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between a ounting problem and its underlying deision problem. Spei�ally, Valiant [Val79a℄showed that there are #P-omplete problems whose underlying deision problem is solvable inpolynomial time. The �rst problem to exhibit this \easy-to-deide, but hard-to-ount" behaviorwas #perfet mathings, whih is the problem of ounting the number of perfet mathings in agiven bipartite graph. Indeed, Valiant [Val79a℄ showed that #perfet mathings is #P-ompletevia polynomial-time 1-Turing redutions, that is, Turing redutions that only allow a single all toan orale. Subsequent researh in this area revealed an abundane of other natural #P-ompleteproblems possessing these properties [Val79b, PB83, Lin86℄.In addition to introduing #P, Valiant [Val79a℄ also developed a mahine-based frameworkfor introduing higher ounting omplexity lasses. In this framework, the �rst lass beyond#P is the lass #NP of funtions that ount the number of aepting paths of polynomial-timenondeterministi Turing mahines with aess to NP orales. More reently, Hemaspaandra andVollmer [HV95℄ developed a prediate-based framework for introduing higher ounting omplexitylasses, whih subsumes Valiant's framework and makes it possible to introdue other ountinglasses that draw �ner distintions. In partiular, Valiant's lass #NP oinides with the lass#�oNP of the Hemaspaandra-Vollmer framework. Wagner [Wag86b, Wag86a℄ also onsideredounting problems.There is an extensive literature on the strutural properties of higher ounting omplexitylasses. As regards omplete problems for these higher ounting omplexity lasses, the stateof a�airs is rather ompliated. Toda and Watanabe [TW92℄ showed if a problem is #P-hardvia polynomial-time 1-Turing redutions, then it is also #�oNP-hard and #��kP-hard, for eahk � 2, where #��kP is the ounting version of the lass �kP at the k-th level of the polynomialhierarhy PH. This surprising result yields an abundane of problems that are omplete for thesehigher ounting lasses; for instane, #perfet mathings is suh a problem. At the sametime, it strongly suggests that #P, #�oNP, and all other higher ounting lasses are not losedunder polynomial-time 1-Turing redutions. In turn, this means that problems like #perfetmathings do not apture the inherent omplexity of the higher ounting omplexity lasses.Needless to say that these lasses are losed under parsimonious redutions, i.e., polynomial-timeredutions that preserve the number of solutions. The parsimonious redutions, however, alsopreserve the omplexity of the underlying deision problem; thus, they annot be used to disoverthe existene of problems that are omplete for the higher ounting omplexity lasses and exhibitan \easy-to-deide, but hard-to-ount" behavior.In this paper, we introdue a new type of redutions between ounting problems, whih weall subtrative redutions, sine they make it possible to ount the number of solutions by �rstoverounting them and then arefully subtrating any surplus. We make a ase that the subtrativeredutions are perfetly tailored for the study of #�oNP and of the higher ounting omplexitylasses #��kP, k � 2. To this e�et, we �rst show that eah of these higher ounting omplexitylasses is losed under subtrative redutions. We then fous on the lass #�oNP and showthat it ontains natural omplete problems via subtrative redutions, suh as the problem ofounting the minimal models of a Boolean formula in onjuntive normal form and the problemof ounting the ardinality of the set of minimal solutions of a homogeneous system of linearDiophantine inequalities. These two partiular ounting problems have the added feature thatthe omplexity of their underlying deision problems is lower than �2P-omplete, whih is theomplexity of the deision problem underlying #�1sat, the generi #�oNP-omplete problem viaparsimonious redutions.
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2 Counting Problems and Counting Complexity ClassesA ounting problem is typially presented using a suitable witness funtion whih for every input x,returns a set of witnesses for x. Formally, a witness funtion is a funtion w: �� �! P<!(��),where � and � are two alphabets, and P<!(��) is the olletions of all �nite subsets of ��. Everysuh witness funtion gives rise to the following ounting problem: given a string x 2 ��, �nd theardinality jw(x)j of the witness set w(x). In the sequel, we will refer to the funtion w 7! jw(x)jas the ounting funtion assoiated with the above ounting problem; moreover, we will identifyounting problems with their assoiated ounting funtions.Valiant [Val79a, Val79b℄ was the �rst to investigate the omputational omplexity of ountingproblems. To this e�et, he introdued the lass #P of ounting funtions that ount the number ofaepting paths of nondeterministi polynomial-time Turing mahines. The prototypial problemin #P is #sat, whih is the ounting version of Boolean satis�ability.