
A Dichotomy in the Complexity of Consistent Query Answering for Queries
with Two Atoms

Phokion G. Kolaitis, Enela Pema

Computer Science Department, University of California Santa Cruz, Santa Cruz, CA 95060, USA

Abstract

We establish a dichotomy in the complexity of computing the consistent answers of a Boolean conjunctive query
with exactly two atoms and without self-joins. Specifically, we show that the problem of computing the consistent
answers of such a query either is in P or it is coNP-complete. Moreover, we give an efficiently checkable criterion
for determining which of these two possibilities holds for a given query.

Keywords:
databases, key constraints, database repairs, consistent query answering

1. Introduction

An inconsistent database, often also referred to as
an uncertain database, is a database that violates one
or more integrity constraints that the data are required
to obey. Inconsistent databases arise for a variety of
reasons (e.g., lack of support by the system at hand)
and in a variety of settings (e.g., when integrating
data from heterogeneous sources that obey mutually
incompatible integrity constraints).

One way to cope with inconsistency is data clean-
ing: the inconsistent database is transformed to a
cleansed version that satisfies the integrity constraints,
and then the cleansed database is used to answer
queries. Data cleaning, however, often entails mak-
ing choices that are arbitrary as, typically, there is a
large number of cleansed databases that arise from an
inconsistent database. An alternative and more princi-
pled approach, introduced in [1], is consistent query
answering. In this approach, the inconsistencies in
the database are kept, but are handled at query time
by considering all possible repairs of the inconsistent
database. More precisely, if Σ is a set of integrity con-
straints, then a repair of an inconsistent database I is
a consistent database r (i.e., r |= Σ) that differs from I
in a “minimal” way. By definition, the consistent an-
swers of a query q on a database I is the intersection∩{q(r) : r is a repair of I}. If q is a Boolean query,
computing the consistent answers of q is the following
decision problem, denoted by certaintyΣ(q) or, sim-
ply, certainty(q): given a database I, is q(r) true on
every repair r of I? The notion of consistent answers

Email addresses: kolaitis@cs.ucsc.edu (Phokion G.
Kolaitis), epema@cs.ucsc.edu (Enela Pema)

is closely related to the notion of the certain answers
in data integration [2]. In fact, the consistent answers
coincide with the certain answers when the set of pos-
sible worlds is taken to be the set of all repairs.

From now on, we assume that q is a Boolean con-
junctive query and Σ is a set of key constraints with
one key per each relation symbol in some fixed rela-
tional schema R. In this case, certainty(q) is always
in coNP [3]. Depending on the keys and the query,
however, the actual complexity of certainty(q) may
vary widely, as illustrated by the following examples
in which the underlined variables indicate that the cor-
responding attributes form the key:

• If q1 is the query ∃x, y, z.R1(x, y) ∧ R2(y, z), then
certainty(q1) is first-order expressible, that is to
say, there is a first-order query q′1 such that on ev-
ery instance I, we have that q1 is true on every
repair of I if and only if q′1(I) is true [4, 5]. Hence,
certainty(q1) is in P; actually, it is in the much
lower complexity class AC0.
• If q2 is the query ∃x, y.R1(x, y) ∧ R2(y, x), then
certainty(q2) is in P, but it is not first-order ex-
pressible [5].
• If q3 is the query ∃x, x′, y.R1(x, y)∧ R2(x′, y), then
certainty(q3) is coNP-complete [4].

How can these differences in complexity be ex-
plained? Also, is there an algorithm and, in par-
ticular, is there an efficient algorithm that can be
used to pinpoint the exact complexity of computing
certainty(q)? Major progress in this direction was
made by Wijsen [6], who gave a necessary and suf-
ficient condition for certainty(q) to be first-order ex-
pressible, provided q is a Boolean acyclic conjunc-
tive query without self-joins; moreover, this condi-

Preprint submitted to Elsevier September 29, 2011

tion can be checked in quadratic time in the size of
the query q. What can we say about the complex-
ity of certainty(q), if certainty(q) is not first-order
expressible? It has been conjectured (e.g., in [7])
that a dichotomy theorem holds for the complexity
of certainty(q), namely, either certainty(q) is in P
or certainty(q) is coNP-complete. To appreciate the
point of this conjecture and the significance of a di-
chotomy theorem, recall that Ladner [8] has shown
that if P , NP, then there are decision problems
that are in coNP, but are neither in P nor are coNP-
complete; thus, the existence of a dichotomy theorem
for a class of decision problems cannot be taken for
granted a priori.

The three examples given earlier involve conjunc-
tive queries with exactly two atoms; in fact, most of
the concrete conjunctive queries analyzed in [4, 5]
have exactly two atoms In this article, we establish
a dichotomy theorem for certainty(q), where q is a
Boolean conjunctive query with exactly two atoms
and without self-joins and such that certainty(q) is
not first-order expressible. Specifically, assume that q
is such a query and let R1 and R2 be the two relation
symbols occurring in q, let L be the set of variables
shared by the two atoms of q, and let key(Ri) be the set
of variables that occur as key attributes of Ri, i = 1, 2.
Our dichotomy theorem asserts that
• if key(R1)∪key(R2) ⊆ L, then certainty(q) is in P;
• if key(R1) ∪ key(R2) * L, then certainty(q) is

coNP-complete.
When combined with Wijsen’s necessary and suffi-
cient condition for certainty(q) to be first-order ex-
pressible, our dichotomy theorem implies that the
complexity of the consistent answers of Boolean con-
junctive queries with exactly two atoms and without
self-joins exhibits a trichotomy. Moreover, it yields
a linear-time algorithm for determining, given such a
query, which of the following three collectively ex-
haustive possibilities holds: certainty(q) is first-order
expressible, or certainty(q) is in P but is not first-
order expressible, or certainty(q) is coNP-complete.

2. Preliminaries

A relational database schema is a finite collection
R of relation symbols, each with an associated arity.
The attributes of a relation symbol R in R need not
have names. Thus, if R is a n-ary relation symbol,
then its attributes can be identified with the positions
1, . . . , n, which means that the set Attr(R) of the at-
tributes of R coincides with the set {1, . . . , n}.

