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Abstract

We introduce and investigate a new type of reductions between counting problems, which we
call subtractive reductions. We show that the main counting complexity classes #P, #NP, as well
as all higher counting complexity classes #-I1;P, k > 2, are closed under subtractive reductions.
We then pursue problems that are complete for these classes via subtractive reductions. We
focus on the class #NP (which is the same as the class #:coNP) and show that it contains
natural complete problems via subtractive reductions, such as the problem of counting the
minimal models of a Boolean formula in conjunctive normal form and the problem of counting
the cardinality of the set of minimal solutions of a homogeneous system of linear Diophantine
inequalities.

1 Introduction and Summary of Results

Decision problems ask whether a “solution” exists, whereas counting problems ask how many dif-
ferent “solutions” exist. Valiant [Val79a, Val79b] developed a computational complexity theory of
counting problems by introducing the class #P of functions that count the number of accepting
paths of nondeterministic polynomial-time Turing machines; thus, #P captures counting problems
whose underlying decision problem (is there a “solution”?) is in NP. Moreover, Valiant demon-
strated that #P contains a wealth of complete problems, that is, there are problems in #P such
that every problem in #P can be reduced to them via a suitable polynomial-time Turing reduc-
tion. Clearly, a counting problem is at least as hard as its underlying decision problem. Valiant’s
seminal discovery was that there can be a dramatic gap in inherent computational complexity
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between a counting problem and its underlying decision problem. Specifically, Valiant [Val79a]
showed that there are #P-complete problems whose underlying decision problem is solvable in
polynomial time. The first problem to exhibit this “easy-to-decide, but hard-to-count” behavior
was #PERFECT MATCHINGS, which is the problem of counting the number of perfect matchings in a
given bipartite graph. Indeed, Valiant [Val79a] showed that # PERFECT MATCHINGS is #P-complete
via polynomial-time 1-Turing reductions, that is, Turing reductions that only allow a single call to
an oracle. Subsequent research in this area revealed an abundance of other natural #P-complete
problems possessing these properties [Val79b, PB83, Lin86].

In addition to introducing #P, Valiant [Val79a] also developed a machine-based framework
for introducing higher counting complexity classes. In this framework, the first class beyond
#P is the class #NP of functions that count the number of accepting paths of polynomial-time
nondeterministic Turing machines with access to NP oracles. More recently, Hemaspaandra and
Vollmer [HV95] developed a predicate-based framework for introducing higher counting complexity
classes, which subsumes Valiant’s framework and makes it possible to introduce other counting
classes that draw finer distinctions. In particular, Valiant’s class #NP coincides with the class
#-coNP of the Hemaspaandra-Vollmer framework. Wagner [Wag86b, Wag86a] also considered
counting problems.

There is an extensive literature on the structural properties of higher counting complexity
classes. As regards complete problems for these higher counting complexity classes, the state
of affairs is rather complicated. Toda and Watanabe [TW92] showed if a problem is #P-hard
via polynomial-time 1-Turing reductions, then it is also #-coNP-hard and #-II;P-hard, for each
k > 2, where #-I13P is the counting version of the class IIzP at the k-th level of the polynomial
hierarchy PH. This surprising result yields an abundance of problems that are complete for these
higher counting classes; for instance, #PERFECT MATCHINGS is such a problem. At the same
time, it strongly suggests that #P, #:coNP, and all other higher counting classes are not closed
under polynomial-time 1-Turing reductions. In turn, this means that problems like #PERFECT
MATCHINGS do not capture the inherent complexity of the higher counting complexity classes.
Needless to say that these classes are closed under parsimonious reductions, i.e., polynomial-time
reductions that preserve the number of solutions. The parsimonious reductions, however, also
preserve the complexity of the underlying decision problem; thus, they cannot be used to discover
the existence of problems that are complete for the higher counting complexity classes and exhibit
an “easy-to-decide, but hard-to-count” behavior.

In this paper, we introduce a new type of reductions between counting problems, which we
call subtractive reductions, since they make it possible to count the number of solutions by first
overcounting them and then carefully subtracting any surplus. We make a case that the subtractive
reductions are perfectly tailored for the study of #-coNP and of the higher counting complexity
classes #-11;P, k > 2. To this effect, we first show that each of these higher counting complexity
classes is closed under subtractive reductions. We then focus on the class #:-coNP and show
that it contains natural complete problems via subtractive reductions, such as the problem of
counting the minimal models of a Boolean formula in conjunctive normal form and the problem
of counting the cardinality of the set of minimal solutions of a homogeneous system of linear
Diophantine inequalities. These two particular counting problems have the added feature that
the complexity of their underlying decision problems is lower than 3sP-complete, which is the
complexity of the decision problem underlying #11{SAT, the generic #-coNP-complete problem via
parsimonious reductions.



2 Counting Problems and Counting Complexity Classes

A counting problem is typically presented using a suitable witness function which for every input z,
returns a set of witnesses for z. Formally, a witness function is a function w: ¥* — P<¥(T*),
where 3 and T' are two alphabets, and P<¥(T*) is the collections of all finite subsets of T'*. Every
such witness function gives rise to the following counting problem: given a string z € ¥*, find the
cardinality |w(z)| of the witness set w(z). In the sequel, we will refer to the function w — |w(z)|
as the counting function associated with the above counting problem; moreover, we will identify
counting problems with their associated counting functions.

Valiant [Val79a, Val79b] was the first to investigate the computational complexity of counting
problems. To this effect, he introduced the class #P of counting functions that count the number of
accepting paths of nondeterministic polynomial-time Turing machines. The prototypical problem
in #P is #SAT, which is the counting version of Boolean satisfiability.

#SAT
Input: A Boolean formula ¢ in conjunctive normal form.
Output: Number of truth assignments that satisfy ¢.

