
Designing and Refining Schema Mappings
via Data Examples∗

Bogdan Alexe
UCSC

abogdan@cs.ucsc.edu

Balder ten Cate
UCSC

balder.tencate@gmail.com

Phokion G. Kolaitis
UCSC & IBM Research - Almaden

kolaitis@cs.ucsc.edu

Wang-Chiew Tan
IBM Research - Almaden & UCSC

wangchiew@us.ibm.com

ABSTRACT
A schema mapping is a specification of the relationship between a
source schema and a target schema. Schema mappings are fun-
damental building blocks in data integration and data exchange
and, as such, obtaining the right schema mapping constitutes a
major step towards the integration or exchange of data. Up to
now, schema mappings have typically been specified manually or
have been derived using mapping-design systems that automati-
cally generate a schema mapping from a visual specification of the
relationship between two schemas.

We present a novel paradigm and develop a system for the in-
teractive design of schema mappings via data examples. Each data
example represents a partial specification of the semantics of the
desired schema mapping. At the core of our system lies a sound and
complete algorithm that, given a finite set of data examples, decides
whether or not there exists a GLAV schema mapping (i.e., a schema
mapping specified by Global-and-Local-As-View constraints) that
“fits” these data examples. If such a fitting GLAV schema mapping
exists, then our system constructs the “most general” one.

We give a rigorous computational complexity analysis of the
underlying decision problem concerning the existence of a fitting
GLAV schema mapping, given a set of data examples. Specifi-
cally, we prove that this problem is complete for the second level
of the polynomial hierarchy, hence, in a precise sense, harder than
NP-complete. This worst-case complexity analysis notwithstand-
ing, we conduct an experimental evaluation of our prototype im-
plementation that demonstrates the feasibility of interactively de-
signing schema mappings using data examples. In particular, our
experiments show that our system achieves very good performance
in real-life scenarios.
Categories and Subject Descriptors: H.2.5 [Database Manage-
ment]: Heterogeneous Databases; H.2.4 [Database Management]:
Systems - relational databases
General Terms: Algorithms, Design, Languages
Keywords: schema mappings, data examples, data exchange, data
integration
∗Research on this paper was supported by NSF grant IIS-0905276
and NSF Career Award IIS-0347065.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’11, June 12–16, 2011, Athens, Greece.
Copyright 2011 ACM 978-1-4503-0661-4/11/06 ...$10.00.

1. INTRODUCTION
A schema mapping is a high-level, declarative specification of

the relationship between two database schemas, usually called the
source schema and the target schema. By now, schema mappings
are regarded as the fundamental building blocks in data exchange
and data integration (see the surveys [5, 16, 17]). A crucial first step
in these and other major data inter-operability tasks is the design
and derivation of schema mappings between two database schemas.

Due to the complexity and scale of many real-world schemas,
designing the “right” schema mapping can be a daunting task. This
is further exacerbated by the fact that the formal specification of
a schema mapping between such real-world schemas is typically
long and difficult to grasp. For this reason, several different mapping-
design systems have been developed to facilitate the process of de-
signing schema mappings. These systems include Clio [15], HeP-
ToX [7], Microsoft’s mapping composer [6], Altova Mapforce1,
and Stylus Studio2. The latter two systems directly produce trans-
formations in the form of executable code, but can be viewed as
implicitly constructing a schema mapping. Declarative specifica-
tions of schema mappings, as opposed to executable code, are more
amenable to reasoning and analysis of data inter-operability tasks;
furthermore, such specifications can be compiled into executable
code for data exchange.

All mapping-design systems mentioned above adhere to the same
general methodology for facilitating the process of designing schema
mappings. Specifically, first a visual specification of the relation-
ship between elements of the source and target schemas is solicited
from the user (perhaps with the help of a schema matching module)
and then a schema mapping is derived from the visual specification.
However, several pairwise logically inequivalent schema mappings
may be consistent with a visual specification, and, as noted in [4],
differing schema mappings may be produced from the same visual
specification, depending on which system is used. Thus, the user
is still required to understand the formal specification in order to
understand the semantics of the derived schema mapping.

