A Dichotomy in the Complexity of Consistent Query Answering for Queries with Two Atoms

Phokion G. Kolaitis, Enela Pema
Computer Science Department, University of California Santa Cruz, Santa Cruz, CA 95060, USA

Abstract

We establish a dichotomy in the complexity of computing the consistent answers of a Boolean conjunctive query with exactly two atoms and without self-joins. Specifically, we show that the problem of computing the consistent answers of such a query either is in P or it is coNP-complete. Moreover, we give an efficiently checkable criterion for determining which of these two possibilities holds for a given query.

Keywords:
databases, key constraints, database repairs, consistent query answering

1. Introduction

An inconsistent database, often also referred to as an uncertain database, is a database that violates one or more integrity constraints that the data are required to obey. Inconsistent databases arise for a variety of reasons (e.g., lack of support by the system at hand) and in a variety of settings (e.g., when integrating data from heterogeneous sources that obey mutually incompatible integrity constraints).
One way to cope with inconsistency is data cleaning: the inconsistent database is transformed to a cleansed version that satisfies the integrity constraints, and then the cleansed database is used to answer queries. Data cleaning, however, often entails making choices that are arbitrary as, typically, there is a large number of cleansed databases that arise from an inconsistent database. An alternative and more principled approach, introduced in [1], is consistent query answering. In this approach, the inconsistencies in the database are kept, but are handled at query time by considering all possible repairs of the inconsistent database. More precisely, if Σ is a set of integrity constraints, then a repair of an inconsistent database I is a consistent database r (i.e., $r \vDash \Sigma$) that differs from I in a "minimal" way. By definition, the consistent answers of a query q on a database I is the intersection $\cap\{q(r): r$ is a repair of $I\}$. If q is a Boolean query, computing the consistent answers of q is the following decision problem, denoted by certainty (q) or, simply, certainty (q) : given a database I, is $q(r)$ true on every repair r of I ? The notion of consistent answers

[^0]is closely related to the notion of the certain answers in data integration [2]. In fact, the consistent answers coincide with the certain answers when the set of possible worlds is taken to be the set of all repairs.

From now on, we assume that q is a Boolean conjunctive query and Σ is a set of key constraints with one key per each relation symbol in some fixed relational schema \mathbf{R}. In this case, certainty (q) is always in coNP [3]. Depending on the keys and the query, however, the actual complexity of certainty (q) may vary widely, as illustrated by the following examples in which the underlined variables indicate that the corresponding attributes form the key:

- If q_{1} is the query $\exists x, y, z \cdot R_{1}(\underline{x}, y) \wedge R_{2}(y, z)$, then $\operatorname{certainty}\left(q_{1}\right)$ is first-order expressible, that is to say, there is a first-order query q_{1}^{\prime} such that on every instance I, we have that q_{1} is true on every repair of I if and only if $q_{1}^{\prime}(I)$ is true $[4,5]$. Hence, $\operatorname{certainty}\left(q_{1}\right)$ is in P ; actually, it is in the much lower complexity class AC^{0}.
- If q_{2} is the query $\exists x, y \cdot R_{1}(\underline{x}, y) \wedge R_{2}(y, x)$, then $\operatorname{certainty}\left(q_{2}\right)$ is in P , but it is not first-order expressible [5].
- If q_{3} is the query $\exists x, x^{\prime}, y \cdot R_{1}(\underline{x}, y) \wedge R_{2}\left(\underline{x}^{\prime}, y\right)$, then certainty $\left(q_{3}\right)$ is coNP-complete [4].
How can these differences in complexity be explained? Also, is there an algorithm and, in particular, is there an efficient algorithm that can be used to pinpoint the exact complexity of computing certainty (q) ? Major progress in this direction was made by Wijsen [6], who gave a necessary and sufficient condition for Certainty (q) to be first-order expressible, provided q is a Boolean acyclic conjunctive query without self-joins; moreover, this condi-
tion can be checked in quadratic time in the size of the query q. What can we say about the complexity of certainty (q), if certainty (q) is not first-order expressible? It has been conjectured (e.g., in [7]) that a dichotomy theorem holds for the complexity of certainty (q), namely, either certainty (q) is in P or certainty (q) is coNP-complete. To appreciate the point of this conjecture and the significance of a dichotomy theorem, recall that Ladner [8] has shown that if $\mathrm{P} \neq \mathrm{NP}$, then there are decision problems that are in coNP, but are neither in P nor are coNPcomplete; thus, the existence of a dichotomy theorem for a class of decision problems cannot be taken for granted a priori.

The three examples given earlier involve conjunctive queries with exactly two atoms; in fact, most of the concrete conjunctive queries analyzed in [4,5] have exactly two atoms In this article, we establish a dichotomy theorem for $\operatorname{certainty}(q)$, where q is a Boolean conjunctive query with exactly two atoms and without self-joins and such that Certainty (q) is not first-order expressible. Specifically, assume that q is such a query and let R_{1} and R_{2} be the two relation symbols occurring in q, let L be the set of variables shared by the two atoms of q, and let $k e y\left(R_{i}\right)$ be the set of variables that occur as key attributes of $R_{i}, i=1,2$. Our dichotomy theorem asserts that

- if $k e y\left(R_{1}\right) \cup k e y\left(R_{2}\right) \subseteq L$, then Certainty (q) is in P ;
- if $\operatorname{key}\left(R_{1}\right) \cup \operatorname{key}\left(R_{2}\right) \nsubseteq L$, then $\operatorname{certainty}(q)$ is coNP-complete.
When combined with Wijsen's necessary and sufficient condition for certainty (q) to be first-order expressible, our dichotomy theorem implies that the complexity of the consistent answers of Boolean conjunctive queries with exactly two atoms and without self-joins exhibits a trichotomy. Moreover, it yields a linear-time algorithm for determining, given such a query, which of the following three collectively exhaustive possibilities holds: certainty (q) is first-order expressible, or certainty (q) is in P but is not firstorder expressible, or certainty (q) is coNP-complete.

2. Preliminaries

A relational database schema is a finite collection \mathbf{R} of relation symbols, each with an associated arity. The attributes of a relation symbol R in \mathbf{R} need not have names. Thus, if R is a n-ary relation symbol, then its attributes can be identified with the positions $1, \ldots, n$, which means that the set $\operatorname{Attr}(R)$ of the attributes of R coincides with the set $\{1, \ldots, n\}$.

If R is a relation symbol in \mathbf{R} and I is an instance over \mathbf{R}, then R^{I} denotes the interpretation of R on I. A fact of an instance I is an expression of the form $R^{I}\left(a_{1}, \ldots, a_{n}\right)$ such that $\left(a_{1}, \ldots, a_{n}\right) \in R^{I}$; in this case, we will also say that $R^{I}\left(a_{1}, \ldots, a_{n}\right)$ is an R-fact of the
instance I. For simplicity of notation and whenever the instance I at hand is understood from the context, we will write $R\left(a_{1}, \ldots, a_{n}\right)$, instead of $R^{I}\left(a_{1}, \ldots, a_{n}\right)$. A key of R is a subset X of the set $\operatorname{Attr}(R)=\{1, \ldots, n\}$ of the attributes of R such that for every instance I over \mathbf{R}, the interpretation R^{I} of R on I does not contain two distinct facts that agree on all positions in X. In other words, a key is a set X of positions such that the functional dependency $X \rightarrow \operatorname{Attr}(R)$ holds; such a dependency is called a key constraint. We assume that each relation symbol comes with a fixed key.