Valiant [Val79a] showed that #SAT is #P-complete via parsimonious reductions, that is, every
counting problem in #P can be reduced to #SAT via a polynomial-time reduction that preserves
the cardinalities of the witness sets. Moreover, the same holds true for the counting versions of
many other NP-complete problems. Valiant’s seminal discovery, however, was the existence of a
plethora of problems that exhibit an “easy-to-decide, but hard-to-count” behavior. More precisely,
if a counting problem is described via a witness function w, then the underlying decision problem
for w asks: given a string z, is w(z) # (07 Valiant [Val79a, Val79b] showed that there are #P-
complete problems such that their underlying decision problems is solvable in polynomial time. The
first important problem shown to possess these properties was #PERFECT MATCHINGS, which is the
problem of counting the number of perfect matchings in a bipartite graph. Clearly, unless P = NP,
#PERFECT MATCHINGS (and any other problem exhibiting the easy-to-decide, but hard-to-count
behavior) cannot be #P-complete under parsimonious reductions. As it turns out, #PERFECT
MATCHINGS is #P-complete via polynomial-time 1-Turing reductions, which are a restricted form
of Turing reductions allowing a single query to an oracle. More precisely, a counting problem v
is polynomial-time 1-Turing reducible to a counting problem w, if there is a deterministic Turing
machine M that computes |v(z)| in polynomial time by making a single call to an oracle that
computes |w(y)|. Note that parsimonious reductions constitute the special case of polynomial-time
1-Turing reductions in which v = w o g, for some polynomial-time computable total function g.
In other words, the oracle for |w(y)| is queried once and no computation is performed after the
oracle’s answer is received.

In addition to initiating the study of #P, Valiant [Val79a, Val79b] developed a framework for
introducing higher counting complexity classes. Specifically, for every complexity class C of decision
problems, he defined #C to be the union UAec(#P)A, where (#P)* is the collection of all functions
that count the accepting paths of nondeterministic polynomial-time Turing machines having A as
their oracle. Thus, in this framework, #NP is the class of functions that count the number of
accepting paths of NPNY machines, that is, nondeterministic polynomial-time Turing machines
that have access to NP oracles. Note that, since there is no difference between querying the oracle
or its complement, #C = #coC holds for every complexity class C. In particular, we have that
#NP = #coNP; more generally, #3,P = #I1;P, for every k > 1, where 3;P is the k-th level of
the polynomial hierarchy PH and IIzP = coX;P (recall that ¥;P = NP and II; P = coNP).

More recently, researchers have introduced higher complexity counting classes using a predicate-



based framework that focuses on the complexity of membership in the witness sets. Specifically,
if C is a complexity class of decision problems, then Hemaspaandra and Vollmer [HV95] define #-C
to be the class of all counting problems whose witness function w satisfies the following conditions:

1. There is a polynomial p(n) such that for every x and every y € w(z), we have that |y| < p(|z]|),
where |z| is the length of = and |y| is the length of y;

2. The decision problem “given z and y, is y € w(z)?” is in C.

What is the relationship between counting complexity classes in these two different frameworks?
First, it is easy to verify that #P = #-P. As regards higher counting complexity classes, the precise
relationship is provided by Toda’s result [Tod91], which asserts that

# kP C #54P = #-P¥0 = 411, P,

for every k > 1 (see also [HV95]). In particular, #-NP C #NP = #.PNP = #.coNP. This result
shows that the predicate-based framework not only subsumes the machine-based framework, but
also makes it possible to make finer distinctions between counting complexity classes that were
absent in the machine-based framework. Indeed, for each k& > 1, Valiant’s class #3;P (which is
the same as #I1;P) coincides with #-T1;P. Moreover, the class #-II;P appears to be different and,
hence, larger than #-X;P. In particular, results by Kébler, Schoning, and Tordn [KST89] imply
that #-NP = #-.coNP if and only if NP = coNP.

In general, what makes a complexity class interesting is the existence of natural problems that
are complete for the class. As mentioned earlier, #P is a particularly interesting complexity class
because it contains natural complete problems, such as #PERFECT MATCHINGS, whose underlying
decision problem is solvable in polynomial time. Do the higher counting complexity classes #-II;P
(and #-XxP) contain natural complete problems and, if so, do some of these problems have an
easier underlying decision problem than others? We begin exploring these questions by considering
counting problems based on quantified Boolean formulas with a bounded number of quantifier
alternations. In what follows, k is a fixed positive integer.

#II,SAT

Input: A formula ¢(y1,...,yn) = Vo13ze - Qprg Y(T1, ..., Tk Y1y - -, Yn), where 9 is a Boolean
formula, each z; is a tuple of variables, and each y; is a variable.

Output: Number of truth assignment to the variables yy, ..., y, that satisfy ¢.

The counting problem #3;SAT is defined in a similar manner using formulas of the form
Ve Qrxr Y(T1,... Tk, Y1,--.,Yn), where 9 is a Boolean formula, each z; is a tuple of
variables, and each y; is a variable. The next result seems to be part of the folklore, although
we have not been able to locate a specific reference to it. It can also be derived from results of
Wrathall [Wra76].

Theorem 2.1 #II SAT is #-11P-complete via parsimonious reductions. In addition, if k is odd
(even), then the problem remains #-I1;P-complete when restricted to inputs in which the quantifier-
free part is a Boolean formula in disjunctive normal form (respectively, in conjunctive normal form).
Similarly, #3SAT is #- 3 P-complete via parsimonious reductions.

