition letter
p
k

. Doing this for each connected component of the left-hand side
of the GAV constraint, we obtain a (possibly empty) set of proposi-
tion letters or ?. We take their conjunction. Finally, we do this for
each GAV constraint of M, obtaining a disjunction of conjunctions
of proposition letters (disjuncts containing ? are removed), i.e., a
Monotone DNF formula.

The following follows easily from the definition of �M and
Fact 4.6.

FACT 4.7. A valuation V is a positive example for �M if and
only if (I

V

, ;) is a negative example for M.

To avoid cumbersome details, we will not specify how mono-
tone DNFs and GAV schema mappings are represented as strings.
For our argument, it is only necessary to know that, if we fix any
reasonable representation systems, there exists a polynomial p such
that for every monotone DNF �, size(M

�

) p(size(�)). Even
more strongly, from the fact that the size of G

k

is polynomial in k
and Lemma 4.2, it follows that:

FACT 4.8. There are polynomial time algorithms that:

1. Compute I
V

given a valuation V .

2. Compute M
�

given a monotone DNF formula �.

3. Compute �M given a GAV schema mapping M.

Finally, by putting things together, we obtain the desired result:
let alg0 be a hypothetical efficient exact learning algorithm for

GAV(S,T) with equivalence queries. We use it to design an ef-
ficient exact learning algorithm alg for Monotone DNF formulas
with equivalence queries as follows:

Let n be the input of alg and let �
g

be the goal monotone DNF.
Procedure alg simulates algorithm alg0 with input p(n). Each
equivalence query request of alg0, say with GAV schema mapping
M, is processed in the following way: M is translated to a can-
didate Monotone DNF formula �M, which is then used to call the
equivalence oracle of alg. In case of positive answer then alg
stops and reports �M. Otherwise, the counterexample, (V, `), pro-
vided is translated into a GAV example ((I

V

, ;),¬`) which is fed
back to alg0 as the answer of its equivalence query.

It is easy to show the correctness of alg. Facts 4.5 and 4.7 guar-
antee that if (V, `) is a counterexample to the equivalence of �M
and �

g

, then (I
V

, ;),¬`) is a counterexample of the equivalence
of M

�g and M. Consequently, in time polynomial in p(n) (and
hence in n), alg0 must stop and produce a GAV schema mapping
M equivalent to M

�g . Again, from Facts 4.5 and 4.7, it follows
that �

g

and �M are logically equivalent.

It is worth pointing out that the proof in [6] shows something
stronger. Indeed, Angluin shows that monotone DNF are not learn-
able with a polynomial number of equivalence queries even if the
learner has unbounded computation power. Notice that this implies
that Fact 4.8 is not necessary in our proof (although it will turn out
to be necessary in the proof of hardness for efficient PAC-learning
that we will give next). Finally, it follows that GAV schema map-
pings are not learnable with equivalence queries in this stronger
sense.

4.3 Hardness of efficient PAC learning
Here, we prove Part 1 of Theorem C in the Introduction.

THEOREM 4.9. Let S be a source schema and T a target
schema. If S contains a relation symbol of arity at least two, then
GAV(S,T) is not efficiently PAC learnable, provided RP 6= NP.

PROOF. We use an argument similar to the one used in the proof
given in the previous section. Let alg0 be a hypothetical effi-
cient PAC-learning algorithm for GAV(S,T). We shall prove that
the following algorithm, alg, correctly PAC-learns monotone DNF
formulas; this will contradict the fact that monotone DNF formulas
are not efficiently PAC-learnable, if RP 6= NP, as shown in [1].

Let n, ✏, and � be the input of alg. Procedure alg simulates
algorithm alg0 with input p(n), ✏, and �, answering every exam-
ple call of alg0 by asking its own oracle for an example (V, `) and
then answering example ((I

V

, ;),¬`) to alg0. Procedure alg pro-
ceeds in this fashion until alg0 stops and produces a hypothesis M.
When this happens, alg itself stops and reports �M.

