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tWe introdu
e and investigate a new type of redu
tions between 
ounting problems, whi
h we
all subtra
tive redu
tions. We show that the main 
ounting 
omplexity 
lasses #P, #NP, as wellas all higher 
ounting 
omplexity 
lasses #��kP, k � 2, are 
losed under subtra
tive redu
tions.We then pursue problems that are 
omplete for these 
lasses via subtra
tive redu
tions. Wefo
us on the 
lass #NP (whi
h is the same as the 
lass #�
oNP) and show that it 
ontainsnatural 
omplete problems via subtra
tive redu
tions, su
h as the problem of 
ounting theminimal models of a Boolean formula in 
onjun
tive normal form and the problem of 
ountingthe 
ardinality of the set of minimal solutions of a homogeneous system of linear Diophantineinequalities.1 Introdu
tion and Summary of ResultsDe
ision problems ask whether a \solution" exists, whereas 
ounting problems ask how many dif-ferent \solutions" exist. Valiant [Val79a, Val79b℄ developed a 
omputational 
omplexity theory of
ounting problems by introdu
ing the 
lass #P of fun
tions that 
ount the number of a

eptingpaths of nondeterministi
 polynomial-time Turing ma
hines; thus, #P 
aptures 
ounting problemswhose underlying de
ision problem (is there a \solution"?) is in NP. Moreover, Valiant demon-strated that #P 
ontains a wealth of 
omplete problems, that is, there are problems in #P su
hthat every problem in #P 
an be redu
ed to them via a suitable polynomial-time Turing redu
-tion. Clearly, a 
ounting problem is at least as hard as its underlying de
ision problem. Valiant'sseminal dis
overy was that there 
an be a dramati
 gap in inherent 
omputational 
omplexity�A preliminary version of this paper appeared in Pro
eedings 25th International Symposium on Mathemati
alFoundations of Computer S
ien
e (MFCS 2000), M. Nielsen and B. Rovan, editors, Bratislava (Slovakia), Le
tureNotes in Computer S
ien
e, vol. 1893, Springer-Verlag, August 2000, pp. 323-332.yResear
h partially supported by NSF Grant CCR-9732041.1



between a 
ounting problem and its underlying de
ision problem. Spe
i�
ally, Valiant [Val79a℄showed that there are #P-
omplete problems whose underlying de
ision problem is solvable inpolynomial time. The �rst problem to exhibit this \easy-to-de
ide, but hard-to-
ount" behaviorwas #perfe
t mat
hings, whi
h is the problem of 
ounting the number of perfe
t mat
hings in agiven bipartite graph. Indeed, Valiant [Val79a℄ showed that #perfe
t mat
hings is #P-
ompletevia polynomial-time 1-Turing redu
tions, that is, Turing redu
tions that only allow a single 
all toan ora
le. Subsequent resear
h in this area revealed an abundan
e of other natural #P-
ompleteproblems possessing these properties [Val79b, PB83, Lin86℄.In addition to introdu
ing #P, Valiant [Val79a℄ also developed a ma
hine-based frameworkfor introdu
ing higher 
ounting 
omplexity 
lasses. In this framework, the �rst 
lass beyond#P is the 
lass #NP of fun
tions that 
ount the number of a

epting paths of polynomial-timenondeterministi
 Turing ma
hines with a

ess to NP ora
les. More re
ently, Hemaspaandra andVollmer [HV95℄ developed a predi
ate-based framework for introdu
ing higher 
ounting 
omplexity
lasses, whi
h subsumes Valiant's framework and makes it possible to introdu
e other 
ounting
lasses that draw �ner distin
tions. In parti
ular, Valiant's 
lass #NP 
oin
ides with the 
lass#�
oNP of the Hemaspaandra-Vollmer framework. Wagner [Wag86b, Wag86a℄ also 
onsidered
ounting problems.There is an extensive literature on the stru
tural properties of higher 
ounting 
omplexity
lasses. As regards 
omplete problems for these higher 
ounting 
omplexity 
lasses, the stateof a�airs is rather 
ompli
ated. Toda and Watanabe [TW92℄ showed if a problem is #P-hardvia polynomial-time 1-Turing redu
tions, then it is also #�
oNP-hard and #��kP-hard, for ea
hk � 2, where #��kP is the 
ounting version of the 
lass �kP at the k-th level of the polynomialhierar
hy PH. This surprising result yields an abundan
e of problems that are 
omplete for thesehigher 
ounting 
lasses; for instan
e, #perfe
t mat
hings is su
h a problem. At the sametime, it strongly suggests that #P, #�
oNP, and all other higher 
ounting 
lasses are not 
losedunder polynomial-time 1-Turing redu
tions. In turn, this means that problems like #perfe
tmat
hings do not 
apture the inherent 
omplexity of the higher 
ounting 
omplexity 
lasses.Needless to say that these 
lasses are 
losed under parsimonious redu
tions, i.e., polynomial-timeredu
tions that preserve the number of solutions. The parsimonious redu
tions, however, alsopreserve the 
omplexity of the underlying de
ision problem; thus, they 
annot be used to dis
overthe existen
e of problems that are 
omplete for the higher 
ounting 
omplexity 
lasses and exhibitan \easy-to-de
ide, but hard-to-
ount" behavior.In this paper, we introdu
e a new type of redu
tions between 
ounting problems, whi
h we
all subtra
tive redu
tions, sin
e they make it possible to 
ount the number of solutions by �rstover
ounting them and then 
arefully subtra
ting any surplus. We make a 
ase that the subtra
tiveredu
tions are perfe
tly tailored for the study of #�
oNP and of the higher 
ounting 
omplexity
lasses #��kP, k � 2. To this e�e
t, we �rst show that ea
h of these higher 
ounting 
omplexity
lasses is 
losed under subtra
tive redu
tions. We then fo
us on the 
lass #�
oNP and showthat it 
ontains natural 
omplete problems via subtra
tive redu
tions, su
h as the problem of
ounting the minimal models of a Boolean formula in 
onjun
tive normal form and the problemof 
ounting the 
ardinality of the set of minimal solutions of a homogeneous system of linearDiophantine inequalities. These two parti
ular 
ounting problems have the added feature thatthe 
omplexity of their underlying de
ision problems is lower than �2P-
omplete, whi
h is the
omplexity of the de
ision problem underlying #�1sat, the generi
 #�
oNP-
omplete problem viaparsimonious redu
tions.
2