Note that the decision problem underlying #11;SAT is ¥ 1SAT, which is the prototypical ¥ P-
complete problem. Thus, the question becomes: are there any natural #-1I;P-complete problems
such that their underlying decision problem is of lower computational complexity (i.e., lower than
Ytr1P-complete)? Clearly, unless X; 1P collapses to a lower complexity class, no such problem can



be #-11;P-complete via parsimonious reductions, which means that a broader class of reductions has
to be considered. To this effect, Toda and Watanabe [TW92] proved the following surprising and
quite significant result: if a counting problem is #P-hard via polynomial-time 1-Turing reductions,
then it is also #-II;P-complete via the same reductions, for every k£ > 1. Consequently, #PERFECT
MATCHINGS is #-IIzP-complete via polynomial-time 1-Turing reductions. At first sight, Toda and
Watanabe’s theorem [TW92] can be interpreted as providing an abundance of #-II;P-complete
problems such that their underlying decision problem is of low complexity. A moment’s reflection,
however, reveals that this theorem provides strong evidence that #P, #-:coNP, and all other higher
counting complexity #-IIxP, k& > 2, are not closed under polynomial-time 1-Turing reduction.
Moreover, it implies that polynomial-time 1-Turing reductions cannot help us discover complete
problems that embody the inherent difficulty of each counting complexity classes #-I1;P, k > 1,
and allow us to draw meaningful distinctions between these classes. Consequently, the challenge is
to discover a different class of reductions that have the following two crucial properties: (1) each
class #-II;P, k > 1, is closed under these reductions; (2) each class #-IIxP, £ > 1, contains natural
problems that are complete for the class via these reductions. In what follows, we take the first
steps towards confronting this challenge.

3 Subtractive Reductions

Researchers in structural complexity theory have extensively investigated various closure properties
of #P and of certain other counting complexity classes (see [HO92, OH93]). For instance, it is well
known and easy to prove that #P is closed under both addition and multiplication.! In turn, this has
motivated researchers to introduce reductions that take advantage of closure properties. Indeed,
Saluja, Subrahmanyam and Thakur [SST95] and Sharell [Sha98] used the closure of #P under
addition and multiplication to introduce approximation-preserving reductions between counting
problems. In particular, Sharell’s [Sha98] PL-reductions involve positive linear combinations that
approximate the desired value from below. Unfortunately, these reductions do not seem to be suited
for our purposes. Instead, we adopt a different approach and introduce the class of subtractive
reductions that first overcount and then subtract any surplus items. It should be emphasized that
defining such reductions is a delicate matter, since many counting complexity classes, including
#P, do not appear to be closed under subtraction. Specifically, Ogiwara and Hemachandra [OH93|
have shown that #P is closed under subtraction if and only if the class PP of problems solvable in
probabilistic polynomial time coincides with the class UP of problems solvable by an unambiguous
Turing machine in polynomial time, which is considered an unlikely eventuality.

Before defining the class of subtractive reductions, we need to introduce certain auxiliary con-
cepts and establish notation.

Let 3, ' be two alphabets and let R C ¥* x I'* be a binary relation between strings such
that, for each z € ¥*, the set R(z) = {y € I'* | R(z,y)} is finite. We write #-R to denote the
following counting problem: given a string x € ¥*, find the cardinality |R(z)| of the witness set
R(z) associated with z. It is easy to see that every counting problem is of the form #-:R for some R.

Definition 3.1 Let X, " be two alphabets and let #-A and #-B be two counting problems deter-
mined by the binary relations A and B between strings from ¥ and T'.

e We say that the counting problem #-A reduces to the counting problem #-B via a strong

! Apparently, K. Regan was the first to observe this closure property of #P, see [H092].



subtractive reduction, and write #-A <, #-B, if there exist two polynomial-time com-
putable functions f and g such that for every string x € ¥*:

L. B(f(z)) € B(g(x));
2. [A(z)| = [B(g(2))| = [B(f(z))]-

e We say that the counting problem #-A reduces to the counting problem #-B via a subtrac-
tive reduction, and write #-A <, #-B, if there exists a positive integer n and a sequence of
counting problems #-Aq, ..., #-A, such that #- A = #-Ay, # B = #-A,,, and #-A; reduces
to #-A;4+1 via a strong subtractive reduction, for each i =1,...,n — 1.

Note that in the above definition strong subtractive reductions and subtractive reductions are
defined between counting problems determined by binary relations on strings. If we consider count-
ing problems C' and D given via counting functions, then we say that C is reducible to D via a
(strong) subtractive reduction if there are binary relations A and B on strings such that C' = #-A,
D = #-B, and #-A reduces to #-B via a (strong) subtractive reduction.

Clearly, parsimonious reductions constitute a special case of subtractive reductions. In general,
the composition of two strong subtractive reductions need not be a strong subtractive reduction.
In contrast, subtractive reductions do not suffer from this drawback. The following proposition is
easily proved by induction on the length of the sequence of strong subtractive reductions.

Proposition 3.2 Reducibility via subtractive reductions is a transitive relation. In other words, if
#A <sr #B and #B <sr #07 then #A <sr #C

The reader familiar with the preliminary version of this paper in the Proceedings of MFCS 2000
will notice that the above Definition 3.1 of subtractive reduction is different from the definition of
“subtractive reduction” presented in the Proceedings of MFCS 2000, even though both definitions
contain strong subtractive reductions as a special case. Klaus W. Wagner and Heribert Vollmer
discovered that our earlier definition of “subtractive reduction” was flawed in the sense that, using
that earlier definition, it was impossible to show that “subtractive reductions” compose and thus
Proposition 3.2 could not be established.

Next we state and prove the main result of this section; it asserts that Valiant’s counting
complexity classes are closed under subtractive reductions.

Theorem 3.3 #P and all higher counting complexity class #-11;P = #X;P, k > 1, are closed
under subtractive reductions.