A conjunctive query is a first-order formula built from atomic formulas, conjunctions, and existential quantification. Thus, every conjunctive query is logically equivalent to an expression of the form $q(\mathbf{z})=$ $\exists \mathbf{w} \cdot R_{1}\left(\mathbf{x}_{1}\right) \wedge \ldots \wedge R_{m}\left(\mathbf{x}_{\mathbf{m}}\right)$, where each \mathbf{x}_{i} is a tuple of variables and constants, \mathbf{z} and \mathbf{w} are tuples of variables, and the variables in $\mathbf{x}_{\mathbf{1}}, \ldots, \mathbf{x}_{\mathbf{m}}$ appear in exactly one of \mathbf{z} and \mathbf{w}. A Boolean conjunctive query is a conjunctive query in which all variables are existentially quantified. A conjunctive query contains a self-join if it has repeated relation names. We refer to queries that do not contain self-joins as self-join free queries.
In what follows, whenever we write a conjunctive query, we underline in each atom variables and constants that appear in the positions of the key of the relation symbol; such variables are called key variables. For instance, by writing $\exists x, y . R_{1}(\underline{x}, y) \wedge R_{2}(y, x)$, we indicate that the first position (attribute) of R_{1}^{-}and the first position (attribute) of R_{2} are, respectively, the key of R_{1} and the key of R_{2}; furthermore, x is a key variable of the atom $R_{1}(\underline{x}, y)$, while y is a key variable of the atom $R_{2}(y, x)$. In general, when a conjunctive query is presented in this form, we omit explicitly specifying the schema and the key constraints, since they can be derived from the formulation of the query itself.

Let q be a conjunctive query and $R(\underline{\mathbf{x}}, \mathbf{y})$ one of its atoms. We define $\operatorname{vars}(R(\underline{\mathbf{x}}, \mathbf{y}))$ to be the set of variables appearing in the atom $R(\underline{\mathbf{x}}, \mathbf{y})$. We define $\operatorname{key}(R(\underline{\mathbf{x}}, \mathbf{y}))$ to be the set of variables appearing in the positions of the key in the atom $R(\underline{\mathbf{x}}, \mathbf{y})$. Note that constants may occur in \mathbf{x}, but are not members of $\operatorname{key}(R(\underline{\mathbf{x}}, \mathbf{y}))$; in particular, $\operatorname{key}(R(\underline{\mathbf{x}}, \mathbf{y}))$ may be the empty set. We define $n k e y(R(\underline{\mathbf{x}}, \mathbf{y}))$ to be the set of the variables appearing in positions that do not belong to the key in the atom $R(\underline{\mathbf{x}}, \mathbf{y})$. Note that it is possible to have that $\operatorname{key}(R(\underline{\mathbf{x}}, \mathbf{y})) \cap \operatorname{nkey}(R(\underline{\mathbf{x}}, \mathbf{y})) \neq \emptyset$. For simplicity, given a self-join free conjunctive query, we will refer to the atoms with the name of the corresponding relations. Thus, we write $\operatorname{vars}(R)$ instead of $\operatorname{vars}(R(\underline{\mathbf{x}}, \mathbf{y}))$, and $\operatorname{key}(R)$ instead of $\operatorname{key}(R(\underline{\mathbf{x}}, \mathbf{y}))$.
Next, we give precise definitions of the notions of a subset repair, consistent answers, and certainty (q).

Definition 1. Let \mathbf{R} be a relational database schema and Σ a set of integrity constraints over \mathbf{R}.

- Let I be an instance. An instance r is a subset repair or, simply, a repair of I w.r.t. Σ if r is a maximal sub-instance of I that satisfies Σ, i.e., $r \vDash \Sigma$ and there is no instance r^{\prime} such that $r^{\prime} \vDash \Sigma$ and $r \subset r^{\prime} \subseteq I$.
- Let q be a query and I an instance. We say that a tuple t is a consistent answer for q if for every repair r of I w.r.t Σ, we have $t \in q(r)$.
- Let q be a Boolean query.
- If I is an instance, then the notation $I \vDash_{\Sigma} q$ denotes that q is true in every repair of I w.r.t. Σ, whereas the notation $I \not \forall_{\Sigma} q$ denotes that q is false in at least one repair of I w.r.t. Σ.
- Certainty (q) is the following decision problem: given an instance I, does $I F_{\Sigma} q$?

As mentioned in the Introduction, if Σ is a set of key constraints and q is a Boolean conjunctive query, then certainty (q) is in conP.

3. FO-Expressibility of the Certain Answers of Acyclic Self-join Free Conjunctive Queries

This section contains an overview of the results in [6] for the first-order expressibility of Certainty (q).

Definition 2. Let q be conjunctive query.

- The complete intersection graph of q is a labeled graph that has the atoms of q as vertices, and an edge between every two distinct atoms F and G labeled by the set of variables that F and G share.
- An intersection tree for q is a spanning tree of the complete intersection graph of q.
- A join tree for q is an intersection tree that satisfies the following connectedness condition: whenever the same variable x occurs in two atoms F and G, then x occurs in every atom on the unique path linking F and G.
- We say that q is acyclic if it has a join tree.

Wijsen [6] found a necessary and sufficient condition for the first-order expressibility of certainty (q). This condition involves the notion of the attack graph, which we will present after introducing some notation. Every atom F in a conjunctive query q gives rise to a functional dependency among the variables occurring in F. For example, the atom $R(x, y, z)$ gives rise to $\{x, y\} \rightarrow z$. As a special case, the atom $R(\underline{a}, x)$, where a is a constant, gives rise to $\} \rightarrow x$.

Let q be a Boolean conjunctive query.

- We write $K(q)$ to denote the set of all functional dependencies that arise from the atoms of q. In symbols, $K(q)=\{\operatorname{key}(A) \rightarrow \operatorname{vars}(A): A \in q\}$.
- Let U be the set of variables occurring in q. If F is an atom of q, then F^{+}denotes the attribute closure of the set $k e y(F)$ w.r.t. the set of all functional dependencies that arise in the atoms $q \backslash\{F\}$. In symbols, $F^{+}=\{x \in U: K(q \backslash\{F\}) \vDash \operatorname{key}(F) \rightarrow x\}$.

Definition 3. Let ρ be an intersection tree for a Boolean conjunctive query q. The attack graph of ρ is the directed graph whose vertices are the atoms of q, and there is a directed edge from an atom F to an atom G if for every label L on the unique path from F to G in ρ, we have that $L \nsubseteq F^{+}$.

We write $F \rightsquigarrow G$ to denote that there is an edge from F to G in the attack graph, and we say that F attacks G. A cycle of size n in the attack graph is a sequence of edges $F_{0} \rightsquigarrow F_{1} \rightsquigarrow \ldots \rightsquigarrow F_{n-1} \rightsquigarrow F_{0}$. We are now ready to state the main result in [6].

Theorem 1. Let q be an acyclic self-join free Boolean conjunctive query and let τ be a join tree for q. Then the following two statements are equivalent:

1. Certainty (q) is first-order expressible.
2. The attack graph of τ is acyclic.

Every self-join free conjunctive query with two atoms R_{1} and R_{2} is acyclic and has only one join tree that is a single edge connecting the two atoms. Hence, the attack graph can only have a cycle of length 2 , which arises precisely when $L \nsubseteq R_{1}^{+}$and $L \nsubseteq R_{2}^{+}$. Thus, Theorem 1 yields the following corollary.

Corollary 1. Let q be a self-join free Boolean conjunctive query with two atoms R_{1} and R_{2}, and let L be the set of variables shared by R_{1} and R_{2}. Then the following two statements are equivalent:

1. certainty (q) is first-order expressible.
2. $L \subseteq R_{1}^{+}$or $L \subseteq R_{2}^{+}$.

Consider the queries q_{1}, q_{2}, q_{3} from the Introduction. For the query $q_{1}=\exists x, y, z \cdot R_{1}(\underline{x}, y) \wedge R_{2}(\underline{y}, z)$, we have that $L=\{y\}, R_{1}^{+}=\{x\}$, and $R_{2}^{+}={ }^{-}\{y\}$; since $L \subseteq R_{2}^{+}$, it follows that certainty $\left(q_{1}\right)$ is firstorder expressible. In contrast, for the query $q_{2}=$ $\exists x, y \cdot R_{1}(\underline{x}, y) \wedge R_{2}(\underline{y}, x)$, we have that $L=\{x, y\}, R_{1}^{+}=$ $\{x\}$, and $R_{2}^{+}=\{y\}$; since $L \nsubseteq R_{1}^{+}$and $L \nsubseteq R_{2}^{+}$, it follows that certainty $\left(q_{2}\right)$ is not first-order expressible. Similarly, certainty $\left(q_{3}\right)$ is not first-order expressible.