2 Counting Problems and Counting Complexity ClassesA 
ounting problem is typi
ally presented using a suitable witness fun
tion whi
h for every input x,returns a set of witnesses for x. Formally, a witness fun
tion is a fun
tion w: �� �! P<!(��),where � and � are two alphabets, and P<!(��) is the 
olle
tions of all �nite subsets of ��. Everysu
h witness fun
tion gives rise to the following 
ounting problem: given a string x 2 ��, �nd the
ardinality jw(x)j of the witness set w(x). In the sequel, we will refer to the fun
tion w 7! jw(x)jas the 
ounting fun
tion asso
iated with the above 
ounting problem; moreover, we will identify
ounting problems with their asso
iated 
ounting fun
tions.Valiant [Val79a, Val79b℄ was the �rst to investigate the 
omputational 
omplexity of 
ountingproblems. To this e�e
t, he introdu
ed the 
lass #P of 
ounting fun
tions that 
ount the number ofa

epting paths of nondeterministi
 polynomial-time Turing ma
hines. The prototypi
al problemin #P is #sat, whi
h is the 
ounting version of Boolean satis�ability.#SATInput: A Boolean formula ' in 
onjun
tive normal form.Output: Number of truth assignments that satisfy '.Valiant [Val79a℄ showed that #sat is #P-
omplete via parsimonious redu
tions, that is, every
ounting problem in #P 
an be redu
ed to #sat via a polynomial-time redu
tion that preservesthe 
ardinalities of the witness sets. Moreover, the same holds true for the 
ounting versions ofmany other NP-
omplete problems. Valiant's seminal dis
overy, however, was the existen
e of aplethora of problems that exhibit an \easy-to-de
ide, but hard-to-
ount" behavior. More pre
isely,if a 
ounting problem is des
ribed via a witness fun
tion w, then the underlying de
ision problemfor w asks: given a string x, is w(x) 6= ;? Valiant [Val79a, Val79b℄ showed that there are #P-
omplete problems su
h that their underlying de
ision problems is solvable in polynomial time. The�rst important problem shown to possess these properties was #perfe
t mat
hings, whi
h is theproblem of 
ounting the number of perfe
t mat
hings in a bipartite graph. Clearly, unless P = NP,#perfe
t mat
hings (and any other problem exhibiting the easy-to-de
ide, but hard-to-
ountbehavior) 
annot be #P-
omplete under parsimonious redu
tions. As it turns out, #perfe
tmat
hings is #P-
omplete via polynomial-time 1-Turing redu
tions, whi
h are a restri
ted formof Turing redu
tions allowing a single query to an ora
le. More pre
isely, a 
ounting problem vis polynomial-time 1-Turing redu
ible to a 
ounting problem w, if there is a deterministi
 Turingma
hine M that 
omputes jv(x)j in polynomial time by making a single 
all to an ora
le that
omputes jw(y)j. Note that parsimonious redu
tions 
onstitute the spe
ial 
ase of polynomial-time1-Turing redu
tions in whi
h v = w Æ g, for some polynomial-time 
omputable total fun
tion g.In other words, the ora
le for jw(y)j is queried on
e and no 
omputation is performed after theora
le's answer is re
eived.In addition to initiating the study of #P, Valiant [Val79a, Val79b℄ developed a framework forintrodu
ing higher 
ounting 
omplexity 
lasses. Spe
i�
ally, for every 
omplexity 
lass C of de
isionproblems, he de�ned #C to be the unionSA2C(#P)A, where (#P)A is the 
olle
tion of all fun
tionsthat 
ount the a

epting paths of nondeterministi
 polynomial-time Turing ma
hines having A astheir ora
le. Thus, in this framework, #NP is the 
lass of fun
tions that 
ount the number ofa

epting paths of NPNP ma
hines, that is, nondeterministi
 polynomial-time Turing ma
hinesthat have a

ess to NP ora
les. Note that, sin
e there is no di�eren
e between querying the ora
leor its 
omplement, #C = #
oC holds for every 
omplexity 
lass C. In parti
ular, we have that#NP = #
oNP; more generally, #�kP = #�kP, for every k � 1, where �kP is the k-th level ofthe polynomial hierar
hy PH and �kP = 
o�kP (re
all that �1P = NP and �1P = 
oNP).More re
ently, resear
hers have introdu
ed higher 
omplexity 
ounting 
lasses using a predi
ate-3



based framework that fo
uses on the 
omplexity of membership in the witness sets. Spe
i�
ally,if C is a 
omplexity 
lass of de
ision problems, then Hemaspaandra and Vollmer [HV95℄ de�ne #�Cto be the 
lass of all 
ounting problems whose witness fun
tion w satis�es the following 
onditions:1. There is a polynomial p(n) su
h that for every x and every y 2 w(x), we have that jyj � p(jxj),where jxj is the length of x and jyj is the length of y;2. The de
ision problem \given x and y, is y 2 w(x)?" is in C.What is the relationship between 
ounting 
omplexity 
lasses in these two di�erent frameworks?First, it is easy to verify that #P = #�P. As regards higher 
ounting 
omplexity 
lasses, the pre
iserelationship is provided by Toda's result [Tod91℄, whi
h asserts that#��kP � #�kP = #�P�kP = #��kP;for every k � 1 (see also [HV95℄). In parti
ular, #�NP � #NP = #�PNP = #�
oNP. This resultshows that the predi
ate-based framework not only subsumes the ma
hine-based framework, butalso makes it possible to make �ner distin
tions between 
ounting 
omplexity 
lasses that wereabsent in the ma
hine-based framework. Indeed, for ea
h k � 1, Valiant's 
lass #�kP (whi
h isthe same as #�kP) 
oin
ides with #��kP. Moreover, the 
lass #��kP appears to be di�erent and,hen
e, larger than #��kP. In parti
ular, results by K�obler, S
h�oning, and Tor�an [KST89℄ implythat #�NP = #�
oNP if and only if NP = 
oNP.In general, what makes a 
omplexity 
lass interesting is the existen
e of natural problems thatare 
omplete for the 
lass. As mentioned earlier, #P is a parti
ularly interesting 
omplexity 
lassbe
ause it 
ontains natural 
omplete problems, su
h as #perfe
t mat
hings, whose underlyingde
ision problem is solvable in polynomial time. Do the higher 
ounting 
omplexity 
lasses #��kP(and #��kP) 
ontain natural 
omplete problems and, if so, do some of these problems have aneasier underlying de
ision problem than others? We begin exploring these questions by 
onsidering
ounting problems based on quanti�ed Boolean formulas with a bounded number of quanti�eralternations. In what follows, k is a �xed positive integer.#�kSATInput: A formula '(y1; : : : ; yn) = 8x19x2 � � �Qkxk  (x1; : : : ; xk; y1; : : : ; yn), where  is a Booleanformula, ea
h xi is a tuple of variables, and ea
h yj is a variable.Output: Number of truth assignment to the variables y1; : : : ; yn that satisfy '.The 
ounting problem #�ksat is de�ned in a similar manner using formulas of the form9x18x2 � � �Qkxk  (x1; : : : ; xk; y1; : : : ; yn), where  is a Boolean formula, ea
h xi is a tuple ofvariables, and ea
h yj is a variable. The next result seems to be part of the folklore, althoughwe have not been able to lo
ate a spe
i�
 referen
e to it. It 
an also be derived from results ofWrathall [Wra76℄.Theorem 2.1 #�ksat is #��kP-
omplete via parsimonious redu
tions. In addition, if k is odd(even), then the problem remains #��kP-
omplete when restri
ted to inputs in whi
h the quanti�er-free part is a Boolean formula in disjun
tive normal form (respe
tively, in 
onjun
tive normal form).Similarly, #�ksat is #��kP-
omplete via parsimonious redu
tions.Note that the de
ision problem underlying#�ksat is �k+1sat, whi
h is the prototypi
al �k+1P-
omplete problem. Thus, the question be
omes: are there any natural #��kP-
omplete problemssu
h that their underlying de
ision problem is of lower 
omputational 
omplexity (i.e., lower than�k+1P-
omplete)? Clearly, unless �k+1P 
ollapses to a lower 
omplexity 
lass, no su
h problem 
an4



