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ABSTRACT
The classical zero-one law for first-order logic on random
graphs says that for every first-order property ϕ in the the-
ory of graphs and every p ∈ (0, 1), the probability that the
random graph G(n, p) satisfies ϕ approaches either 0 or 1 as
n approaches infinity. It is well known that this law fails to
hold for any formalism that can express the parity quantifier:
for certain properties, the probability that G(n, p) satisfies
the property need not converge, and for others the limit may
be strictly between 0 and 1.

In this work, we capture the limiting behavior of proper-
ties definable in first order logic augmented with the par-
ity quantifier, FO[⊕], over G(n, p), thus eluding the above
hurdles. Specifically, we establish the following “modular
convergence law”:

For every FO[⊕] sentence ϕ, there are two ex-
plicitly computable rational numbers a0, a1, such
that for i ∈ {0, 1}, as n approaches infinity, the
probability that the random graph G(2n + i, p)
satisfies ϕ approaches ai.

Our results also extend appropriately to FO equipped with
Modq quantifiers for prime q.

In the process of deriving the above theorem, we explore
a new question that may be of interest in its own right.
Specifically, we study the joint distribution of the subgraph
statistics modulo 2 of G(n, p): namely, the number of copies,
mod 2, of a fixed number of graphs F1, . . . , F` of bounded
size in G(n, p). We first show that every FO[⊕] property ϕ
is almost surely determined by subgraph statistics modulo 2
of the above type. Next, we show that the limiting joint dis-
tribution of the subgraph statistics modulo 2 depends only
on n mod 2, and we determine this limiting distribution
completely. Interestingly, both these steps are based on a
common technique using multivariate polynomials over fi-
nite fields and, in particular, on a new generalization of the
Gowers norm that we introduce.

The first step above is analogous to the Razborov-Smolensky
method for lower bounds for AC0 with parity gates, yet
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stronger in certain ways. For instance, it allows us to obtain
examples of simple graph properties that are exponentially
uncorrelated with every FO[⊕] sentence, which is something
that is not known for AC0[⊕].

Categories and Subject Descriptors
F.4.1 [Theory of Computation]: Mathematical Logic and
Formal Languages—Mathematical Logic; G.2.2 [Mathematics
of Computing]: Discrete Mathematics—Graph Theory

General Terms
Theory

Keywords
First-order logic, 0-1 Law, Modular convergence, Polynomi-
als, Finite fields, AC0

1. INTRODUCTION
For quite a long time, combinatorialists have studied the

asymptotic probabilities of properties on classes of finite
structures, such as graphs and partial orders. Assume that
C is a class of finite structures and let Prn, n ≥ 1, be a
sequence of probability measures on all structures in C with
n elements in their domain. If Q is a property of some
structures in C (that is, a decision problem on C), then
the asymptotic probability Pr(Q) of Q on C is defined as
Pr(Q) = limn→∞ Prn(Q), provided this limit exists. In
this paper, we will be focusing on the case when C is the
class G of all finite graphs, and Prn = G(n, p) for con-
stant p; this is the probability distribution on n-vertex undi-
rected graphs where between each pair of nodes an edge
appears with probability p, independently of other pairs of
nodes. For example, for this case, the asymptotic probabil-
ities Pr(Connectivity) = 1 and Pr(Hamiltonicity) = 1;
in contrast, if Prn = G(n, p(n)) with p(n) = 1/n, then
Pr(Connectivity) = 0 and Pr(Hamiltonicity) = 0.

Instead of studying separately one property at a time, it
is natural to consider formalisms for specifying properties of
finite structures and to investigate the connection between
the expressibility of a property in a certain formalism and its
asymptotic probability. The first and most celebrated such
connection was established by Glebskii et al. [6] and, inde-
pendently, by Fagin [5], who showed that a 0-1 law holds
for first-order logic1 FO on the random graph G(n, p) with
p a constant in (0, 1); this means that if Q is a property of

1Recall that the formulas of first-order logic on graphs
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graphs expressible in FO and Prn = G(n, p) with p a con-
stant in (0, 1), then Pr(Q) exists and is either 0 or 1. This
result became the catalyst for a series of investigations in
several different directions. Specifically, one line of inves-
tigation [17, 15] investigated the existence of 0-1 laws for
first-order logic FO on the random graph G(n, p(n)) with
p(n) = n−α, 0 < α < 1. Since first-order logic on finite
graphs has limited expressive power (for example, FO can-
not express Connectivity and 2-Colorability), a differ-
ent line of investigation pursued 0-1 laws for extensions of
first-order logic on the random graph G(n, p) with p a con-
stant in (0, 1). In this vein, it was shown in [2, 10] that the
0-1 law holds for extensions of FO with fixed-point opera-
tors, such as least fixed-point logic LFP, which can express
Connectivity and 2-Colorability. As regards to higher-
order logics, it is clear that the 0-1 law fails even for exis-
tential second-order logic ESO, since it is well known that
ESO = NP on finite graphs [4]. In fact, even the convergence
law fails for ESO, that is, there are ESO-expressible proper-
ties Q of finite graphs such that Pr(Q) does not exist. For
this reason, a separate line of investigation pursued 0-1 laws
for syntactically-defined subclasses of NP. Eventually, this
investigation produced a complete classification of the quan-
tifier prefixes of ESO for which the 0-1 law holds [10, 11, 13],
and provided a unifying account for the asymptotic proba-
bilities of such NP-complete problems as k-Colorability,
k ≥ 3, and Satisfiability.

Let L be a logic for which the 0-1 law (or even just the
convergence law) holds on the random graph G(n, p) with
p a constant in (0, 1). An immediate consequence of this is
that L cannot express any counting properties, such as Even
Cardinality (“there is an even number of nodes”), since for
each n, Pr2n(Even Cardinality) = 1 and Pr2n+1(Even
Cardinality) = 0. In this paper, we turn the tables around
and systematically investigate the asymptotic probabilities
of properties expressible in extensions of FO with counting
quantifiers Modiq, where q is a prime number. The most
prominent such extension is FO[⊕], which is the extension
of FO with the parity quantifier Mod1

2. The syntax of FO[⊕]
augments the syntax of FO with the following formation rule:
if ϕ(y) is a FO[⊕]-formula, then ⊕yϕ(y) is also a FO[⊕]-
formula; this formula is true if the number of y’s that satisfy
ϕ(y) is odd (analogously, Modiqyϕ(y) is true if the number
of y’s that satisfy ϕ(y) is congruent to i mod q). A typical
property on graphs expressible in FO[⊕] (but not in FO)
is P := {G : every vertex in G has odd degree.}, since a
graph is in P if and only if it satisfies the FO[⊕]-sentence
∀x⊕ yE(x, y).