4. Dichotomy of the Certain Answers of Self-join Free Conjunctive Queries with Two Atoms

We will now prove a dichotomy in the complexity of certainty (q), where q is a self-join free Boolean conjunctive query with exactly two atoms and such that certainty (q) is not first-order expressible.

Theorem 2. Let q be a self-join free Boolean conjunctive query with two atoms R_{1} and R_{2} such that certainty (q) is not first-order expressible. Then either certainty (q) is in P or certainty (q) is con P complete. Moreover, the complexity of $\operatorname{CERTAINTY}(q)$ is determined by the following criterion:

1. If $k e y\left(R_{1}\right) \cup \operatorname{key}\left(R_{2}\right) \subseteq L$, then $\operatorname{CERTainty}(q)$ is in P;
2. If $k e y\left(R_{1}\right) \cup \operatorname{key}\left(R_{2}\right) \nsubseteq L$, then $\operatorname{CERTAINTY}(q)$ is coNP-complete,
where R_{1}, R_{2} are the two atoms of q, and L is the set of variables shared by R_{1} and R_{2}.

To illustrate Theorem 2, let us consider again the queries q_{2} and q_{3} from the Introduction. As stated earlier, Corollary 1 implies that neither $\operatorname{certainty}\left(q_{2}\right)$ nor certainty $\left(q_{3}\right)$ is first-order expressible. For the query $q_{2}=\exists x, y \cdot R_{1}(\underline{x}, y) \wedge R_{2}(y, x)$, we have that $\operatorname{key}\left(R_{1}\right)=\{x\}, \operatorname{key}\left(R_{2}\right)=\{y\}$, and $L=\{x, y\}$; since $\operatorname{key}\left(R_{1}\right) \cup k e y\left(R_{2}\right) \subseteq L$, it follows that CERTAINTY $\left(q_{2}\right)$ is in P. In contrast, for the query $q_{3}=\exists x, x^{\prime}, y . R_{1}(\underline{x}, y) \wedge$ $R_{2}\left(\underline{x^{\prime}}, y\right)$), we have that $\operatorname{key}\left(R_{1}\right)=\{x\}, \operatorname{key}\left(R_{2}\right)=\left\{x^{\prime}\right\}$, and $L=\{y\}$; since $\operatorname{key}\left(R_{1}\right) \cup \operatorname{key}\left(R_{2}\right) \nsubseteq L$, it follows that certainty $\left(q_{3}\right)$ is coNP-complete.

If certainty (q) is first-order expressible, then certainty (q) is in P. Consequently, Theorem 2 yields the following dichotomy theorem for self-join free Boolean conjunctive queries with exactly two atoms.

Corollary 2. If q is a self-join free Boolean conjunctive query with exactly two atoms, then either certainty (q) is in P or certainty (q) is conP-complete.

As mentioned in Section 2, every self-join free Boolean conjunctive with exactly two atoms is acyclic; moreover, the edge connecting the two atoms of the query is the only join tree of the query. Also, it is well known that there is a linear-time algorithm for computing the closure of a given set of attributes w.r.t. a given set of functional dependencies [9]. These facts together with Corollary 1 imply that there is lineartime algorithm to determine, given a self-joint free Boolean conjunctive query q with exactly two atoms, whether or not certainty (q) is first-order expressible. By combining the preceding remarks with Theorem 2, we obtain the following result.

Corollary 3. Let q be a self-join free Boolean conjunctive query with two atoms R_{1} and R_{2}, and let L be the set of variables shared by R_{1} and R_{2}. Then the following statements are true.

1. If $L \subseteq R_{1}^{+}$or $L \subseteq R_{2}^{+}$, then $\operatorname{certainty}(q)$ is firstorder expressible.
2. If $L \nsubseteq R_{1}^{+}, L \nsubseteq R_{2}^{+}$, and $\operatorname{key}\left(R_{1}\right) \cup \operatorname{key}\left(R_{2}\right) \subseteq$ L, then certainty (q) is in P but is not first-order expressible.
3. If $L \nsubseteq R_{1}^{+}, L \nsubseteq R_{2}^{+}$, and $\operatorname{key}\left(R_{1}\right) \cup k e y\left(R_{2}\right) \nsubseteq L$, then CERTAINTY (q) is coNP-complete.
Furthermore, there is a linear-time algorithm to determine, given a self-join free Boolean conjunctive query q with exactly two atoms, if CERTAINTY (q) is first-order expressible, or certainty (q) is in P but not first-order expressible, or CERTAINTY (q) is coNP-complete.

Before embarking on the proof of Theorem 2, we describe briefly our strategy. Let q be a self-join free Boolean conjunctive query with two atoms R_{1} and R_{2} such that certainty (q) is not first-order expressible. In Section 4.1, we prove the intractability side of the dichotomy, that is, we show that if the query q is such that $\operatorname{key}\left(R_{1}\right) \cup k e y\left(R_{2}\right) \nsubseteq L$, then Certainty (q) is coNP-hard. As a stepping stone, in Lemma 1, we show that Certainty $\left(q^{\prime}\right)$ is coNP-hard, where q^{\prime} is the query $\exists x, y, z . S_{1}(x, z, y) \wedge S_{2}(y, x)$; this is done via a polynomial-time reduction from Monotone SAT, a problem well known to be NP-complete (see [10] and [11]). After this, in Lemma 2, we show that if q is a query such that $\operatorname{key}\left(R_{1}\right) \cup \operatorname{key}\left(R_{2}\right) \nsubseteq L$, then Certainty $\left(q^{\prime}\right)$ can be reduced in polynomial time to CERTAINTY (q); hence, $\operatorname{certainty}(q)$ is coNP-hard.

In Section 4.2, we prove the tractability side of the dichotomy, that is, we show that if the query q is such that $k e y\left(R_{1}\right) \cup k e y\left(R_{2}\right) \subseteq L$, then $\operatorname{certainty}(q)$ is in P. For this, we introduce the notion of the conflictjoin graph and show that certainty (q) can be reduced in polynomial time to the problem of finding an independent set of a certain size in a conflict-join graph. In general, the problem of finding an independent set of a certain size in a given graph is NP-complete. However, there are families of graphs on which this problem can be solved in polynomial time. One such family is the class of all claw-free graphs. In Lemma 4, we show that if q is a query with two atoms that satisfies the condition $\operatorname{key}\left(R_{1}\right) \cup k e y\left(R_{2}\right) \subseteq L$, then the conflictjoin graph of q is claw-free; hence, Certainty (q) is in P. Theorem 2 then follows immediately by combining Lemma 2 with Lemma 4.

4.1. The Intractability Side of the Dichotomy

We begin by observing that if q is a query such that certainty (q) is not first-order expressible and $k e y\left(R_{1}\right) \cup \operatorname{key}\left(R_{2}\right) \nsubseteq L$, then the variables of q exhibit a particular pattern.

Proposition 1. Let q be a self-join free Boolean conjunctive query with two atoms such that CERTAINTY (q) is not first-order expressible. Let R_{1}, R_{2} be the two atoms of q, and let L be the set of variables shared by R_{1} and R_{2}. Then the following hold:

1. There exist four variables u, v, w, w^{\prime} with the property that $u \in \operatorname{key}\left(R_{1}\right) \backslash \operatorname{key}\left(R_{2}\right), v \in \operatorname{key}\left(R_{2}\right) \backslash$ $\operatorname{key}\left(R_{1}\right), w \in L \backslash \operatorname{key}\left(R_{1}\right)$, and $w^{\prime} \in L \backslash \operatorname{key}\left(R_{2}\right)$.
2. If, in addition, $\operatorname{key}\left(R_{1}\right) \cup \operatorname{key}\left(R_{2}\right) \nsubseteq L$, then the variable u can be chosen to also satisfy $u \in$ $k e y\left(R_{1}\right) \backslash L$ or the variable v can be chosen to also satisfy $v \in \operatorname{key}\left(R_{2}\right) \backslash L$.