Let us show the correctness of the algorithm. Let �
g

and D be
the unknown goal monotone DNF and unknown probability distri-
bution for alg. From the description of alg, it follows that alg0 is
fed with examples drawn according to the probability distribution
D0 that sets D0

(I, J) to D(V) if I = I
V

and J = ; and 0 in any
other case. Furthermore, by Fact 4.5 these examples are labeled
according to M

�g , which has size at most p(n). Hence, under this
circumstances, alg0 should stop in time polynomial in n and, with
probability at least 1 � �, output a hypothesis M which has error
(with respect to D0 and M

�G) not larger than ✏.
From the definition of D0 and Fact 4.7 it follows that the error of

M with respect to M
�g and D0 is the same than the error of �M

with respect to �
g

and D. This completes the proof.

5. UNARY SOURCE SCHEMAS

In this section, we prove that if the source schema S consists of
unary relations only, then GAV(S,T) is efficiently exactly learn-
able using only membership queries or using only membership
queries; GAV(S,T) is also efficiently PAC learnable. These re-
sults, which were stated in Parts 2a and 2b of Theorem B and in
Part 2 of Theorem C in the Introduction, imply that the require-
ment that the source schema contains a relation of arity at least two
is necessary for the negative learnability results in Section 4.

THEOREM 5.1. Let S,T be schemas such that all relations in S

are unary. Then the concept class GAV(S,T) of all GAV schema
mappings from S to T is efficiently exactly learnable with member-
ship queries.

PROOF. (Sketch) If S and T are schemas such that all relations
in S are unary, then GAV(S,T) can contain only finitely many
GAV schema mappings up to logical equivalence. Indeed, let n be
the number of unary relations in S, and let k be the maximum arity
of the relations in T. It is not hard to see that every GAV constraint
over S and T is equivalent to one that has at most 2n+k variables:
if there are more than 2

n non-exported variables (i.e., variables that
do not occur in the right-hand side of the constraint), then two of
these variables must satisfy exactly the same unary predicates ac-
cording to the left-hand side of the constraint, and hence one of
these variables could be removed without affecting the semantics
of the constraint. Clearly, there are only finitely many pairwise
non-equivalent GAV constraints over S and T containing at most
2

n

+ k variables.
We pre-compute a finite maximal list of pairwise logically non-

equivalent schema mappings together with, for each pair of such
schema mappings, a pair (I, J) of instances on which they dis-
agree. Note that all this depends only on the source and target
schema, so that the “pre-computation” is not part of the algorithm
itself. The algorithm proceeds by asking a membership query for
each data example (I, J) constructed during the pre-computation.
From the answers, the algorithm can infer which of the schema
mappings is logically equivalent to the goal schema mapping. Here,
we use the fact that the list of candidate schema mappings is fixed,
and hence the candidates can be evaluated on the examples in poly-
nomial time.

THEOREM 5.2. Let S,T be schemas such that all relations in S

are unary. Then the concept class GAV(S,T) of all GAV schema
mappings from S to T is efficiently exactly learnable with equiva-
lence queries.

PROOF. (Sketch) The proof relies again on the fact that
GAV(S,T) contains only finitely many GAV schema mappings
up to logical equivalence. The algorithm for exactly learning
GAV(S,T) with equivalence queries works as follows: it main-
tains a hypothesis H, which is a GAV schema mapping that “over-
estimates” the goal schema mapping Mg in the sense that H log-
ically implies Mg . Initially, H contains all (finitely many) GAV
constraints. The algorithm calls the equivalence oracle to test if
the hypothesis is logically equivalent to the goal schema mapping.
If this is the case, the algorithm terminates and outputs H. Oth-
erwise, the algorithm receives from the oracle a counterexample
(I, J), which must be a positive example for Mg that is a negative
example for H. Since the number of variables in the GAV con-
straints of H is bounded, the algorithm can then find in polynomial
time all constraints C 2 H that are violated by (I, J). It removes
these constraints, and starts again with the updated hypothesis. This
process must terminate after a bounded number of steps (where the
bound is the number of pairwise non-equivalent GAV constraints
over S and T containing at most 2n + k variables).

In the case in which all relations in S are unary, the concept class
GAV(S,T) is easily seen to be polynomial-time evaluable. Hence,
the following result follows directly from Theorems 2.1 and 5.2.

COROLLARY 5.3. Let S,T be schemas such that all relations
in S are unary. Then the concept class GAV(S,T) of all GAV
schema mappings from S to T is efficiently PAC learnable.