Our main result (see Theorem 2.1) is a modular conver-
gence law for FO[⊕] on G(n, p) with p a constant in (0, 1).
This law asserts that if ϕ is a FO[⊕]-sentence, then there
are two explicitly computable rational numbers a0, a1, such
that, as n → ∞, the probability that the random graph
G(2n + i, p) satisfies ϕ approaches ai, for i = 0, 1. More-
over, a0 and a1 are computable and are of the form r/2s,
where r and s are non-negative integers. We also establish
that an analogous modular convergence law holds for ev-

are obtained from atomic formulas E(x, y) (interpreted as
the adjacency relation) and equality formulas x = y using
Boolean combinations, existential quantification, and uni-
versal quantification; the quantifiers are interpreted as rang-
ing over the set of vertices of the graph (and not over sets
of vertices or sets of edges, etc.).

ery extension FO[Modq] of FO with the counting quantifiers
{Modiq : i ∈ [q − 1]}, where q is a prime. It should be noted
that results in [9] imply that the modular convergence law
for FO[⊕] does not generalize to extensions of FO[⊕] with
fixed-point operators. This is in sharp contrast to the afore-
mentioned 0-1 law for FO which carries over to extensions
of FO with fixed-point operators.

1.1 Methods
Earlier 0-1 laws have been established by a combination of

standard methods and techniques from mathematical logic
and random graph theory. In particular, on the side of
mathematical logic, the tools used include the compactness
theorem, Ehrenfeucht-Fräıssé games, and quantifier elimi-
nation. Here, we establish the modular convergence law
by combining quantifier elimination with, interestingly, al-
gebraic methods related to multivariate polynomials over
finite fields. In what follows in this section, we present an
overview of the methods and techniques that we will use.

1.1.1 The distribution of subgraph frequencies mod
q, polynomials and Gowers norms

Let us briefly indicate the relevance of polynomials to the
study of FO[⊕] on random graphs. A natural example of a
statement in FO[⊕] is a formula ϕ such that G satisfies ϕ if
and only if the number of copies of H in G is odd, for some
graph H (where by copy we mean an induced subgraph, for
now). Thus understanding the asymptotic probability of ϕ
on G(n, p) amounts to understanding the distribution of the
number of copies (mod 2) of H in G(n, p).

In this spirit, we ask: what is the probability that in
G(n, 1/2) there is an odd number of triangles (where we
count unordered triplets of vertices {a, b, c} such that a, b, c
are all pairwise adjacent2).

We reformulate this question in terms of the following
“triangle polynomial”, that takes the adjacency matrix of
a graph as input and returns the parity of the number of

triangles in the graph; P4 : {0, 1}(
n
2) → {0, 1}, where

P4((xe)e∈(n2)) =
∑

{e1,e2,e3} forming a 4

xe1xe2xe3 ,

where the arithmetic is mod 2. Note that for the random
graph G(n, 1/2), each entry of the adjacency matrix is cho-
sen independently and uniformly from {0, 1}. Thus the
probability that a random graph G ∈ G(n, 1/2) has an odd
number of triangles is precisely equal to Prx∈Zn2 [P4(x) = 1].
Thus we have reduced our problem to studying the distribu-
tion of the evaluation of a certain polynomial at a random
point, a topic of much study in pseudorandomness and alge-
braic coding theory, and we may now appeal to tools from
these areas.

In Section 3, via the above approach, we show that the
probability that G(n, 1/2) has an odd number of triangles

equals 1/2 ± 2−Ω(n). Similarly, for any connected graph
F 6= K1 (the graph consisting of one vertex), the probability
that G(n, 1/2) has an odd number of copies3 of F is also

1/2± 2−Ω(n) (when F = K1, there is no randomness in the

2Counting the number of unordered triples is not expressible
in FO[⊕], we ask this question only for expository purposes
(nevertheless, we do give an answer to this question in Sec-
tion 3).
3with a certain precise definition of “copy”.
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number of copies of F in G(n, 1/2)!). In fact, we show that
for any collection of distinct connected graphs F1, . . . , F`
(6= K1), the joint distribution of the number of copies mod

2 of F1, . . . , F` in G(n, 1/2) is 2−Ω(n)-close to the uniform
distribution on Z`2, i.e., the events that there are an odd
number of Fi are essentially independent of one another.

Generalizing the above to G(n, p) and counting mod q for
arbitrary p ∈ (0, 1) and arbitrary integers q motivates the
study of new kinds of questions about polynomials, that we
believe are interesting in their own right. For G(n, p) with
arbitrary p, we need to study the distribution of P (x), for
certain polynomials P , when x ∈ Zm2 is distributed accord-
ing to the p-biased measure. Even more interestingly, for
the study of FO[Modq], where we are interested in the dis-
tribution of the number of triangles mod q, one needs to
understand the distribution of P (x) (P is now a polynomial
over Zq) where x is chosen uniformly from {0, 1}m ⊆ Zmq
(as opposed to x being chosen uniformly from all of Zmq ,
which is traditionally studied). In Section 4, we develop all
the relevant polynomial machinery in order to answer these
questions. This involves generalizing some classical results
of Babai, Nisan and Szegedy [1] on correlations of polyno-
mials. The key technical innovation here is our definition
of a µ-Gowers norm (where µ is a measure on Zmq ) that
measures the correlation, under µ, of a given function with
low-degree polynomials (letting µ be the uniform measure,
we recover the standard Gowers norm). After generalizing
several results about the standard Gowers norm to the µ-
Gowers norm case, we can then use a technique of Viola and
Wigderson [19] to establish the generalization of [1] that we
need.

1.1.2 Quantifier Elimination
Although we studied the distribution of subgraph frequen-

cies mod q as an attempt to determine the limiting behavior
of only a special family of FO[Modq] properties, it turns out
that this case, along with the techniques developed to handle
it, play a central role in the proof of the full modular con-
vergence law. In fact, we reduce the modular convergence
law for general FO[Modq] properties to the above case. We
show that for any FO[Modq] sentence ϕ, with high probabil-
ity over G ∈ G(n, p), the truth of ϕ on G is determined by
the number of copies in G, mod q, of each small subgraph.
Then by the results described earlier on the equidistribution
of these numbers (except for the number of K1, which de-
pends only on n mod q), the full modular convergence law
for FO[Modq] follows.

In Section 5, we establish such a reduction using the method
of elimination of quantifiers. To execute this, we need to an-
alyze FO[Modq] formulas which may contain free variables
(i.e., not every variable used is quantified). Specifically, we
show that for every FO[Modq] formula ϕ(α1, . . . , αk), with
high probability over G ∈ G(n, p), it holds that for all ver-
tices w1, . . . , wk of G, the truth of ϕ(w1, . . . , wk) is entirely
determined by the following data: (a) which of the wi, wj
pairs are adjacent, (b) which of the wi, wj pairs are equal
to one another, and (c) the number of copies “rooted” at
w1, . . . , wk, mod q, of each small labelled graph. This state-
ment is a generalization of what we needed to prove, but
lends itself to inductive proof (this is quantifier elimination).
This leads us to studying the distribution (via the polyno-
mial approach described earlier) of the number of copies of
labelled graphs in G; questions of the form, given two spec-

ified vertices v, w (the “roots”), what is the probability that
there are an odd number of paths of length 4 in G ∈ G(n, p)
from v to w? After developing the necessary results on the
distribution of labelled subgraph frequencies, combined with
some elementary combinatorics, we can eliminate quantifiers
and thus complete the proof of the modular convergence law.

1.2 Comparison with AC0[⊕]

Every FO[⊕] property naturally defines a family of boolean

functions fn : {0, 1}(
n
2) → {0, 1}, such that a graph G satis-

fies ϕ if and only if fn(AG) = 1, where AG is the adjacency
matrix of G. This family of functions is easily seen to be
contained in AC0[⊕], which is AC0 with parity gates (each
∀ becomes an AND gate, ∃ becomes a OR gate and ⊕ be-
comes a parity gate). This may be summarized by saying
that FO[⊕] is a highly uniform version of AC0[⊕].