be #��kP-
omplete via parsimonious redu
tions, whi
h means that a broader 
lass of redu
tions hasto be 
onsidered. To this e�e
t, Toda and Watanabe [TW92℄ proved the following surprising andquite signi�
ant result: if a 
ounting problem is #P-hard via polynomial-time 1-Turing redu
tions,then it is also #��kP-
omplete via the same redu
tions, for every k � 1. Consequently, #perfe
tmat
hings is #��kP-
omplete via polynomial-time 1-Turing redu
tions. At �rst sight, Toda andWatanabe's theorem [TW92℄ 
an be interpreted as providing an abundan
e of #��kP-
ompleteproblems su
h that their underlying de
ision problem is of low 
omplexity. A moment's re
e
tion,however, reveals that this theorem provides strong eviden
e that #P, #�
oNP, and all other higher
ounting 
omplexity #��kP, k � 2, are not 
losed under polynomial-time 1-Turing redu
tion.Moreover, it implies that polynomial-time 1-Turing redu
tions 
annot help us dis
over 
ompleteproblems that embody the inherent diÆ
ulty of ea
h 
ounting 
omplexity 
lasses #��kP, k � 1,and allow us to draw meaningful distin
tions between these 
lasses. Consequently, the 
hallenge isto dis
over a di�erent 
lass of redu
tions that have the following two 
ru
ial properties: (1) ea
h
lass #��kP, k � 1, is 
losed under these redu
tions; (2) ea
h 
lass #��kP, k � 1, 
ontains naturalproblems that are 
omplete for the 
lass via these redu
tions. In what follows, we take the �rststeps towards 
onfronting this 
hallenge.3 Subtra
tive Redu
tionsResear
hers in stru
tural 
omplexity theory have extensively investigated various 
losure propertiesof #P and of 
ertain other 
ounting 
omplexity 
lasses (see [HO92, OH93℄). For instan
e, it is wellknown and easy to prove that #P is 
losed under both addition and multipli
ation.1 In turn, this hasmotivated resear
hers to introdu
e redu
tions that take advantage of 
losure properties. Indeed,Saluja, Subrahmanyam and Thakur [SST95℄ and Sharell [Sha98℄ used the 
losure of #P underaddition and multipli
ation to introdu
e approximation-preserving redu
tions between 
ountingproblems. In parti
ular, Sharell's [Sha98℄ PL-redu
tions involve positive linear 
ombinations thatapproximate the desired value from below. Unfortunately, these redu
tions do not seem to be suitedfor our purposes. Instead, we adopt a di�erent approa
h and introdu
e the 
lass of subtra
tiveredu
tions that �rst over
ount and then subtra
t any surplus items. It should be emphasized thatde�ning su
h redu
tions is a deli
ate matter, sin
e many 
ounting 
omplexity 
lasses, in
luding#P, do not appear to be 
losed under subtra
tion. Spe
i�
ally, Ogiwara and Hema
handra [OH93℄have shown that #P is 
losed under subtra
tion if and only if the 
lass PP of problems solvable inprobabilisti
 polynomial time 
oin
ides with the 
lass UP of problems solvable by an unambiguousTuring ma
hine in polynomial time, whi
h is 
onsidered an unlikely eventuality.Before de�ning the 
lass of subtra
tive redu
tions, we need to introdu
e 
ertain auxiliary 
on-
epts and establish notation.Let �, � be two alphabets and let R � �� � �� be a binary relation between strings su
hthat, for ea
h x 2 ��, the set R(x) = fy 2 �� j R(x; y)g is �nite. We write #�R to denote thefollowing 
ounting problem: given a string x 2 ��, �nd the 
ardinality jR(x)j of the witness setR(x) asso
iated with x. It is easy to see that every 
ounting problem is of the form #�R for some R.De�nition 3.1 Let �, � be two alphabets and let #�A and #�B be two 
ounting problems deter-mined by the binary relations A and B between strings from � and �.� We say that the 
ounting problem #�A redu
es to the 
ounting problem #�B via a strong1Apparently, K. Regan was the �rst to observe this 
losure property of #P, see [HO92℄.5