#SATInput: A Boolean formula ' in onjuntive normal form.Output: Number of truth assignments that satisfy '.Valiant [Val79a℄ showed that #sat is #P-omplete via parsimonious redutions, that is, everyounting problem in #P an be redued to #sat via a polynomial-time redution that preservesthe ardinalities of the witness sets. Moreover, the same holds true for the ounting versions ofmany other NP-omplete problems. Valiant's seminal disovery, however, was the existene of aplethora of problems that exhibit an \easy-to-deide, but hard-to-ount" behavior. More preisely,if a ounting problem is desribed via a witness funtion w, then the underlying deision problemfor w asks: given a string x, is w(x) 6= ;? Valiant [Val79a, Val79b℄ showed that there are #P-omplete problems suh that their underlying deision problems is solvable in polynomial time. The�rst important problem shown to possess these properties was #perfet mathings, whih is theproblem of ounting the number of perfet mathings in a bipartite graph. Clearly, unless P = NP,#perfet mathings (and any other problem exhibiting the easy-to-deide, but hard-to-ountbehavior) annot be #P-omplete under parsimonious redutions. As it turns out, #perfetmathings is #P-omplete via polynomial-time 1-Turing redutions, whih are a restrited formof Turing redutions allowing a single query to an orale. More preisely, a ounting problem vis polynomial-time 1-Turing reduible to a ounting problem w, if there is a deterministi Turingmahine M that omputes jv(x)j in polynomial time by making a single all to an orale thatomputes jw(y)j. Note that parsimonious redutions onstitute the speial ase of polynomial-time1-Turing redutions in whih v = w Æ g, for some polynomial-time omputable total funtion g.In other words, the orale for jw(y)j is queried one and no omputation is performed after theorale's answer is reeived.In addition to initiating the study of #P, Valiant [Val79a, Val79b℄ developed a framework forintroduing higher ounting omplexity lasses. Spei�ally, for every omplexity lass C of deisionproblems, he de�ned #C to be the unionSA2C(#P)A, where (#P)A is the olletion of all funtionsthat ount the aepting paths of nondeterministi polynomial-time Turing mahines having A astheir orale. Thus, in this framework, #NP is the lass of funtions that ount the number ofaepting paths of NPNP mahines, that is, nondeterministi polynomial-time Turing mahinesthat have aess to NP orales. Note that, sine there is no di�erene between querying the oraleor its omplement, #C = #oC holds for every omplexity lass C. In partiular, we have that#NP = #oNP; more generally, #�kP = #�kP, for every k � 1, where �kP is the k-th level ofthe polynomial hierarhy PH and �kP = o�kP (reall that �1P = NP and �1P = oNP).More reently, researhers have introdued higher omplexity ounting lasses using a prediate-3



based framework that fouses on the omplexity of membership in the witness sets. Spei�ally,if C is a omplexity lass of deision problems, then Hemaspaandra and Vollmer [HV95℄ de�ne #�Cto be the lass of all ounting problems whose witness funtion w satis�es the following onditions:1. There is a polynomial p(n) suh that for every x and every y 2 w(x), we have that jyj � p(jxj),where jxj is the length of x and jyj is the length of y;2. The deision problem \given x and y, is y 2 w(x)?" is in C.What is the relationship between ounting omplexity lasses in these two di�erent frameworks?First, it is easy to verify that #P = #�P. As regards higher ounting omplexity lasses, the preiserelationship is provided by Toda's result [Tod91℄, whih asserts that#��kP � #�kP = #�P�kP = #��kP;for every k � 1 (see also [HV95℄). In partiular, #�NP � #NP = #�PNP = #�oNP. This resultshows that the prediate-based framework not only subsumes the mahine-based framework, butalso makes it possible to make �ner distintions between ounting omplexity lasses that wereabsent in the mahine-based framework. Indeed, for eah k � 1, Valiant's lass #�kP (whih isthe same as #�kP) oinides with #��kP. Moreover, the lass #��kP appears to be di�erent and,hene, larger than #��kP. In partiular, results by K�obler, Sh�oning, and Tor�an [KST89℄ implythat #�NP = #�oNP if and only if NP = oNP.In general, what makes a omplexity lass interesting is the existene of natural problems thatare omplete for the lass. As mentioned earlier, #P is a partiularly interesting omplexity lassbeause it ontains natural omplete problems, suh as #perfet mathings, whose underlyingdeision problem is solvable in polynomial time. Do the higher ounting omplexity lasses #��kP(and #��kP) ontain natural omplete problems and, if so, do some of these problems have aneasier underlying deision problem than others? We begin exploring these questions by onsideringounting problems based on quanti�ed Boolean formulas with a bounded number of quanti�eralternations. In what follows, k is a �xed positive integer.#�kSATInput: A formula '(y1; : : : ; yn) = 8x19x2 � � �Qkxk  (x1; : : : ; xk; y1; : : : ; yn), where  is a Booleanformula, eah xi is a tuple of variables, and eah yj is a variable.Output: Number of truth assignment to the variables y1; : : : ; yn that satisfy '.The ounting problem #�ksat is de�ned in a similar manner using formulas of the form9x18x2 � � �Qkxk  (x1; : : : ; xk; y1; : : : ; yn), where  is a Boolean formula, eah xi is a tuple ofvariables, and eah yj is a variable. The next result seems to be part of the folklore, althoughwe have not been able to loate a spei� referene to it. It an also be derived from results ofWrathall [Wra76℄.Theorem 2.1 #�ksat is #��kP-omplete via parsimonious redutions. In addition, if k is odd(even), then the problem remains #��kP-omplete when restrited to inputs in whih the quanti�er-free part is a Boolean formula in disjuntive normal form (respetively, in onjuntive normal form).Similarly, #�ksat is #��kP-omplete via parsimonious redutions.Note that the deision problem underlying#�ksat is �k+1sat, whih is the prototypial �k+1P-omplete problem. Thus, the question beomes: are there any natural #��kP-omplete problemssuh that their underlying deision problem is of lower omputational omplexity (i.e., lower than�k+1P-omplete)? Clearly, unless �k+1P ollapses to a lower omplexity lass, no suh problem an4