Proof. Since certainty (q) is not first-order expressible, Corollary 1 tells that $L \nsubseteq R_{1}^{+}$and $L \nsubseteq R_{2}^{+}$. We claim that $\operatorname{key}\left(R_{1}\right) \nsubseteq \operatorname{key}\left(R_{2}\right)$ and $\operatorname{key}\left(R_{2}\right) \nsubseteq \operatorname{key}\left(R_{1}\right)$. Indeed, if $\operatorname{key}\left(R_{1}\right) \subseteq \operatorname{key}\left(R_{2}\right)$, then $\operatorname{key}\left(R_{1}\right) \subseteq R_{2}^{+}$ and also $n k e y\left(R_{1}\right) \subseteq R_{2}^{+}$. Consequently, $L \subseteq R_{2}^{+}$, which contradicts the hypothesis. A similar argument shows that $\operatorname{key}\left(R_{2}\right) \nsubseteq \operatorname{key}\left(R_{1}\right)$. Thus, there are variables u and v such that $u \in \operatorname{key}\left(R_{1}\right) \backslash \operatorname{key}\left(R_{2}\right)$ and $v \in \operatorname{key}\left(R_{2}\right) \backslash \operatorname{key}\left(R_{1}\right)$. Since $L \nsubseteq R_{1}^{+}$and $k e y\left(R_{1}\right) \subseteq R_{1}^{+}$, there is a variable w such that $w \in L \backslash \operatorname{key}\left(R_{1}\right)$. Similarly, since $L \nsubseteq R_{2}^{+}$and $\operatorname{key}\left(R_{2}\right) \subseteq R_{2}^{+}$, there is a variable w^{\prime} such that $w^{\prime} \in L \backslash \operatorname{key}\left(R_{2}\right)$.
Assume that, in addition, $\operatorname{key}\left(R_{1}\right) \cup \operatorname{key}\left(R_{2}\right) \nsubseteq L$ holds. This means that $\operatorname{key}\left(R_{1}\right) \nsubseteq L$ or $k e y\left(R_{2}\right) \nsubseteq L$. In the first case, there exists a variable $u \in \operatorname{key}\left(R_{1}\right) \backslash L$ (hence, also $u \in \operatorname{key}\left(R_{1}\right) \backslash \operatorname{key}\left(R_{2}\right)$). In the second case, there exists a variable $v \in \operatorname{key}\left(R_{2}\right) \backslash L$ (hence, also $\left.v \in \operatorname{key}\left(R_{2}\right) \backslash \operatorname{key}\left(R_{1}\right)\right)$.

Let q^{\prime} be the query $\exists x, y, z . S_{1}(x, z, y) \wedge S_{2}(y, x)$. Corollary 1 implies that certainty (q) is not firstorder expressible. Moreover, we have that $k e y\left(S_{1}\right) \cup$ $k e y\left(S_{2}\right) \nsubseteq L$. It is easy to verify directly that the variables of q^{\prime} exhibit the pattern described in Proposition 1. Specifically, the role of u is played by z, the roles of both v and w is played by y, and the role of w^{\prime} is played by x.

Lemma 1. Let q^{\prime} be the query $\exists x, y, z . S_{1}(x, z, y) \wedge$ $S_{2}(\underline{y}, x)$. Then Certainty $\left(q^{\prime}\right)$ is coNP-hard.

Proof. We will reduce Monotone SAT to $\operatorname{Certainty}\left(q^{\prime}\right)$ in polynomial time. Let φ be a Boolean formula in conjunctive normal form such that each clause has either positive literals only (positive clause) or negative literals only (negative clause); without loss of generality, assume that each variable of φ occurs in some positive clause and in some negative clause. Construct an instance I over the schema of q^{\prime} as follows:

- For every positive clause c_{i} and every variable p in it, generate a fact $S_{1}\left(1, c_{i}, p\right)$ in I.
- For every negative clause c_{j} and every variable p in it, generate a fact $S_{1}\left(0, c_{j}, p\right)$ in I.
- For every variable p, generate two facts $S_{2}(p, 0)$ and $S_{2}(p, 1)$ in I.
We will now prove that φ is satisfiable if and only if there is a repair of I that does not satisfy q^{\prime}.
Assume first that there exists a satisfying assignment θ for φ. Construct the following instance r :
- For every positive clause c_{i} of φ, choose a variable p in c_{i} such that $\theta(p)=1$. Add $S_{1}\left(1, c_{i}, p\right)$ to r.
- For every negative clause c_{j} of φ, choose a variable p in c_{j} such that $\theta(p)=0$. Add $S_{1}\left(0, c_{j}, p\right)$ to r.
- For every variable p of φ, if $\theta(p)=1$, then add $S_{2}(p, 0)$ to r; otherwise, add $S_{2}(p, 1)$ to r.
It is easy to see that r is a repair of I and $r \not \vDash q^{\prime}$.
Next, assume that r is a repair of I such that $r \not \not q^{\prime}$. Let θ be the following truth assignment.
- For every fact $S_{1}\left(1, c_{i}, p\right)$ in r, set $\theta(p)=1$.
- For every fact $S_{1}\left(0, c_{j}, p\right)$ in r, set $\theta(p)=0$.
- For every variable p for which there is no fact of the form $S_{1}(,,-, p)$ in r, assign to p value 0 or 1 arbitrarily.

It is easy to see that θ is a valid truth assignment that satisfies φ.

We will use the following terminology and notation. We say that two facts $R^{I}\left(a_{1}, \ldots, a_{n}\right)$ and $R^{I}\left(b_{1}, \ldots, b_{n}\right)$ form a conflict if the two tuples $\left(a_{1}, \ldots, a_{n}\right)$ and $\left(b_{1}, \ldots, b_{n}\right)$ witness a violation of the key constraint of R; we also say that these two facts are key-equal. If a and b are constants, then $a \cdot b$ is a new constant encoding the pair (a, b) in a unique way; in other words, the function $(a, b) \mapsto a \cdot b$ is injective.

Lemma 2. Let q be a self-join free Boolean conjunctive query with two atoms such that CERTAINTY (q) is not first-order expressible. Let R_{1}, R_{2} be the two atoms of q, and let L be the set of variables shared by R_{1} and R_{2}. If $\operatorname{key}\left(R_{1}\right) \cup \operatorname{key}\left(R_{2}\right) \nsubseteq L$, then $\operatorname{certainty}(q)$ is coNP-hard.

Proof. Let q^{\prime} be the query $\exists x, y, z . S_{1}(x, z, y) \wedge S_{2}(y, x)$ of Lemma 1. We will show that certainty $\left(q^{\prime}\right)$ can be reduced to CERTainty (q) in polynomial time. To this effect, given an instance I^{\prime} over the schema of q^{\prime}, we will construct an instance I over the schema of q such that there is a repair of I^{\prime} on which q^{\prime} is false if and only if there is a repair of I on which q is false.