Proof: Let k be a fixed positive integer. In what follows, we prove that the class #-11;P is closed
under strong subtractive reductions. The result will follow by induction. Recall that Toda [Tod91]
showed that #-II,P = #%,P = #.P¥+P,

Let #-A and #-B be two counting problems such that #-B € #:I13P and #-A reduces to #-B
via a strong subtractive reduction. We will show that #-A belongs to #-II;P by constructing a
predicate A’ in P¥#P such that for each string z

[A'(z)] = [Blg(z))| = [B(f(=)) = [A(=)],

where f and g are the polynomial-time computable function in the subtractive reduction of #-A to
#-B. Let * be a delimiter symbol not in the alphabets of the counting problems #-A and #-B. The
predicate A’ consists of all pairs (z,y’) of strings z and 3’ such that 3’ is of the form f(z) * g(z) *y
with (g(z),y) € B and (f(z),y) ¢ B. Thus, a pair (z,y’) belongs to A" if and only if (z,y') is
accepted by the following algorithm:



1. extract f(z), g(z), and y from y';

2. check that (g(z),y) belongs to B;
3. check that (f(x),y) does not belong to B.

Step 1 can be carried out in polynomial time. The test in Step 2 is in IT;P, therefore also in P>+,
The test in Step 3 is in X3P, hence it can be done in P*#". Consequently, the predicate A’ is in

P>+P_ Moreover, it is clear that |A(x)| = |A'(z)|, for every string z. It follows that the counting
problem #-A is in #-P¥P = 4.1, P.
The closure of #P under subtractive reductions is established using a similar argument. O

In view of the preceding Theorem 3.3, it is natural to ask whether the classes #->;P, &k > 1,
introduced by Hemaspaandra and Vollmer [HV95], are also closed under subtractive reductions.
We now provide evidence to the effect that no class #-X,P is closed under subtractive reductions.
For this, we observe that #II;SAT, the generic complete problem for #-1I;P, can easily be reduced
to #XSAT, the generic complete problem for #-3;P, via a strong subtractive reduction. Conse-
quently, if #-X;P were closed under subtractive reductions, then #-II;P would collapse to #:-3;P,
which is generally considered as highly unlikely.

Let o(y1,--.,yn) be any Mg-formula Vz13zs - - Qrxg d(z1, ..o Tk, Y1, -5 Yn). Let @(y1,...,yn)
be the ¥ formula that is equivalent to -y and is obtained from ¢ by propagating the negation
symbol through the quantifiers and applying de Morgan laws to the quantifier-free part of ¢. Let
P(y1,...,yn) be the tautology y1 V—-y1 Vya V-ya V- - Vy, V —y,. It is obvious that every satisfying
truth assignment of @ is a satisfying truth assignment of ¢ and that |sat()| = |sat(¢)| — |sat(p)]
hold, where sat(p) denotes the satisfying truth assignments of ¢ (and similarly for ¢ and ¢).
Consequently, the polynomial-time computable functions f(p) = ¢ and g(p) = 1 constitute a
strong subtractive reduction of #I1;SAT to #3;SAT.

Observe that the preceding argument can also be applied to a Boolean formula ¢ in conjunctive
normal form (i.e., assume k£ = 0) to produce a subtractive reduction of #SAT to #DNF, where #DNF
is the following counting problem.

#DNF
Input: A Boolean formula 6 in disjunctive normal form.
Output: Number of truth assignments that satisfy 6.

Consequently, we obtain the following result concerning #P-completeness via subtractive re-
ductions.

Proposition 3.4 #DNF is #P-complete via subtractive reductions.

Observe that #DNF cannot be #P-complete via parsimonious reductions, since its underlying de-
cision problem is easily solvable in polynomial time. As stated earlier, #PERFECT MATCHINGS
is #P-complete via polynomial-time 1-Turing reductions. It is an interesting open problem to
determine whether #PERFECT MATCHINGS is also #P-complete via subtractive reductions.

4 Alternative Definitions of Subtractive Reductions

Subtractive reductions, as introduced in the previous section, have the following three desirable
properties: reducibility via subtractive relations is a transitive relation; each class #-II;P is closed
under subtractive reductions; each class #-11; P contains natural counting problems that are #-11;P-
complete via subtractive reductions. As it turns out, the concept of “reduction by subtraction”



can also be introduced in several different ways while preserving the above three properties. This
section is devoted to the presentation of two such alternative definitions of the notion of “subtrac-
tive reduction”. These three different definitions of subtractive reductions do not appear to be
equivalent; it remains an open problem to delineate the exact relationship between these concepts.
Note, however, that all completeness results presented in this paper remain true under any one of
the three different definitions of subtractive reductions.

The first alternative is to deal directly with the underlying witness set within the reduction.
This leads to the following modification of the definition of the strong subtractive reduction.

Definition 4.1 Let 3, ' be two alphabets and let A and B be two binary relations between strings
from 3 and I'. We say that the counting problem #-A reduces to the counting problem #-:B via
a strong subtractive reduction, and write #-A <, #-B, if there exist two polynomial-time
computable functions f and ¢, and a polynomial-time computable injection h: A — B, such that
for every string x € ¥*:

» B(f(z)) € B(g(z));
o h(A(z)) = Blg(z)) \ B(f(z)).

Compared with Definition 3.1, this new definition of a strong subtractive reduction prefers the
witness set structure to the cardinality equation. Of course, Definition 4.1 implies the equality
|A(z)| = |B(g(z))] — |B(f(x))|, what makes Definition 3.1 a special case of Definition 4.1.

Again, the subtractive reduction is defined, as previously, by a transitive closure of strong
subtractive reductions. The drawback of this definition is that the notion is given in two stages:
first a basic reduction relation is defined, upon which we apply the transitive closure to get the
actually desired reduction. One can get rid of this feature by introducing multisets in the definition.