be #��kP-omplete via parsimonious redutions, whih means that a broader lass of redutions hasto be onsidered. To this e�et, Toda and Watanabe [TW92℄ proved the following surprising andquite signi�ant result: if a ounting problem is #P-hard via polynomial-time 1-Turing redutions,then it is also #��kP-omplete via the same redutions, for every k � 1. Consequently, #perfetmathings is #��kP-omplete via polynomial-time 1-Turing redutions. At �rst sight, Toda andWatanabe's theorem [TW92℄ an be interpreted as providing an abundane of #��kP-ompleteproblems suh that their underlying deision problem is of low omplexity. A moment's reetion,however, reveals that this theorem provides strong evidene that #P, #�oNP, and all other higherounting omplexity #��kP, k � 2, are not losed under polynomial-time 1-Turing redution.Moreover, it implies that polynomial-time 1-Turing redutions annot help us disover ompleteproblems that embody the inherent diÆulty of eah ounting omplexity lasses #��kP, k � 1,and allow us to draw meaningful distintions between these lasses. Consequently, the hallenge isto disover a di�erent lass of redutions that have the following two ruial properties: (1) eahlass #��kP, k � 1, is losed under these redutions; (2) eah lass #��kP, k � 1, ontains naturalproblems that are omplete for the lass via these redutions. In what follows, we take the �rststeps towards onfronting this hallenge.3 Subtrative RedutionsResearhers in strutural omplexity theory have extensively investigated various losure propertiesof #P and of ertain other ounting omplexity lasses (see [HO92, OH93℄). For instane, it is wellknown and easy to prove that #P is losed under both addition and multipliation.1 In turn, this hasmotivated researhers to introdue redutions that take advantage of losure properties. Indeed,Saluja, Subrahmanyam and Thakur [SST95℄ and Sharell [Sha98℄ used the losure of #P underaddition and multipliation to introdue approximation-preserving redutions between ountingproblems. In partiular, Sharell's [Sha98℄ PL-redutions involve positive linear ombinations thatapproximate the desired value from below. Unfortunately, these redutions do not seem to be suitedfor our purposes. Instead, we adopt a di�erent approah and introdue the lass of subtrativeredutions that �rst overount and then subtrat any surplus items. It should be emphasized thatde�ning suh redutions is a deliate matter, sine many ounting omplexity lasses, inluding#P, do not appear to be losed under subtration. Spei�ally, Ogiwara and Hemahandra [OH93℄have shown that #P is losed under subtration if and only if the lass PP of problems solvable inprobabilisti polynomial time oinides with the lass UP of problems solvable by an unambiguousTuring mahine in polynomial time, whih is onsidered an unlikely eventuality.Before de�ning the lass of subtrative redutions, we need to introdue ertain auxiliary on-epts and establish notation.Let �, � be two alphabets and let R � �� � �� be a binary relation between strings suhthat, for eah x 2 ��, the set R(x) = fy 2 �� j R(x; y)g is �nite. We write #�R to denote thefollowing ounting problem: given a string x 2 ��, �nd the ardinality jR(x)j of the witness setR(x) assoiated with x. It is easy to see that every ounting problem is of the form #�R for some R.De�nition 3.1 Let �, � be two alphabets and let #�A and #�B be two ounting problems deter-mined by the binary relations A and B between strings from � and �.� We say that the ounting problem #�A redues to the ounting problem #�B via a strong1Apparently, K. Regan was the �rst to observe this losure property of #P, see [HO92℄.5



subtrative redution, and write #�A �ssr #�B, if there exist two polynomial-time om-putable funtions f and g suh that for every string x 2 ��:1. B(f(x)) � B(g(x));2. jA(x)j = jB(g(x))j � jB(f(x))j.� We say that the ounting problem #�A redues to the ounting problem #�B via a subtra-tive redution, and write #�A �sr #�B, if there exists a positive integer n and a sequene ofounting problems #�A1, . . . , #�An suh that #�A = #�A1, #�B = #�An, and #�Ai reduesto #�Ai+1 via a strong subtrative redution, for eah i = 1; : : : ; n� 1.Note that in the above de�nition strong subtrative redutions and subtrative redutions arede�ned between ounting problems determined by binary relations on strings. If we onsider ount-ing problems C and D given via ounting funtions, then we say that C is reduible to D via a(strong) subtrative redution if there are binary relations A and B on strings suh that C = #�A,D = #�B, and #�A redues to #�B via a (strong) subtrative redution.Clearly, parsimonious redutions onstitute a speial ase of subtrative redutions. In general,the omposition of two strong subtrative redutions need not be a strong subtrative redution.In ontrast, subtrative redutions do not su�er from this drawbak. The following proposition iseasily proved by indution on the length of the sequene of strong subtrative redutions.Proposition 3.2 Reduibility via subtrative redutions is a transitive relation. In other words, if#�A �sr #�B and #�B �sr #�C, then #�A �sr #�C.The reader familiar with the preliminary version of this paper in the Proeedings of MFCS 2000will notie that the above De�nition 3.1 of subtrative redution is di�erent from the de�nition of\subtrative redution" presented in the Proeedings of MFCS 2000, even though both de�nitionsontain strong subtrative redutions as a speial ase. Klaus W. Wagner and Heribert Vollmerdisovered that our earlier de�nition of \subtrative redution" was awed in the sense that, usingthat earlier de�nition, it was impossible to show that \subtrative redutions" ompose and thusProposition 3.2 ould not be established.Next we state and prove the main result of this setion; it asserts that Valiant's