Currently, all our understanding of the power of AC0[⊕]
comes from the Razborov-Smolensky [14, 16] approach to
proving circuit lower bounds on AC0[⊕]. At the heart of
this approach is the result that for every AC0[⊕] function f ,
there is a low-degree polynomial P such that for 1 − ε(n)
fraction of inputs, the evaluations of f and P are equal.
Note that this result automatically holds for FO[⊕] (since
FO[⊕] ⊆ AC0[⊕]).

We show that for the special case when f : {0, 1}(
n
2) →

{0, 1} comes from an FO[⊕] property ϕ, a significantly im-
proved approximation may be obtained: (i) We show that
the degree of P may be chosen to be a constant depend-
ing only on ϕ, whereas the Razborov-Smolensky approxi-
mation required P to be of polylog(n) degree, (ii) The error
parameter ε(n) may be chosen to be exponentially small
in n, whereas the Razborov-Smolensky method only yields

ε(n) = 2− logO(1) n. (iii): Finally, the polynomial P can be
chosen to be symmetric under the action of Sn on the

(
n
2

)
coordinates, while in general, the polynomial produced by
the Razborov-Smolensky approach need not be symmetric
(due to the randomness involved in the choices).

These strengthened approximation results allow us, using
known results about pseudorandomness against low-degree
polynomials, to show that (i) there exist explicit pseudo-
random generators that fool FO[⊕] sentences, and (ii) there
exist explicit functions f such that for any FO[⊕] formula
ϕ, the probability over G ∈ G(n, p) that f(G) = ϕ(G) is

at most 1
2

+ 2−Ω(n). The first result follows from the pseu-
dorandom generators against low-degree polynomials due to
Bogdanov-Viola [3], Lovett [12] and Viola [18]. The second
result follows from the result of Babai, Nisan and Szegedy [1],
and our generalization of it, giving explicit functions that are
uncorrelated with low degree polynomials.

Obtaining similar results for AC0[⊕] is one of the primary
goals of modern day “low-level” complexity theory.

Organization of this paper:.
In the next section, we formally state our main results and

some of its corollaries. In Section 3, we determine the distri-
bution of the number of copies mod q of all small connected
graphs in G(n, p). In Section 4, we introduce the µ-Gowers
Norm and use it to prove a lemma used in Section 3. In
Section 5, we give a sketch of the proof of the full modu-
lar convergence law via quantifier elimination. We conclude
with some open questions.
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2. THE MODULAR CONVERGENCE LAW
We now state our main theorem.

Theorem 2.1. Let q be a prime. Then for every ϕ ∈
FO[Modq], there exist rationals a0, . . . , aq−1 such that for
every p ∈ (0, 1) and every i ∈ {0, 1, . . . , q − 1},

lim
n→∞

n≡i mod q

Pr
G∈G(n,p)

[G satisfies ϕ] = ai.

Remark The proof of Theorem 2.1 also yields:

• Given a formula ϕ, the numbers a0, . . . , aq−1 may be
effectively determined.

• Each ai is of the form r/qs, where r, s are nonnegative
integers.

• For every sequence of numbers b0, . . . , bq−1 ∈ [0, 1],
each of the form r/qs, there is a formula ϕ ∈ FO[Modq]
such that for each i, the number ai given by the theo-
rem equals bi.

Before we describe the main steps in the proof of Theo-
rem 2.1, we make a few definitions.

For graphs F = (VF , EF ) and G = (VG, EG), an (in-
jective) homomorphism from F to G is an (injective) map
χ : VF → VG that maps edges to edges, i.e., for each
(u, v) ∈ EF , we have (χ(u), χ(v)) ∈ EG. Note that we do
not require that χ maps non-edges to non-edges. We denote
by [F ](G) the number of injective homomorphisms from F
to G, and we denote by [F ]q(G) this number mod q. We
let aut(F ) := [F ](F ) be the number of automorphisms of F .

The following lemma (whose proof is omitted in this ver-
sion), shows that for some graphs F , as G varies, the number
[F ](G) cannot be arbitrary.

Lemma 2.2. Let F be a connected graph and G be any
graph. Then aut(F ) | [F ](G).

For the rest of this section, let q be a fixed prime. Let
Conna be the set of connected graphs on at most a ver-
tices. For any graph G, let the subgraph frequency vector
freqaG ∈ ZConna

q be the vector such that its value in coordi-
nate F (F ∈ Conna) equals [F ]q(G), the number of injective
homomorphisms from F to G mod q. Let FFreq(a), the set

of feasible frequency vectors, be the subset of ZConna

q con-
sisting of all f such that fF = 0 whenever q | aut(F ). By
lemma 2.2, for every G and a, freqaG ∈ FFreq(a), i.e., the
subgraph frequency vector is always feasible.

We can now state the two main technical results that un-
derlie Theorem 2.1.

The first states that on almost all graphsG, every FO[Modq]
formula can be expressed in terms of the subgraph frequen-
cies, [F ]q(G), over all small connected graphs F .

Theorem 2.3. (Subgraph frequencies mod q deter-
mine FO[Modq] formulae). For every sentence ϕ ∈ FO[Modq]
of quantifier depth t, there exists an integer c = c(t, q) and

a function ψ : ZConnc

q → {0, 1} such that for all p ∈ (0, 1),

Pr
G∈G(n,p)

[(G satisfies ϕ)⇔ (ψ(freqcG) = 1)] ≥ 1− exp(−n).

This result is complemented by the following result, that
shows the distribution of subgraph frequencies mod q in a
random graph G ∈ G(n, p) is essentially uniform in the space
of all feasible frequency vectors, up to the obvious restriction
that the number of vertices (namely the frequency of K1 in
G) should equal n mod q.

Theorem 2.4. (Distribution of subgraph frequencies
mod q depends only on n mod q). Let p ∈ (0, 1). Let
G ∈ G(n, p). Then for any constant a, the distribution of
freqaG is exp(−n)-close to the uniform distribution over the
set

{f ∈ FFreq(a) : fK1 ≡ n mod q}.

Theorem 2.4 is proved in Section 3 by studying the bias of
multivariate polynomials over finite fields via a generaliza-
tion of the Gowers’ norm. Theorem 2.3 is proved in Section 5
using two main ingredients:

1. A generalization of Theorem 2.4 that determines the
joint distribution of the frequencies of “labelled sub-
graphs” with given roots.

2. A variant of quantifier elimination (that may be called
quantifier conversion) designed to handle Modq quan-
tifiers that crucially uses the probabilistic input from
the previous ingredient.

Proof of Theorem 2.1: Follows by combining Theo-
rem 2.3 and Theorem 2.4.

2.1 Pseudorandomness against FO[⊕]

We now point out three simple corollaries of our study of
FO[⊕] on random graphs. The second and third ones follow
from the first using known results from the literature.