We first recall some basic notions of multisets. Let D be a non-empty set. Intuitively, a
multiset on D is a collection of elements of D in which elements may have multiple occurrences.
More formally, a multiset M on D can be viewed as a function M: D — N that assigns to each
element 2 € D the number M (z) of the occurrences of z in M. The multisets on D can be equipped
with the operations of union and difference as follows.

Let A and B be two multisets on D. The union of A and B is the multiset A & B such that
(A® B)(z) = A(z) + B(z) for every z € D. The difference of A and B is the multiset A © B such
that (A © B)(z) = max(A(z) — B(z),0) for every z € D. We say that A is contained in B, and
write A C B, if A(z) < B(z) for every z € D. Note that if B C A, then (A6 B)(z) = A(z) — B(z)
holds for all x € D. Hence, whenever multiset difference is taking place between two multisets such
that one is contained in the other, then the multiset operations can be replaced by the ordinary
arithmetic operations. Finally, if Ay,..., A, are multisets, then we write @;_, A; to denote the
union A1 @ --- P A,.

Definition 4.2 Let 3, " be two alphabets and let A and B be two binary relations between strings
from 3 and I'. We say that the counting problem #-A reduces to the counting problem #-:B via
a multiset subtractive reduction, and write #-A <, #-B, if there exist a positive integer n,
polynomial-time computable functions f; and ¢;, ¢ = 1,...,n, and polynomial time computable
bijection h, such that for every string x € ¥*:

o @i_, h(B(fi(z))) € Di=y h(B(gi(2)));
o Alz) = @i h(B(gi(2))) © iy h(B(fi(x))).



Multiset subtractive reductions compose well without any additional explicit transitivity re-
quirement. For proving this result, we need the following basic properties of multisets whose proof
is left to the reader.

Lemma 4.3 Let A;, B;, fori=1,...,n, A, B, C, and D be multisets.

1. If B; C A; for each i, then
n n n
Pien) = @ 4a)e (@B
=1 i=1 =1

2.IfBCA DCC,and CoD C AS B then

(AoB)e(CeD) = (AeD)o (BaC).

We are able now to prove that a composition of two multiset subtractive reductions produces
another multiset subtractive reduction.

Theorem 4.4 Reducibility via subtractive reductions is a transitive relation, that is, if #-A <ps
#-B and #-B <5 #:C, then # A <5 #:-C.

Proof: Suppose that #-A reduces to #-B via a multiset subtractive reduction with the func-
tions fil, gi1 and h'. Suppose also that #-B reduces to #-C via a multiset subtractive reduction
with the functions fj2, gjz and h?. We prove that there exists a multiset subtractive reduction from
#-A to #-C with the functions fr, g and h.

Let

D' (B! ) o Ph'(B

i.e., [M| = |A(z)|. Since there is a subtractive reduction from #-B to #-C, the following equation
holds for the witness set B(g}(z)) (similarly for B(f}(z))):

@hQ( g]gl 6@’12 f] 9i ()))
J

Then the multiset M is equal to

@hl EBh2 (9391 (x e@fﬂ (/79! (#))))
5 @hl D1 e DI e 1)
J
Function A2 is a bijection and D, hQ(C(g]Q-.gi1 ()€, hQ(C(ij.gi1 (x))) is a set. Then the func-

tion A' can be pushed inside the multiset sum, still preserving the inclusions. Then the multiset M
is equal to



@ @hl h2 g] gZ e@hl h2 f] gz( )
o @@hlh? 65:41(2) & @K OUL11 )

Since the corresponding inclusions are satisfied, following property 1 of Lemma 4.3, the previous
multiset is equal to

GBEBhl-h?( (6591 (s e@®h1h2 (/2.9 ()
© EB@WF (95 f eEBEBhth (F7.11(2))):

Following property 2 of Lemma 4.3, the latter multiset is equal to

EB @(hl-h%(g}g} (z))) @ b .12 (C(f7.£}(z)))
S EB@ htB2(C(f7 .91 () & h'.B*(C(fF.f! (z))).

Hence, we choose the functions gf(gll(ac)) and f]?(fi1 (z)) for gi(z), whereas the functions f;(gll(ac))
and gjz(fl-l(ac)) become the functions fi(z). Finally, we take h'.h? for the function h. O

The closure of Valiant’s counting classes under multiset subtractive reductions can be obtained
by a straightforward modification of the proof of Theorem 3.3.

5 #-coNP-complete Problems via Subtractive Reductions

Many important counting problems are known to be #P-complete via polynomial-time 1-Turing
reductions and have the property that their underlying decision problem is solvable in polynomial
time [Val79a, Val79b, PB83, Lin86]. The current state of knowledge, however, is very different for
the higher counting complexity classes #-II3P and #->;P, k£ > 1. We do know that they possess
generic complete problem, such as #X;SAT and #II;SAT, that are complete for these classes via
parsimonious reductions, but have inherently high computational complexity (see Proposition 2.1).
We also know that every counting problem that is #P-complete via polynomial-time 1-Turing
reductions is also complete for these classes under the same reductions [TW92]. Up to this point,
however, it is not known if these higher counting complexity classes contain any problems that have
the following two properties: (1) they are complete for the class via reductions under which the
class is closed; (2) their underlying decision problems has complexity lower than that of the generic
complete problem for the class.