If R is a relation symbol in R and I is an instance
over R, then RI denotes the interpretation of R on I.
A fact of an instance I is an expression of the form
RI(a1, . . . , an) such that (a1, . . . , an) ∈ RI ; in this case,
we will also say that RI(a1, . . . , an) is an R-fact of the

instance I. For simplicity of notation and whenever
the instance I at hand is understood from the context,
we will write R(a1, . . . , an), instead of RI(a1, . . . , an).
A key of R is a subset X of the set Attr(R) = {1, . . . , n}
of the attributes of R such that for every instance I
over R, the interpretation RI of R on I does not contain
two distinct facts that agree on all positions in X. In
other words, a key is a set X of positions such that
the functional dependency X → Attr(R) holds; such a
dependency is called a key constraint. We assume that
each relation symbol comes with a fixed key.

A conjunctive query is a first-order formula built
from atomic formulas, conjunctions, and existential
quantification. Thus, every conjunctive query is log-
ically equivalent to an expression of the form q(z) =
∃w.R1(x1) ∧ ... ∧ Rm(xm), where each xi is a tuple of
variables and constants, z and w are tuples of vari-
ables, and the variables in x1, . . . , xm appear in exactly
one of z and w. A Boolean conjunctive query is a con-
junctive query in which all variables are existentially
quantified. A conjunctive query contains a self-join if
it has repeated relation names. We refer to queries that
do not contain self-joins as self-join free queries.

In what follows, whenever we write a conjunctive
query, we underline in each atom variables and con-
stants that appear in the positions of the key of the
relation symbol; such variables are called key vari-
ables. For instance, by writing ∃x, y.R1(x, y)∧R2(y, x),
we indicate that the first position (attribute) of R1 and
the first position (attribute) of R2 are, respectively, the
key of R1 and the key of R2; furthermore, x is a key
variable of the atom R1(x, y), while y is a key vari-
able of the atom R2(y, x). In general, when a conjunc-
tive query is presented in this form, we omit explicitly
specifying the schema and the key constraints, since
they can be derived from the formulation of the query
itself.

Let q be a conjunctive query and R(x, y) one of
its atoms. We define vars(R(x, y)) to be the set of
variables appearing in the atom R(x, y). We define
key(R(x, y)) to be the set of variables appearing in
the positions of the key in the atom R(x, y). Note
that constants may occur in x, but are not members
of key(R(x, y)); in particular, key(R(x, y)) may be the
empty set. We define nkey(R(x, y)) to be the set of the
variables appearing in positions that do not belong to
the key in the atom R(x, y). Note that it is possible to
have that key(R(x, y)) ∩ nkey(R(x, y)) , ∅. For sim-
plicity, given a self-join free conjunctive query, we
will refer to the atoms with the name of the corre-
sponding relations. Thus, we write vars(R) instead
of vars(R(x, y)), and key(R) instead of key(R(x, y)).

Next, we give precise definitions of the notions of a
subset repair, consistent answers, and certainty(q).

Definition 1. Let R be a relational database schema
and Σ a set of integrity constraints over R.

2

• Let I be an instance. An instance r is a subset
repair or, simply, a repair of I w.r.t. Σ if r is a max-
imal sub-instance of I that satisfies Σ, i.e., r |= Σ
and there is no instance r′ such that r′ |= Σ and
r ⊂ r′ ⊆ I.

• Let q be a query and I an instance. We say that
a tuple t is a consistent answer for q if for every
repair r of I w.r.t Σ, we have t ∈ q(r).
• Let q be a Boolean query.

- If I is an instance, then the notation I |=Σ q
denotes that q is true in every repair of I w.r.t.
Σ, whereas the notation I ̸|=Σ q denotes that q
is false in at least one repair of I w.r.t. Σ.

- certainty(q) is the following decision prob-
lem: given an instance I, does I |=Σ q?

As mentioned in the Introduction, if Σ is a set of
key constraints and q is a Boolean conjunctive query,
then certainty(q) is in coNP.

3. FO-Expressibility of the Certain Answers of
Acyclic Self-join Free Conjunctive Queries

This section contains an overview of the results in
[6] for the first-order expressibility of certainty(q).

Definition 2. Let q be conjunctive query.

• The complete intersection graph of q is a labeled
graph that has the atoms of q as vertices, and an
edge between every two distinct atoms F and G
labeled by the set of variables that F and G share.

• An intersection tree for q is a spanning tree of the
complete intersection graph of q.

• A join tree for q is an intersection tree that satisfies
the following connectedness condition: whenever
the same variable x occurs in two atoms F and
G, then x occurs in every atom on the unique path
linking F and G.

• We say that q is acyclic if it has a join tree.

Wijsen [6] found a necessary and sufficient condi-
tion for the first-order expressibility of certainty(q).
This condition involves the notion of the attack graph,
which we will present after introducing some nota-
tion. Every atom F in a conjunctive query q gives rise
to a functional dependency among the variables oc-
curring in F. For example, the atom R(x, y, z) gives
rise to {x, y} → z. As a special case, the atom R(a, x),
where a is a constant, gives rise to {} → x.

Let q be a Boolean conjunctive query.

• We write K(q) to denote the set of all functional
dependencies that arise from the atoms of q. In
symbols, K(q) = {key(A)→ vars(A) : A ∈ q}.

• Let U be the set of variables occurring in q. If F is
an atom of q, then F+ denotes the attribute closure
of the set key(F) w.r.t. the set of all functional de-
pendencies that arise in the atoms q\{F}. In sym-
bols, F+ = {x ∈ U : K(q\{F}) |= key(F)→ x}.

Definition 3. Let ρ be an intersection tree for a
Boolean conjunctive query q. The attack graph of ρ
is the directed graph whose vertices are the atoms of
q, and there is a directed edge from an atom F to an
atom G if for every label L on the unique path from F
to G in ρ, we have that L * F+.

We write F G to denote that there is an edge
from F to G in the attack graph, and we say that F
attacks G. A cycle of size n in the attack graph is a
sequence of edges F0 F1 ... Fn−1 F0. We
are now ready to state the main result in [6].