subtra
tive redu
tion, and write #�A �ssr #�B, if there exist two polynomial-time 
om-putable fun
tions f and g su
h that for every string x 2 ��:1. B(f(x)) � B(g(x));2. jA(x)j = jB(g(x))j � jB(f(x))j.� We say that the 
ounting problem #�A redu
es to the 
ounting problem #�B via a subtra
-tive redu
tion, and write #�A �sr #�B, if there exists a positive integer n and a sequen
e of
ounting problems #�A1, . . . , #�An su
h that #�A = #�A1, #�B = #�An, and #�Ai redu
esto #�Ai+1 via a strong subtra
tive redu
tion, for ea
h i = 1; : : : ; n� 1.Note that in the above de�nition strong subtra
tive redu
tions and subtra
tive redu
tions arede�ned between 
ounting problems determined by binary relations on strings. If we 
onsider 
ount-ing problems C and D given via 
ounting fun
tions, then we say that C is redu
ible to D via a(strong) subtra
tive redu
tion if there are binary relations A and B on strings su
h that C = #�A,D = #�B, and #�A redu
es to #�B via a (strong) subtra
tive redu
tion.Clearly, parsimonious redu
tions 
onstitute a spe
ial 
ase of subtra
tive redu
tions. In general,the 
omposition of two strong subtra
tive redu
tions need not be a strong subtra
tive redu
tion.In 
ontrast, subtra
tive redu
tions do not su�er from this drawba
k. The following proposition iseasily proved by indu
tion on the length of the sequen
e of strong subtra
tive redu
tions.Proposition 3.2 Redu
ibility via subtra
tive redu
tions is a transitive relation. In other words, if#�A �sr #�B and #�B �sr #�C, then #�A �sr #�C.The reader familiar with the preliminary version of this paper in the Pro
eedings of MFCS 2000will noti
e that the above De�nition 3.1 of subtra
tive redu
tion is di�erent from the de�nition of\subtra
tive redu
tion" presented in the Pro
eedings of MFCS 2000, even though both de�nitions
ontain strong subtra
tive redu
tions as a spe
ial 
ase. Klaus W. Wagner and Heribert Vollmerdis
overed that our earlier de�nition of \subtra
tive redu
tion" was 
awed in the sense that, usingthat earlier de�nition, it was impossible to show that \subtra
tive redu
tions" 
ompose and thusProposition 3.2 
ould not be established.Next we state and prove the main result of this se
tion; it asserts that Valiant's 
ounting
omplexity 
lasses are 
losed under subtra
tive redu
tions.Theorem 3.3 #P and all higher 
ounting 
omplexity 
lass #��kP = #�kP, k � 1, are 
losedunder subtra
tive redu
tions.Proof: Let k be a �xed positive integer. In what follows, we prove that the 
lass #��kP is 
losedunder strong subtra
tive redu
tions. The result will follow by indu
tion. Re
all that Toda [Tod91℄showed that #��kP = #�kP = #�P�kP.Let #�A and #�B be two 
ounting problems su
h that #�B 2 #��kP and #�A redu
es to #�Bvia a strong subtra
tive redu
tion. We will show that #�A belongs to #��kP by 
onstru
ting apredi
ate A0 in P�kP su
h that for ea
h string xjA0(x)j = jB(g(x))j � jB(f(x))j = jA(x)j ;where f and g are the polynomial-time 
omputable fun
tion in the subtra
tive redu
tion of #�A to#�B. Let � be a delimiter symbol not in the alphabets of the 
ounting problems #�A and #�B. Thepredi
ate A0 
onsists of all pairs (x; y0) of strings x and y0 su
h that y0 is of the form f(x) � g(x) � ywith (g(x); y) 2 B and (f(x); y) 62 B. Thus, a pair (x; y0) belongs to A0 if and only if (x; y0) isa

epted by the following algorithm: 6



1. extra
t f(x), g(x), and y from y0;2. 
he
k that (g(x); y) belongs to B;3. 
he
k that (f(x); y) does not belong to B.Step 1 
an be 
arried out in polynomial time. The test in Step 2 is in �kP, therefore also in P�kP.The test in Step 3 is in �kP, hen
e it 
an be done in P�kP. Consequently, the predi
ate A0 is inP�kP. Moreover, it is 
lear that jA(x)j = jA0(x)j, for every string x. It follows that the 
ountingproblem #�A is in #�P�kP = #��kP.The 
losure of #P under subtra
tive redu
tions is established using a similar argument. 2In view of the pre
eding Theorem 3.3, it is natural to ask whether the 
lasses #��kP, k � 1,introdu
ed by Hemaspaandra and Vollmer [HV95℄, are also 
losed under subtra
tive redu
tions.We now provide eviden
e to the e�e
t that no 
lass #��kP is 
losed under subtra
tive redu
tions.For this, we observe that #�ksat, the generi
 
omplete problem for #��kP, 
an easily be redu
edto #�ksat, the generi
 
omplete problem for #��kP, via a strong subtra
tive redu
tion. Conse-quently, if #��kP were 
losed under subtra
tive redu
tions, then #��kP would 
ollapse to #��kP,whi
h is generally 
onsidered as highly unlikely.Let '(y1; : : : ; yn) be any �k-formula 8x19x2 � � �Qkxk �(x1; : : : ; xk; y1; : : : ; yn). Let �'(y1; : : : ; yn)be the �k formula that is equivalent to :' and is obtained from ' by propagating the negationsymbol through the quanti�ers and applying de Morgan laws to the quanti�er-free part of '. Let (y1; : : : ; yn) be the tautology y1_:y1_y2_:y2_� � �_yn_:yn. It is obvious that every satisfyingtruth assignment of �' is a satisfying truth assignment of  and that jsat(')j = jsat( )j � jsat( �')jhold, where sat(') denotes the satisfying truth assignments of ' (and similarly for  and �').Consequently, the polynomial-time 
omputable fun
tions f(') = �' and g(') =  
onstitute astrong subtra
tive redu
tion of #�ksat to #�ksat.Observe that the pre
eding argument 
an also be applied to a Boolean formula ' in 
onjun
tivenormal form (i.e., assume k = 0) to produ
e a subtra
tive redu
tion of #sat to #dnf, where #dnfis the following 
ounting problem.#DNFInput: A Boolean formula � in disjun
tive normal form.Output: Number of truth assignments that satisfy �.Consequently, we obtain the following result 
on
erning #P-
ompleteness via subtra
tive re-du
tions.Proposition 3.4 #dnf is #P-
omplete via subtra
tive redu
tions.Observe that #dnf 
annot be #P-
omplete via parsimonious redu
tions, sin
e its underlying de-
ision problem is easily solvable in polynomial time. As stated earlier, #perfe
t mat
hingsis #P-
omplete via polynomial-time 1-Turing redu
tions. It is an interesting open problem todetermine whether #perfe
t mat
hings is also #P-
omplete via subtra
tive redu
tions.4 Alternative De�nitions of Subtra
tive Redu
tionsSubtra
tive redu
tions, as introdu
ed in the previous se
tion, have the following three desirableproperties: redu
ibility via subtra
tive relations is a transitive relation; ea
h 
lass #��kP is 
losedunder subtra
tive redu
tions; ea
h 
lass #��kP 
ontains natural 
ounting problems that are #��kP-
omplete via subtra
tive redu
tions. As it turns out, the 
on
ept of \redu
tion by subtra
tion"7