6. VARIATIONS

6.1 C-acyclic GAV schema mappings
In [40], a subclass of GAV constraints was introduced, called

c-acyclic GAV constraints, which is more well behaved when it
comes to the problem of characterizing schema mappings by data
examples. Specifically, it was shown in [40] that a GAV schema
mapping M is uniquely characterizable by a finite set of univer-
sal examples if and only if M is logically equivalent to a schema
mapping specified by c-acyclic GAV constraints. This raises the
question: does the good behavior of schema mappings specified by
c-acyclic GAV constraints extend to efficient learnability? Here,
we address this question.

We first introduce some terminology. Let C = 8x(� !) be
a GAV constraint. We say that a variable x 2 x is exported if it
occurs in , and non-exported otherwise. The incidence graph of
� is the bipartite graph whose set of nodes consists of the vari-
ables of x and the atoms in �, and there is an edge between a
variable and an atom if the variable occurs in the atom. We say
that C is acyclic if the incidence graph of � is acyclic and no
variable occurs in the same atom twice. We say that the GAV
constraint C is c-acyclic if every cycle in the incidence graph of
� passes though an exported variable, and no non-exported vari-
able occurs in the same atom twice. For example, the GAV con-
straint 8x, y(E(x, y) ^ E(y, x) ! F (x, x)) is c-acyclic, while
the GAV constraint 8x, y(S(x) ^ R(y, y) ! T (x)) is not. Ob-
serve that acyclicity implies c-acyclicity, but not the other way
around. A GAV schema mappings is said to be acyclic, or c-acyclic
if all its GAV constraints are. For all schemas S,T, we define
GAV-CA(S,T) to be the concept class that is the restriction of
GAV(S,T) to sets of c-acyclic GAV constraints.

Note that the concept class GAV-CA(S,T), unlike
GAV(S,T), is polynomial-time evaluable for all schemas
S,T. This follows from the well known fact that conjunctive
queries of bounded tree-width can be evaluated in polynomial
time (e.g., see [15, 36]). It can be shown that the tree-width of
the left-hand side of a c-acyclic GAV constraint is bounded by the
maximal arity of the relations in the target schema plus one.

The results listed in Theorem B in the Introduction remain true
when GAV(S,T) is replaced by GAV-CA(S,T). For the positive
results, this is because it is assumed that the source schema consists
of unary relations, and in this case, every GAV schema mapping is
trivially c-acyclic (in fact, acyclic). For the negative results, this is
because the proofs only involve c-acyclic GAV constraints.

It is interesting to note that the proof of Theorem 4.3 estab-
lishes something stronger: it shows that there are c-acyclic GAV
schema mappings M1, . . . ,Mk

, . . ., such that (a) the size of M
k

is bounded by some polynomial p(k); and (b) if D is a set of pos-
itive and negative examples that uniquely characterizes M

k

with
respect to the class of c-acyclic GAV schema mappings of size at
most p(k), then D must contain at least 2k � 1 data examples.

We leave it as an open question whether or not Theorem A holds
for GAV-CA(S,T). One may think that Theorem A holds for
GAV-CA(S,T) because this class is a subclass of GAV(S,T)

for which Theorem A holds. However, an exact learning algorithm

for a class need not be an exact learning algorithm for a subclass,
since the hypotheses produced by the algorithm need not always be
members of the subclass. Observe that, since GAV-CA(S,T) is
polynomially evaluable, if Theorem A holds for GAV-CA(S,T),
then Theorem 2.1 will imply that GAV-CA(S,T) is efficiently
PAC learnable with membership queries.

6.2 Universal examples
A universal example of a GAV schema mapping M is a pair

(I, J) such that J is a universal solution for I with respect to M.
Intuitively, universal examples contain both positive and negative
information. For instance, if {Q(a)} is a universal solution for
{R(a)}, this implies that ({R(a)}, {Q(a)}) is a positive example
and that ({R(a)}, ;) is a negative example. In fact, the informa-
tion that (I, J) is a universal example of some schema mapping is
very powerful as it allows us to deduce for every target instance
J 0 whether (I, J 0

) is a positive or a negative example (specifically,
(I, J 0

) is a positive example if and only if J ! J 0).