Theorem 1. Let q be an acyclic self-join free Boolean
conjunctive query and let τ be a join tree for q. Then
the following two statements are equivalent:

1. certainty(q) is first-order expressible.

2. The attack graph of τ is acyclic.

Every self-join free conjunctive query with two
atoms R1 and R2 is acyclic and has only one join tree
that is a single edge connecting the two atoms. Hence,
the attack graph can only have a cycle of length 2,
which arises precisely when L * R+1 and L * R+2 .
Thus, Theorem 1 yields the following corollary.

Corollary 1. Let q be a self-join free Boolean con-
junctive query with two atoms R1 and R2, and let L
be the set of variables shared by R1 and R2. Then the
following two statements are equivalent:

1. certainty(q) is first-order expressible.

2. L ⊆ R+1 or L ⊆ R+2 .

Consider the queries q1, q2, q3 from the Introduc-
tion. For the query q1 = ∃x, y, z.R1(x, y) ∧ R2(y, z),
we have that L = {y}, R+1 = {x}, and R+2 = {y};
since L ⊆ R+2 , it follows that certainty(q1) is first-
order expressible. In contrast, for the query q2 =

∃x, y.R1(x, y) ∧ R2(y, x), we have that L = {x, y}, R+1 =
{x}, and R+2 = {y}; since L * R+1 and L * R+2 , it fol-
lows that certainty(q2) is not first-order expressible.
Similarly, certainty(q3) is not first-order expressible.

4. Dichotomy of the Certain Answers of Self-join
Free Conjunctive Queries with Two Atoms

We will now prove a dichotomy in the complexity
of certainty(q), where q is a self-join free Boolean
conjunctive query with exactly two atoms and such
that certainty(q) is not first-order expressible.

3

Theorem 2. Let q be a self-join free Boolean con-
junctive query with two atoms R1 and R2 such that
certainty(q) is not first-order expressible. Then ei-
ther certainty(q) is in P or certainty(q) is coNP-
complete. Moreover, the complexity of certainty(q)
is determined by the following criterion:

1. If key(R1) ∪ key(R2) ⊆ L, then certainty(q) is in
P;

2. If key(R1) ∪ key(R2) * L, then certainty(q) is
coNP-complete,

where R1, R2 are the two atoms of q, and L is the set
of variables shared by R1 and R2.

To illustrate Theorem 2, let us consider again the
queries q2 and q3 from the Introduction. As stated
earlier, Corollary 1 implies that neither certainty(q2)
nor certainty(q3) is first-order expressible. For the
query q2 = ∃x, y.R1(x, y) ∧ R2(y, x), we have that
key(R1) = {x}, key(R2) = {y}, and L = {x, y}; since
key(R1) ∪ key(R2) ⊆ L, it follows that certainty(q2) is
in P. In contrast, for the query q3 = ∃x, x′, y.R1(x, y)∧
R2(x′, y)), we have that key(R1) = {x}, key(R2) = {x′},
and L = {y}; since key(R1) ∪ key(R2) * L, it follows
that certainty(q3) is coNP-complete.

If certainty(q) is first-order expressible, then
certainty(q) is in P. Consequently, Theorem 2 yields
the following dichotomy theorem for self-join free
Boolean conjunctive queries with exactly two atoms.

Corollary 2. If q is a self-join free Boolean con-
junctive query with exactly two atoms, then either
certainty(q) is in P or certainty(q) is coNP-complete.

As mentioned in Section 2, every self-join free
Boolean conjunctive with exactly two atoms is
acyclic; moreover, the edge connecting the two atoms
of the query is the only join tree of the query. Also, it
is well known that there is a linear-time algorithm for
computing the closure of a given set of attributes w.r.t.
a given set of functional dependencies [9]. These facts
together with Corollary 1 imply that there is linear-
time algorithm to determine, given a self-joint free
Boolean conjunctive query q with exactly two atoms,
whether or not certainty(q) is first-order expressible.
By combining the preceding remarks with Theorem 2,
we obtain the following result.

Corollary 3. Let q be a self-join free Boolean con-
junctive query with two atoms R1 and R2, and let L
be the set of variables shared by R1 and R2. Then the
following statements are true.

1. If L ⊆ R+1 or L ⊆ R+2 , then certainty(q) is first-
order expressible.

2. If L * R+1 , L * R+2 , and key(R1) ∪ key(R2) ⊆
L, then certainty(q) is in P but is not first-order
expressible.

3. If L * R+1 , L * R+2 , and key(R1) ∪ key(R2) * L,
then certainty(q) is coNP-complete.

Furthermore, there is a linear-time algorithm to deter-
mine, given a self-join free Boolean conjunctive query
q with exactly two atoms, if certainty(q) is first-order
expressible, or certainty(q) is in P but not first-order
expressible, or certainty(q) is coNP-complete.

Before embarking on the proof of Theorem 2, we
describe briefly our strategy. Let q be a self-join free
Boolean conjunctive query with two atoms R1 and
R2 such that certainty(q) is not first-order express-
ible. In Section 4.1, we prove the intractability side
of the dichotomy, that is, we show that if the query q
is such that key(R1) ∪ key(R2) * L, then certainty(q)
is coNP-hard. As a stepping stone, in Lemma 1, we
show that certainty(q′) is coNP-hard, where q′ is the
query ∃x, y, z.S 1(x, z, y) ∧ S 2(y, x); this is done via
a polynomial-time reduction from Monotone SAT, a
problem well known to be NP-complete (see [10] and
[11]). After this, in Lemma 2, we show that if q
is a query such that key(R1) ∪ key(R2) * L, then
certainty(q′) can be reduced in polynomial time to
certainty(q); hence, certainty(q) is coNP-hard.