ountingomplexity lasses are losed under subtrative redutions.Theorem 3.3 #P and all higher ounting omplexity lass #��kP = #�kP, k � 1, are losedunder subtrative redutions.Proof: Let k be a �xed positive integer. In what follows, we prove that the lass #��kP is losedunder strong subtrative redutions. The result will follow by indution. Reall that Toda [Tod91℄showed that #��kP = #�kP = #�P�kP.Let #�A and #�B be two ounting problems suh that #�B 2 #��kP and #�A redues to #�Bvia a strong subtrative redution. We will show that #�A belongs to #��kP by onstruting aprediate A0 in P�kP suh that for eah string xjA0(x)j = jB(g(x))j � jB(f(x))j = jA(x)j ;where f and g are the polynomial-time omputable funtion in the subtrative redution of #�A to#�B. Let � be a delimiter symbol not in the alphabets of the ounting problems #�A and #�B. Theprediate A0 onsists of all pairs (x; y0) of strings x and y0 suh that y0 is of the form f(x) � g(x) � ywith (g(x); y) 2 B and (f(x); y) 62 B. Thus, a pair (x; y0) belongs to A0 if and only if (x; y0) isaepted by the following algorithm: 6



1. extrat f(x), g(x), and y from y0;2. hek that (g(x); y) belongs to B;3. hek that (f(x); y) does not belong to B.Step 1 an be arried out in polynomial time. The test in Step 2 is in �kP, therefore also in P�kP.The test in Step 3 is in �kP, hene it an be done in P�kP. Consequently, the prediate A0 is inP�kP. Moreover, it is lear that jA(x)j = jA0(x)j, for every string x. It follows that the ountingproblem #�A is in #�P�kP = #��kP.The losure of #P under subtrative redutions is established using a similar argument. 2In view of the preeding Theorem 3.3, it is natural to ask whether the lasses #��kP, k � 1,introdued by Hemaspaandra and Vollmer [HV95℄, are also losed under subtrative redutions.We now provide evidene to the e�et that no lass #��kP is losed under subtrative redutions.For this, we observe that #�ksat, the generi omplete problem for #��kP, an easily be reduedto #�ksat, the generi omplete problem for #��kP, via a strong subtrative redution. Conse-quently, if #��kP were losed under subtrative redutions, then #��kP would ollapse to #��kP,whih is generally onsidered as highly unlikely.Let '(y1; : : : ; yn) be any �k-formula 8x19x2 � � �Qkxk �(x1; : : : ; xk; y1; : : : ; yn). Let �'(y1; : : : ; yn)be the �k formula that is equivalent to :' and is obtained from ' by propagating the negationsymbol through the quanti�ers and applying de Morgan laws to the quanti�er-free part of '. Let (y1; : : : ; yn) be the tautology y1_:y1_y2_:y2_� � �_yn_:yn. It is obvious that every satisfyingtruth assignment of �' is a satisfying truth assignment of  and that jsat(')j = jsat( )j � jsat( �')jhold, where sat(') denotes the satisfying truth assignments of ' (and similarly for  and �').Consequently, the polynomial-time omputable funtions f(') = �' and g(') =  onstitute astrong subtrative redution of #�ksat to #�ksat.Observe that the preeding argument an also be applied to a Boolean formula ' in onjuntivenormal form (i.e., assume k = 0) to produe a subtrative redution of #sat to #dnf, where #dnfis the following ounting problem.#DNFInput: A Boolean formula � in disjuntive normal form.Output: Number of truth assignments that satisfy �.Consequently, we obtain the following result onerning #P-ompleteness via subtrative re-dutions.Proposition 3.4 #dnf is #P-omplete via subtrative redutions.Observe that #dnf annot be #P-omplete via parsimonious redutions, sine its underlying de-ision problem is easily solvable in polynomial time. As stated earlier, #perfet mathingsis #P-omplete via polynomial-time 1-Turing redutions. It is an interesting open problem todetermine whether #perfet mathings is also #P-omplete via subtrative redutions.4 Alternative De�nitions of Subtrative RedutionsSubtrative redutions, as introdued in the previous setion, have the following three desirableproperties: reduibility via subtrative relations is a transitive relation; eah lass #��kP is losedunder subtrative redutions; eah lass #��kP ontains natural ounting problems that are #��kP-omplete via subtrative redutions. As it turns out, the onept of \redution by subtration"7



an also be introdued in several di�erent ways while preserving the above three properties. Thissetion is devoted to the presentation of two suh alternative de�nitions of the notion of \subtra-tive redution". These three di�erent de�nitions of subtrative redutions do not appear to beequivalent; it remains an open problem to delineate the exat relationship between these onepts.Note, however, that all ompleteness results presented in this paper remain true under any one ofthe three di�erent de�nitions of subtrative redutions.The �rst alternative is to deal diretly with the underlying witness set within the redution.This leads to the following modi�ation of the de�nition of the strong subtrative redution.De�nition 4.1 Let �, � be two alphabets and let A and B be two binary relations between stringsfrom � and �. We say that the ounting problem #�A redues to the ounting problem #�B viaa strong subtrative redution, and write #�A �ssr #�B, if there exist two polynomial-timeomputable funtions f and g, and a polynomial-time omputable injetion h:A �! B, suh thatfor every string x 2 ��:� B(f(x)) � B(g(x));� h(A(x)) = B(g(x)) n B(f(x)).Compared with De�nition 3.1, this new de�nition of a strong subtrative redution prefers thewitness set struture to the ardinality equation. Of ourse, De�nition 4.1 implies the equalityjA(x)j = jB(g(x))j � jB(f(x))j, what makes De�nition 3.1 a speial ase of De�nition 4.1.Again, the subtrative redution is de�ned, as previously, by a transitive