PROPOSITION 6.1. Let M be a GAV schema mapping, let I
be a source instance and J a target instance. Let J |

adom(I) be the
subinstance of J consisting only of the facts that are over the active
domain of I . If J is a universal solution for I with respect to M,
then so is J |

adom(I).

This shows that, in learning GAV schema mappings from uni-
versal examples, we may disregard facts in target instances that are
not over the active domain of the source instance, without affecting
the learning problem. Hence, in what follows we will consider only
universal examples (I, J) such that adom(J) ✓ adom(I). Recall
that every source instance I has exactly one universal solution J
with the property that adom(J) ✓ adom(I), namely, can-sol(I).

We can view GAV schema mappings with universal examples
as a concept class, if we are willing to generalize the notion of a
concept a bit. Before, we have defined a concept to be a function
from examples to {0, 1}. Now, we will view concepts as functions
from examples to some infinite set L of labels. In particular, we
will view source instances as examples and target instances as la-
bels, and we will say that a GAV schema mapping M is consistent
with a labeled example (I, J) if J = can-solM(I). We define
GAV-U(S,T) to be the concept class where the example space is
the set of source instances, the label set is the set of target instances,
and each concept is a GAV schema mapping viewed as a function
from source instances to their canonical universal solutions.

All notions we defined before still make sense in this more gen-
eral setting. Note that, since we are now working with an infinite
set of labels, we should assume that labels are represented in some
representation system, and count them as having a certain length.
However, since we may always assume that the label of a source
instance is a target instance over the same active domain, the size
of the label cannot be larger than a polynomial in the length of the
source instance, and hence this will have no adverse consequences.

By a labeling oracle we will mean an oracle that returns the
label of a given example, according to the goal concept. This is
the natural generalization of membership oracle to this setting of
more than two labels. In our setting, the labeling oracle, given a
source instance, returns the canonical universal solution according
to the goal schema mapping. Note that asking a labeling query
for a source instance I provides the same information as asking
all membership queries (I, J) with J a target instance over the ac-
tive domain of I , or, equivalently, asking all (polynomially many)
membership queries (I, J) with J a target instance consisting of
all possible facts over the active domain of I except for one fact.
Also, note that, with respect to equivalence queries, there is no

essential difference between the concept classes GAV(S,T) and
GAV-U(S,T). Hence, all results concerning exact learnability
transfer from GAV(S,T) to GAV-U(S,T), provided that mem-
bership queries are replaced by labeling queries. The results con-
cerning PAC learnability transfer as well, as we will show next.

LEMMA 6.2. Let S,T be schemas. Then the following state-
ments are true.

1. If GAV(S,T) is efficiently PAC learnable, then so is
GAV-U(S,T).

2. If GAV(S,T) is efficiently PAC learnable with membership
queries, then GAV-U(S,T) is efficiently PAC learnable with
labeling queries. This also holds if we add an oracle to both
sides.

PROOF. For Part 1, let alg be an efficient PAC learning algo-
rithm for GAV(S,T). We shall construct an efficient PAC learn-
ing algorithm alg

U

for GAV-U(S,T) using alg. Let n, ✏, � be
the input parameters of alg

U

and let Mg and D be the unknown
goal concept and distribution for alg

U

.
In a first stage, alg

U

computes a good estimation, m, of the size
of the maximum number of tuples for can-solMg

(I) where I is
drawn according to D. This is done by requesting r (to be spec-
ified later) examples to its random oracle and setting m to be the
maximum number of tuples of any target data instance appearing in
them. For every I , let n

I

be the number of facts of can-solMg
(I).

FACT 6.3. If r � (2/✏) ln(2/�) then with probability at least
1� �/2, (Pr

I2D

n
I

 m) � 1� ✏/2.

PROOF. Let M be the smallest value such that
(Pr

I2D

n
I

M) � 1 � ✏/2. Hence, if we draw (accord-
ing to D) r examples I1, . . . , Ir , the probability that for all
1 i r, the number of facts of can-solMg

(I
i

) is smaller
than M is less that (1 � ✏/2)r exp(�✏r/2). Standard
computations show that this can be made smaller than �/2 if
r � (2/✏) ln(2/�).