In Section 4.2, we prove the tractability side of the
dichotomy, that is, we show that if the query q is such
that key(R1) ∪ key(R2) ⊆ L, then certainty(q) is in
P. For this, we introduce the notion of the conflict-
join graph and show that certainty(q) can be reduced
in polynomial time to the problem of finding an inde-
pendent set of a certain size in a conflict-join graph. In
general, the problem of finding an independent set of
a certain size in a given graph is NP-complete. How-
ever, there are families of graphs on which this prob-
lem can be solved in polynomial time. One such fam-
ily is the class of all claw-free graphs. In Lemma 4, we
show that if q is a query with two atoms that satisfies
the condition key(R1)∪ key(R2) ⊆ L, then the conflict-
join graph of q is claw-free; hence, certainty(q) is in
P. Theorem 2 then follows immediately by combining
Lemma 2 with Lemma 4.

4.1. The Intractability Side of the Dichotomy

We begin by observing that if q is a query such
that certainty(q) is not first-order expressible and
key(R1) ∪ key(R2) * L, then the variables of q exhibit
a particular pattern.

Proposition 1. Let q be a self-join free Boolean con-
junctive query with two atoms such that certainty(q)
is not first-order expressible. Let R1,R2 be the two
atoms of q, and let L be the set of variables shared by
R1 and R2. Then the following hold:

1. There exist four variables u, v, w, w′ with the prop-
erty that u ∈ key(R1) \ key(R2), v ∈ key(R2) \
key(R1), w ∈ L \ key(R1), and w′ ∈ L \ key(R2).

4

2. If, in addition, key(R1) ∪ key(R2) * L, then the
variable u can be chosen to also satisfy u ∈
key(R1) \ L or the variable v can be chosen to also
satisfy v ∈ key(R2) \ L.

Proof. Since certainty(q) is not first-order express-
ible, Corollary 1 tells that L * R+1 and L * R+2 . We
claim that key(R1) * key(R2) and key(R2) * key(R1).
Indeed, if key(R1) ⊆ key(R2), then key(R1) ⊆ R+2
and also nkey(R1) ⊆ R+2 . Consequently, L ⊆ R+2 ,
which contradicts the hypothesis. A similar argument
shows that key(R2) * key(R1). Thus, there are vari-
ables u and v such that u ∈ key(R1) \ key(R2) and
v ∈ key(R2)\key(R1). Since L * R+1 and key(R1) ⊆ R+1 ,
there is a variable w such that w ∈ L \ key(R1). Sim-
ilarly, since L * R+2 and key(R2) ⊆ R+2 , there is a
variable w′ such that w′ ∈ L \ key(R2).

Assume that, in addition, key(R1) ∪ key(R2) * L
holds. This means that key(R1) * L or key(R2) * L.
In the first case, there exists a variable u ∈ key(R1) \ L
(hence, also u ∈ key(R1) \ key(R2)). In the second
case, there exists a variable v ∈ key(R2) \ L (hence,
also v ∈ key(R2) \ key(R1)).

Let q′ be the query ∃x, y, z.S 1(x, z, y) ∧ S 2(y, x).
Corollary 1 implies that certainty(q) is not first-
order expressible. Moreover, we have that key(S 1) ∪
key(S 2) * L. It is easy to verify directly that the vari-
ables of q′ exhibit the pattern described in Proposition
1. Specifically, the role of u is played by z, the roles
of both v and w is played by y, and the role of w′ is
played by x.

Lemma 1. Let q′ be the query ∃x, y, z.S 1(x, z, y) ∧
S 2(y, x). Then certainty(q′) is coNP-hard.

Proof. We will reduce Monotone SAT to
certainty(q′) in polynomial time. Let φ be a
Boolean formula in conjunctive normal form such
that each clause has either positive literals only
(positive clause) or negative literals only (negative
clause); without loss of generality, assume that each
variable of φ occurs in some positive clause and in
some negative clause. Construct an instance I over
the schema of q′ as follows:
• For every positive clause ci and every variable p

in it, generate a fact S 1(1, ci, p) in I.
• For every negative clause c j and every variable p

in it, generate a fact S 1(0, c j, p) in I.
• For every variable p, generate two facts S 2(p, 0)

and S 2(p, 1) in I.
We will now prove that φ is satisfiable if and only

if there is a repair of I that does not satisfy q′.
Assume first that there exists a satisfying assign-

ment θ for φ. Construct the following instance r:
• For every positive clause ci of φ, choose a variable

p in ci such that θ(p) = 1. Add S 1(1, ci, p) to r.

• For every negative clause c j of φ, choose a vari-
able p in c j such that θ(p) = 0. Add S 1(0, c j, p) to
r.
• For every variable p of φ, if θ(p) = 1, then add

S 2(p, 0) to r; otherwise, add S 2(p, 1) to r.

It is easy to see that r is a repair of I and r ̸|= q′.
Next, assume that r is a repair of I such that r ̸|= q′.

Let θ be the following truth assignment.

• For every fact S 1(1, ci, p) in r, set θ(p) = 1.
• For every fact S 1(0, c j, p) in r, set θ(p) = 0.
• For every variable p for which there is no fact of

the form S 1(, , p) in r, assign to p value 0 or 1
arbitrarily.

It is easy to see that θ is a valid truth assignment that
satisfies φ.

We will use the following terminology and no-
tation. We say that two facts RI(a1, . . . , an) and
RI(b1, . . . , bn) form a conflict if the two tuples
(a1, . . . , an) and (b1, . . . , bn) witness a violation of the
key constraint of R; we also say that these two facts
are key-equal. If a and b are constants, then a · b is a
new constant encoding the pair (a, b) in a unique way;
in other words, the function (a, b) 7→ a · b is injective.

Lemma 2. Let q be a self-join free Boolean conjunc-
tive query with two atoms such that certainty(q) is not
first-order expressible. Let R1,R2 be the two atoms of
q, and let L be the set of variables shared by R1 and
R2. If key(R1) ∪ key(R2) * L, then certainty(q) is
coNP-hard.

Proof. Let q′ be the query ∃x, y, z.S 1(x, z, y)∧S 2(y, x)
of Lemma 1. We will show that certainty(q′) can be
reduced to certainty(q) in polynomial time. To this
effect, given an instance I′ over the schema of q′, we
will construct an instance I over the schema of q such
that there is a repair of I′ on which q′ is false if and
only if there is a repair of I on which q is false.