losure of strongsubtrative redutions. The drawbak of this de�nition is that the notion is given in two stages:�rst a basi redution relation is de�ned, upon whih we apply the transitive losure to get theatually desired redution. One an get rid of this feature by introduing multisets in the de�nition.We �rst reall some basi notions of multisets. Let D be a non-empty set. Intuitively, amultiset on D is a olletion of elements of D in whih elements may have multiple ourrenes.More formally, a multiset M on D an be viewed as a funtion M :D �! N that assigns to eahelement x 2 D the numberM(x) of the ourrenes of x inM . The multisets on D an be equippedwith the operations of union and di�erene as follows.Let A and B be two multisets on D. The union of A and B is the multiset A � B suh that(A�B)(x) = A(x) +B(x) for every x 2 D. The di�erene of A and B is the multiset A	B suhthat (A 	 B)(x) = max(A(x) � B(x); 0) for every x 2 D. We say that A is ontained in B, andwrite A � B, if A(x) � B(x) for every x 2 D. Note that if B � A, then (A	B)(x) = A(x)�B(x)holds for all x 2 D. Hene, whenever multiset di�erene is taking plae between two multisets suhthat one is ontained in the other, then the multiset operations an be replaed by the ordinaryarithmeti operations. Finally, if A1; : : : ; An are multisets, then we write Lni=1Ai to denote theunion A1 � � � � �An.De�nition 4.2 Let �, � be two alphabets and let A and B be two binary relations between stringsfrom � and �. We say that the ounting problem #�A redues to the ounting problem #�B viaa multiset subtrative redution, and write #�A �ms #�B, if there exist a positive integer n,polynomial-time omputable funtions fi and gi, i = 1; : : : ; n, and polynomial time omputablebijetion h, suh that for every string x 2 ��:� Lni=1 h(B(fi(x))) �Lni=1 h(B(gi(x)));� A(x) =Lni=1 h(B(gi(x))) 	Lni=1 h(B(fi(x))).8



Multiset subtrative redutions ompose well without any additional expliit transitivity re-quirement. For proving this result, we need the following basi properties of multisets whose proofis left to the reader.Lemma 4.3 Let Ai, Bi, for i = 1; : : : ; n, A, B, C, and D be multisets.1. If Bi � Ai for eah i, then nMi=1 (Ai 	Bi) = ( nMi=1 Ai)	 ( nMi=1 Bi):2. If B � A, D � C, and C 	D � A	B then(A	B)	 (C 	D) = (A�D)	 (B � C):We are able now to prove that a omposition of two multiset subtrative redutions produesanother multiset subtrative redution.Theorem 4.4 Reduibility via subtrative redutions is a transitive relation, that is, if #�A �ms#�B and #�B �ms #�C, then #�A �ms #�C.Proof: Suppose that #�A redues to #�B via a multiset subtrative redution with the fun-tions f1i , g1i and h1. Suppose also that #�B redues to #�C via a multiset subtrative redutionwith the funtions f2j , g2j and h2. We prove that there exists a multiset subtrative redution from#�A to #�C with the funtions fk, gk and h.Let M = Mi h1(B(g1i (x)))	Mi h1(B(f1i (x)))i.e., jM j = jA(x)j. Sine there is a subtrative redution from #�B to #�C, the following equationholds for the witness set B(g1i (x)) (similarly for B(f1i (x))):B(g1i (x)) = Mj h2(C(g2j :g1i (x))) 	Mj h2(C(f2j :g1i (x)))Then the multiset M is equal toMi h1(Mj h2(C(g2j :g1i (x)))	Mj h2(C(f2j :g1i (x))))	 Mi h1(Mj h2(C(g2j :f1i (x))) 	Mj h2(C(f2j :f1i (x)))):Funtion h2 is a bijetion andLj h2(C(g2j :g1i (x)))	Lj h2(C(f2j :g1i (x))) is a set. Then the fun-tion h1 an be pushed inside the multiset sum, still preserving the inlusions. Then the multisetMis equal to 9



Mi (Mj h1:h2(C(g2j :g1i (x))) 	Mj h1:h2(C(f2j :g1i (x))))	 Mi (Mj h1:h2(C(g2j :f1i (x)))	Mj h1:h2(C(f2j :f1i (x)))):Sine the orresponding inlusions are satis�ed, following property 1 of Lemma 4.3, the previousmultiset is equal toMi Mj h1:h2(C(g2j :g1i (x)))	Mi Mj h1:h2(C(f2j :g1i (x))))	 Mi Mj h1:h2(C(g2j :f1i (x))) 	Mi Mj h1:h2(C(f2j :f1i (x)))):Following property 2 of Lemma 4.3, the latter multiset is equal toMi Mj (h1:h2(C(g2j :g1i (x))) � h1:h2(C(f2j :f1i (x)))	 Mi Mj (h1:h2(C(f2j :g1i (x)))� h1:h2(C(f2j :f1i (x))):Hene, we hoose the funtions g2j (g1i (x)) and f2j (f1i (x)) for gk(x), whereas the funtions f2j (g1i (x))and g2j (f1i (x)) beome the funtions fk(x). Finally, we take h1:h2 for the funtion h. 2The losure of Valiant's ounting lasses under multiset subtrative redutions an be obtainedby a straightforward modi�ation of the proof of Theorem 3.3.5 #�oNP-omplete Problems via Subtrative RedutionsMany important ounting problems are known to be #P-omplete via polynomial-time 1-Turingredutions and have the property that their underlying deision problem is solvable in polynomialtime [Val79a, Val79b, PB83, Lin86℄. The urrent state of knowledge, however, is very di�erent forthe higher ounting omplexity lasses #��kP and #��kP, k � 1. We do know that they possessgeneri omplete problem, suh as #�ksat and #�ksat, that are omplete for these lasses viaparsimonious redutions, but have inherently high omputational omplexity (see Proposition 2.1).We also know that every ounting problem that is #P-omplete via polynomial-time 1-Turingredutions is also omplete for these lasses under the same redutions [TW92℄. Up to this point,however, it is not known if these higher ounting omplexity lasses ontain any problems that havethe following two properties: (1) they are omplete for the lass via redutions under whih thelass is losed; (2) their underlying deision problems has omplexity lower than that of the generiomplete problem for the lass.In this setion, we fous on the lass #�oNP and establish that it ontains ertain naturalounting problems that possess the above two properties. Reall that #�oNP is the �rst higherounting omplexity lass that arises in Valiant's framework, sine #�oNP = #NP. Moreover, itis quite robust, sine, as shown by Toda [Tod91℄, #�oNP = #NP = #�PNP.Cirumsription is a well-developed formalism of ommon-sense reasoning introdued by M-Carthy [MC80℄ and extensively studied by the arti�ial intelligene ommunity. The key idea10