Corollary 2.5. (FO[Modq] is well approximated by
low-degree polynomials) For every ϕ ∈ FO[Modq], there
is a constant d, such that for each n ∈ N, there is a degree d
polynomial P ((Xe)e∈(n2)) ∈ Zq[(Xe)e∈(n2)], such that for all

p ∈ (0, 1),

Pr
G∈G(n,p)

[ϕ(G) is true ⇔ P (AG) = 1] ≥ 1− 2−Ω(n),

where AG ∈ {0, 1}(
n
2) is the adjacency matrix of G.

Proof. Follows from Theorem 2.3 and the observation
that for any graph F of constant size, there is a polyno-
mial Q((Xe)e∈(n2)) of constant degree, such that Q(AG) =

[F ]q(G) for all graphs G.

Corollary 2.6 (PRGs against FO[⊕]). For each s ∈
N and constant ε > 0, there is a constant c ≥ 0 such that for
each n, there is a family F of Θ(nc) graphs on n vertices,
computable in time poly(nc), such that for all ϕ ∈ FO[⊕] of
size at most s, and for all p ∈ (0, 1),

| Pr
G∈F

[G satisfies ϕ]− Pr
G∈G(n,p)

[G satisfies ϕ]| < ε.

Proof. For p = 1/2, this follows from the previous corol-
lary and the result of Viola [18] (building on results of Bogdanov-
Viola [3] and Lovett [12]) constructing a pseudorandom gen-
erator fooling low-degree polynomials under the uniform dis-
tribution. For general p, note that the same family F from
the p = 1/2 case works, since the polynomial in the previous
corollary is independent of p.
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Corollary 2.7. (Explicit functions exponentially

hard for FO[⊕]) There is an explicit function f : {0, 1}(
n
2) →

{0, 1} such that for every FO[⊕] property ϕ,

Pr
G∈G(n,p)

[(G satisfies ϕ)⇔ (f(AG) = 1)] <
1

2
+ 2−Ω(n).

Proof. Follows from Corollary 2.5, and the result of Babai,
Nisan, Szegedy [1] (for p = 1/2) and its generalization,
Lemma 4.1 (for general p), constructing functions exponen-
tially uncorrelated with low degree polynomials under the
p-biased measure. It actually follows from our proofs that,
one may even choose a function f that is a graph property
(namely, invariant under the action of Sn on the coordi-
nates).

3. SUBGRAPH FREQUENCIES
In this section, we prove Theorem 2.4 on the distribution

of subgraph frequencies in G(n, p).
We first make a few definitions. If F is a connected graph

and G is any graph, a copy of F in G is a set E ⊆ EG such
that there exists an injective homomorphism χ from F to
G such that E = χ(EF ) := {(χ(v), χ(w)) | (v, w) ∈ EF }.
We denote the set of copies of F in G by Cop(F,G), the
cardinality of Cop(F,G) by 〈F 〉(G), and this number mod
q by 〈F 〉q(G). We have the following basic relation (whose
proof is omitted).

Lemma 3.1. If F is an connected graph with |EF | ≥ 1,
then

[F ](G) = aut(F ) · 〈F 〉(G).

We can now state the general equidistribution theorem from
which Theorem 2.4 will follow easily (We use the notation
Ωq,p,d(n) to denote the expression Ω(n), where the implied
constant depends only on q, p and d). Note that this theorem
holds for arbitrary integers q, not necessarily prime.

Theorem 3.2 (Equidistribution of graph copies).
Let q > 1 be an integer and let p ∈ (0, 1). Let F1, . . . , F` ∈
Conna be distinct graphs with 1 ≤ |EFi | ≤ d.

Let G be a random graph distributed according to G(n, p).
Then the distribution of (〈F1〉q(G), . . . , 〈F`〉q(G)) on Z`q is

2−Ωq,p,d(n)+`-close to uniform in statistical distance.

Using this theorem, we complete the proof of Theorem 2.4.
Proof of Theorem 2.4: Let F1, . . . , F` be an enumer-
ation of the elements of Conna except for K1. By Theo-
rem 3.2, the distribution of g = (〈Fi〉q(G)`i=1 is 2−Ω(n) close
to uniform over Z`q. Given the vector g, we may compute
the vector freqaG by:

• (freqaG)K1 = n mod q.

• For F ∈ Conna \ {K1}, (freqaG)F = gF · aut(F ) (by
Lemma 3.1).

This implies that the distribution of freqaG is 2−Ω(n)-close
to uniformly distributed over {f ∈ FFreq(a) : fK1 = n
mod q}.

3.1 Preliminary lemmas
As indicated in the introduction, the distribution of sub-

graph frequencies is most naturally studied via the distribu-
tion of values of certain polynomials. The following lemma,
which is used in the proof of Theorem 3.2 (and repeatedly
throughout the proof of the modular convergence law), gives
a simple sufficient criterion for the distribution of values of
a polynomial to be “unbiased”, i.e., for the distribution of its
values to be nearly uniform. The proof appears in Section 4.

Lemma 3.3. Let q > 1 be an integer and let p ∈ (0, 1).

Let F ⊆ 2[m]. Let d > 0 be an integer. Let Q(Z1, . . . , Zm) ∈
Zq[Z1, . . . , Zm] be a polynomial of the form∑

S∈F

aS
∏
i∈S

Zi +Q′(Z),

where deg(Q′) < d. Suppose there exist E = {E1, . . . , Er} ⊆
F such that:

• |Ej | = d for each j,

• aEj 6= 0 for each j.

• Ej ∩ Ej′ = ∅ for each j, j′,

• For each S ∈ F \ E, |S ∩ (∪jEj)| < d.

Let z = (z1, . . . , zm) ∈ Zmq be the random variable where,
independently for each i, we have Pr[zi = 1] = p and Pr[zi =
0] = 1− p. Then,

|E[ωQ(z)]| ≤ 2−Ωq,p,d(r),

where ω ∈ C is a primitive qth-root of unity.

The lemma below is a useful tool for showing that a dis-
tribution on Z`q is close to uniform.

Lemma 3.4 (Vazirani XOR lemma). Let q > 1 be an
integer and let ω ∈ C be a primitive qth-root of unity. Let
X = (X1, . . . , X`) be a random variable over Z`q. Suppose

that for every nonzero c ∈ Z`q,

|E[ω
∑
i∈[`] ciXi ]| ≤ ε.

Then X is q` · ε-close to uniformly distributed over Z`q.

3.2 Proof of the equidistribution theorem
Proof of Theorem 3.2: By the Vazirani XOR Lemma
(Lemma 3.4), it suffices to show that for each nonzero c ∈ Z`q,
we have |E[ωR]| ≤ 2−Ωq,p,d(n), whereR :=

∑
i∈[`] ci〈Fi〉q(G),

and ω ∈ C is a primitive qth-root of unity.
We will show this by appealing to Lemma 3.3. Let m =(
n
2

)
. Let z ∈ {0, 1}(

[n]
2 ), be the random variable where, for

each e ∈
(

[n]
2

)
, ze = 1 if and only if e is present in G. Thus,

independently for each e, Pr[ze = 1] = p.
We may now express R in terms of the ze. Let Kn denote

the complete graph on n vertices, and associate its vertices
with the vertices of G. Thus Cop(Fi,Kn) is the set of E that
could potentially arise as copies of Fi in G. Then we may
write,

R =
∑
i∈[`]

ci〈Fi〉q(G) =
∑
i∈[`]

ci
∑

E∈Cop(Fi,Kn)

∏
e∈E

ze

=
∑
E∈F

cE
∏
e∈E

ze,
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where F ⊆ 2([n]
2 ) is the set

⋃
i:ci 6=0 Cop(Fi,Kn), and for E ∈

F , cE = ci for the unique i satisfying E ∈ Cop(Fi,Kn) (note
that since the Fi are nonisomorphic connected graphs, the
Cop(Fi,Kn) are pairwise disjoint).