In this paper, we present an alternative paradigm and develop a
novel system for designing and refining schema mappings interac-
tively via data examples. The intended users of our system are map-
ping designers who wish to design a schema mapping over a pair
of source and target relational schemas. Furthermore, our system
is tailored for schema mappings specified by GLAV (Global-and-
Local-As-View) constraints (also known as source-to-target tuple
generating dependencies, or s-t tgds). We call such schema map-
pings GLAV schema mappings. GLAV constraints have been exten-
sively studied in the context of data exchange and data integration
[16, 17]. The GLAV schema mappings contain, as important spe-

1http://www.altova.com/mapforce.html
2http://www.stylusstudio.com/xml_mapper.html

133

I1 J1
!" Data Examples

Fitting GLAV schema mapping or report “none exists”

Ik Jk

User insert/delete/modify fitting

Figure 1: Workflow for interactive design and refinement of
schema mappings via data examples.

cial cases, Local-As-View (LAV) schema mappings and Global-As-
View (GAV) schema mappings. They are also used in such systems
as Clio [15] and HePToX [7].

An important property of every GLAV schema mappingM, first
identified in [9], is that for every source instance I , there is a target
instance J that is a universal solution for I w.r.t.M. Intuitively, a
universal solution of I w.r.t.M is a “most general” target instance
of I that, together with I , satisfies the specifications of M. Fur-
thermore, a universal solution for I represents, in a precise techni-
cal sense, the entire space of solutions for I . As a result, universal
solutions have become the preferred solutions and the standard se-
mantics of data exchange. Our system makes systematic use of
universal solutions, as we explain next.

The interaction between the user and our system begins with the
user providing an initial finite set E of data examples, where a data
example is a pair (I, J) consisting of a source instance and a tar-
get instance that conform to a source and target relational schema.
Intuitively, each data example in E provides a partial specification
of the semantics of the desired schema mapping. Furthermore, the
user stipulates that, for each data example (I, J), the target instance
J is a universal solution for I w.r.t. the desired schema mapping.
The system responds by generating a GLAV schema mapping that
fits the data examples in E or by reporting that no such GLAV
schema mapping exists. Here, we say that a schema mappingM
fits a set E of data examples if for every data example (I, J) ∈ E ,
the target instance J is a universal solution of the source instance
I w.r.t. M. The user is then allowed to modify the data examples
in E and provide the system with another finite set E ′ of data ex-
amples. After this, the system tests whether or not there is a GLAV
schema mapping that fits E ′ and, as before, returns such a GLAV
schema mapping, if one exists, or reports that none exists, other-
wise. The cycle of generating schema mappings and modifying
data examples can be repeated until the user is satisfied with the
schema mapping obtained in this way. We call this process the in-
teractive refinement of a schema mapping via data examples. The
workflow of our system is depicted in Figure 1.
The GLAV Fitting Algorithm At the core of our system lies a
sound and complete algorithm for determining the existence of a
fitting GLAV schema mapping, given a finite set of data examples.
This GLAV fitting algorithm has several desirable properties. To
begin with, if a fitting GLAV schema mapping exists, then the al-
gorithm returns the most general fitting GLAV schema mapping.
In other words, it returns a fitting GLAV schema mappingM such
that for every alternative (non-equivalent) fitting GLAV schema
mappingM′, we have thatM′ logically impliesM. This is clearly
the most natural choice among all the fitting GLAV schema map-
pings. The correctness of our algorithm is based on the following
key technical result: the existence of a GLAV schema mapping that
fits a given set E of data examples can be determined using a ho-
momorphism extension test, which is an effective procedure that
checks whether every homomorphism from the source instance of
a data exampleE1 ∈ E to that of another data exampleE2 ∈ E can
be extended to a homomorphism from the target instance of E1 to
the target instance of E2. Actually, this homomorphism extension

condition not only is a necessary and sufficient condition for the
existence of a fitting GLAV schema mapping, but also implies the
existence of a most general fitting GLAV schema mapping; further-
more, once the homomorphism extension test has been completed,
the most general fitting GLAV schema mapping can be computed
from the data examples E in linear time. The second and perhaps
even more important feature of our algorithm is that our paradigm
of designing schema mappings via data examples is complete, in
the sense that every GLAV schema mapping can be produced by
our algorithm. More precisely, for every GLAV schema mapping
M, there is a finite set of data examples E such that, when E is
given as input, our GLAV fitting algorithm will produce a GLAV
schema mapping that is logically equivalent to the desired one.
Complexity analysis The GLAV fitting algorithm that we de-
scribed above runs in exponential time in the worst case. This is
so because the homomorphism extension test entails examining,
in the worst case, exponentially many homomorphisms. We show
that, unless P = NP, this worst-case behavior is unavoidable. In-
deed, we show that the underlying GLAV fitting decision problem
(i.e., the problem of deciding whether, given a finite set of data ex-
amples, there is a fitting GLAV schema mapping) is Πp