behind irumsription is that one is interested in the minimal models of formulas, sine they arethe ones that have as few \exeptions" as possible and, therefore, embody ommon sense. In theontext of Boolean logi, irumsription amounts to the study of satisfying assignments of Booleanformulas that are minimal with respet to the pointwise partial order on truth assignments. Morepreisely, if s = (s1; : : : ; sn) and s0 = (s01; : : : ; s0n) are two elements of f0; 1gn, then we write s < s0 todenote that s 6= s0 and si � s0i holds for every i � n. Let '(x1; : : : ; xn) be a Boolean formula havingx1; : : : ; xn as its variables and let s 2 f0; 1gn be a truth assignment. We say that s is a minimalmodel of ' if s is a satisfying truth assignment of ' and there is no satisfying truth assignment s0of ' suh that s < s0. This onept gives rise to the following natural ounting problem.#CIRCUMSCRIPTIONInput: A Boolean formula '(x1; : : : ; xn) in onjuntive normal form.Output: Number of minimal models of '(x1; : : : ; xn).The underlying deision problem for #irumsription is NP-omplete, sine a Boolean for-mula has a minimal model if and only if it is satis�able. Thus, it has lower omplexity than�2P-omplete, whih is the omplexity of the underlying deision problem for #�1sat, the generiproblem for #�oNP.Theorem 5.1 #irumsription is #�oNP-omplete via subtrative redutions.Proof: It is lear that the problem belongs to #�oNP, sine testing whether a given truthassignment is a minimal model of a given formula is in oNP (atually, this deision problem isoNP-omplete [Cad92℄).For the lower bound, we onstrut a strong subtrative redution of #�1sat to #irumsription.In what follows, we write A(F ) to denote the set of all satisfying assignments of a �1-formulaF ; we also write B( ) to denote the set of all minimal models of a Boolean formula  . LetF (x) = 8y �(x; y) be a �1-formula, where �(x; y) is a Boolean formula in disjuntive normal form,and x = (x1; : : : ; xn), y = (y1; : : : ; ym) are tuples of Boolean variables. Let x0 = (x01; : : : ; x0n) be atuple of new Boolean variables, let z be a single new Boolean variable, let P (x; x0) be the formula(x1 � :x01) ^ � � � ^ (xn � :x0n), let Q(y) be the formula y1 ^ � � � ^ ym, and, �nally, let F 0(x; x0; y; z)be the formula P (x; x0) ^ (z ! Q(y)) ^ (�(x; y)! z):There is a polynomial-time omputable funtion g suh that, given a �1-formula F as above, itreturns as value a Boolean formula g(F ) in onjuntive normal form that is logially equivalentto the formula F 0(x; x0; y; z) (this is so, beause �(x; y) is in disjuntive normal form). Now letF 00(x; x0; y; z) be the formula F 0(x; x0; y; z)^(z ! :Q(y)) and let f be a polynomial-time omputablefuntion suh that, given a �1-formula F as above, it returns as value a Boolean formula f(F ) inonjuntive normal form that is logially equivalent to the formula F 00(x; x0; y; z).We will show in a sequene of four laims that every minimal model of F 00 is a minimal modelof F 0 and that there is a bijetion between the minimal models of F and the set di�erene of theminimal models of F 0 and F 00.Claim 1: (x; x0; y; z) is a model of F 0 if and only if either P (x; x0) = 1 and Q(y) = 1 and z = 1, orP (x; x0) = 1 and z = 0 and �(x; y) = 0.This is obvious from the de�nition of F 0, sine z = 1 implies Q(y) = 1.Claim 2: (x; x0; y; z) is a minimal model of F 0 if and only if either �(x; y) = 1 for all y andP (x; x0) = 1 and Q(y) = 1 and z = 1, or P (x; x0) = 1 and z = 0 and �(x; y) = 0 and there is no y0suh that y0 < y and �(x; y0) = 0. 11



Consider the models (x; x0; 1; : : : ; 1; 1). Assume that (x; x0; 1; : : : ; 1; 1) is a minimal model of F 0.Then for every y we must have that �(x; y) = 1, sine otherwise (x; x0; y; 0) would be a model of F 0smaller than (x; x0; 1; : : : ; 1; 1). Assume that x is suh that 8y �(x; y) = 1. Then (x; x0; 1; : : : ; 1; 1)is a minimal model of F 0, sine the only way to have a smaller model would be to have one of theform (x; x0; y; 0) with �(x; y) = 0, whih ontradits the hypothesis on x. Now, onsider models ofthe form (x; x0; y; 0). From Claim 1 it follows that suh a model is minimal if and only if there isno y0 < y suh that �(x; y0) = 0.Claim 3: (x; x0; y; z) is a model of F 00 if and only if P (x; x0) = 1 and z = 0 and �(x; y) = 0.This follows easily from the de�nition of F 00.Claim 4: (x; x0; y; z) is a minimal model of F 00 if and only if P (x; x0) = 1 and z = 0 and �(x; y) = 0and there is no y0 suh that y0 < y and �(x; y0) = 0.This follows from the de�nition of F 00 and Claim 3.From Claims 1 to 4, it follows that the set di�erene of the minimal models of F 0 and F 00 is equalto the set f(x; x0; 1; : : : ; 1; 1) j 8y �(x; y) ^P (x; x0)g. Note that this set has the same ardinality asthe set of satisfying assignments of the formula F , sine the variables x0 are funtionally dependenton the variables x through the formula P (x; x0). Hene, we have that jA(F )j = jB(F 0)j � jB(F 00)j,whih establishes that the polynomial-time omputable funtions f and g onstitute a strong sub-trative redution of #�1sat to #irumsription. 