an also be introdu
ed in several di�erent ways while preserving the above three properties. Thisse
tion is devoted to the presentation of two su
h alternative de�nitions of the notion of \subtra
-tive redu
tion". These three di�erent de�nitions of subtra
tive redu
tions do not appear to beequivalent; it remains an open problem to delineate the exa
t relationship between these 
on
epts.Note, however, that all 
ompleteness results presented in this paper remain true under any one ofthe three di�erent de�nitions of subtra
tive redu
tions.The �rst alternative is to deal dire
tly with the underlying witness set within the redu
tion.This leads to the following modi�
ation of the de�nition of the strong subtra
tive redu
tion.De�nition 4.1 Let �, � be two alphabets and let A and B be two binary relations between stringsfrom � and �. We say that the 
ounting problem #�A redu
es to the 
ounting problem #�B viaa strong subtra
tive redu
tion, and write #�A �ssr #�B, if there exist two polynomial-time
omputable fun
tions f and g, and a polynomial-time 
omputable inje
tion h:A �! B, su
h thatfor every string x 2 ��:� B(f(x)) � B(g(x));� h(A(x)) = B(g(x)) n B(f(x)).Compared with De�nition 3.1, this new de�nition of a strong subtra
tive redu
tion prefers thewitness set stru
ture to the 
ardinality equation. Of 
ourse, De�nition 4.1 implies the equalityjA(x)j = jB(g(x))j � jB(f(x))j, what makes De�nition 3.1 a spe
ial 
ase of De�nition 4.1.Again, the subtra
tive redu
tion is de�ned, as previously, by a transitive 
losure of strongsubtra
tive redu
tions. The drawba
k of this de�nition is that the notion is given in two stages:�rst a basi
 redu
tion relation is de�ned, upon whi
h we apply the transitive 
losure to get thea
tually desired redu
tion. One 
an get rid of this feature by introdu
ing multisets in the de�nition.We �rst re
all some basi
 notions of multisets. Let D be a non-empty set. Intuitively, amultiset on D is a 
olle
tion of elements of D in whi
h elements may have multiple o

urren
es.More formally, a multiset M on D 
an be viewed as a fun
tion M :D �! N that assigns to ea
helement x 2 D the numberM(x) of the o

urren
es of x inM . The multisets on D 
an be equippedwith the operations of union and di�eren
e as follows.Let A and B be two multisets on D. The union of A and B is the multiset A � B su
h that(A�B)(x) = A(x) +B(x) for every x 2 D. The di�eren
e of A and B is the multiset A	B su
hthat (A 	 B)(x) = max(A(x) � B(x); 0) for every x 2 D. We say that A is 
ontained in B, andwrite A � B, if A(x) � B(x) for every x 2 D. Note that if B � A, then (A	B)(x) = A(x)�B(x)holds for all x 2 D. Hen
e, whenever multiset di�eren
e is taking pla
e between two multisets su
hthat one is 
ontained in the other, then the multiset operations 
an be repla
ed by the ordinaryarithmeti
 operations. Finally, if A1; : : : ; An are multisets, then we write Lni=1Ai to denote theunion A1 � � � � �An.De�nition 4.2 Let �, � be two alphabets and let A and B be two binary relations between stringsfrom � and �. We say that the 
ounting problem #�A redu
es to the 
ounting problem #�B viaa multiset subtra
tive redu
tion, and write #�A �ms #�B, if there exist a positive integer n,polynomial-time 
omputable fun
tions fi and gi, i = 1; : : : ; n, and polynomial time 
omputablebije
tion h, su
h that for every string x 2 ��:� Lni=1 h(B(fi(x))) �Lni=1 h(B(gi(x)));� A(x) =Lni=1 h(B(gi(x))) 	Lni=1 h(B(fi(x))).8



Multiset subtra
tive redu
tions 
ompose well without any additional expli
it transitivity re-quirement. For proving this result, we need the following basi
 properties of multisets whose proofis left to the reader.Lemma 4.3 Let Ai, Bi, for i = 1; : : : ; n, A, B, C, and D be multisets.1. If Bi � Ai for ea
h i, then nMi=1 (Ai 	Bi) = ( nMi=1 Ai)	 ( nMi=1 Bi):2. If B � A, D � C, and C 	D � A	B then(A	B)	 (C 	D) = (A�D)	 (B � C):We are able now to prove that a 
omposition of two multiset subtra
tive redu
tions produ
esanother multiset subtra
tive redu
tion.Theorem 4.4 Redu
ibility via subtra
tive redu
tions is a transitive relation, that is, if #�A �ms#�B and #�B �ms #�C, then #�A �ms #�C.Proof: Suppose that #�A redu
es to #�B via a multiset subtra
tive redu
tion with the fun
-tions f1i , g1i and h1. Suppose also that #�B redu
es to #�C via a multiset subtra
tive redu
tionwith the fun
tions f2j , g2j and h2. We prove that there exists a multiset subtra
tive redu
tion from#�A to #�C with the fun
tions fk, gk and h.Let M = Mi h1(B(g1i (x)))	Mi h1(B(f1i (x)))i.e., jM j = jA(x)j. Sin
e there is a subtra
tive redu
tion from #�B to #�C, the following equationholds for the witness set B(g1i (x)) (similarly for B(f1i (x))):B(g1i (x)) = Mj h2(C(g2j :g1i (x))) 	Mj h2(C(f2j :g1i (x)))Then the multiset M is equal toMi h1(Mj h2(C(g2j :g1i (x)))	Mj h2(C(f2j :g1i (x))))	 Mi h1(Mj h2(C(g2j :f1i (x))) 	Mj h2(C(f2j :f1i (x)))):Fun
tion h2 is a bije
tion andLj h2(C(g2j :g1i (x)))	Lj h2(C(f2j :g1i (x))) is a set. Then the fun
-tion h1 
an be pushed inside the multiset sum, still preserving the in
lusions. Then the multisetMis equal to 9



Mi (Mj h1:h2(C(g2j :g1i (x))) 	Mj h1:h2(C(f2j :g1i (x))))	 Mi (Mj h1:h2(C(g2j :f1i (x)))	Mj h1:h2(C(f2j :f1i (x)))):Sin
e the 
orresponding in
lusions are satis�ed, following property 1 of Lemma 4.3, the previousmultiset is equal toMi Mj h1:h2(C(g2j :g1i (x)))	Mi Mj h1:h2(C(f2j :g1i (x))))	 Mi Mj h1:h2(C(g2j :f1i (x))) 	Mi Mj h1:h2(C(f2j :f1i (x)))):Following property 2 of Lemma 4.3, the latter multiset is equal toMi Mj (h1:h2(C(g2j :g1i (x))) � h1:h2(C(f2j :f1i (x)))	 Mi Mj (h1:h2(C(f2j :g1i (x)))� h1:h2(C(f2j :f1i (x))):Hen
e, we 
hoose the fun
tions g2j (g1i (x)) and f2j (f1i (x)) for gk(x), whereas the fun
tions f2j (g1i (x))and g2j (f1i (x)) be
ome the fun
tions fk(x). Finally, we take h1:h2 for the fun
tion h. 2The 
losure of Valiant's 
ounting 
lasses under multiset subtra
tive redu
tions 
an be obtainedby a straightforward modi�
ation of the proof of Theorem 3.3.5 #�
oNP-
omplete Problems via Subtra
tive Redu
tionsMany important 
ounting problems are known to be #P-
omplete via polynomial-time 1-Turingredu
tions and have the property that their underlying de
ision problem is solvable in polynomialtime [Val79a, Val79b, PB83, Lin86℄. The 
urrent state of knowledge, however, is very di�erent forthe higher 
ounting 
omplexity 
lasses #��kP and #��kP, k � 1. We do know that they possessgeneri
 