In this section, we focus on the class #-coNP and establish that it contains certain natural
counting problems that possess the above two properties. Recall that #:coNP is the first higher
counting complexity class that arises in Valiant’s framework, since #-coNP = #NP. Moreover, it
is quite robust, since, as shown by Toda [Tod91], #-coNP = #NP = #.PNP,

Circumscription is a well-developed formalism of common-sense reasoning introduced by Mc-
Carthy [McC80] and extensively studied by the artificial intelligence community. The key idea
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behind circumscription is that one is interested in the minimal models of formulas, since they are
the ones that have as few “exceptions” as possible and, therefore, embody common sense. In the
context of Boolean logic, circumscription amounts to the study of satisfying assignments of Boolean
formulas that are minimal with respect to the pointwise partial order on truth assignments. More

precisely, if s = (s1,...,8,) and ' = (s],...,s]) are two elements of {0,1}", then we write s < s’ to

e n
denote that s # s’ and s; < s} holds for every i < n. Let ¢(z1,...,z,) be a Boolean formula having
Z1,...,%, as its variables and let s € {0,1}" be a truth assignment. We say that s is a minimal
model of o if s is a satisfying truth assignment of ¢ and there is no satisfying truth assignment s’

of ¢ such that s < s’. This concept gives rise to the following natural counting problem.

#CIRCUMSCRIPTION
Input: A Boolean formula ¢(z1,...,z,) in conjunctive normal form.
Output: Number of minimal models of ¢(z1,...,z,).

The underlying decision problem for #CIRCUMSCRIPTION is NP-complete, since a Boolean for-
mula has a minimal model if and only if it is satisfiable. Thus, it has lower complexity than
Y9 P-complete, which is the complexity of the underlying decision problem for #II;SAT, the generic
problem for #-coNP.

Theorem 5.1 #CIRCUMSCRIPTION is #-coNP-complete via subtractive reductions.

Proof: It is clear that the problem belongs to #:coNP, since testing whether a given truth
assignment is a minimal model of a given formula is in coNP (actually, this decision problem is
coNP-complete [Cad92]).
For the lower bound, we construct a strong subtractive reduction of #11;SAT to #CIRCUMSCRIPTION.
In what follows, we write A(F') to denote the set of all satisfying assignments of a II;-formula
F; we also write B(%) to denote the set of all minimal models of a Boolean formula . Let
F(z) =Vy ¢(z,y) be a II;-formula, where ¢(z,y) is a Boolean formula in disjunctive normal form,
and z = (z1,...,%n), ¥y = (Y1,...,Yym) are tuples of Boolean variables. Let 2’ = (z},...,z}) be a
tuple of new Boolean variables, let z be a single new Boolean variable, let P(z,z') be the formula
(1= —2)) A A(zn = —2h), let Q(y) be the formula y A -+ A yp,, and, finally, let F'(z,2',y, 2)
be the formula
P(z,2') A (2 = Q(y)) A ($(3) — 2).

There is a polynomial-time computable function g such that, given a IIj-formula F' as above, it
returns as value a Boolean formula g(F') in conjunctive normal form that is logically equivalent
to the formula F'(z,z',y,z) (this is so, because ¢(z,y) is in disjunctive normal form). Now let
F"(z,2',y, z) be the formula F'(z, z', y, 2)A(z — —Q(y)) and let f be a polynomial-time computable
function such that, given a II;-formula F' as above, it returns as value a Boolean formula f(F') in
conjunctive normal form that is logically equivalent to the formula F"(z,z’,y, 2).

We will show in a sequence of four claims that every minimal model of F” is a minimal model
of F' and that there is a bijection between the minimal models of F' and the set difference of the
minimal models of F’' and F".

Claim 1: (z,2',y, z) is a model of F' if and only if either P(z,z') =1 and Q(y) =1 and 2 =1, or
P(z,z') =1 and z = 0 and ¢(z,y) = 0.
This is obvious from the definition of F’, since z = 1 implies Q(y) = 1.

Claim 2: (z,z',y,2) is a minimal model of F' if and only if either ¢(z,y) = 1 for all y and
P(z,z') =1and Q(y) =1 and z =1, or P(z,z') =1 and z = 0 and ¢(z,y) = 0 and there is no y’
such that 3’ < y and ¢(z,y’) = 0.
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Consider the models (z,2',1,...,1,1). Assume that (z,z',1,...,1,1) is a minimal model of F’.
Then for every y we must have that ¢(z,y) = 1, since otherwise (z, z’,y,0) would be a model of F’
smaller than (z,z',1,...,1,1). Assume that z is such that Vy ¢(z,y) = 1. Then (z,2',1,...,1,1)
is a minimal model of F’, since the only way to have a smaller model would be to have one of the
form (z,2',y,0) with ¢(z,y) = 0, which contradicts the hypothesis on z. Now, consider models of
the form (z,z',y,0). From Claim 1 it follows that such a model is minimal if and only if there is
no y' < y such that ¢(z,y') = 0.

Claim 3: (z,2',y,2) is a model of F" if and only if P(z,z') =1 and z = 0 and ¢(z,y) = 0.
This follows easily from the definition of F".

Claim 4: (z,2',y, 2) is a minimal model of F" if and only if P(z,z') = 1 and z = 0 and ¢(z,y) =0
and there is no 3’ such that ' < y and ¢(z,y’) = 0.
This follows from the definition of F” and Claim 3.

From Claims 1 to 4, it follows that the set difference of the minimal models of F’ and F” is equal
to the set {(z,2',1,...,1,1) | Vy ¢(z,y) A P(z,2')}. Note that this set has the same cardinality as
the set of satisfying assignments of the formula F, since the variables z’ are functionally dependent
on the variables z through the formula P(z,z'). Hence, we have that |A(F)| = |B(F")| — |B(F")|,
which establishes that the polynomial-time computable functions f and g constitute a strong sub-
tractive reduction of #II{SAT to #CIRCUMSCRIPTION. O

The following result is an immediate consequence of Theorems 3.3 and 5.1.

Corollary 5.2 #:coNP = #P if and only if #CIRCUMSCRIPTION is in #P.