Assume that the two atoms of q are R1(s1, . . . , sn)
and R2(t1, . . . , tm), where each si and each t j is a
variable or a constant (clearly, these variables need
not be pairwise distinct). Let V be the set of vari-
ables occurring in q. From Proposition 1, there are
variables u, v,w,w′ such that u ∈ key(R1) \ key(R2),
v ∈ key(R2)\key(R1), w ∈ L\key(R1), w′ ∈ L\key(R2).
Moreover, u ∈ key(R1) \ L or v ∈ key(R2) \ L holds.
Assume that u ∈ key(R1)\L (the other case is similar).
Let P = {u, v,w,w′}, let Q = V \ P, and c be a fixed
constant. We are now ready to describe the construc-
tion of the instance I from I′. The intuition behind this
construction is that the variable u in q plays the role of
the variable z in q′, the variable w′ in q plays the role
of the variable x in q′, while the variables v and w in
q play the role of the variable y in q′.

5

Consider first the atom R1(s1, . . . , sn) of q. Every
fact S 1(a1, a3, a2) of I′ generates a fact R1(b1, . . . , bn)
of I, where each bi is defined as follows:

1. If si = u, then bi = a1 · a3.
2. If si = v, then bi = a2.
3. If si = w = w′, then bi = a1 · a2.
4. If si = w and w , w′, then bi = a2.
5. If si = w′ and w′ , w, then bi = a1.
6. If si is a constant, then bi = si.
7. In all other cases, bi = c.

Next, consider the atom R2(t1, . . . , tm) of q. Every
fact S 2(a2, a1) of I′ generates a fact R2(b1, . . . , bm) of
I, where each bi is defined by the preceding conditions
2 to 7 and with ti in place of si. Note that the first
condition is not applicable because u ∈ key(R1) \ L,
hence u cannot be among the variables occurring in
the atom R2(t1, . . . , tm).

In the preceding construction, each bi is defined in
a unique way. The reason is that u is different from v,
w, and w′, and also v is different from w′; thus, no si

can meet two of the conditions 1 to 7 at the same time.
Let f be an S i-fact of I′ and let g be an Ri-fact of

I, i = 1, 2. We write f ⇒ g to denote that g has been
generated by f in the way described above. Thus,
I = {g : there is a fact f of I′ such that f ⇒ g}. The
preceding construction ensures two important proper-
ties that we now state and prove.

Property 1. For i = 1, 2, let f1, f2 be S i-facts of I′

and let g1, g2 be Ri-facts of I such that f1 ⇒ g1 and
f2 ⇒ g2. The following statements are equivalent.

1. The facts f1 and f2 are key-equal.
2. The facts g1 and g2 are key-equal.

To verify that Property 1 holds, assume first that
f1, f2 are S 1-facts and that g1, g2 are R1-facts. Assume
that g1 = R1(b1, . . . , bn) and g2 = R1(b′1, . . . , b

′
n). If f1

and f2 are key equal, then they must be of the form
S 1(a1, a3, a2 and S 1(a1, a3, a′2), respectively. The pre-
ceding construction implies that the values of the keys
of R1-facts depend only on the value of the variable u
or only on the values of the variables u and w′, pro-
vided w′ , w (if w′ = w, then w′ < key(R1)). If si = u,
then, by construction, we have that bi = a1 · a3 = b′i ;
furthermore, if w′ , w, then, by construction, we
have that bi = a1 = b′i . Consequently, g1 and g2
are key-equal facts. For the other direction, assume
that the facts g1 and g2 are key-equal. Assume that
f1 = S 1(a1, a3, a2) and f2 = S 1(a′1, a

′
3, a
′
2). Since

u ∈ key(R1), there is some i such that u = si, hence
bi = b′i . Furthermore, by construction, we have
that bi = a1 · a3 and b′i = a′1 · a′3. Consequently,
a1 · a3 = a′1 · a′3, which implies that a1 = a′1 and
a3 = a′3. Thus, f1 and f2 are key-equal facts. A similar

argument shows that Property 1 holds also when f1, f2
are S 2-facts and g1, g2 are R2-facts.

Property 2. For i = 1, 2, if f1, f2 are S i-facts of I′

and g is an Ri-fact of I such that f1 ⇒ g and f2 ⇒ g,
then f1 = f2.

To verify that Property 2 holds, assume first that
f1 = S 1(a1, a3, a2), f2 = S 1(a′1, a

′
3, a
′
2), and g =

R1(b1, . . . , bn). By Property 1, the facts f1 and f2 are
key-equal, hence a1 = a′1 and a3 = a′3. Since w ∈ L,
there is some i such that si = w. If w = w′, then, by
construction, a1 · a2 = bi = a1 · a′2, hence a2 = a′2. If
w , w′, then a2 = bi = a′2. In either case, we have that
a2 = a′2 and so f1 = f2. A similar argument shows
that Property 2 holds also for the case in which f1, f2
are S 2-facts and g is an R2-fact.

We continue with the proof of the lemma. We will
show that there is a repair of I′ on which q′ is false if
and only if there is a repair of I on which q is false.

Assume that r′ is a repair of I′ such that r′ ̸|= q′. Let
r = {g ∈ I : there is a fact f ∈ r′ such that f ⇒ g}.
We claim that r is a repair of I such that r ̸|= q.

Properties 1 and 2 imply that r is a repair of I. In-
deed, to show that r is a consistent instance, let g1, g2
be two key-equal facts of r. Let f1, f2 be two facts of
r′ such that f1 ⇒ g1 and f2 ⇒ g2. Property 1 implies
that the facts f1 and f2 are key equal. Since r is a con-
sistent instance, it follows that f1 = f2, hence g1 = g2.
To show that r is a maximal consistent subinstance of
I, let g be a fact of I such that r ∪ {g} is consistent.
Let f be a fact of I′ such that f ⇒ g. We claim that
r′ ∪ { f } is consistent. Indeed, assume that f ′ is a fact
of r′ such that f and f ′ are key-equal, and let g′ ∈ r
be such that f ′ ⇒ g′. By Property 1, we have that g
and g′ are key-equal facts, hence (since r ∪ {g} is con-
sistent) g = g′. Property 2 implies that f ′ = f , hence
g ∈ r; this completes the proof that r is a repair of I.