Assume that the two atoms of q are $R_{1}\left(s_{1}, \ldots, s_{n}\right)$ and $R_{2}\left(t_{1}, \ldots, t_{m}\right)$, where each s_{i} and each t_{j} is a variable or a constant (clearly, these variables need not be pairwise distinct). Let V be the set of variables occurring in q. From Proposition 1, there are variables u, v, w, w^{\prime} such that $u \in \operatorname{key}\left(R_{1}\right) \backslash \operatorname{key}\left(R_{2}\right)$, $v \in \operatorname{key}\left(R_{2}\right) \backslash \operatorname{key}\left(R_{1}\right), w \in L \backslash \operatorname{key}\left(R_{1}\right), w^{\prime} \in L \backslash \operatorname{key}\left(R_{2}\right)$. Moreover, $u \in \operatorname{key}\left(R_{1}\right) \backslash L$ or $v \in \operatorname{key}\left(R_{2}\right) \backslash L$ holds. Assume that $u \in \operatorname{key}\left(R_{1}\right) \backslash L$ (the other case is similar). Let $P=\left\{u, v, w, w^{\prime}\right\}$, let $Q=V \backslash P$, and c be a fixed constant. We are now ready to describe the construction of the instance I from I^{\prime}. The intuition behind this construction is that the variable u in q plays the role of the variable z in q^{\prime}, the variable w^{\prime} in q plays the role of the variable x in q^{\prime}, while the variables v and w in q play the role of the variable y in q^{\prime}.

Consider first the atom $R_{1}\left(s_{1}, \ldots, s_{n}\right)$ of q. Every fact $S_{1}\left(a_{1}, a_{3}, a_{2}\right)$ of I^{\prime} generates a fact $R_{1}\left(b_{1}, \ldots, b_{n}\right)$ of I, where each b_{i} is defined as follows:

1. If $s_{i}=u$, then $b_{i}=a_{1} \cdot a_{3}$.
2. If $s_{i}=v$, then $b_{i}=a_{2}$.
3. If $s_{i}=w=w^{\prime}$, then $b_{i}=a_{1} \cdot a_{2}$.
4. If $s_{i}=w$ and $w \neq w^{\prime}$, then $b_{i}=a_{2}$.
5. If $s_{i}=w^{\prime}$ and $w^{\prime} \neq w$, then $b_{i}=a_{1}$.
6. If s_{i} is a constant, then $b_{i}=s_{i}$.
7. In all other cases, $b_{i}=c$.

Next, consider the atom $R_{2}\left(t_{1}, \ldots, t_{m}\right)$ of q. Every fact $S_{2}\left(a_{2}, a_{1}\right)$ of I^{\prime} generates a fact $R_{2}\left(b_{1}, \ldots, b_{m}\right)$ of I, where each b_{i} is defined by the preceding conditions 2 to 7 and with t_{i} in place of s_{i}. Note that the first condition is not applicable because $u \in \operatorname{key}\left(R_{1}\right) \backslash L$, hence u cannot be among the variables occurring in the atom $R_{2}\left(t_{1}, \ldots, t_{m}\right)$.
In the preceding construction, each b_{i} is defined in a unique way. The reason is that u is different from v, w, and w^{\prime}, and also v is different from w^{\prime}; thus, no s_{i} can meet two of the conditions 1 to 7 at the same time.

Let f be an S_{i}-fact of I^{\prime} and let g be an R_{i}-fact of $I, i=1,2$. We write $f \rightrightarrows g$ to denote that g has been generated by f in the way described above. Thus, $I=\left\{g\right.$: there is a fact f of I^{\prime} such that $\left.f \rightrightarrows g\right\}$. The preceding construction ensures two important properties that we now state and prove.

Property 1. For $i=1,2$, let f_{1}, f_{2} be S_{i}-facts of I^{\prime} and let g_{1}, g_{2} be R_{i}-facts of I such that $f_{1} \rightrightarrows g_{1}$ and $f_{2} \rightrightarrows g_{2}$. The following statements are equivalent.

1. The facts f_{1} and f_{2} are key-equal.
2. The facts g_{1} and g_{2} are key-equal.

To verify that Property 1 holds, assume first that f_{1}, f_{2} are S_{1}-facts and that g_{1}, g_{2} are R_{1}-facts. Assume that $g_{1}=R_{1}\left(b_{1}, \ldots, b_{n}\right)$ and $g_{2}=R_{1}\left(b_{1}^{\prime}, \ldots, b_{n}^{\prime}\right)$. If f_{1} and f_{2} are key equal, then they must be of the form $S_{1}\left(a_{1}, a_{3}, a_{2}\right.$ and $S_{1}\left(a_{1}, a_{3}, a_{2}^{\prime}\right)$, respectively. The preceding construction implies that the values of the keys of R_{1}-facts depend only on the value of the variable u or only on the values of the variables u and w^{\prime}, provided $w^{\prime} \neq w$ (if $w^{\prime}=w$, then $w^{\prime} \notin \operatorname{key}\left(R_{1}\right)$). If $s_{i}=u$, then, by construction, we have that $b_{i}=a_{1} \cdot a_{3}=b_{i}^{\prime}$; furthermore, if $w^{\prime} \neq w$, then, by construction, we have that $b_{i}=a_{1}=b_{i}^{\prime}$. Consequently, g_{1} and g_{2} are key-equal facts. For the other direction, assume that the facts g_{1} and g_{2} are key-equal. Assume that $f_{1}=S_{1}\left(a_{1}, a_{3}, a_{2}\right)$ and $f_{2}=S_{1}\left(a_{1}^{\prime}, a_{3}^{\prime}, a_{2}^{\prime}\right)$. Since $u \in \operatorname{key}\left(R_{1}\right)$, there is some i such that $u=s_{i}$, hence $b_{i}=b_{i}^{\prime}$. Furthermore, by construction, we have that $b_{i}=a_{1} \cdot a_{3}$ and $b_{i}^{\prime}=a_{1}^{\prime} \cdot a_{3}^{\prime}$. Consequently, $a_{1} \cdot a_{3}=a_{1}^{\prime} \cdot a_{3}^{\prime}$, which implies that $a_{1}=a_{1}^{\prime}$ and $a_{3}=a_{3}^{\prime}$. Thus, f_{1} and f_{2} are key-equal facts. A similar
argument shows that Property 1 holds also when f_{1}, f_{2} are S_{2}-facts and g_{1}, g_{2} are R_{2}-facts.

Property 2. For $i=1,2$, if f_{1}, f_{2} are S_{i}-facts of I^{\prime} and g is an R_{i}-fact of I such that $f_{1} \rightrightarrows g$ and $f_{2} \rightrightarrows g$, then $f_{1}=f_{2}$.

To verify that Property 2 holds, assume first that $f_{1}=S_{1}\left(a_{1}, a_{3}, a_{2}\right), f_{2}=S_{1}\left(a_{1}^{\prime}, a_{3}^{\prime}, a_{2}^{\prime}\right)$, and $g=$ $R_{1}\left(b_{1}, \ldots, b_{n}\right)$. By Property 1 , the facts f_{1} and f_{2} are key-equal, hence $a_{1}=a_{1}^{\prime}$ and $a_{3}=a_{3}^{\prime}$. Since $w \in L$, there is some i such that $s_{i}=w$. If $w=w^{\prime}$, then, by construction, $a_{1} \cdot a_{2}=b_{i}=a_{1} \cdot a_{2}^{\prime}$, hence $a_{2}=a_{2}^{\prime}$. If $w \neq w^{\prime}$, then $a_{2}=b_{i}=a_{2}^{\prime}$. In either case, we have that $a_{2}=a_{2}^{\prime}$ and so $f_{1}=f_{2}$. A similar argument shows that Property 2 holds also for the case in which f_{1}, f_{2} are S_{2}-facts and g is an R_{2}-fact.

We continue with the proof of the lemma. We will show that there is a repair of I^{\prime} on which q^{\prime} is false if and only if there is a repair of I on which q is false.
Assume that r^{\prime} is a repair of I^{\prime} such that $r^{\prime} \not \vDash q^{\prime}$. Let $r=\left\{g \in I:\right.$ there is a fact $f \in r^{\prime}$ such that $\left.f \rightrightarrows g\right\}$. We claim that r is a repair of I such that $r \not \vDash q$.