We now move from counting problems in Boolean logic to counting problems in integer linear
programming. A system of linear Diophantine inequalities over the non-negative integers is a system
of the form S: Az < b, where A is an integer matrix, b is an integer vector, and we are interested
in the non-negative integer solutions of this system. If b is the zero-vector (0,...,0), then we say
that the system is homogeneous. A non-negative integer solution s of S is minimal if there is no
non-negative solution s’ of S such that s’ < s in the pointwise partial order on integer vectors. It
is well known that the set of all minimal solutions plays an important role in analyzing the space
of all non-negative integer solutions of linear Diophantine systems (see Schrijver [Sch86]). Clearly,
every homogeneous system has (0,...,0) as a trivial minimal solution. Here, we are interested in
counting the number of non-trivial minimal solutions of homogeneous systems.

#HOMOGENEOUS MINIMAL SOLUTION
Input: A homogeneous system S: Az < 0 of linear Diophantine inequalities.
Output: Number of non-trivial minimal solutions of S.

Note that the underlying decision problem of #HOMOGENEOUS MINIMAL SOLUTION amounts to
whether a given homogeneous system of linear Diophantine inequalities has a non-negative integer
solution other than the trivial solution (0,...,0). It is easy to show that this problem is solvable
in polynomial time, since it can be reduced to LINEAR PROGRAMMING. In contrast, counting
the number of non-trivial minimal solutions turns out to be a hard problem. More precisely,
#HOMOGENEOUS MINIMAL SOLUTION appears to be #-coNP-complete via subtractive reductions.
As stepping stones towards proving that result, we will introduce and use two other technical
counting problems.

#SATISFIABLE CIRCUMSCRIPTION
Input: A satisfiable Boolean formula ¢(z1,...,z,) in conjunctive normal form.
Output: Number of minimal models of ¢(z1,...,zy).

12



Proposition 5.3 The counting problem #SATISFIABLE CIRCUMSCRIPTION is #-coNP-complete via
subtractive reductions.

Proof: Deciding membership in the witness sets for this problem is in PNP, because deciding
satisfiability of a Boolean formula ¢ is in NP and deciding minimality of a model of ¢ is in coNP.
Hence, #SATISFIABLE CIRCUMSCRIPTION belongs to #-PNP = #.coNP.

For the lower bound, it is not hard to verify that a strong subtractive reduction of #CIRCUMSCRIPTION
to #SATISFIABLE CIRC can be obtained as follows: given a Boolean formula ¢(z1,...,z,) in con-
junctive normal form the new formula

1/)(350,356,351,...,3:“) = ((ac()/\xl/\---/\xn)\/(ﬂaco/\¢(ac1,...,xn)))/\(:1:05_'5:1:6).

The formula 1 has at least one model, namely mo = (g = 1,2, = 0,21 = -+ =z, = 1).

We show that mg is minimal for ). Suppose that there exists a smaller model mj. Then
my(zg) = 0 or m{(x;) = 0 for some i. If my(zo) = 0 then m{(zf) = 1, hence the models mg and mj
are incomparable. If m{(z;) = 0 for some 4, then zgAz1A- - Az, = 0. Hence, ~zoAd(z1,...,2,) =1
From this, it follows that —z¢ = 1, i.e., m{(zg) = 0. Once again, this leads to my(z{) = 1 and the
two models are incomparable. Since we arrive at a contradiction in both cases, it follows that mg
is minimal.

Now, we show that (z1,...,x,) is a minimal model of ¢ if and only if m; = (0,1, z1,...,2,) is
a minimal model of ¢, i.e., if o = 0 and z{, = 1. Construct the new formula

P o= YAz ATI A ATy A (30 Z T()-

The formula 7’ has exactly one model, namely mg. This model is therefore also minimal for 9.
Let A(¢) be the set of minimal solutions of ¢ and B(p) be the set of minimal solutions of a
satisfiable formula p. The inclusion B(1') C B(#) holds, since 7’ has only one model mg which
is also minimal for ¢. It is clear that if (z1,---,z,) is a model of ¢ then, m; = (0,1, 21, -, xy,)
satisfies 9. Moreover, the only model of ¢ that does not satisfy ¢ is the unique model of v/,
mo = (zo =1,2f = 0,21 = --- =z, = 1). This implies that the equality |A(¢)| = |B(¢)| — |B(¢")]
holds. The formulas ¢/ and 1)’ can be written in conjunctive normal form without exponential
explosion. Hence, we have constructed a strong subtractive reduction. O

#SATISFIABLE MINIMAL SOLUTION

Input: A system S: Ax < b of linear Diophantine inequalities having at least one non-negative
integer solution.

Output: Number of minimal solutions of S.

Proposition 5.4 #SATISFIABLE MINIMAL SOLUTION is #-coNP-complete via subtractive reduc-
tions.

Proof: Deciding membership in the witness sets for this problem is in PN* and, hence, the problem
is in #-PNP = 4£.coNP. Indeed, testing the system for solvability is in NP, whereas testing a given
solution for minimality is in coNP. In both tests, we use the fact that the size of minimal solutions
is bounded by a polynomial in the size of the system (see Corollary 17.1b in [Sch86, page 239]).
For the lower bound, observe that the standard reduction of Boolean satisfiability to integer
linear programming also constitutes a parsimonious reduction of #SATISFIABLE CIRCUMSCRIPTION
to #SATISFIABLE MINIMAL SOLUTION. O

We are able now to prove the main result of this section.
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Theorem 5.5 #HOMOGENEOUS MINIMAL SOLUTION is #-coNP-complete via subtractive reduc-
tions.

Proof: The problem is in #:coNP, because deciding membership in the witness sets is in coNP,
using the bounds in the size of minimal solutions (see the proof of Proposition 5.4).