Next, we show that r does not satisfy q. To-
wards a contradiction, assume that R1(b1, . . . , bn) and
R2(b′1, . . . , b

′
m) are two facts of r that satisfy q. Let

S 1(a1, a3, a2) and S 2(a′2, a
′
1) be two facts of r′ such

that S 1(a1, a3, a2) ⇒ R1(b1, . . . , bn) and S 2(a′2, a
′
1) ⇒

R2(b′1, . . . , b
′
m). Consider the variables w, w′ and re-

call that w ∈ L and w′ ∈ L. Let i and j be such that
si = w and t j = w. We distinguish two cases. If
w = w′, then bi = a1 · a2 and b′j = a′1 · a′2. Since the
facts R1(b1, . . . , bn) and R2(b′1, . . . , b

′
m) satisfy q, we

have that bi = b′j, hence a1 = a′1 and a2 = a′2, which
implies that the facts S 1(a1, a3, a2) and S 2(a′2, a

′
1) sat-

isfy q′, a contradiction. If w , w′, then bi = a1 and
b′j = a′1. Since bi = b′j, we have that a1 = a′1. Fur-
thermore, let k and l be such that sk = w′ and tl = w′.
Then bk = a2 and b′l = a′2. Since bk = b′l , we have that
a2 = a′2, which implies that the facts S 1(a1, a3, a2) and
S 2(a′2, a

′
1) satisfy q′, a contradiction.

In the other direction, assume that r is a repair
of I such that r ̸|= q. Let r′ = { f ∈ I′ :

6

there is a fact g ∈ r such that f ⇒ g}. We claim that
r′ is a repair of I′ such that r′ ̸|= q′.

As before, Properties 1 and 2 imply that r′ is a re-
pair of I′. Indeed, if f1 and f2 are two key-equal facts
of r′, then, by Property 1, the facts g1 and g2 of r
are key-equal, where f1 ⇒ g1 and f2 ⇒ g2. It fol-
lows that g1 = g2 and so, by Property 2, we have
that f1 = f2. Similarly, if r′ ∪ { f } is consistent and
f ⇒ g, then r ∪ {g} is consistent, hence g ∈ r and so
f ∈ r′. Finally, we show that r′ does not satisfy q′. To-
wards a contradiction, assume that S 1(a1, a3, a2) and
S 2(a2, a1) are two facts of r′ that satisfy q′. Let g1
and g2 be the facts of r such that S 1(a1, a3, a2) ⇒ g1
and S 2(a2, a1)⇒ g2. By the construction of I from I′

and since the variable u is not in L, we have that the
facts g1 and g2 of r agree on all values corresponding
to variables in L. Consequently, the facts g1 and g2
satisfy the query q, contrary to the hypothesis. This
completes the proof of Lemma 2.

As an illustration of Lemma 2, it follows that
certainty(q3) is coNP-hard, where q3 is the query
∃x, x′, y.R1(x, y) ∧ R2(x′, y) from the Introduction. In
addition, certainty(q) is coNP-hard if q is one of the
following queries:

∃x, x′, y, z.R1(x, z, x′, y) ∧ R2(x′, x, y);
∃x, y, z,w.R1(x,w, z, y) ∧ R2(x, z, y);
∃x, y, z,w.R1(x, z, y,w) ∧ R2(y, x,w).

4.2. The Tractability Side of the Dichotomy

In this section, we introduce the notion of
the conflict-join graph and use it to study when
certainty(q) is tractable, where q is a self-join free
Boolean conjunctive query with two atoms. As be-
fore, we assume that there is one key constraint for
each relation symbol.

Definition 4. Let q be a self-join free Boolean con-
junctive query with two atoms. If I is an instance,
then the conflict-join graph HI,q = (V, E) is defined as
follows:

• The set V of the nodes of HI,q consists of all facts
of I.

• For every pair of facts that form a conflict, add an
edge in E connecting these two facts.

• For every pair of facts that satisfy the query q, add
an edge in E connecting these two facts.

For every fixed query q, the size of the conflict-join
graph HI,q is quadratic in the size of the instance I. If
D is a set of pairwise key-equal facts of I, then every
two distinct elements of D form a conflict, which im-
plies that D induces a clique in HI,q. A maximal set
of pairwise key-equal facts of I must contain all facts
that are key-equal to one of its members; moreover, if

D and D′ are distinct maximal sets of pairwise key-
equal facts, then D ∩ D′ = ∅. Consequently, the set V
of nodes of HI,q can be partitioned into pairwise dis-
joint sets V1, . . . ,Vn such that each Vi is a maximal set
of pairwise key-equal facts of I. Also, by construc-
tion and since q is a self-join free query, the set E of
edges of HI,q can be partitioned into two disjoint sets
E1 and E2, where E1 consists of all edges whose end-
points form a conflict in I, and E2 consists of all edges
whose endpoints are facts that satisfy the query q.

In what follows, we will establish a connection be-
tween the existence of a maximum independent set of
a particular size in the conflict-join graph HI,q and the
existence of a repair r of I such that r ̸|= q. Recall that
an independent set in a graph G is a set of nodes with
no edges between them. A maximum independent set
is an independent set of maximum cardinality. The
independent set number α(G) of a graph G is the car-
dinality of a maximum independent set of G.

We now focus on the independent set number
α(HI,q) of the conflict-join graph associated with an
instance I. It is easy to see that α(HI,q) ≤ n, where n
is the number of the maximal sets V1, . . . ,Vn of pair-
wise key-equal facts of I. Indeed, this holds because
each Vi induces a clique in HI,q, so an independent set
in HI,q can contain at most one node from each Vi,
1 ≤ i ≤ n.