Let Q(Z) ∈ Zq[Z], where Z = (Ze)e∈([n]
2 ) be the polyno-

mial
∑
E∈F cE

∏
e∈E Ze. Then R = Q(z). We wish to show

that

|E[ωQ(z)]| ≤ 2−Ωq,p,d(n). (1)

We do this by demonstrating that the polynomial Q(Z)
satisfies the hypotheses of Lemma 3.3.

Let d∗ = maxi:ci 6=0 |EFi |. Let i0 ∈ [`] be such that ci0 6=
0 and |EFi0 | = d∗. Let χ1, χ2, . . . , χr ∈ Inj(Fi0 ,Kn) be
a collection of homomorphisms such that for all distinct
j, j′ ∈ [r], we have χj(VFi0 ) ∩ χj′(VFi0 ) = ∅. Such a col-

lection can be chosen greedily so that r = Ω(n
d

). Let Ej ∈
Cop(Fi0 ,Kn) be given by χj(EFi0 ). Let E be the family of

sets {E1, . . . , Er} ⊆ F . We observe the following properties
of the Ej :

1. For each j ∈ [r], |Ej | = d∗.

2. For each j ∈ [r], cEj = ci0 6= 0.

3. For distinct j, j′ ∈ [r], Ej ∩ Ej′ = ∅.

4. For every S ∈ F \ E , |S ∩ (∪jEj)| < d∗. To see this,
take any S ∈ F \ E and suppose |S ∩ (∪jEj)| ≥ d∗.
Let i′ ∈ [`] be such that ci′ 6= 0 and S ∈ Cop(Fi′ ,Kn).
Let χ ∈ Inj(Fi′ ,Kn) with χ(EFi′ ) = S. By choice of
d∗, we know that |S| ≤ d∗. Therefore, the only way
that |S ∩ (∪jEj)| can be ≥ d∗ is if (1) |S| = d∗, and
(2) S ∩ (∪jEj) = S, or in other words, S ⊆ (∪jEj).
However, since the χj(VFi0 ) are all pairwise disjoint,

this implies that S ⊆ Ej for some j. But since |Ej | =
|S|, we have S = Ej , contradicting our choice of S.
Therefore, |S ∩ (∪jEj)| < d∗ for any S ∈ F \ E .

It now follows that Q(Z), F and E satisfy the hypothesis
of Lemma 3.3. Consequently, (recalling that r = Ω(n/d)
and d∗ ≤ d) Equation (1) follows, completing the proof of
the theorem.

Remark We just determined the joint distribution of the
number of injective homomorphisms, mod q, from all small
connected graphs to G(n, p). This information can be used
in conjunction with Lemma 5.6 to determine the joint dis-
tribution of the number of injective homomorphisms, mod
q, from all small graphs to G(n, p).

4. THE BIAS OF POLYNOMIALS
We now state and prove some useful lemmas about multi-

variate polynomials over finite fields and the distribution of
their values. We will be especially interested in criteria for
polynomials to be “unbiased”, Our main goal in this section
will be to give a full proof of Lemma 3.3.

The following lemma, proved in the next subsection, shows
that “Generalized Inner Product” polynomials are uncorre-
lated with polynomials of lower degree. It generalizes a re-
sult of Babai Nisan and Szegedy [1] (which dealt with the
case q = 2 and p = 1/2). Our generalization is enabled by
the use of the “µ-Gowers norm”.

Lemma 4.1. Let q > 1 be an integer and let p ∈ (0, 1).
Let E1, . . . , Er be pairwise disjoint subsets of [m] each of car-
dinality d. Let Q(Z1, . . . , Zm) ∈ Zq[Z1, . . . , Zm] be a poly-
nomial of the form r∑

j=1

aj
∏
i∈Ej

Zi

+R(Z),

where each aj 6= 0 and deg(R(Z)) < d. Let z = (z1, . . . , zm) ∈
Zmq be the random variable where, independently for each i,
we have Pr[zi = 1] = p and Pr[zi = 0] = 1− p. Then,

|E[ωQ(z)]| ≤ 2−Ωq,p,d(r).

Given Lemma 4.1, we may prove Lemma 3.3 below. Infor-
mally, it says that polynomials that have “Generalized Inner
Product” polynomials embedded in them are unbiased.

Lemma 3.3 (restated) Let q > 1 be an integer and let

p ∈ (0, 1). Let F ⊆ 2[m]. Let d > 0 be an integer. Let
Q(Z1, . . . , Zm) ∈ Zq[Z1, . . . , Zm] be a polynomial of the form∑

S∈F

aS
∏
i∈S

Zi +Q′(Z),

where deg(Q′) < d. Suppose there exist E = {E1, . . . , Er} ⊆
F such that:

• |Ej | = d for each j,

• aEj 6= 0 for each j.

• Ej ∩ Ej′ = ∅ for each j, j′,

• For any S ∈ F \ E, |S ∩ (∪jEj)| < d.

Let z = (z1, . . . , zm) ∈ Zmq be the random variable where,
independently for each i, we have Pr[zi = 1] = p and Pr[zi =
0] = 1− p. Then,

|E[ωQ(z)]| ≤ 2−Ωq,p,d(r).

Proof. Let U = ∪rj=1Ej . Fix any x ∈ {0, 1}[m]\U , and
let Qx(Y) ∈ Zq[(Yi)i∈U ] be the polynomial

∑
S∈F

aS

 ∏
j∈S∩([m]\U)

xj

( ∏
i∈S∩U

Yi

)
+Q′(x,Y)

so that Qx(y) = Q(x, y) for each y ∈ ZUq . Notice that the
degree (in Y) of the term corresponding to S ∈ F is |S∩U |.
By assumption, unless S = Ej for some j, we must have
|S ∩ U | < d.

Therefore the polynomial Qx(Y) is of the form:

r∑
j=1

aEi
∏
i∈Ei

Yi +R(Y),

where deg(R(Y)) < d. By Lemma 4.1,

|E[ωQx(y)]| < 2−Ωq,p,d(r),

where y ∈ {0, 1}U with each yi = 1 independently with
probability p.

As Qx(y) = Q(x, y), we get

|E[ωQ(zx)]| < 2−Ωq,p,d(r),
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where zx ∈ Znq is the random variable z conditioned on the
event zj = xj for every j ∈ [m] \ U . Now, the distribution
of z is a convex combination of the distributions of zx as x
varies over {0, 1}[m]\U . This allows us to deduce that

|E[ωQ(z)]| ≤ 2−Ωq,p,d(r),

as desired.

4.1 µ-Gowers Norms
Before proving Lemma 4.1, we need to introduce a gener-

alization of the Gowers norm and develop some of its basic
properties.