2-complete,
where Πp

2 is the second level of the polynomial hierarchy. In par-
ticular, this means that, in all likelihood, the GLAV fitting decision
problem is harder than NP-complete. Furthermore, we show that
the GLAV fitting verification problem (i.e., the problem of decid-
ing whether a given GLAV schema mapping fits a given set of data
examples) is Πp

2-complete as well.
Experimental Evaluation We built a prototype system and con-
ducted an extensive experimental evaluation. In this evaluation, our
system achieved very good performance on sets of data examples
based on real-life scenarios, and thus confirmed the feasibility of
interactively designing and refining schema mappings via data ex-
amples. The experimental results supporting this finding, as well
as other observations regarding the behavior of our system on a va-
riety of real-life and synthetic scenarios are discussed in Section 5.

1.1 An Illustration of Our System
Next, we will describe our system with a hypothetical execution

of the workflow for Figure 1.
Suppose a user wishes to design a schema mapping between the

source schema and target schema shown in the top-left corner of
Figure 2. The source schema has two relations: Patient and Doctor,
and the target schema has two relations: History and Physician.
As a first step, the user specifies a single data example, shown in
the first box, which essentially states that Anna is the doctor of
patient Joe, whose health plan is Plus, and date-of-visit is Jan.
In the target relation, there is a single fact that consolidates this
information, omitting the name of the patient.

Based on this single data example, our system will infer that the
desired schema mapping is the one shown on the right of the box.
This schema mapping states that whenever a Patient tuple and Doc-
tor tuple agree on the pid value (i.e., a natural join between Patient
and Doctor), create a target tuple with the pid, healthplan,
date, and docid values from Patient and Doctor. The user may
choose to refine the data example further. (It may be because she
realized that there was a typographical error in the specified data
example, or she may have examined the schema mapping returned
by the system and decide that further refinements are needed.)

After refinement, the data example shown in the second box is
obtained. For this data example, the source instance remains un-
changed, but the user has now modified the target instance to con-
sist of two tuples: a History tuple and a Physician tuple which
are “connected” through the value N1. Observe that the values N1

134

Source schema S
Patient(pid, name, healthplan, date)
Doctor(pid, docid)

Target schema T
History(pid, plan, date, docid)
Physician(docid, name, office)

(a) Patient(123, Joe, Plus, Jan)
 Doctor(123, Anna)

History(123, Plus, Jan, Anna)

(a) Patient(123, Joe, Plus, Jan)
 Doctor(123, Anna)

History(123, Plus, Jan, N1)
Physician(N1, Anna, N2)

(a) Patient(123, Joe, Plus, Jan)
 Doctor(123, Anna)

(b) Doctor(392, Bob)

History(123, Plus, Jan, N1)
Physician(N1, Anna, N2)

Physician(Bob, 392, N3)

(a) Patient(123, Joe, Plus, Jan)
 Doctor(123, Anna)

(b) Doctor(392, Bob)

(c) Patient(653, Cathy, Basic, Feb)

History(123, Plus, Jan, N1)
Physician(N1, Anna, N2)

Physician(N3, Bob, N4)

History(653, Basic, Feb, N5)

Underlying fitting GLAV schema mapping:

Step 1 (User adds a data example (a)):
Patient(x,y,z,u) ! Doctor(x,v) " History(x,z,u,v)

Step 2 (User modifies existing data example (a)):
Patient(x,y,z,u) ! Doctor(x,v) "
 #w,w’ (History(x,z,u,w) ! Physician(w,v,w’))

Step 3 (User adds another data example (b)):
None exists

Step 4 (User modifies (b) and adds (c)):
Patient(x,y,z,u) ! Doctor(x,v) "

 #w,w’ (History(x,z,u,w) ! Physician(w,v,w’))
Doctor(x,y) " #w,w’ Physician(w,y,w’)
Patient(x,y,z,u) " #w History(x,z,u,w)

Figure 2: An example of Figure 1. Left: Each box is an input set of data examples. Right: Derived schema mapping, or none exists.

and N2 in the target instance do not occur among the values of the
source instance and they, intuitively, represent unknown and possi-
bly different values. Based on this single data example, our system
infers the desired schema mapping shown on the right (i.e., under
Step 2). Intuitively, this schema mapping states that information
from the inner join of Patient and Doctor should be migrated to
the target History and Physician relations, with appropriate nulls to
represent unknown and possibly different values.