Properties 1 and 2 imply that r is a repair of I. Indeed, to show that r is a consistent instance, let g_{1}, g_{2} be two key-equal facts of r. Let f_{1}, f_{2} be two facts of r^{\prime} such that $f_{1} \rightrightarrows g_{1}$ and $f_{2} \rightrightarrows g_{2}$. Property 1 implies that the facts f_{1} and f_{2} are key equal. Since r is a consistent instance, it follows that $f_{1}=f_{2}$, hence $g_{1}=g_{2}$. To show that r is a maximal consistent subinstance of I, let g be a fact of I such that $r \cup\{g\}$ is consistent. Let f be a fact of I^{\prime} such that $f \rightrightarrows g$. We claim that $r^{\prime} \cup\{f\}$ is consistent. Indeed, assume that f^{\prime} is a fact of r^{\prime} such that f and f^{\prime} are key-equal, and let $g^{\prime} \in r$ be such that $f^{\prime} \rightrightarrows g^{\prime}$. By Property 1 , we have that g and g^{\prime} are key-equal facts, hence (since $r \cup\{g\}$ is consistent) $g=g^{\prime}$. Property 2 implies that $f^{\prime}=f$, hence $g \in r$; this completes the proof that r is a repair of I.

Next, we show that r does not satisfy q. Towards a contradiction, assume that $R_{1}\left(b_{1}, \ldots, b_{n}\right)$ and $R_{2}\left(b_{1}^{\prime}, \ldots, b_{m}^{\prime}\right)$ are two facts of r that satisfy q. Let $S_{1}\left(a_{1}, a_{3}, a_{2}\right)$ and $S_{2}\left(a_{2}^{\prime}, a_{1}^{\prime}\right)$ be two facts of r^{\prime} such that $S_{1}\left(a_{1}, a_{3}, a_{2}\right) \rightrightarrows R_{1}\left(b_{1}, \ldots, b_{n}\right)$ and $S_{2}\left(a_{2}^{\prime}, a_{1}^{\prime}\right) \rightrightarrows$ $R_{2}\left(b_{1}^{\prime}, \ldots, b_{m}^{\prime}\right)$. Consider the variables w, w^{\prime} and recall that $w \in L$ and $w^{\prime} \in L$. Let i and j be such that $s_{i}=w$ and $t_{j}=w$. We distinguish two cases. If $w=w^{\prime}$, then $b_{i}=a_{1} \cdot a_{2}$ and $b_{j}^{\prime}=a_{1}^{\prime} \cdot a_{2}^{\prime}$. Since the facts $R_{1}\left(b_{1}, \ldots, b_{n}\right)$ and $R_{2}\left(b_{1}^{\prime}, \ldots, b_{m}^{\prime}\right)$ satisfy q, we have that $b_{i}=b_{j}^{\prime}$, hence $a_{1}=a_{1}^{\prime}$ and $a_{2}=a_{2}^{\prime}$, which implies that the facts $S_{1}\left(a_{1}, a_{3}, a_{2}\right)$ and $S_{2}\left(a_{2}^{\prime}, a_{1}^{\prime}\right)$ satisfy q^{\prime}, a contradiction. If $w \neq w^{\prime}$, then $b_{i}=a_{1}$ and $b_{j}^{\prime}=a_{1}^{\prime}$. Since $b_{i}=b_{j}^{\prime}$, we have that $a_{1}=a_{1}^{\prime}$. Furthermore, let k and l be such that $s_{k}=w^{\prime}$ and $t_{l}=w^{\prime}$. Then $b_{k}=a_{2}$ and $b_{l}^{\prime}=a_{2}^{\prime}$. Since $b_{k}=b_{l}^{\prime}$, we have that $a_{2}=a_{2}^{\prime}$, which implies that the facts $S_{1}\left(a_{1}, a_{3}, a_{2}\right)$ and $S_{2}\left(a_{2}^{\prime}, a_{1}^{\prime}\right)$ satisfy q^{\prime}, a contradiction.

In the other direction, assume that r is a repair of I such that $r \not \equiv q$. Let $r^{\prime}=\left\{f \in I^{\prime}\right.$:
there is a fact $g \in r$ such that $f \rightrightarrows g\}$. We claim that r^{\prime} is a repair of I^{\prime} such that $r^{\prime} \neq q^{\prime}$.
As before, Properties 1 and 2 imply that r^{\prime} is a repair of I^{\prime}. Indeed, if f_{1} and f_{2} are two key-equal facts of r^{\prime}, then, by Property 1 , the facts g_{1} and g_{2} of r are key-equal, where $f_{1} \rightrightarrows g_{1}$ and $f_{2} \rightrightarrows g_{2}$. It follows that $g_{1}=g_{2}$ and so, by Property 2 , we have that $f_{1}=f_{2}$. Similarly, if $r^{\prime} \cup\{f\}$ is consistent and $f \rightrightarrows g$, then $r \cup\{g\}$ is consistent, hence $g \in r$ and so $f \in r^{\prime}$. Finally, we show that r^{\prime} does not satisfy q^{\prime}. Towards a contradiction, assume that $S_{1}\left(a_{1}, a_{3}, a_{2}\right)$ and $S_{2}\left(a_{2}, a_{1}\right)$ are two facts of r^{\prime} that satisfy q^{\prime}. Let g_{1} and g_{2} be the facts of r such that $S_{1}\left(a_{1}, a_{3}, a_{2}\right) \rightrightarrows g_{1}$ and $S_{2}\left(a_{2}, a_{1}\right) \rightrightarrows g_{2}$. By the construction of I from I^{\prime} and since the variable u is not in L, we have that the facts g_{1} and g_{2} of r agree on all values corresponding to variables in L. Consequently, the facts g_{1} and g_{2} satisfy the query q, contrary to the hypothesis. This completes the proof of Lemma 2.

As an illustration of Lemma 2, it follows that $\operatorname{Certainty}\left(q_{3}\right)$ is coNP-hard, where q_{3} is the query $\exists x, x^{\prime}, y . R_{1}(\underline{x}, y) \wedge R_{2}\left(\underline{x^{\prime}}, y\right)$ from the Introduction. In addition, certainty (q) is coNP-hard if q is one of the following queries:

$$
\begin{aligned}
& \exists x, x^{\prime}, y, z \cdot R_{1}\left(\underline{x, z}, x^{\prime}, y\right) \wedge R_{2}\left(\underline{x^{\prime}}, x, y\right) ; \\
& \exists x, y, z, w \cdot R_{1}(\underline{x, w}, z, y) \wedge R_{2}(x, z, y) \\
& \exists x, y, z, w \cdot R_{1}(\underline{x, z}, y, w) \wedge R_{2}(\underline{y, x}, w) .
\end{aligned}
$$

4.2. The Tractability Side of the Dichotomy

In this section, we introduce the notion of the conflict-join graph and use it to study when Certainty (q) is tractable, where q is a self-join free Boolean conjunctive query with two atoms. As before, we assume that there is one key constraint for each relation symbol.

Definition 4. Let q be a self-join free Boolean conjunctive query with two atoms. If I is an instance, then the conflict-join graph $H_{I, q}=(V, E)$ is defined as follows:

- The set V of the nodes of $H_{I, q}$ consists of all facts of I.
- For every pair of facts that form a conflict, add an edge in E connecting these two facts.
- For every pair of facts that satisfy the query q, add an edge in E connecting these two facts.

For every fixed query q, the size of the conflict-join graph $H_{I, q}$ is quadratic in the size of the instance I. If D is a set of pairwise key-equal facts of I, then every two distinct elements of D form a conflict, which implies that D induces a clique in $H_{I, q}$. A maximal set of pairwise key-equal facts of I must contain all facts that are key-equal to one of its members; moreover, if
D and D^{\prime} are distinct maximal sets of pairwise keyequal facts, then $D \cap D^{\prime}=\emptyset$. Consequently, the set V of nodes of $H_{I, q}$ can be partitioned into pairwise disjoint sets V_{1}, \ldots, V_{n} such that each V_{i} is a maximal set of pairwise key-equal facts of I. Also, by construction and since q is a self-join free query, the set E of edges of $H_{I, q}$ can be partitioned into two disjoint sets E_{1} and E_{2}, where E_{1} consists of all edges whose endpoints form a conflict in I, and E_{2} consists of all edges whose endpoints are facts that satisfy the query q.