Let H be an abelian group and let µ be a probability
distribution on H. For each d ≥ 0, define a probability
distribution µ(d) on Hd+1 inductively by µ(0) = µ, and, for
d ≥ 1, let µ(d)(x, t1, . . . , td) equal

µ(d−1)(x, t1, . . . , td−1) · µ(d−1)(x+ td, t1, . . . , td−1)∑
z∈H µ

(d−1)(z, t1, . . . , td−1)
.

Equivalently, to sample (x, t1, . . . , td) from µ(d), first take

a sample (x, t1, . . . , td−1) from µ(d−1), then take a sample

(y, t′1, . . . , t
′
d−1) from µ(d−1) conditioned on t′i = ti for each

i ∈ [d − 1], and finally set td = y − x (our sample is then
(x, t1, . . . , td−1, td)).

For a function f : H → C and t ∈ Hd, we define its dth-
derivative in direction t to be the function Dtf : H → C
given by

Dtf(x) =
∏
S⊆[d]

f(x+
∑
i∈S

ti)
◦S ,

where a◦S equals the complex conjugate ā if |S| is odd, and
a◦S equals a otherwise. From the definition it immediately
follows that D(t,u)f(x) = Dtf(x)Dtf(x+ u) (where (t, u)

denotes the vector (t1, . . . , td, u) ∈ Hd+1.
We now define the µ-Gowers norm.

Definition 4.2 (µ-Gowers Norm). If µ is a distri-
bution on H, and f : H → C, we define its (d, µ)-Gowers
norm by

‖f‖Ud,µ =
∣∣∣E(x,t)∼µ(d) [(Dtf)(x)]

∣∣∣ 1
2d .

When H is of the form Zmq , then the (d, µ)-Gowers norm of a
function is supposed to estimate the correlation, under µ, of
that function with polynomials of degree d− 1. Intuitively,
this happens because the Gowers norm of f measures how
often the dth derivative of f vanishes. Notice that the value
of this norm depends on the values of f at a random 2d-
tuple of points arranged in a “cube”, where the marginal
distribution of each vertex of the cube is precisely µ.

The next few lemmas enumerate some of the useful prop-
erties that µ-Gowers norms enjoy.

Lemma 4.3. Let f : H → C. Then,

|Ex∼µ [f(x)]| ≤ ‖f‖Ud,µ.

Proof. We prove that for every d, ‖f‖Ud,µ ≤ ‖f‖Ud+1,µ.
The lemma follows by noting that ‖f‖U0,µ = |Ex∼µ [f(x)]|.

The proof proceeds (following Gowers [7] and Green-Tao [8])

via the Cauchy-Schwarz inequality,

‖f‖2
d+1

Ud,µ =
∣∣∣E(x,t)∼µ(d) [Dtf(x)]

∣∣∣2
≤ Et

[
|Ex [Dtf(x)]|2

]
by Cauchy-Schwarz

= EtEx,y
[
Dtf(x)Dtf(y)

]
where y is an independent sample of x given t

= Ex,t,u
[
Dtf(x)Dtf(x+ u)

]
where u = y − x

= E(x,t,u)∼µ(d+1)

[
Dtf(x)Dtf(x+ u)

]
by definition of µ(d+1)

= E(x,t,u)∼µ(d+1) [Dt,uf(x)]

= ‖f‖2
d+1

Ud+1,µ.

This proves the lemma.

Definition 4.4. For each i ∈ [r], let gi : H → C. We
define (

⊗r
i=1 gi) : Hr → C by(

r⊗
i=1

gi

)
(x1, . . . , xr) =

r∏
i=1

gi(xi).

For each i ∈ [r], let µi a probability measure on H We define
the probability measure

⊗r
i=1 µi on Hr by(

r⊗
i=1

µi

)
(x1, . . . , xr) =

r∏
i=1

µi(xi).

Lemma 4.5. ‖
⊗r

i=1 gi‖Ud,⊗r
i=1 µi

=
∏r
i=1 ‖gi‖Ud,µi .

Proof. Follows by expanding both sides and using the

fact that
(⊗r

i=1 µi
)(d)

=
⊗r

i=1

(
µ

(d)
i

)
.

Lemma 4.6. Let q > 1 be an integer and let ω ∈ C be a
primitive qth-root of unity. For all f : Znq → C, all probabil-
ity measures µ on Znq , and all polynomials h ∈ Zq[Y1, . . . , Yn]
of degree < d,

‖fωh‖Ud,µ = ‖f‖Ud,µ.

The above lemma follows from the fact that (Dtf) = (Dt(f ·
ωh)).

Lemma 4.7. Let a ∈ Zq \ {0} and let g : Zdq → C be given

by g(y) = ωa
∏d
i=1 yi . Let µ be a probability distribution on

Zdq with supp(µ) ⊇ {0, 1}d. Then ‖g‖Ud,µ < 1 − ε, where
ε > 0 depends only on q, d and µ.

We now put together the above ingredients.

Lemma 4.8. Let f : (Zdq)r → C be given by

f(x1, . . . , xr) = ω
∑r
j=1 aj

∏d
i=1 xij ,

where aj ∈ Zq \ {0} for all j ∈ [r]. Let µ be a probability
distribution on Zdq with supp(µ) ⊇ {0, 1}d. Then for all poly-
nomials h ∈ Zq[(Yij)i∈[d],j∈[r]], with deg(h) < d, we have∣∣∣Ex∼µ⊗r [f(x)ωh(x)

]∣∣∣ ≤ cr,
where c < 1 depends only on q, d and µ.
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Proof. Let gj : Zdq → C be given by gj(y) = ωaj
∏d
i=1 yi

(as in in Lemma 4.7), and take c = 1− ε from that Lemma.
Notice that f = ⊗rj=1gj . Therefore by Lemma 4.5, we have

‖f‖Ud,µ⊗r =

r∏
j=1

‖gj‖Ud,µ < cr.

As the degree of h is at most d− 1, Lemma 4.6 implies that

‖fωh‖Ud,µ⊗r = ‖f‖Ud,µ⊗r = cr.

Lemma 4.3 now implies that∣∣∣Ex∼µ⊗r [f(x)ωh(x)
]∣∣∣ ≤ cr,

as desired.

We can now complete the proof of Lemma 4.1.
Proof of Lemma 4.1: By fixing the variables Zi for
i 6∈ ∪jEj , and then averaging over all such fixings, it suf-
fices to consider the case [m] = ∪jEj . Then the polyno-

mial Q(Z1, . . . , Zm) =
(∑r

j=1 aj
∏
i∈Ej Zi

)
+ R(Z) can be

rewritten in the form (after renaming the variables):

r∑
j=1

aj

d∏
i=1

Xij + h(X),

where deg(h) < d. Let µ be the p-biased probability measure
on {0, 1}d ⊆ Zdq . Lemma 4.8 now implies that∣∣∣Ex∼µ⊗r [ωQ(x)

]∣∣∣ ≤ 2−Ωq,p,d(r),

as desired.

5. QUANTIFIER ELIMINATION
In this section, we sketch a proof of Theorem 2.3. The full

proof is deferred to the full version of the paper. We begin
by introducing some notions that will be needed to state our
main technical theorem, Theorem 5.2.

5.1 Labelled graphs, types and frequency vec-
tors

We will need to generalize some concepts related to graphs
and homomorphisms to labelled graphs. In the full version of
the paper, we prove various equidistribution theorems simi-
lar to Theorem 3.2, for the number of copies of small labelled
graphs in G(n, p).