Let I be a source instance and let can-solMg
(I) be its

canonical universal solution with respect to Mg . Associated
to (I, can-solMg

(I)) there is the collection of all data exam-
ples (I, J) where J is either can-solMg

(I) or is obtained from
can-solMg

(I) by removing one fact.
In a second stage, procedure alg

U

simulates alg with parame-
ters ✏/2(m+ 1), �/2, and n. Every time alg requests an example,
alg

U

asks its own oracle for a random example (I, can-sol

g

M(I))
and answers alg call with ((I, J), `) where (I, J) is selected
at random and uniformly among the set examples associated to
(I, can-sol

g

M(I)) and the label ` is 1 if J = can-solMg
(I), and

0 otherwise. Notice that the label is defined such that it is 1 if and
only if (I, J) |= Mg . Procedure alg

U

proceeds in this fashion
until alg stops and produces a hypothesis M. When this happens
alg

U

itself stops and reports M, as well.
Let us show the correctness of the algorithm. By the design of

alg
U

it follows that the examples provided to the oracle of alg are
labeled according to Mg and drawn according to the distribution
D

U

defined as follows: for every data example (I, J), we have that
D

U

((I, J)) = D(I)/(n
I

+ 1) if (I, J) is an example associated
to (I, can-sol

g

M(I)), and 0 otherwise.
With probability at most �/2, the hypothesis M returned by

alg satisfies errorMg
,DU (M) ✏/2(m + 1). For every source

example I , if can-solM(I) 6= can-solMg
(I), then M and

M
g

disagree in at least one of the n
I

+ 1 examples associated
to (I, can-solMg

(I)). It follows that with probability at least

1 � �/2, the error of M with respect to D and Mg over the ex-
amples I such that n

I

 n is at most 1 � ✏/2. By combining this
with Fact 6.3, we infer that errorMg

,D

(M) ✏ with probability
at least 1� �.

Part 2 follows from the fact that alg
U

can answer any member-
ship query (I, J) of alg by testing whether J ✓ can-solMg

(I).

THEOREM 6.4. Let S,T be two schemas. If RP 6= NP, then
GAV-U(S,T) is efficiently PAC learnable if and only if S consists
only of unary relations.

PROOF. (Sketch) The positive learnability result follows di-
rectly from Corollary 5.3 and Lemma 6.2. The negative learnability
result is a straightforward adaptation of the proof of Theorem 4.9.
All that is needed is to change the function that translates exam-
ples of alg to examples of alg0 (since now it must return universal
examples). In this case, we map every labeled example (V, `) to
(I

V

, J
V

), where I
V

is defined as in Theorem 4.9 and J
V

is defined
to be ; if ` = 0, and to contain all tuples T (u1, . . . , u1) for every
R(u1, u2, . . .) in I

V

if ` = 1. We omit the details.

6.3 Hardness of approximating the smallest
fitting GAV schema mapping

In [27], a framework was introduced for deriving a GLAV
schema mapping on the basis of a single example (I, J). The
framework is based on a cost function that, among other parame-
ters, depends on the size of the schema mapping. The main results
in [27] establish hardness of various computational tasks, such as
computing an optimal GLAV schema mapping for a given exam-
ple, or even computing the cost of a given GLAV schema mapping
and a given example. The same results are shown to hold for GAV
schema mappings.

In the same spirit, we consider here the minimization problem of
computing, given a set of (positive/negative or universal) examples,
a fitting GAV schema mapping whose size is close to minimal, or,
more precisely, a GAV schema mapping whose size is polynomial
in the size of the smallest fitting GAV schema mapping. We show
that this problem is hard, assuming RP 6= NP. Note that, unlike
in [27], we require the schema mapping to exactly fit the input ex-
amples. On the other hand, we do not require an optimal solution,
but a solution that is close to optimal.

We first observe that, whereas every consistent set of universal
examples has a fitting schema mapping which is basically a transla-
tion of the examples [4], in the case of positive and negative exam-
ples, the size of the smallest fitting schema may not be polynomi-
ally bounded in the total size of the examples. Consequently, it is
reasonable to require the minimization algorithm to be polynomial
in the combined size of its input and of the smallest fitting GAV
schema mapping.

Hardness results for this minimization problem can be derived
from PAC-hardness. First, we need some preliminaries.