In what follows, we will establish a connection between the existence of a maximum independent set of a particular size in the conflict-join graph $H_{I, q}$ and the existence of a repair r of I such that $r \not \vDash q$. Recall that an independent set in a graph G is a set of nodes with no edges between them. A maximum independent set is an independent set of maximum cardinality. The independent set number $\alpha(G)$ of a graph G is the cardinality of a maximum independent set of G.

We now focus on the independent set number $\alpha\left(H_{I, q}\right)$ of the conflict-join graph associated with an instance I. It is easy to see that $\alpha\left(H_{I, q}\right) \leq n$, where n is the number of the maximal sets V_{1}, \ldots, V_{n} of pairwise key-equal facts of I. Indeed, this holds because each V_{i} induces a clique in $H_{I, q}$, so an independent set in $H_{I, q}$ can contain at most one node from each V_{i}, $1 \leq i \leq n$.

Example 1. Let q_{2} be the query $\exists x, y \cdot R_{1}(\underline{x}, y) \wedge$ $R_{2}(\underline{y}, x)$ from the Introduction. Consider the instañce $I=\left\{R_{1}(a, b), R_{1}\left(a, b^{\prime}\right), R_{1}\left(a, b^{\prime \prime}\right), R_{1}\left(a^{\prime}, b\right)\right.$, $\left.R_{2}(b, a), R_{2}\left(b, a^{\prime}\right)\right\}$. Figure 1 depicts the conflict-join graph $H_{I, q_{2}}$. Note that $H_{I, q_{2}}$ is partitioned into three maximal sets of pairwise key-equal facts. Note also that the set $r=\left\{R_{1}\left(a, b^{\prime}\right), R_{1}\left(a^{\prime}, b\right), R_{2}(b, a)\right\}$ has as size three and is a maximum independent set of $H_{I, q_{2}}$. Furthermore, viewed as an instance, r is a repair of I and $r \nLeftarrow q_{2}$. The next lemma tells that this is no accident.

Lemma 3. Assume that q is a self-join free Boolean conjunctive query with two atoms and I is an instance. Let $H_{I, q}$ be the conflict-join graph associated with I and q, let $\alpha\left(H_{I, q}\right)$ be the independent set number of $H_{I, q}$, and let n be the number of distinct maximal sets of pairwise key-equal facts of I. Then the following statements are equivalent:

1. There is a repair r of I such that $r \not \vDash q$.
2. $\alpha\left(H_{I, q}\right)=n$.

Proof. Assume first that r is a repair of I such that $r \not \vDash q$. Let M be the set of all facts of r. We claim that M is an independent set in $H_{I, q}$ and has size n. To see that M is an independent set in $H_{I, q}$, consider two distinct facts f_{1} and f_{2} of r. If they involve the same relation symbol, then they cannot be key equal because r is a consistent instance, hence there is no
edge between them in $H_{I, q}$. If they involve different relation symbols, then together they cannot satisfy q because $r \not \vDash q$, hence there is no edge between them in $H_{I, q}$. To see that M has size n, notice that, since r is a maximal consistent sub-instance of I, it must contain one fact of each different key value, which means that r must contain one fact from each of the n maximal sets of pairwise key-equal facts of I. Since $\alpha\left(H_{I, q}\right) \leq$ n, it follows that $\alpha\left(H_{I, q}\right)=n$.

For the other direction, assume that M is an independent set of $H_{I, q}$ of size n. Let r be the sub-instance of I formed by the facts of M. We claim that r is a repair of I such that $r \not \models q$. Indeed, since M is an independent set of $H_{I, q}$, we have that r is consistent and also $r \not \vDash q$. Also, since M is of size n, we have that r must contain a fact of each different key value, hence r is a maximal consistent sub-instance of I.

Notice that the proof of Lemma 3 actually establishes something stronger, namely, that the repairs of I that make q false are precisely the independent sets of $H_{I, q}$ of size n.

It is well known that the problem of computing the independent set number of a given graph is NP-hard [11]. However, it is also known that there are restricted classes of graphs for which this problem is solvable in polynomial time. In particular, this holds true for claw-free graphs, chordal graphs, and perfect graphs. Claw-free graphs will turn out to be of particular interest to us. A graph is claw-free if it does not contain a claw as an induced subgraph, where the claw is the complete bipartite graph $K_{1,3}$ (see Figure 2). Equivalently, a graph is claw-free if no node has three pairwise non-adjacent neighbors. Claw-free graphs form a broad class of graphs that enjoy good algorithmic properties. In particular, a polynomial-time algorithm for computing the independent set number on claw-free graphs was given by Minty [12].

Lemma 4. Assume that q is a self-join free Boolean conjunctive query with exactly two atoms. Let R_{1}, R_{2} be the two atoms of q, and let L be the set of variables shared by R_{1} and R_{2}. If $\operatorname{key}\left(R_{1}\right) \cup \operatorname{key}\left(R_{2}\right) \subseteq L$, then, for every instance I, the conflict-join graph $H_{I, q}$ is claw-free. Consequently, if $\left.\operatorname{key}\left(R_{1}\right) \cup k e y\left(R_{2}\right)\right) \subseteq L$, then certainty (q) is in P.

Proof. Let I be an instance. We first observe the following regarding the conflict-join graph $H_{I, q}$.

- If f_{1}, f_{2}, f_{3} are three facts of I such that $\left(f_{1}, f_{2}\right)$ and $\left(f_{1}, f_{3}\right)$ are edges in E_{1}, then $\left(f_{2}, f_{3}\right)$ is also an edge in E_{1}. Indeed, since $\left(f_{1}, f_{2}\right)$ and $\left(f_{1}, f_{3}\right)$ are in E_{1}, it follows that f_{1} is key-equal to both f_{2} and f_{3}; hence, f_{2} is key-equal to f_{3}, which implies that $\left(f_{1}, f_{3}\right)$ is an edge in E_{1}.
- If f_{1}, f_{2}, f_{3} are three facts of I such that $\left(f_{1}, f_{2}\right)$ and $\left(f_{1}, f_{3}\right)$ are edges in E_{2}, then $\left(f_{2}, f_{3}\right)$ is an edge

Figure 1: The conflict-join graph $H_{I, q_{2}}$ for the query and the instance in Example 1. Edges drawn as continuous lines connect pairs of facts that conflict; edges drawn as dashed lines connect facts that together satisfy q.

Figure 2: The claw graph $K_{1,3}$
in E_{1}. To see this, we distinguish two cases, depending on whether f_{1} is an R_{1}-fact or an R_{2}-fact. Assume first that f_{1} is an R_{1}-fact. Then, f_{2} and f_{3} must be R_{2}-facts. Since f_{1} and f_{2} satisfy q, they must agree on all values corresponding to variables in L. Given that $\operatorname{key}\left(R_{2}\right) \subseteq L$, we have that f_{1} and f_{2} agree on all values corresponding to variables in $\operatorname{key}\left(R_{2}\right)$. Similarly, f_{1} and f_{3} agree on all values corresponding to variables in $k e y\left(R_{2}\right)$. It follows that f_{2} and f_{3} are key-equal. The argument in the case that f_{1} is an R_{2}-fact is similar.