Definition 5.1. An I-labelled graph is a graph F = (VF , EF )
where some vertices are labelled by elements of I, such that
(a) for each i ∈ I, there is exactly one vertex labelled i. We
denote this vertex F (i), and (b) the graph induced on the set
of labelled vertices is an independent set. We denote the set
of labelled vertices of F by L(F ).

A homomorphism from an I-labelled graph F to a pair
(G,w), where G is a graph and w ∈ V IG, is defined to
be a homomorphism χ ∈ Hom(F,G) such that for each
i ∈ I, χ maps F (i) to wi. A homomorphism from F to
(G,w) is called injective if for all distinct v, w ∈ VF , such
that {v, w} 6⊆ L(F ), we have χ(v) 6= χ(w). We define
Hom(F, (G,w)) (respectively Inj(F, (G,w))) to be the set
of homomorphisms (respectively injective homomorphisms)

from F to (G,w). We define [F ](G,w) to be be the cardi-
nality of Inj(F, (G,w)), and define [F ]q(G,w) = [F ](G,w)
mod q.

For F an I-labelled graph, we say F is label-connected if
F \ L(F ) is connected. Define ConntI to be the set of all
I-labelled label-connected graphs with at most t unlabelled
vertices.
Remark We will often deal with [k]-labelled graphs. By
abuse of notation we will refer to them as k-labelled graphs.
If w ∈ V [k] and u ∈ V , when we refer to the tuple (w, v), we
mean the [k + 1]-tuple whose first k coordinates are given
by w and whose k + 1st coordinate is v. Similarly Conntk
denotes Connt[k].

For a graph G and vertices w1, . . . , wk ∈ VG, we define
the type of w = (w1, . . . , wk), denoted typeG(w), to be
the aggregate of the equality and adjacency data, namely:
Πτ = {(i, j) ∈ [k]2 | wi = wj}, and Eτ = {(i, j) ∈ [k]2 |
wi adjacent to wj}. The collection of all possible types of k
vertices is denoted Types(k).

For a graph G, a tuple w ∈ V kG and a positive integer a, we
define the labelled subgraph frequency vector at w freqaG(w) ∈
ZConnak
q to be the vector such that for each F ∈ Connak,

(freqaG(w))F = [F ]q(G,w).

5.2 Sketch of the main quantifier elimination
step

The proof of Theorem 2.3 will be via a more general the-
orem amenable to inductive proof, Theorem 5.2. Just as
Theorem 2.3 states that for almost all G ∈ G(n, p), the
truth of any FO[Modq] sentence on G is determined by sub-
graph frequencies, freqcG, Theorem 5.2 states that for almost
all graphs G ∈ G(n, p), for any w1, . . . , wk ∈ VG the truth
of any FO[Modq] formula ϕ(w1, . . . , wk) on G is determined
by the type of w, typeG(w), and the labelled subgraph fre-
quencies at w, freqcG(w).

Theorem 5.2. For all primes q and integers k, t > 0,
there is a constant c = c(k, t, q) such that for every FO[Modq]
formula ϕ(α1, . . . , αk) with quantifier depth t, there is a

function ψ : Types(k) × ZConnck
q → {0, 1} such that for all

p ∈ (0, 1),

Pr
G∈G(n,p)

[ ∀w1, . . . , wk ∈ VG(
(G satisfies ϕ(w1, . . . , wk))⇔ ψ(typeG(w), freqcG(w)) = 1

)
] ≥ 1− 2−Ω(n).

Putting k = 0, we recover Theorem 2.3.
This theorem is proved by induction on the structure of

the formula ϕ. When the formula ϕ has no quantifiers,
then the truth of ϕ(w) on G is completely determined by
typeG(w). The case where ϕ is of the form ϕ1(α1, . . . , αk)∧
ϕ2(α1, . . . , αk) is easily handled via the induction hypoth-
esis. The case where ϕ(α1, . . . , αk) = ¬ϕ1(α1, . . . , αk) is
similar.

The key cases for us to handle are thus (i) ϕ(α1, . . . , αk) is
of the form Modiqβ, ϕ

′(α1, . . . , αk, β), and (ii) ϕ(α1, . . . , αk)
is of the form ∃β, ϕ′(α1, . . . , αk, β). We now give a sketch of
how these cases may be handled.

For case (i), let ψ′ : Types(k + 1) × Z
Connbk+1
q be the func-

tion given by the induction hypothesis for the formula ϕ′.
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Thus for most graphs G ∈ G(n, p) (namely the ones for
which ψ′ is good for ϕ′), ϕ(w1/α1, . . . , wk/αk) is true if and
only the number of vertices v ∈ VG such that (τ ′v, f

′
v) :=

(typeG(w, v), freqbG(w, v)) such that ψ′(τ ′v, f
′
v) = 1 is con-

gruent to i mod q. Using the following lemma, proved in
the next subsection, we show that the number of such ver-
tices v can be determined solely as a function of typeG(w)
and freqaG(w) for suitable a. This allows us to define ψ, and
the proof of case (i) is complete.

Lemma 5.3. Let q be a prime, let k, b > 0 be integers and
let a ≥ (q − 1) · b · |Connbk+1|. There is a function

λ : Types(k + 1)× Z
Connbk+1
q × Types(k)× ZConnak

q → Zq

such that for all τ ′ ∈ Types(k + 1), f ′ ∈ Z
Connbk+1
q , τ ∈

Types(k), f ∈ ZConnak
q , it holds that for every graph G, and

every w1, . . . , wk ∈ VG with typeG(w) = τ and freqaG(w) =
f , the cardinality of the set

{v ∈ VG : typeG(w, v) = τ ′ ∧ freqbG(w, v) = f ′}

is congurent to λ(τ ′, f ′, τ, f) mod q.

Case (ii) is the most technically involved case. As be-
fore, we get a function ψ′ corresponding to ϕ′ by the in-
duction hypothesis. We show that one can define ψ essen-
tially as follows: define ψ(τ, f) = 1 if there exists some

(τ ′, f ′) ∈ Types(k + 1) × Z
Connbk+1
q that “extends” (τ, f) for

which ψ′(τ ′, f ′) = 1; otherwise ψ(τ, f) = 0. Informally,
we show that if it is conceivable that there is a vertex v
such that ϕ′(w, v) is true, then ϕ(w) is almost surely true.
Proving this statement requires us to develop a number of
probabilistic results on the distribution of labelled subgraph
frequencies (generalizing Theorem 2.4). Thus we handle the
case of the ∃ quantifier. This completes the proof of Theo-
rem 5.2.

5.3 Counting extensions
In this subsection we prove Lemma 5.3.
We begin with a definition. A partial matching between

two I-labelled graphs F1, F2 is a subset η ⊆ (VF1 \ L(F1))×
(VF2 \ L(F2)) that is one-to-one. For two graphs F1, F2, let
PMatch(F1, F2) be the set of all partial matchings between
them.

Definition 5.4. Let F1 and F2 be two I-labelled graphs,
and let η ∈ PMatch(F1, F2). Define F1 ∨η F2 to be the graph
obtained by first taking the disjoint union of F1 and F2, iden-
tifying pairs of vertices with the same label, and then identi-
fying the vertices in each pair of η (and removing duplicate
edges). We omit the subscript when η = ∅.