Formally, an Occam algorithm for C with parameters ↵ < 1

and k � 1 is an algorithm alg that takes as input a collection
(x1, c(x1)), . . . , (xm

, c(x
m

)) of examples labeled according to
some unknown concept c 2 C and produces a hypothesis h con-
sistent with the input of size at most m↵nk where n is the size of
c. Furthermore, the running time of alg is required to be bounded
by a polynomial in n and the size of the input. Blumer et al [12]
proved that one can transform every Occam algorithm alg into an
efficient PAC learning algorithm alg0. The algorithm alg0 asks for
m random examples with

m =

✓
nk

ln 2 + ln(2/�)
✏

◆1/(1�↵)

that are fed to the Occam algorithm alg. The hypothesis produced
by alg is then returned by alg0, yielding the following result.

THEOREM 6.5. [12] If there is an Occam algorithm for some
concept class C, then C is efficiently PAC learnable.

An Occam algorithm can be regarded as an algorithm that ap-
proximates the smallest fitting GAV schema mapping. Theo-
rems 4.9 and 6.5 yield the following inapproximability result.

THEOREM 6.6. Let S,T be schemas such that S contains a re-
lation of arity at least 2. If RP 6= NP, then there is no Occam
algorithm for GAV(S,T).

In the case of universal examples, we can show something
stronger, namely, we can show hardness even when the input con-
sists of a single universal example.

THEOREM 6.7. Let S,T be schemas such that S contains at
least two relations of arity at least 2. Assume RP 6= NP. For
every k > 0, there is no polynomial time algorithm that takes as
input a consistent data example (I, J) and returns a GAV schema
mapping for which (I, J) is universal with size at most nk, where
n is the size of the smallest GAV schema mapping for which (I, J)
is universal.

PROOF. (Sketch) In the case of universal examples, one cannot
use directly Theorem 6.5 as it has been stated only for Boolean con-
cepts, i.e., concepts with labels are restricted to be {0, 1}. However,
it is routine to adapt the proof for the case in which this restriction
is lifted. With some extra work, one can show how a finite set of
universal examples can be encoded into a single universal example,
in a way that allows us to transfer our non-approximability result
to the case of a single universal example.

Let S and T be schemas, and let S be a relation symbol of arity at
least 2, not belonging to either of the two schemas. Consider a finite
set of universal examples e1 = (I1, J1), . . . , en = (I1, J1) over S
and T. Let e⇤ = (I⇤, J⇤

) be the universal example over schema
S[{S} and T, where I⇤ is the disjoint union of I1, . . . , In ex-
panded with the equivalence relation S satisfying S(x1, . . . , xm

)

if and only if x1, . . . xm

belong to the domain of the same universal
example e

i

. Let J⇤ be the disjoint union of J1, . . . , Jn

.
We claim that approximating the shortest fitting GAV schema

mapping for the universal example e⇤ is as hard as approximating
the shortest fitting GAV schema mapping for the universal exam-
ples e1, . . . , en, up to a polynomial. This is formally expressed in
the next claim.

CLAIM: If there is a GAV schema mapping of length n that is
consistent with the universal examples e1, . . . , en, then there is
a GAV schema mapping of length O(n2

) that is consistent with
the universal example e⇤. Conversely, if there is a GAV schema
mapping of length n that is consistent with e⇤, then there is a
GAV schema mapping of length at most n that is consistent with
e1, . . . , en.

PROOF OF THE CLAIM: Let M be a GAV schema mapping over
the schemas {R},T that is consistent with the universal examples
e1, . . . , en. Define M0 to be the GAV schema mapping over the
schemas S,T that contains, for each GAV constraint C 2M of the
form 8x(�!), the GAV constraint 8x(�^V

x,x

02x S(x, x
0
)!

). It is not hard to see that M is consistent with (I⇤, J⇤
) and that

the length of M0 is at most quadratic in the length of M.
Conversely, let M be a GAV schema mapping over the schemas

S,T that is consistent with the universal example (I⇤, J⇤
). Let

M0 be obtained from M by dropping all atoms involving the rela-
tion S from the left-hand side of each GAV constraint. We claim

that M0 is consistent with each universal example e
i

= (I
i

, J
i

).
Suppose not, i.e., suppose that M0 contains a GAV constraint
C = 8x(� !) that is falsified in e

i

under some assignment
h. By construction of M0, we have that M contains a GAV con-
straint that is identical to C except that � contains possibly some
number of atoms involving the relation S. But then, it is not hard
to see that C0 is falsified in (I⇤, J⇤

) under the assignment h (note
that h maps all variables of x into a single “equivalence class” of
S). Therefore, we have reached a contradiction.