For the lower bound, we exhibit a strong subtractive reduction from #SATISFIABLE MINIMAL
SOLUTION. Let S: Az < b be a system of linear Diophantine inequalities with at least one non-
negative integer solution and such that A is & x n integer matrix. First construct the system

S Arx—-by<0, 2z2—-t=y, x;<vy, x;>Yy-—t,

where § = (y,...,y) is a vector of length k& having the same variable y in each coordinate, and z
and ¢ are additional new variables.

Claim 1: The vector s = (z1 =22 =+ =x, =y = 0,2z = 1,¢ = 2) is a minimal solution of S’.
This is obviously a solution. The only smaller solution is the trivial all-zero solution.

Claim 2: All nontrivial minimal solutions of S’, other than sg, are of the form
(1, s xny=2k,z=kt=0) or (r1,...,zp,y=2k+1,2z=k+1,t=1).

Suppose that s is a solution of S’ different from syg. There are two subcases to analyze, namely
when y is even or odd.

Let y = 2k with £ > 1. The parametric solutions of the equation 2z —t = y are z = k 4+ ¢ and
t = 21 for each i. Whenever the inequality 7 > 1 holds, the solution s is greater than sq. Therefore
only the solution with z = k£ and ¢ = 0 satisfies also the additional constraint that s must be
different from sq.

Now, let y = 2k+1 and k£ > 0. The parametric solutions of the equation 2z —t = y are z = k+1
and ¢t = 2¢ — 1 for each ¢ > 1. Once ¢ > 2 holds, the solution s becomes greater than sy. Therefore
only the solution with z = £+ 1 and ¢ = 1 assures that s is different from sg.

Claim 3: There exists a minimal solution of S’ with y > 3 and y odd if and only if there are no
solutions for y = 1 and y = 2. If there exists a solution with y = 1 or y = 2, then there exists also
a minimal solution with the same value of y. Suppose that there exists a minimal solution with
y > 3 and y = 2k + 1, then t = 1. From this. it follows that x; > 2k, for each 7. We have that
k > 1, since y > 3, therefore x; > 2 holds for each i. From 2z —¢t =y, t = 1, and y > 3 follows
z>2 Let s3=(x1>2,...,2, > 2,y > 3,2 > 2,t = 1) be a minimal solution of S’. If there is a

minimal solution with y = 1, it must have the form s; = (z; < 1,...,2, < 1,y =1,z = 1,t = 1)
and s; is smaller than s3, which is a contradiction. If there is a minimal solution with y = 2, it
must have the form so = (21 < 2,...,2, <2,y =2,2 =1,t = 0) and sy is smaller than s3, which

is also a contradiction.

Claim 4: If there exists a minimal solution with y even, then this solution must be equal to the
vector (r1 ==z, =2=vy,z=1,t =0). For y = 2k and t = 0, we must have z; = --- =y = 2k
and z = k for some k£ > 1. Since S’ is a homogeneous system, we can divide this solution by k.

We use now the fact that the known minimal model in #SATISFIABLE CIRCUMSCRIPTION and
also the known minimal solution of Az < b for #SATISFIABLE MINMAL SOLUTION both have a value
x; = 0 for some 7. Hence, this solution falsifies the system of equations 1 = -+ = x,,.
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After this, construct the system S” = S’ U{z; =--- =z, = y}. Clearly, the system S” has the
minimal solution sg = (1 = -+- = 2, = 0,y = 0,z = 1,¢ = 2) and also another minimal solution
s9 = (x1 =+ xy = 2,y = 2,2 = 1,t = 0) when sy is a solution of S’. Therefore the minimal
solutions of S” are included in the minimal solutions of S’.

We know that S’ has at least one minimal solution s for y = 1, since S: Az < b has one solution.
Moreover, s is not a minimal solution of S”.

Let A(S) be the set of minimal solutions of the system S, and let B(S’) and B(S") be the
sets of nontrivial minimal solutions of S’ and S”, respectively. From the previous reasoning follows
that B(S") C B(S’') and that |A(S)| = |B(S")| — |B(S")|. This establishes that the polynomial-
time computable functions f(S) = S’ and ¢(S) = S” constitute a strong subtractive reduction of
#SATISFIABLE MINIMAL SOLUTION to #HOMOGENEOUS MINIMAL SOLUTION. O

Corollary 5.6 #:coNP = #P if and only if #HOMOGENEOUS MINIMAL SOLUTION is in #P.

To the best of our knowledge, the above result provides the first example of a counting problem
whose underlying decision problem is solvable in polynomial time, but the counting problem itself
is not in #P, unless higher counting complexity classes collapse to #P.

6 Concluding Remarks

We conclude by recalling Valiant’s assertion from his influential paper [Val79b] to the effect that
“The completeness class for #P appears to be rivalled only by that for NP in relevance to naturally
occurring computational problems.” The passage of time and the subsequent research in this area
certainly proved this to be the case. We believe that the results reported here suggest that also
#-coNP contains complete problems of computational significance. Furthermore, we believe that
subtractive reductions are the right tool for investigating #-coNP and identifying other natural
problems that are #-coNP-complete via these reductions. The next challenge in this vein is to
determine whether #HILBERT is #-coNP-complete via subtractive reductions. #HILBERT is the
problem of computing the cardinality of the Hilbert basis of a homogeneous system S: Az = 0 of
linear Diophantine equations, i.e., counting the number of non-trivial minimal solutions of such
a system. We note that this counting problem was first studied by Hermann, Juban and Ko-
laitis [HJK99], where it was shown to be a member of #:coNP and also to be #P-hard under
polynomial-time 1-Turing reductions.

Acknowledgements We are truly grateful to Klaus W. Wagner and to Heribert Vollmer for
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definition of “subtractive reduction”, as explained in the remarks following Proposition 3.2.
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