Further refinement steps can occur on the data examples. In the
third box of Figure 2, the user adds a second data example (b) to the
existing data example, and our system now reports that no schema
mapping can “fit”. This is because data example (b) describes a
pattern of data migration that is inconsistent with data example (a):
According to (b), every Doctor(pid,docid) fact in the source must
have a corresponding Physician(docid,pid,office) fact in the target.
Observe that the pid value is copied to the second column of the
corresponding Physician fact. However, this is inconsistent with
what (a) states, where a Doctor(pid, docid) has a corresponding
Physician(_,docid,_) fact in the target, and docid gets copied to
the second column of the corresponding Physician fact instead.

Finally, in the fourth box, the user modifies data example (b)
and adds a third data example (c). Based on these data examples,
our system reports the schema mapping shown under Step 4 on the
right. Essentially, the schema mapping migrates information from
the outer join of Doctor and Patient to the corresponding relations
in the target.

1.2 Related Work
Data examples have already been used to illustrate different syn-

tactic objects such as relational queries [18], dataflow programs
[19], and schema mappings [2, 23]. These papers assume the exis-
tence of a syntactic object, and the goal is to produce informative
examples that highlight particular features of the syntactic object
under consideration. In addition, the systems of [2, 23] support the
selection of a schema mapping among competing alternatives by
offering the user a choice of examples, each of which illustrates
one of the alternative schema mappings.

More recent work [3, 22] investigated whether or not a schema
mapping can be uniquely characterized via a finite set of data ex-
amples of different types. Universal examples turned out to be the
most robust and useful type of data example for capturing schema
mappings, where a universal example is a data example (I, J) such

that J is a universal solution for I w.r.t. a schema mapping. In
particular, in [3] it was shown that for every LAV schema mapping,
there is a finite set of universal examples that uniquely character-
izes it among all LAV schema mappings. Furthermore, in [22], a
necessary and sufficient condition was given for the unique charac-
terizability of GAV schema mappings. The robustness and useful-
ness of universal examples are the reasons why we assume that for
every input data example (I, J) to our system, the user intends that
J is a universal solution for I w.r.t. the schema mapping that she
has in mind.

Finally, there is a body of work on deriving a relational query
or a schema mapping from one or more data examples [12, 13, 14,
21]. The work of [14] gave a theoretical framework and complexity
results for the problem of deriving a schema mapping from a sin-
gle data example. Even though a cost model is proposed to choose
among schema mappings that can be used to describe a data exam-
ple, they do not provide a direct algorithm for deriving a schema
mapping from the data example. In [12], the goal is to heuristically
derive a syntactic expression whose semantics coincide with a (pos-
sibly infinite) set of data examples. The papers [13, 21] are closer to
our work, but both consider unirelational schemas only. The prob-
lem studied in [13] takes as input a finite set of pairs consisting of a
single source relation and a single target relation, and asks whether
or not there is a relational algebra expression that produces each
of the target relations when evaluated on the corresponding source
relation. In [21], a problem similar to the preceding one is stud-
ied, except that only a rather restricted class of relational algebra
expressions (essentially unions of selections) is considered. In ad-
dition, the authors consider variations of the problem that take into
account the size of the syntactic descriptions and notions of approx-
imation.

2. PRELIMINARIES
Schemas and Instances A relational schema R is a finite se-
quence (P1, . . . , Pk) of relation symbols, each of a fixed arity. An
instance K over R is a sequence (PK1 , . . . , PKk), where each PKi
is a relation of the same arity as Pi. We shall often write Pi to
denote both the relation symbol and the relation PKi that interprets
it. Here, we assume that all values occurring in relations belong
to some fixed infinite set dom of values. A fact of an instance K
over a schema R is an expression P (a1, . . . , am) such that P is
a relation symbol of R and (a1, . . . , am) ∈ PK . We denote by