2The following result is an immediate onsequene of Theorems 3.3 and 5.1.Corollary 5.2 #�oNP = #P if and only if #irumsription is in #P.We now move from ounting problems in Boolean logi to ounting problems in integer linearprogramming. A system of linear Diophantine inequalities over the non-negative integers is a systemof the form S:Ax � b, where A is an integer matrix, b is an integer vetor, and we are interestedin the non-negative integer solutions of this system. If b is the zero-vetor (0; : : : ; 0), then we saythat the system is homogeneous. A non-negative integer solution s of S is minimal if there is nonon-negative solution s0 of S suh that s0 < s in the pointwise partial order on integer vetors. Itis well known that the set of all minimal solutions plays an important role in analyzing the spaeof all non-negative integer solutions of linear Diophantine systems (see Shrijver [Sh86℄). Clearly,every homogeneous system has (0; : : : ; 0) as a trivial minimal solution. Here, we are interested inounting the number of non-trivial minimal solutions of homogeneous systems.#HOMOGENEOUS MINIMAL SOLUTIONInput: A homogeneous system S:Ax � 0 of linear Diophantine inequalities.Output: Number of non-trivial minimal solutions of S.Note that the underlying deision problem of #homogeneous minimal solution amounts towhether a given homogeneous system of linear Diophantine inequalities has a non-negative integersolution other than the trivial solution (0; : : : ; 0). It is easy to show that this problem is solvablein polynomial time, sine it an be redued to linear programming. In ontrast, ountingthe number of non-trivial minimal solutions turns out to be a hard problem. More preisely,#homogeneous minimal solution appears to be #�oNP-omplete via subtrative redutions.As stepping stones towards proving that result, we will introdue and use two other tehnialounting problems.#SATISFIABLE CIRCUMSCRIPTIONInput: A satis�able Boolean formula '(x1; : : : ; xn) in onjuntive normal form.Output: Number of minimal models of '(x1; : : : ; xn).12



Proposition 5.3 The ounting problem #satisfiable irumsription is #�oNP-omplete viasubtrative redutions.Proof: Deiding membership in the witness sets for this problem is in PNP, beause deidingsatis�ability of a Boolean formula ' is in NP and deiding minimality of a model of ' is in oNP.Hene, #satisfiable irumsription belongs to #�PNP = #�oNP.For the lower bound, it is not hard to verify that a strong subtrative redution of #irumsriptionto #satisfiable ir an be obtained as follows: given a Boolean formula �(x1; : : : ; xn) in on-juntive normal form the new formula (x0; x00; x1; : : : ; xn) = ((x0 ^ x1 ^ � � � ^ xn) _ (:x0 ^ �(x1; : : : ; xn))) ^ (x0 6� x00):The formula  has at least one model, namely m0 = (x0 = 1; x00 = 0; x1 = � � � = xn = 1).We show that m0 is minimal for  . Suppose that there exists a smaller model m00. Thenm00(x0) = 0 or m00(xi) = 0 for some i. If m00(x0) = 0 then m00(x00) = 1, hene the models m0 and m00are inomparable. Ifm00(xi) = 0 for some i, then x0^x1^� � �^xn = 0. Hene, :x0^�(x1; : : : ; xn) = 1From this, it follows that :x0 = 1, i.e., m00(x0) = 0. One again, this leads to m00(x00) = 1 and thetwo models are inomparable. Sine we arrive at a ontradition in both ases, it follows that m0is minimal.Now, we show that (x1; : : : ; xn) is a minimal model of � if and only if m1 = (0; 1; x1; : : : ; xn) isa minimal model of  , i.e., if x0 = 0 and x00 = 1. Construt the new formula 0 =  ^ x0 ^ x1 ^ � � � ^ xn ^ (x0 6� x00):The formula  0 has exatly one model, namely m0. This model is therefore also minimal for  0.Let A(�) be the set of minimal solutions of � and B(�) be the set of minimal solutions of asatis�able formula �. The inlusion B( 0) � B( ) holds, sine  0 has only one model m0 whihis also minimal for  . It is lear that if (x1; � � � ; xn) is a model of � then, m1 = (0; 1; x1; � � � ; xn)satis�es  . Moreover, the only model of  that does not satisfy � is the unique model of  0,m0 = (x0 = 1; x00 = 0; x1 = � � � = xn = 1). This implies that the equality jA(�)j = jB( )j � jB( 0)jholds. The formulas  and  0 an be written in onjuntive normal form without exponentialexplosion. Hene, we have onstruted a strong subtrative redution. 2#SATISFIABLE MINIMAL SOLUTIONInput: A system S:Ax � b of linear Diophantine inequalities having at least one non-negativeinteger solution.Output: Number of minimal solutions of S.Proposition 5.4 #satisfiable minimal solution is #�oNP-omplete via subtrative redu-tions.Proof: Deiding membership in the witness sets for this problem is in PNP and, hene, the problemis in #�PNP = #�oNP. Indeed, testing the system for solvability is in NP, whereas testing a givensolution for minimality is in oNP. In both tests, we use the fat that the size of minimal solutionsis bounded by a polynomial in the size of the system (see Corollary 17.1b in [Sh86, page 239℄).For the lower bound, observe that the standard redution of Boolean satis�ability to integerlinear programming also onstitutes a parsimonious redution of #satisfiable irumsriptionto #satisfiable minimal solution. 2We are able now to prove the main result of this setion.13