Example 1. Let q2 be the query ∃x, y.R1(x, y) ∧
R2(y, x) from the Introduction. Consider the in-
stance I = {R1(a, b),R1(a, b′),R1(a, b′′),R1(a′, b),
R2(b, a),R2(b, a′)}. Figure 1 depicts the conflict-join
graph HI,q2 . Note that HI,q2 is partitioned into three
maximal sets of pairwise key-equal facts. Note also
that the set r = {R1(a, b′),R1(a′, b),R2(b, a)} has as
size three and is a maximum independent set of HI,q2 .
Furthermore, viewed as an instance, r is a repair of
I and r ̸|= q2. The next lemma tells that this is no
accident.

Lemma 3. Assume that q is a self-join free Boolean
conjunctive query with two atoms and I is an instance.
Let HI,q be the conflict-join graph associated with I
and q, let α(HI,q) be the independent set number of
HI,q, and let n be the number of distinct maximal sets
of pairwise key-equal facts of I. Then the following
statements are equivalent:

1. There is a repair r of I such that r ̸|= q.

2. α(HI,q) = n.

Proof. Assume first that r is a repair of I such that
r ̸|= q. Let M be the set of all facts of r. We claim
that M is an independent set in HI,q and has size n.
To see that M is an independent set in HI,q, consider
two distinct facts f1 and f2 of r. If they involve the
same relation symbol, then they cannot be key equal
because r is a consistent instance, hence there is no

7

edge between them in HI,q. If they involve different
relation symbols, then together they cannot satisfy q
because r ̸|= q, hence there is no edge between them
in HI,q. To see that M has size n, notice that, since r is
a maximal consistent sub-instance of I, it must contain
one fact of each different key value, which means that
r must contain one fact from each of the n maximal
sets of pairwise key-equal facts of I. Since α(HI,q) ≤
n, it follows that α(HI,q) = n.

For the other direction, assume that M is an inde-
pendent set of HI,q of size n. Let r be the sub-instance
of I formed by the facts of M. We claim that r is a
repair of I such that r ̸|= q. Indeed, since M is an in-
dependent set of HI,q, we have that r is consistent and
also r ̸|= q. Also, since M is of size n, we have that r
must contain a fact of each different key value, hence
r is a maximal consistent sub-instance of I.

Notice that the proof of Lemma 3 actually estab-
lishes something stronger, namely, that the repairs of
I that make q false are precisely the independent sets
of HI,q of size n.

It is well known that the problem of computing the
independent set number of a given graph is NP-hard
[11]. However, it is also known that there are re-
stricted classes of graphs for which this problem is
solvable in polynomial time. In particular, this holds
true for claw-free graphs, chordal graphs, and perfect
graphs. Claw-free graphs will turn out to be of par-
ticular interest to us. A graph is claw-free if it does
not contain a claw as an induced subgraph, where
the claw is the complete bipartite graph K1,3 (see Fig-
ure 2). Equivalently, a graph is claw-free if no node
has three pairwise non-adjacent neighbors. Claw-free
graphs form a broad class of graphs that enjoy good al-
gorithmic properties. In particular, a polynomial-time
algorithm for computing the independent set number
on claw-free graphs was given by Minty [12].

Lemma 4. Assume that q is a self-join free Boolean
conjunctive query with exactly two atoms. Let R1, R2
be the two atoms of q, and let L be the set of vari-
ables shared by R1 and R2. If key(R1) ∪ key(R2) ⊆ L,
then, for every instance I, the conflict-join graph HI,q

is claw-free. Consequently, if key(R1) ∪ key(R2)) ⊆ L,
then certainty(q) is in P.

Proof. Let I be an instance. We first observe the fol-
lowing regarding the conflict-join graph HI,q.
• If f1, f2, f3 are three facts of I such that (f1, f2)

and (f1, f3) are edges in E1, then (f2, f3) is also an
edge in E1. Indeed, since (f1, f2) and (f1, f3) are
in E1, it follows that f1 is key-equal to both f2 and
f3; hence, f2 is key-equal to f3, which implies that
(f1, f3) is an edge in E1.
• If f1, f2, f3 are three facts of I such that (f1, f2)

and (f1, f3) are edges in E2, then (f2, f3) is an edge

Figure 1: The conflict-join graph HI,q2 for the query and the in-
stance in Example 1. Edges drawn as continuous lines connect pairs
of facts that conflict; edges drawn as dashed lines connect facts that
together satisfy q.

Figure 2: The claw graph K1,3

in E1. To see this, we distinguish two cases, de-
pending on whether f1 is an R1-fact or an R2-fact.
Assume first that f1 is an R1-fact. Then, f2 and f3
must be R2-facts. Since f1 and f2 satisfy q, they
must agree on all values corresponding to vari-
ables in L. Given that key(R2) ⊆ L, we have that
f1 and f2 agree on all values corresponding to vari-
ables in key(R2). Similarly, f1 and f3 agree on all
values corresponding to variables in key(R2). It
follows that f2 and f3 are key-equal. The argu-
ment in the case that f1 is an R2-fact is similar.

We now prove that the conflict-join graph HI,q is claw-
free. Let f1, f2, f3, and f4 be four facts of I such that
(f1, f2), (f1, f3), (f1, f4) are edges in E. Then either at
least two of these three edges are in E1 or at least two
of these three edges are in E2. If, say, both (f1, f2) and
(f1, f3) are in E1, then, by the first observation above,
we have that (f2, f3) is an edge in E1 (and hence in E).
If, say, both (f1, f2) and (f1, f3) are in E2, then, by the
second observation above, we have that (f2, f3) is an
edge in E1 (and hence in E). Therefore, the nodes f1,
f2, f3, and f4 do not induce a claw in HI,q.

Finally, assuming that (key(R1) ∪ key(R2)) ⊆ L,
there is a polynomial-time algorithm for certainty(q).
Specifically, given an instance I, we first construct the
conflict-join graph HI,q in polynomial time in the size
of I. Since HI,q is claw-free, we can use Minty’s al-
gorithm [12] to compute the independent set number
α(HI,q) in polynomial time in the size of HI,q and,
hence, in polynomial time in the size of I. We then
compare α(HI,q) to the number n of distinct maximal
sets of pairwise key-equal facts of I, which can also
be computed in polynomial time in the size of I. By
Lemma 3, we have that certainty(q) is true on I if and
only if α(HI,q) < n.