Consequently, the problem of approximating the minimum fit-
ting GAV schema mapping within a polynomial is hard, even when
restricted to consistent inputs. We point out that these results not
only constitute strong inapproximability results, but are also inde-
pendent of the choice of encoding for schema mappings.

It is also worth noting that, if we allow inconsistent inputs, then
we can derive hardness of approximability, although not up to a
polynomial factor, directly from the fact that the decision problem
(deciding whether there is a fitting schema mapping) is hard [4].

7. CONCLUDING REMARKS
In this paper, we established a new connection between database

theory and computational learning theory by first casting the prob-
lem of obtaining algorithmically a GAV schema mapping from data
examples as a learning problem and then establishing both positive
and negative results. With some work, our negative results con-
cerning the learnability of GAV schema mappings extend to similar
negative results for the class of all GLAV (Global-and-Local-As-
View) schema mappings. It remains to be determined what is the
learnability status of LAV (Local-As-View) schema mappings in
the various learning models. Also, we leave it as an open question
whether GAV schema mappings are efficiently PAC learnable with
membership queries (and without an NP oracle). It also remains
to be investigated which of our results generalize to the case where
the source schema and the target schema are treated as part of the
input of the learning problems.

8. REFERENCES
[1] M. Alekhnovich, M. Braverman, V. Feldman, A. R. Klivans,

and T. Pitassi. The complexity of properly learning simple
concept classes. J. Comput. Syst. Sci., 74(1):16–34, 2008.

[2] B. Alexe, L. Chiticariu, R. J. Miller, and W. C. Tan. Muse:
Mapping Understanding and deSign by Example. In ICDE,
pages 10–19, 2008.

[3] B. Alexe, P. G. Kolaitis, and W. C. Tan. Characterizing
schema mappings via data examples. In PODS, pages
261–272, 2010.

[4] B. Alexe, B. ten Cate, P. G. Kolaitis, and W. C. Tan.
Designing and refining schema mappings via data examples.
In SIGMOD, pages 133–144, 2011.

[5] D. Angluin. Queries and concept learning. Machine
Learning, 2(4):319–342, 1987.

[6] D. Angluin. Negative results for equivalence queries.
Machine Learning, 5:121–150, 1990.

[7] D. Angluin, M. Frazier, and L. Pitt. Learning conjunctions of
horn clauses. Mach. Learn., 9:147–164, July 1992.

[8] D. Angluin and M. Kharitonov. When won’t membership
queries help? J. Comput. Syst. Sci., 50(2):336–355, 1995.

[9] M. Anthony and N. Biggs. An Introduction to Computational
Learning Theory. Cambridge University Press, 1992.

[10] P. Barceló. Logical foundations of relational data exchange.
SIGMOD Record, 38(1):49–58, 2009.

[11] P. A. Bernstein, T. J. Green, S. Melnik, and A. Nash.
Implementing Mapping Composition. VLDB Journal,
17(2):333–353, 2008.

[12] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K.
Warmuth. Occam’s Razor. Inf. Process. Lett., 24(6):377–380,
1987.

[13] A. Bonifati, E. Q. Chang, T. Ho, V. S. Lakshmanan, and
R. Pottinger. HePToX: Marrying XML and Heterogeneity in
Your P2P Databases. In VLDB, pages 1267–1270, 2005.

[14] A. K. Chandra and P. M. Merlin. Optimal implementation of
conjunctive queries in relational data bases. In STOC, pages
77–90, 1977.

[15] C. Chekuri and A. Rajaraman. Conjunctive query
containment revisited. Theor. Comput. Sci., 239:211–229,
May 2000.

[16] W. W. Cohen. PAC-learning non-recursive prolog clauses.
Artif. Intell., 79(1):1–38, 1995.

[17] W. W. Cohen. PAC-learning recursive logic programs:
Efficient algorithms. J. Artif. Intell. Res. (JAIR), 2:501–539,
1995.