Theorem 5.5 #homogeneous minimal solution is #�oNP-omplete via subtrative redu-tions.Proof: The problem is in #�oNP, beause deiding membership in the witness sets is in oNP,using the bounds in the size of minimal solutions (see the proof of Proposition 5.4).For the lower bound, we exhibit a strong subtrative redution from #satisfiable minimalsolution. Let S:Ax � b be a system of linear Diophantine inequalities with at least one non-negative integer solution and suh that A is k � n integer matrix. First onstrut the systemS0: Ax� b�y � 0; 2z � t = y; xi � y; xi � y � t;where �y = (y; : : : ; y) is a vetor of length k having the same variable y in eah oordinate, and zand t are additional new variables.Claim 1: The vetor s0 = (x1 = x2 = � � � = xn = y = 0; z = 1; t = 2) is a minimal solution of S0.This is obviously a solution. The only smaller solution is the trivial all-zero solution.Claim 2: All nontrivial minimal solutions of S0, other than s0, are of the form(x1; : : : ; xn; y = 2k; z = k; t = 0) or (x1; : : : ; xn; y = 2k + 1; z = k + 1; t = 1):Suppose that s is a solution of S0 di�erent from s0. There are two subases to analyze, namelywhen y is even or odd.Let y = 2k with k � 1. The parametri solutions of the equation 2z � t = y are z = k + i andt = 2i for eah i. Whenever the inequality i � 1 holds, the solution s is greater than s0. Thereforeonly the solution with z = k and t = 0 satis�es also the additional onstraint that s must bedi�erent from s0.Now, let y = 2k+1 and k � 0. The parametri solutions of the equation 2z� t = y are z = k+ iand t = 2i� 1 for eah i � 1. One i � 2 holds, the solution s beomes greater than s0. Thereforeonly the solution with z = k + 1 and t = 1 assures that s is di�erent from s0.Claim 3: There exists a minimal solution of S0 with y � 3 and y odd if and only if there are nosolutions for y = 1 and y = 2. If there exists a solution with y = 1 or y = 2, then there exists alsoa minimal solution with the same value of y. Suppose that there exists a minimal solution withy � 3 and y = 2k + 1, then t = 1. From this. it follows that xi � 2k, for eah i. We have thatk � 1, sine y � 3, therefore xi � 2 holds for eah i. From 2z � t = y, t = 1, and y � 3 followsz � 2. Let s3 = (x1 � 2; : : : ; xn � 2; y � 3; z � 2; t = 1) be a minimal solution of S0. If there is aminimal solution with y = 1, it must have the form s1 = (x1 � 1; : : : ; xn � 1; y = 1; z = 1; t = 1)and s1 is smaller than s3, whih is a ontradition. If there is a minimal solution with y = 2, itmust have the form s2 = (x1 � 2; : : : ; xn � 2; y = 2; z = 1; t = 0) and s2 is smaller than s3, whihis also a ontradition.Claim 4: If there exists a minimal solution with y even, then this solution must be equal to thevetor (x1 = � � � = xn = 2 = y; z = 1; t = 0). For y = 2k and t = 0, we must have x1 = � � � = y = 2kand z = k for some k � 1. Sine S0 is a homogeneous system, we an divide this solution by k.We use now the fat that the known minimal model in #satisfiable irumsription andalso the known minimal solution of Ax � b for #satisfiable minmal solution both have a valuexi = 0 for some i. Hene, this solution falsi�es the system of equations x1 = � � � = xn.14



After this, onstrut the system S00 = S0 [ fx1 = � � � = xn = yg. Clearly, the system S00 has theminimal solution s0 = (x1 = � � � = xn = 0; y = 0; z = 1; t = 2) and also another minimal solutions2 = (x1 = � � � xn = 2; y = 2; z = 1; t = 0) when s2 is a solution of S0. Therefore the minimalsolutions of S00 are inluded in the minimal solutions of S0.We know that S0 has at least one minimal solution s for y = 1, sine S:Ax � b has one solution.Moreover, s is not a minimal solution of S00.Let A(S) be the set of minimal solutions of the system S, and let B(S0) and B(S00) be thesets of nontrivial minimal solutions of S0 and S00, respetively. From the previous reasoning followsthat B(S00) � B(S0) and that jA(S)j = jB(S0)j � jB(S00)j. This establishes that the polynomial-time omputable funtions f(S) = S0 and g(S) = S00 onstitute a strong subtrative redution of#satisfiable minimal solution to #homogeneous minimal solution. 2Corollary 5.6 #�oNP = #P if and only if #homogeneous minimal solution is in #P.To the best of our knowledge, the above result provides the �rst example of a ounting problemwhose underlying deision problem is solvable in polynomial time, but the ounting problem itselfis not in #P, unless higher ounting omplexity lasses ollapse to #P.6 Conluding RemarksWe onlude by realling Valiant's assertion from his inuential paper [Val79b℄ to the e�et that\The ompleteness lass for #P appears to be rivalled only by that for NP in relevane to naturallyourring omputational problems." The passage of time and the subsequent researh in this areaertainly proved this to be the ase. We believe that the results reported here suggest that also#�oNP ontains omplete problems of omputational signi�ane. Furthermore, we believe thatsubtrative redutions are the right tool for investigating #�oNP and identifying other naturalproblems that are #�oNP-omplete via these redutions. The next hallenge in this vein is todetermine whether #hilbert is #�oNP-omplete via subtrative redutions. #hilbert is theproblem of omputing the ardinality of the Hilbert basis of a homogeneous system S:Ax = 0 oflinear Diophantine equations, i.e., ounting the number of non-trivial minimal solutions of suha system. We note that this ounting problem was �rst studied by Hermann, Juban and Ko-laitis [HJK99℄, where it was shown to be a member of #�oNP and also to be #P-hard underpolynomial-time 1-Turing redutions.Aknowledgements We are truly grateful to Klaus W. Wagner and to Heribert Vollmer fortheir valuable omments on this work and most importantly for disovering the aw in the originalde�nition of \subtrative redution", as explained in the remarks following Proposition 3.2.Referenes[Cad92℄ M. Cadoli. The omplexity of model heking for irumsriptive formulae. InformationProessing Letters, 44(3):113{118, 1992.[HJK99℄ M. Hermann, L. Juban, and P. G. Kolaitis. On the omplexity of ounting the Hilbertbasis of a linear Diophantine system. In H. Ganzinger, D. MAllester, and A. Voronkov,editors, Proeedings 6th International Conferene on Logi for Programming and Au-tomated Reasoning (LPAR'99), Tbilisi (Republi of Georgia), volume 1705 of Leture15
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