omplete problem, su
h as #�ksat and #�ksat, that are 
omplete for these 
lasses viaparsimonious redu
tions, but have inherently high 
omputational 
omplexity (see Proposition 2.1).We also know that every 
ounting problem that is #P-
omplete via polynomial-time 1-Turingredu
tions is also 
omplete for these 
lasses under the same redu
tions [TW92℄. Up to this point,however, it is not known if these higher 
ounting 
omplexity 
lasses 
ontain any problems that havethe following two properties: (1) they are 
omplete for the 
lass via redu
tions under whi
h the
lass is 
losed; (2) their underlying de
ision problems has 
omplexity lower than that of the generi

omplete problem for the 
lass.In this se
tion, we fo
us on the 
lass #�
oNP and establish that it 
ontains 
ertain natural
ounting problems that possess the above two properties. Re
all that #�
oNP is the �rst higher
ounting 
omplexity 
lass that arises in Valiant's framework, sin
e #�
oNP = #NP. Moreover, itis quite robust, sin
e, as shown by Toda [Tod91℄, #�
oNP = #NP = #�PNP.Cir
ums
ription is a well-developed formalism of 
ommon-sense reasoning introdu
ed by M
-Carthy [M
C80℄ and extensively studied by the arti�
ial intelligen
e 
ommunity. The key idea10



behind 
ir
ums
ription is that one is interested in the minimal models of formulas, sin
e they arethe ones that have as few \ex
eptions" as possible and, therefore, embody 
ommon sense. In the
ontext of Boolean logi
, 
ir
ums
ription amounts to the study of satisfying assignments of Booleanformulas that are minimal with respe
t to the pointwise partial order on truth assignments. Morepre
isely, if s = (s1; : : : ; sn) and s0 = (s01; : : : ; s0n) are two elements of f0; 1gn, then we write s < s0 todenote that s 6= s0 and si � s0i holds for every i � n. Let '(x1; : : : ; xn) be a Boolean formula havingx1; : : : ; xn as its variables and let s 2 f0; 1gn be a truth assignment. We say that s is a minimalmodel of ' if s is a satisfying truth assignment of ' and there is no satisfying truth assignment s0of ' su
h that s < s0. This 
on
ept gives rise to the following natural 
ounting problem.#CIRCUMSCRIPTIONInput: A Boolean formula '(x1; : : : ; xn) in 
onjun
tive normal form.Output: Number of minimal models of '(x1; : : : ; xn).The underlying de
ision problem for #
ir
ums
ription is NP-
omplete, sin
e a Boolean for-mula has a minimal model if and only if it is satis�able. Thus, it has lower 
omplexity than�2P-
omplete, whi
h is the 
omplexity of the underlying de
ision problem for #�1sat, the generi
problem for #�
oNP.Theorem 5.1 #
ir
ums
ription is #�
oNP-
omplete via subtra
tive redu
tions.Proof: It is 
lear that the problem belongs to #�
oNP, sin
e testing whether a given truthassignment is a minimal model of a given formula is in 
oNP (a
tually, this de
ision problem is
oNP-
omplete [Cad92℄).For the lower bound, we 
onstru
t a strong subtra
tive redu
tion of #�1sat to #
ir
ums
ription.In what follows, we write A(F ) to denote the set of all satisfying assignments of a �1-formulaF ; we also write B( ) to denote the set of all minimal models of a Boolean formula  . LetF (x) = 8y �(x; y) be a �1-formula, where �(x; y) is a Boolean formula in disjun
tive normal form,and x = (x1; : : : ; xn), y = (y1; : : : ; ym) are tuples of Boolean variables. Let x0 = (x01; : : : ; x0n) be atuple of new Boolean variables, let z be a single new Boolean variable, let P (x; x0) be the formula(x1 � :x01) ^ � � � ^ (xn � :x0n), let Q(y) be the formula y1 ^ � � � ^ ym, and, �nally, let F 0(x; x0; y; z)be the formula P (x; x0) ^ (z ! Q(y)) ^ (�(x; y)! z):There is a polynomial-time 
omputable fun
tion g su
h that, given a �1-formula F as above, itreturns as value a Boolean formula g(F ) in 
onjun
tive normal form that is logi
ally equivalentto the formula F 0(x; x0; y; z) (this is so, be
ause �(x; y) is in disjun
tive normal form). Now letF 00(x; x0; y; z) be the formula F 0(x; x0; y; z)^(z ! :Q(y)) and let f be a polynomial-time 
omputablefun
tion su
h that, given a �1-formula F as above, it returns as value a Boolean formula f(F ) in
onjun
tive normal form that is logi
ally equivalent to the formula F 00(x; x0; y; z).We will show in a sequen
e of four 
laims that every minimal model of F 00 is a minimal modelof F 0 and that there is a bije
tion between the minimal models of F and the set di�eren
e of theminimal models of F 0 and F 00.Claim 1: (x; x0; y; z) is a model of F 0 if and only if either P (x; x0) = 1 and Q(y) = 1 and z = 1, orP (x; x0) = 1 and z = 0 and �(x; y) = 0.This is obvious from the de�nition of F 0, sin
e z = 1 implies Q(y) = 1.Claim 2: (x; x0; y; z) is a minimal model of F 0 if and only if either �(x; y) = 1 for all y andP (x; x0) = 1 and Q(y) = 1 and z = 1, or P (x; x0) = 1 and z = 0 and �(x; y) = 0 and there is no y0su
h that y0 < y and �(x; y0) = 0. 11