[18] W. W. Cohen. PAC-learning recursive logic programs:
Negative results. J. Artif. Intell. Res. (JAIR), 2:541–573,
1995.

[19] A. Das Sarma, A. G. Parameswaran, H. Garcia-Molina, and
J. Widom. Synthesizing view definitions from data. In ICDT,
pages 89–103, 2010.

[20] A. Doan. Learning to Map between Structured
Representations of Data. PhD thesis, Computer Science and
Engineering, University of Washington, University of
Pennsylvania, 2002.

[21] A. Doan, J. Madhavan, P. Domingos, and A. Y. Halevy.
Learning to map between ontologies on the semantic web. In
WWW, pages 662–673, 2002.

[22] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data
Exchange: Semantics and Query Answering. Theoretical
Computer Science (TCS), 336(1):89–124, 2005.

[23] W. Fan, F. Geerts, L. V. S. Lakshmanan, and M. Xiong.
Discovering conditional functional dependencies. In ICDE,
pages 1231–1234, 2009.

[24] V. Feldman. Hardness of approximate two-level logic
minimization and PAC learning with membership queries. J.
Comput. Syst. Sci., 75(1):13–26, 2009.

[25] P. A. Flach and I. Savnik. Database dependency discovery: A
machine learning approach. AI Commun., 12(3):139–160,
1999.

[26] G. H. L. Fletcher, M. Gyssens, J. Paredaens, and D. V.
Gucht. On the expressive power of the relational algebra on
finite sets of relation pairs. IEEE Trans. Knowl. Data Eng.,
21(6):939–942, 2009.

[27] G. Gottlob and P. Senellart. Schema mapping discovery from
data instances. J. ACM, 57(2), 2010.

[28] W. Gutjahr, E. Welzl, and G. Woeginger. Polynomial
graph-colorings. Discrete Appl. Math., 35:29–46, 1992.

[29] L. M. Haas, M. A. Hernández, H. Ho, L. Popa, and M. Roth.
Clio Grows Up: From Research Prototype to Industrial Tool.
In SIGMOD, pages 805–810, 2005.

[30] D. Haussler. Learning conjunctive concepts in structural
domains. Mach. Learn., 4:7–40, 1989.

[31] L. Hellerstein, K. Pillaipakkamnatt, V. V. Raghavan, and
D. Wilkins. How many queries are needed to learn? J. ACM,
43(5):840–862, 1996.

[32] K. Hirata. On the hardness of learning acyclic conjunctive
queries. In ALT, pages 238–251, 2000.

[33] M. J. Kearns and L. G. Valiant. Cryptographic limitations on
learning boolean formulae and finite automata. J. ACM,
41(1):67–95, 1994.

[34] M. J. Kearns and U. V. Vazirani. An Introduction to
Computational Learning Theory. The MIT Press, 1997.

[35] P. G. Kolaitis. Schema Mappings, Data Exchange, and
Metadata Management. In ACM Symposium on Principles of
Database Systems (PODS), pages 61–75, 2005.

[36] P. G. Kolaitis and M. Y. Vardi. Conjunctive-query
containment and constraint satisfaction. J. Comput. Syst. Sci.,
pages 302–332, 2000.

[37] M. Lenzerini. Data Integration: A Theoretical Perspective. In
ACM Symposium on Principles of Database Systems
(PODS), pages 233–246, 2002.

[38] E. Rahm and P. A. Bernstein. A survey of approaches to
automatic schema matching. VLDB J., 10(4):334–350, 2001.

[39] R. E. Schapire. The strength of weak learnability. Machine
Learning, 5:197–227, 1990.

[40] B. ten Cate, P. G. Kolaitis, and W. C. Tan. Database
constraints and homomorphism dualities. In CP, 2010.

[41] L. G. Valiant. A theory of the learnable. Commun. ACM,
27(11):1134–1142, 1984.

[42] L. G. Valiant. Learning disjunctions of conjunctions. In
IJCAI, pages 560–566, 1985.

[43] L. Yan, R. J. Miller, L. M. Haas, and R. Fagin. Data-Driven
Understanding and Refinement of Schema Mappings. In
SIGMOD, pages 485–496, 2001.