We now prove that the conflict-join graph $H_{I, q}$ is clawfree. Let f_{1}, f_{2}, f_{3}, and f_{4} be four facts of I such that $\left(f_{1}, f_{2}\right),\left(f_{1}, f_{3}\right),\left(f_{1}, f_{4}\right)$ are edges in E. Then either at least two of these three edges are in E_{1} or at least two of these three edges are in E_{2}. If, say, both $\left(f_{1}, f_{2}\right)$ and (f_{1}, f_{3}) are in E_{1}, then, by the first observation above, we have that $\left(f_{2}, f_{3}\right)$ is an edge in E_{1} (and hence in E). If, say, both $\left(f_{1}, f_{2}\right)$ and $\left(f_{1}, f_{3}\right)$ are in E_{2}, then, by the second observation above, we have that $\left(f_{2}, f_{3}\right)$ is an edge in E_{1} (and hence in E). Therefore, the nodes f_{1}, f_{2}, f_{3}, and f_{4} do not induce a claw in $H_{I, q}$.
Finally, assuming that $\left(k e y\left(R_{1}\right) \cup k e y\left(R_{2}\right)\right) \subseteq L$, there is a polynomial-time algorithm for certainty (q). Specifically, given an instance I, we first construct the conflict-join graph $H_{I, q}$ in polynomial time in the size of I. Since $H_{I, q}$ is claw-free, we can use Minty's algorithm [12] to compute the independent set number $\alpha\left(H_{I, q}\right)$ in polynomial time in the size of $H_{I, q}$ and, hence, in polynomial time in the size of I. We then compare $\alpha\left(H_{I, q}\right)$ to the number n of distinct maximal sets of pairwise key-equal facts of I, which can also be computed in polynomial time in the size of I. By Lemma 3, we have that certainty (q) is true on I if and only if $\alpha\left(H_{I, q}\right)<n$.

It should be noted that Arenas et al. [13] introduced the notion of the conflict graph while studying the consistent answers of aggregate queries. The conflict graph is constructed from the constraints and the instance, while our conflict-join graph takes also the query into account. Arenas et al. used the tractability of the maximum independent set number on claw-free graphs to show that if a relational schema with at most two functional dependencies is in Boyce-Codd Normal Form, then there is a polynomial-time algorithm for computing the consistent answers of COUNT(*) queries (see [13, Theorem 12]).
The preceding Lemma 4 could also be obtained via a reduction to the problem of computing the consistent answers of COUNT(*) queries and then by appealing to Theorem 12 in [13]. The proof we gave here is direct and self-contained.
Lemma 4 gives a broad sufficient condition for the tractability of CERTAINTY (q) for self-join free Boolean conjunctive queries q with exactly two atoms. In particular, it yields a unifying polynomial-time algorithm for certainty (q) that applies to several interesting queries q for which certainty (q) is not first-order expressible. To begin with it implies that certainty $\left(q_{2}\right)$ is in P , where q_{2} is the query $\exists x, y \cdot R_{1}(\underline{x}, y) \wedge R_{2}(\underline{y}, x)$ from the Introduction. Note that the sole focus of \bar{f}] was showing that certainty $\left(q_{2}\right)$ is in P (using a different algorithm than ours) but is not first-order expressible. Also, Lemma 4 implies that certainty (q) is in P, where q is one of the following three queries:

$$
\begin{aligned}
& \exists x, y, z \cdot R_{1}(x, z, y) \wedge R_{2}(y, x, z) ; \\
& \exists x, y, z \cdot R_{1}(\underline{x, y}, z) \wedge R_{2}(\bar{y}, x, z) ; \\
& \exists x, y, z \cdot R_{1}(\underline{x, y}, z) \wedge R_{2}(\underline{x}, z, y) .
\end{aligned}
$$

Theorem 2 now follows by combining Lemma 2 with Lemma 4. Thus, if q is a self-join free Boolean conjunctive query with two atoms such that $\operatorname{certainty}(q)$ is not first-order expressible, then either certainty (q) is in P or certainty (q) is coNP-complete. Naturally, this dichotomy is interesting provided that $P \neq N P$. Moreover, assuming that $P \neq N P$, we have that if q is a self-join free Boolean conjunctive query with two atoms R_{1} and R_{2} such that Certainty (q) is not first-order expressible, then Certainty (q) is in P if and only if $\operatorname{key}\left(R_{1}\right) \cup k e y\left(R_{2}\right) \subseteq L$.

By Lemma 4, $\operatorname{key}\left(R_{1}\right) \cup \operatorname{key}\left(R_{2}\right) \subseteq L$ is a sufficient condition for tractability of certainty (q), where q is an arbitrary self-join free Boolean conjunctive query with two atoms R_{1} and R_{2}. In general, however, the condition $k e y\left(R_{1}\right) \cup k e y\left(R_{2}\right) \subseteq L$ is not necessary for tractability of Certainty (q), where q is an arbitrary self-join free Boolean conjunctive query with two atoms R_{1} and R_{2}. For example, consider again the query $q_{1}=\exists x, y, z \cdot R_{1}(\underline{x}, y) \wedge R_{2}(\underline{y}, z)$ from the Introduction. Then $\operatorname{key}\left(R_{1}\right) \cup \operatorname{key}\left(R_{2}\right)=\{x, y\} \nsubseteq L=\{y\}$. Nonetheless, as seen earlier, certainty (q) is first-order
expressible, hence it is in P. Similarly, if q is the query $\exists x, y, z \cdot R_{1}(x, y, z) \wedge R_{2}(\underline{y, u}, w)$, then $\operatorname{key}\left(R_{1}\right) \cup$ $\operatorname{key}\left(R_{2}\right)=\{x, y, u\} \nsubseteq L=\{y\}$, $\overline{\text { yet }} \operatorname{CERTAINTY}(q)$ is in P , because certainty (q) is first-order expressible, due to $L \subseteq R_{1}^{+}=\{x, y\}$.

The results presented here apply to Boolean selfjoin free conjunctive queries with two atoms that may contain constants. Consequently, the dichotomy in the complexity of certainty (q) can be extended to nonBoolean queries as well. Specifically, let q be a query of arity k, for some $k \geq 1$, and let I be an instance. Then a k-tuple t with values from the active domain of I is in the consistent answers of q on I if and only for every repair r of I, we have that t is in $q(r)$. This is the same as the Boolean query $q(t)$ being true in every repair r of I, where $q(t)$ is the query obtained from q by substituting the free variables of q (i.e., the variables that are not existentially quantified) with corresponding constants from t.
Acknowledgments Research on this paper was partially supported by NSF Grant IIS-0905276. We thank the two anonymous referees for their insightful comments, suggestions, and pointers to the literature.

References

[1] M. Arenas, L. Bertossi, J. Chomicki, Consistent query answers in inconsistent databases, in: 18th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS'99), 1999, pp. 68-79.
[2] M. Lenzerini, Data Integration: A Theoretical Perspective, in: PODS, 2002, pp. 233-246.
[3] J. Chomicki, J. Marcinkowski, Minimal-change integrity maintenance using tuple deletions, Inf. Comput. 197 (1/2) (2005) 90-121.
[4] A. Fuxman, R. J. Miller, First-order query rewriting for inconsistent databases, J. Comput. Syst. Sci. 73 (4) (2007) 610635.
[5] J. Wijsen, A remark on the complexity of consistent conjunctive query answering under primary key violations, Inf. Process. Lett. 110 (21) (2010) 950-955.
[6] J. Wijsen, On the first-order expressibility of computing certain answers to conjunctive queries over uncertain databases, in: PODS, 2010, pp. 179-190.
[7] F. N. Afrati, P. G. Kolaitis, Repair checking in inconsistent databases: algorithms and complexity, in: ICDT, 2009, pp. 31-41.
[8] R. E. Ladner, On the structure of polynomial time reducibility, J. ACM 22 (1) (1975) 155-171
[9] C. Beeri, P. A. Bernstein, Computational problems related to the design of normal form relational schemas, ACM Trans. Database Syst. 4 (1) (1979) 30-59.
[10] E. M. Gold, Complexity of automaton identification from given data, Information and Control 37 (3) (1978) 302-320.
[11] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman, 1979.
[12] G. J. Minty, On maximal independent sets of vertices in clawfree graphs, J. Comb. Theory, Ser. B 28 (3) (1980) 284-304.
[13] M. Arenas, L. Bertossi, J. Chomicki, X. He, V. Raghavan, J. Spinrad, Scalar aggregation in inconsistent databases, Theoretical Computer Science. 296(3), 2003.

[^0]: Email addresses: kolaitis@cs.ucsc.edu (Phokion G Kolaitis), epema@cs.ucsc.edu (Enela Pema)