Consider the models (x; x0; 1; : : : ; 1; 1). Assume that (x; x0; 1; : : : ; 1; 1) is a minimal model of F 0.Then for every y we must have that �(x; y) = 1, sin
e otherwise (x; x0; y; 0) would be a model of F 0smaller than (x; x0; 1; : : : ; 1; 1). Assume that x is su
h that 8y �(x; y) = 1. Then (x; x0; 1; : : : ; 1; 1)is a minimal model of F 0, sin
e the only way to have a smaller model would be to have one of theform (x; x0; y; 0) with �(x; y) = 0, whi
h 
ontradi
ts the hypothesis on x. Now, 
onsider models ofthe form (x; x0; y; 0). From Claim 1 it follows that su
h a model is minimal if and only if there isno y0 < y su
h that �(x; y0) = 0.Claim 3: (x; x0; y; z) is a model of F 00 if and only if P (x; x0) = 1 and z = 0 and �(x; y) = 0.This follows easily from the de�nition of F 00.Claim 4: (x; x0; y; z) is a minimal model of F 00 if and only if P (x; x0) = 1 and z = 0 and �(x; y) = 0and there is no y0 su
h that y0 < y and �(x; y0) = 0.This follows from the de�nition of F 00 and Claim 3.From Claims 1 to 4, it follows that the set di�eren
e of the minimal models of F 0 and F 00 is equalto the set f(x; x0; 1; : : : ; 1; 1) j 8y �(x; y) ^P (x; x0)g. Note that this set has the same 
ardinality asthe set of satisfying assignments of the formula F , sin
e the variables x0 are fun
tionally dependenton the variables x through the formula P (x; x0). Hen
e, we have that jA(F )j = jB(F 0)j � jB(F 00)j,whi
h establishes that the polynomial-time 
omputable fun
tions f and g 
onstitute a strong sub-tra
tive redu
tion of #�1sat to #
ir
ums
ription. 2The following result is an immediate 
onsequen
e of Theorems 3.3 and 5.1.Corollary 5.2 #�
oNP = #P if and only if #
ir
ums
ription is in #P.We now move from 
ounting problems in Boolean logi
 to 
ounting problems in integer linearprogramming. A system of linear Diophantine inequalities over the non-negative integers is a systemof the form S:Ax � b, where A is an integer matrix, b is an integer ve
tor, and we are interestedin the non-negative integer solutions of this system. If b is the zero-ve
tor (0; : : : ; 0), then we saythat the system is homogeneous. A non-negative integer solution s of S is minimal if there is nonon-negative solution s0 of S su
h that s0 < s in the pointwise partial order on integer ve
tors. Itis well known that the set of all minimal solutions plays an important role in analyzing the spa
eof all non-negative integer solutions of linear Diophantine systems (see S
hrijver [S
h86℄). Clearly,every homogeneous system has (0; : : : ; 0) as a trivial minimal solution. Here, we are interested in
ounting the number of non-trivial minimal solutions of homogeneous systems.#HOMOGENEOUS MINIMAL SOLUTIONInput: A homogeneous system S:Ax � 0 of linear Diophantine inequalities.Output: Number of non-trivial minimal solutions of S.Note that the underlying de
ision problem of #homogeneous minimal solution amounts towhether a given homogeneous system of linear Diophantine inequalities has a non-negative integersolution other than the trivial solution (0; : : : ; 0). It is easy to show that this problem is solvablein polynomial time, sin
e it 
an be redu
ed to linear programming. In 
ontrast, 
ountingthe number of non-trivial minimal solutions turns out to be a hard problem. More pre
isely,#homogeneous minimal solution appears to be #�
oNP-
omplete via subtra
tive redu
tions.As stepping stones towards proving that result, we will introdu
e and use two other te
hni
al
ounting problems.#SATISFIABLE CIRCUMSCRIPTIONInput: A satis�able Boolean formula '(x1; : : : ; xn) in 
onjun
tive normal form.Output: Number of minimal models of '(x1; : : : ; xn).12



Proposition 5.3 The 
ounting problem #satisfiable 
ir
ums
ription is #�
oNP-
omplete viasubtra
tive redu
tions.Proof: De
iding membership in the witness sets for this problem is in PNP, be
ause de
idingsatis�ability of a Boolean formula ' is in NP and de
iding minimality of a model of ' is in 
oNP.Hen
e, #satisfiable 
ir
ums
ription belongs to #�PNP = #�
oNP.For the lower bound, it is not hard to verify that a strong subtra
tive redu
tion of #
ir
ums
riptionto #satisfiable 
ir
 
an be obtained as follows: given a Boolean formula �(x1; : : : ; xn) in 
on-jun
tive normal form the new formula (x0; x00; x1; : : : ; xn) = ((x0 ^ x1 ^ � � � ^ xn) _ (:x0 ^ �(x1; : : : ; xn))) ^ (x0 6� x00):The formula  has at least one model, namely m0 = (x0 = 1; x00 = 0; x1 = � � � = xn = 1).We show that m0 is minimal for  . Suppose that there exists a smaller model m00. Thenm00(x0) = 0 or m00(xi) = 0 for some i. If m00(x0) = 0 then m00(x00) = 1, hen
e the models m0 and m00are in
omparable. Ifm00(xi) = 0 for some i, then x0^x1^� � �^xn = 0. Hen
e, :x0^�(x1; : : : ; xn) = 1From this, it follows that :x0 = 1, i.e., m00(x0) = 0. On
e again, this leads to m00(x00) = 1 and thetwo models are in
omparable. Sin
e we arrive at a 
ontradi
tion in both 
ases, it follows that m0is minimal.Now, we show that (x1; : : : ; xn) is a minimal model of � if and only if m1 = (0; 1; x1; : : : ; xn) isa minimal model of  , i.e., if x0 = 0 and x00 = 1. Constru
t the new formula 0 =  ^ x0 ^ x1 ^ � � � ^ xn ^ (x0 6� x00):The formula  0 has exa
tly one model, namely m0. This model is therefore also minimal for  0.Let A(�) be the set of minimal solutions of � and B(�) be the set of minimal solutions of asatis�able formula �. The in
lusion B( 0) � B( ) holds, sin
e  0 has only one model m0 whi
his also minimal for  . It is 
lear that if (x1; � � � ; xn) is a model of � then, m1 = (0; 1; x1; � � � ; xn)satis�es  . Moreover, the only model of  that does not satisfy � is the unique model of  0,m0 = (x0 = 1; x00 = 0; x1 = � � � = xn = 1). This implies that the equality jA(�)j = jB( )j � jB( 0)jholds. The formulas  and  0 
an be written in 
onjun
tive normal form without exponentialexplosion. Hen
e, we have 
onstru
ted a strong subtra
tive redu
tion. 2#SATISFIABLE MINIMAL SOLUTIONInput: A system S:Ax � b of linear Diophantine inequalities having at least one non-negativeinteger solution.Output: Number of minimal solutions of S.Proposition 5.4 #satisfiable minimal solution is #�
oNP-
omplete via subtra
tive redu
-tions.Proof: De
iding membership in the witness sets for this problem is in PNP and, hen
e, the problemis in #�PNP = #�
oNP. Indeed, testing the system for solvability is in NP, whereas testing a givensolution for minimality is in 
oNP. In both tests, we use the fa
t that the size of minimal solutionsis bounded by a polynomial in the size of the system (see Corollary 17.1b in [S
h86, page 239℄).For the lower bound, observe that the standard redu
tion of Boolean satis�ability to integerlinear programming also 
onstitutes a parsimonious redu
tion of #satisfiable 
ir
ums
riptionto #satisfiable minimal solution. 2We are able now to prove the main result of this se
tion.13