We have the following simple identity (whose proof is
omitted).

Lemma 5.5. For any I-labelled graphs F1, F2, any graph
G and any w ∈ V IG:

[F1](G,w)·[F2](G,w) =
∑

η∈PMatch(F1,F2)

[F1∨ηF2](G,w). (2)

Lemma 5.6. (Connected subgraph frequencies de-
termine all subgraph frequencies) For every k-labelled

graph F ′ with |VF ′ | = t, there is a polynomial δF ′(X) ∈
Z[(XF )F∈Connt

k
] such that for all graphs G and w ∈ V kG ,

[F ′](G,w) = δF ′(x),

where x ∈ ZConntk is given by xF = [F ](G,w).

Proof. By induction on the number of connected com-
ponents of F ′\L(F ′). If F ′ is label-connected , then we take
δF ′(X) = XF ′ .

Now suppose F ′ is label-disconnected. Write F ′ = F1∨F2

where F1 and F2 are both k-labelled graphs, and F1 \L(F1)
and F2 \ L(F2) have fewer connected components.

By equation (2), for all G and w,

[F1 ∨ F2](G,w) = [F1](G,w) · [F2](G,w)

−
∑

∅6=η∈PMatch(F1,F2)

[F1 ∨η F2](G,w).

Observe that for any η 6= ∅, each graph F1∨η F2 has at least
one fewer label-connected component than F1 ∨ F2 = F ′.
Thus, by induction hypothesis, we may take

δF ′(X) = δF1(X) · δF1(X)−
∑

∅6=η∈PMatch(F1,F2)

δF1∨ηF2(X).

This completes the proof of the lemma.

We can now prove Lemma 5.3.
Proof of Lemma 5.3: We describe the function λ(τ ′, f ′, τ, f)
explicitly. If τ ′ does not“extend”τ , then we set λ(τ ′, f ′, τ, f) =
0 (the notion of extend, which can be defined precisely,
roughly says that the adjacency and equality information
in τ ′ restricted to the first k vertices, is consistent with the
adjacency and equality information in τ).

Now assume τ ′ extends τ . We take cases on whether the
k + 1st vertex in τ ′ equals any of the first k vertices or not.

Case 1: For all j ∈ [k], (j, k + 1) 6∈ Πτ ′ . In this case,
there is an I ⊆ [k] such that typeG(w1, . . . , wk, v) = τ ′ if
and only if v 6∈ {w1, . . . , wk} and (v, wi) ∈ EG ⇔ i ∈ I.

For vertices u, u′ in VG, let xuu′ ∈ {0, 1} equal 1 if and
only if (u, u′) ∈ EG. Then the number (mod q) of v with
typeG(w, v) = τ ′ and freqG(w, v) = f ′ can be compactly
expressed as (and this is where we use the primality of q):

∑
v∈VG\{w1,...,wk}

(∏
i∈I

xvwi

)
·

 ∏
j∈[k]\I

(1− xvwj )

 ·
∏

F∈Connb
k+1

(
1−

(
[F ]q(G,w, v)− f ′F

)q−1
)

Expanding, the expression
∏
i∈I xvwi

∏
j∈[k]\I(1−xvwj ) may

be rewritten in the form
∑
S⊆[k] bS

∏
i∈S xvwi . Lemma 5.5

implies that the expression∏
F∈Connb

k+1

(
1−

(
[F ]q(G,w, v)− f ′F

)q−1
)

may be rewritten in the form
∑
j cj [Fj ]q(G,w, v), where

each Fj is a k+ 1-labelled graph with at most |Connbk+1| · b ·
(q − 1) ≤ a unlabelled vertices.
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Thus we may rewrite the expression for λ(τ ′, f ′, τ, f) as:

∑
v∈[n]\{w1,...,wk}

(∑
S

bS
∏
i∈S

xvwi

)(∑
j

cj [Fj ]q(G,w, v)

)

=
∑
S,j

bScj
∑

v∈[n]\{w1,...,wk}

((∏
i∈S

xvwi

)
[Fj ]q(G,w, v)

)

=
∑
S,j

bScj [F
′
S,j ]q(G,w),

where F ′S,j is the k-labelled graph obtained from Fj by

(a) For each i ∈ S, adding an edge between the vertex
labelled k + 1 and the vertex labelled i, and

(b) Removing the label from the vertex labelled k + 1.

Finally, note that by Lemma 5.6, [F ′S,j ]q(G,w) is determined
by freqaG(w).

Case 2: There is some j ∈ [k] such that (j, k + 1) ∈ Πτ ′ .
This case is much easier to handle. Then there is only one
v ∈ VG such that typeG(w, v) = τ ′ (namely, wj).

Then λ(τ ′, f ′, τ, f) = 1 if and only if for all F ′ ∈ Connbk+1,

f ′F ′ = fF , where F ∈ Connbk is the graph obtained by identi-
fying the vertex labelled k+1 with the vertex labelled j, and
labelling this new vertex j. Otherwise λ(τ ′, f ′, τ, f) = 0.

This completes the definition of our desired function λ.

6. CONCLUDING REMARKS
The results presented here constitute the first system-

atic investigation of the asymptotic probabilities of proper-
ties expressible in first-order logic with counting quantifiers.
Moreover, these results have been established by combining,
for the first time, algebraic methods related to multivariate
polynomials over finite fields with the method of quantifier
elimination from mathematical logic.

We conclude with two open problems:

1. What is the complexity of computing the numbers
a0, . . . , aq−1 in Theorem 2.1? We know that computing
these numbers is PSPACE-hard (it is already PSPACE-
hard to tell if the asymptotic probability of a FO sen-
tence is 0 or 1). Our proof shows that they may be

computed in time 222...

of height proportional to the
quantifier depth of the formula. It is likely that a more
careful analysis of our approximation of FO[Modq] by
polynomials can yield better upper bounds.

2. Is there a modular convergence law for FO[Modm] for
arbitrary m? We encounter the same obstacles that
prevent the Razborov-Smolensky approach from gener-
alizing to AC0[Mod6]. Perhaps an answer to the above
question will give us some hints for AC0[Mod6]?
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Geom. Funct. Anal., 11(3):465–588, 2001.

[8] B. Green and T. Tao. The primes contain arbitrarily
long arithmetic progressions. Ann. of Math. (2),
167(2):481–547, 2008.

[9] L. Hella, P. Kolaitis, and K. Luosto. Almost
everywhere equivalence of logics in finite model theory.
Bulletin of Symbolic Logic, 2(4):422–443, 1996.

[10] P. G. Kolaitis and M. Y. Vardi. The decision problem
for the probabilities of higher-order properties. In
Proc. 19th ACM Symp. on Theory of Computing,
pages 425–435, 1987.

[11] P. G. Kolaitis and M. Y. Vardi. 0-1 laws and decision
problems for fragments of second-order logic.
Information and Computation, 87:302–338, 1990.

[12] S. Lovett. Unconditional pseudorandom generators for
low degree polynomials. In STOC, pages 557–562,
2008.

[13] L. Pacholski and W. Szwast. The 0-1 law fails for the
class of existential second-order Gödel sentences with
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