8

It should be noted that Arenas et al. [13] intro-
duced the notion of the conflict graph while studying
the consistent answers of aggregate queries. The con-
flict graph is constructed from the constraints and the
instance, while our conflict-join graph takes also the
query into account. Arenas et al. used the tractability
of the maximum independent set number on claw-free
graphs to show that if a relational schema with at most
two functional dependencies is in Boyce-Codd Nor-
mal Form, then there is a polynomial-time algorithm
for computing the consistent answers of COUNT(*)
queries (see [13, Theorem 12]).

The preceding Lemma 4 could also be obtained via
a reduction to the problem of computing the consistent
answers of COUNT(*) queries and then by appealing
to Theorem 12 in [13]. The proof we gave here is
direct and self-contained.

Lemma 4 gives a broad sufficient condition for the
tractability of certainty(q) for self-join free Boolean
conjunctive queries q with exactly two atoms. In par-
ticular, it yields a unifying polynomial-time algorithm
for certainty(q) that applies to several interesting
queries q for which certainty(q) is not first-order ex-
pressible. To begin with it implies that certainty(q2)
is in P, where q2 is the query ∃x, y.R1(x, y) ∧ R2(y, x)
from the Introduction. Note that the sole focus of [5]
was showing that certainty(q2) is in P (using a differ-
ent algorithm than ours) but is not first-order express-
ible. Also, Lemma 4 implies that certainty(q) is in P,
where q is one of the following three queries:

∃x, y, z.R1(x, z, y) ∧ R2(y, x, z);
∃x, y, z.R1(x, y, z) ∧ R2(y, x, z);
∃x, y, z.R1(x, y, z) ∧ R2(x, z, y).

Theorem 2 now follows by combining Lemma
2 with Lemma 4. Thus, if q is a self-join free
Boolean conjunctive query with two atoms such that
certainty(q) is not first-order expressible, then either
certainty(q) is in P or certainty(q) is coNP-complete.
Naturally, this dichotomy is interesting provided that
P , NP. Moreover, assuming that P , NP, we have
that if q is a self-join free Boolean conjunctive query
with two atoms R1 and R2 such that certainty(q) is not
first-order expressible, then certainty(q) is in P if and
only if key(R1) ∪ key(R2) ⊆ L.

By Lemma 4, key(R1) ∪ key(R2) ⊆ L is a suffi-
cient condition for tractability of certainty(q), where
q is an arbitrary self-join free Boolean conjunctive
query with two atoms R1 and R2. In general, how-
ever, the condition key(R1)∪key(R2) ⊆ L is not neces-
sary for tractability of certainty(q), where q is an ar-
bitrary self-join free Boolean conjunctive query with
two atoms R1 and R2. For example, consider again the
query q1 = ∃x, y, z.R1(x, y) ∧ R2(y, z) from the Intro-
duction. Then key(R1) ∪ key(R2) = {x, y} * L = {y}.
Nonetheless, as seen earlier, certainty(q) is first-order

expressible, hence it is in P. Similarly, if q is the
query ∃x, y, z.R1(x, y, z) ∧ R2(y, u,w), then key(R1) ∪
key(R2) = {x, y, u} * L = {y}, yet certainty(q) is in P,
because certainty(q) is first-order expressible, due to
L ⊆ R+1 = {x, y}.

The results presented here apply to Boolean self-
join free conjunctive queries with two atoms that may
contain constants. Consequently, the dichotomy in the
complexity of certainty(q) can be extended to non-
Boolean queries as well. Specifically, let q be a query
of arity k, for some k ≥ 1, and let I be an instance.
Then a k-tuple t with values from the active domain of
I is in the consistent answers of q on I if and only for
every repair r of I, we have that t is in q(r). This is the
same as the Boolean query q(t) being true in every re-
pair r of I, where q(t) is the query obtained from q by
substituting the free variables of q (i.e., the variables
that are not existentially quantified) with correspond-
ing constants from t.
Acknowledgments Research on this paper was par-
tially supported by NSF Grant IIS-0905276. We thank
the two anonymous referees for their insightful com-
ments, suggestions, and pointers to the literature.

References

[1] M. Arenas, L. Bertossi, J. Chomicki, Consistent query an-
swers in inconsistent databases, in: 18th ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database
Systems (PODS’99), 1999, pp. 68–79.

[2] M. Lenzerini, Data Integration: A Theoretical Perspective, in:
PODS, 2002, pp. 233–246.

[3] J. Chomicki, J. Marcinkowski, Minimal-change integrity
maintenance using tuple deletions, Inf. Comput. 197 (1/2)
(2005) 90–121.

[4] A. Fuxman, R. J. Miller, First-order query rewriting for in-
consistent databases, J. Comput. Syst. Sci. 73 (4) (2007) 610–
635.

[5] J. Wijsen, A remark on the complexity of consistent conjunc-
tive query answering under primary key violations, Inf. Pro-
cess. Lett. 110 (21) (2010) 950–955.

[6] J. Wijsen, On the first-order expressibility of computing cer-
tain answers to conjunctive queries over uncertain databases,
in: PODS, 2010, pp. 179–190.

[7] F. N. Afrati, P. G. Kolaitis, Repair checking in inconsistent
databases: algorithms and complexity, in: ICDT, 2009, pp.
31–41.

[8] R. E. Ladner, On the structure of polynomial time reducibility,
J. ACM 22 (1) (1975) 155–171.

[9] C. Beeri, P. A. Bernstein, Computational problems related to
the design of normal form relational schemas, ACM Trans.
Database Syst. 4 (1) (1979) 30–59.

[10] E. M. Gold, Complexity of automaton identification from
given data, Information and Control 37 (3) (1978) 302–320.

[11] M. R. Garey, D. S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness, W. H. Freeman,
1979.

[12] G. J. Minty, On maximal independent sets of vertices in claw-
free graphs, J. Comb. Theory, Ser. B 28 (3) (1980) 284–304.

[13] M. Arenas, L. Bertossi, J. Chomicki, X. He, V. Raghavan,
J. Spinrad, Scalar aggregation in inconsistent databases, The-
oretical Computer Science. 296(3), 2003.

9