Theorem 5.5 #homogeneous minimal solution is #�
oNP-
omplete via subtra
tive redu
-tions.Proof: The problem is in #�
oNP, be
ause de
iding membership in the witness sets is in 
oNP,using the bounds in the size of minimal solutions (see the proof of Proposition 5.4).For the lower bound, we exhibit a strong subtra
tive redu
tion from #satisfiable minimalsolution. Let S:Ax � b be a system of linear Diophantine inequalities with at least one non-negative integer solution and su
h that A is k � n integer matrix. First 
onstru
t the systemS0: Ax� b�y � 0; 2z � t = y; xi � y; xi � y � t;where �y = (y; : : : ; y) is a ve
tor of length k having the same variable y in ea
h 
oordinate, and zand t are additional new variables.Claim 1: The ve
tor s0 = (x1 = x2 = � � � = xn = y = 0; z = 1; t = 2) is a minimal solution of S0.This is obviously a solution. The only smaller solution is the trivial all-zero solution.Claim 2: All nontrivial minimal solutions of S0, other than s0, are of the form(x1; : : : ; xn; y = 2k; z = k; t = 0) or (x1; : : : ; xn; y = 2k + 1; z = k + 1; t = 1):Suppose that s is a solution of S0 di�erent from s0. There are two sub
ases to analyze, namelywhen y is even or odd.Let y = 2k with k � 1. The parametri
 solutions of the equation 2z � t = y are z = k + i andt = 2i for ea
h i. Whenever the inequality i � 1 holds, the solution s is greater than s0. Thereforeonly the solution with z = k and t = 0 satis�es also the additional 
onstraint that s must bedi�erent from s0.Now, let y = 2k+1 and k � 0. The parametri
 solutions of the equation 2z� t = y are z = k+ iand t = 2i� 1 for ea
h i � 1. On
e i � 2 holds, the solution s be
omes greater than s0. Thereforeonly the solution with z = k + 1 and t = 1 assures that s is di�erent from s0.Claim 3: There exists a minimal solution of S0 with y � 3 and y odd if and only if there are nosolutions for y = 1 and y = 2. If there exists a solution with y = 1 or y = 2, then there exists alsoa minimal solution with the same value of y. Suppose that there exists a minimal solution withy � 3 and y = 2k + 1, then t = 1. From this. it follows that xi � 2k, for ea
h i. We have thatk � 1, sin
e y � 3, therefore xi � 2 holds for ea
h i. From 2z � t = y, t = 1, and y � 3 followsz � 2. Let s3 = (x1 � 2; : : : ; xn � 2; y � 3; z � 2; t = 1) be a minimal solution of S0. If there is aminimal solution with y = 1, it must have the form s1 = (x1 � 1; : : : ; xn � 1; y = 1; z = 1; t = 1)and s1 is smaller than s3, whi
h is a 
ontradi
tion. If there is a minimal solution with y = 2, itmust have the form s2 = (x1 � 2; : : : ; xn � 2; y = 2; z = 1; t = 0) and s2 is smaller than s3, whi
his also a 
ontradi
tion.Claim 4: If there exists a minimal solution with y even, then this solution must be equal to theve
tor (x1 = � � � = xn = 2 = y; z = 1; t = 0). For y = 2k and t = 0, we must have x1 = � � � = y = 2kand z = k for some k � 1. Sin
e S0 is a homogeneous system, we 
an divide this solution by k.We use now the fa
t that the known minimal model in #satisfiable 
ir
ums
ription andalso the known minimal solution of Ax � b for #satisfiable minmal solution both have a valuexi = 0 for some i. Hen
e, this solution falsi�es the system of equations x1 = � � � = xn.14



After this, 
onstru
t the system S00 = S0 [ fx1 = � � � = xn = yg. Clearly, the system S00 has theminimal solution s0 = (x1 = � � � = xn = 0; y = 0; z = 1; t = 2) and also another minimal solutions2 = (x1 = � � � xn = 2; y = 2; z = 1; t = 0) when s2 is a solution of S0. Therefore the minimalsolutions of S00 are in
luded in the minimal solutions of S0.We know that S0 has at least one minimal solution s for y = 1, sin
e S:Ax � b has one solution.Moreover, s is not a minimal solution of S00.Let A(S) be the set of minimal solutions of the system S, and let B(S0) and B(S00) be thesets of nontrivial minimal solutions of S0 and S00, respe
tively. From the previous reasoning followsthat B(S00) � B(S0) and that jA(S)j = jB(S0)j � jB(S00)j. This establishes that the polynomial-time 
omputable fun
tions f(S) = S0 and g(S) = S00 
onstitute a strong subtra
tive redu
tion of#satisfiable minimal solution to #homogeneous minimal solution. 2Corollary 5.6 #�
oNP = #P if and only if #homogeneous minimal solution is in #P.To the best of our knowledge, the above result provides the �rst example of a 
ounting problemwhose underlying de
ision problem is solvable in polynomial time, but the 
ounting problem itselfis not in #P, unless higher 
ounting 
omplexity 
lasses 
ollapse to #P.6 Con
luding RemarksWe 
on
lude by re
alling Valiant's assertion from his in
uential paper [Val79b℄ to the e�e
t that\The 
ompleteness 
lass for #P appears to be rivalled only by that for NP in relevan
e to naturallyo

urring 
omputational problems." The passage of time and the subsequent resear
h in this area
ertainly proved this to be the 
ase. We believe that the results reported here suggest that also#�
oNP 
ontains 
omplete problems of 
omputational signi�
an
e. Furthermore, we believe thatsubtra
tive redu
tions are the right tool for investigating #�
oNP and identifying other naturalproblems that are #�
oNP-
omplete via these redu
tions. The next 
hallenge in this vein is todetermine whether #hilbert is #�
oNP-
omplete via subtra
tive redu
tions. #hilbert is theproblem of 
omputing the 
ardinality of the Hilbert basis of a homogeneous system S:Ax = 0 oflinear Diophantine equations, i.e., 
ounting the number of non-trivial minimal solutions of su
ha system. We note that this 
ounting problem was �rst studied by Hermann, Juban and Ko-laitis [HJK99℄, where it was shown to be a member of #�
oNP and also to be #P-hard underpolynomial-time 1-Turing redu
tions.A
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