135

adom(K) the active domain of an instance K, that is to say, the
set of all values from dom occurring in facts of K.
Schema Mappings In what follows, we will typically consider
two relational schemas, a source schema S and a target schema T.
We will often use I to denote an instance of S and J to denote an
instance of T, and we will refer to I as a source instance and to J
as a target instance. A schema mapping is a tripleM = (S,T,Σ)
consisting of a source schema S, a target schema T, and a set Σ of
constraints that are usually expressed as formulas in some logical
formalism. In this paper, we focus on schema mappings specified
by GLAV constraints. By definition, a GLAV (Global-Local-As-
View) constraint is a first-order sentence ϕ of the form

∀x(ϕ(x)→ ∃yψ(x,y)),

where ϕ(x) is a conjunction of atoms over S, each variable in x
occurs in at least one atom in ϕ(x), and ψ(x,y) is a conjunction
of atoms over T with variables from x and y. By an atom over a
schema R, we mean a formula P (x1, . . . , xm), where P ∈ R and
x1, . . . , xm are variables, not necessarily distinct. For notational
simplicity, we will often drop the universal quantifiers ∀x in the
front of GLAV constraints.

GLAV constraints contain both GAV constraints and LAV con-
straints as important special cases. A GAV (Global-As-View) con-
straint is a GLAV constraint in which the right-hand side is a single
atom, i.e., it is of the form

∀x(ϕ(x)→ P (x)) ,

while a LAV (Local-As-View) constraint is a GLAV constraint in
which the left-hand side is a single atom, i.e., it is of the form

∀x(Q(x)→ ∃yψ(x,y)) .

As an illustration of these notions, the constraint

Patient(x, y, z, u) ∧Doctor(x, v)→
∃w,w′(History(x, z, u, w) ∧ Physician(w, v, w′))

is a GLAV constraint that is neither a GAV nor a LAV constraint.
The constraint

Patient(x, y, z, u) ∧Doctor(x, v)→ History(x, z, u, v)

is a GAV constraint that is not a LAV constraint, while

Doctor(x, y)→ ∃w,w′Physician(w, y, w′)

is a LAV constraint that is not a GAV constraint.
A GLAV schema mapping is a schema mappingM = (S,T,Σ)

such that Σ is a finite set of GLAV constraints. Similarly, GAV
schema mappings and LAV schema mappings are schema mappings
in which Σ is a finite set of GAV constraints or, respectively, a finite
set of LAV constraints.

LetM = (S,T,Σ) be a schema mapping, I a source instance,
and J a target instance. We say that J is a solution of I w.r.t.M if
(I, J) |= Σ, i.e., if (I, J) satisfies every constraint in Σ.

As a concrete example, suppose the source schema consists of
the relation symbol Patient, the target schema consists of the rela-
tion symbol Physician, and the schema mappingM is specified by
the LAV constraint Doctor(x, y) → ∃w,w′Physician(w, y, w′).
Consider the source instance

I = {Doctor(123,Anna),Doctor(392,Bob)}

and the target instances

J1 = {Physician(N1,Anna, N2),Physician(N3,Bob, N4)}
J2 = {Physician(N1,Anna, N2),Physician(392,Bob, N4)}
J3 = {Physician(N1,Anna, N2)}.

Both J1 and J2 are solutions for I w.r.t.M, but J3 is not. Observe
that the solutions J1 and J2 contains values (namely,N1,N2,N3,
N4) that do not occur in the active domain of the source instance
I . Intuitively, these values can be thought of as labeled nulls.
Data Exchange, Homomorphisms, and Universal Solutions
Data exchange is the following problem: given a schema mapping
M and a source instance I , construct a solution J for I w.r.t.M.
As we just saw, a source instance may have more than one solution
with respect to a given GLAV schema mapping. We will be inter-
ested expressly in universal solutions, which were identified in [9]
as the preferred solutions for data exchange purposes. Universal
solutions are defined in terms of homomorphisms, as follows.

Let I1 and I2 be two instances over the same relational schema
R. A homomorphism h : I1 → I2 is a function from adom(I1) to
adom(I2) such that for every fact P (a1, . . . , am) of I1, we have
that P (h(a1), . . . , h(am)) is a fact of I2. We write I1 → I2 to
denote the existence of a homomorphism h : I1 → I2.

LetM = (S,T,Σ) be a schema mapping and let I be a source
instance. A target instance J is a universal solution for I w.r.t.M
if the following hold:
1. J is a solution for I w.r.t.M.
2. For every solution J ′ of I w.r.t.M, there is a homomorphism
h : J → J ′ that is constant on adom(I) ∩ adom(J), that is to
say, h(a) = a, for every value a ∈ adom(I) ∩ adom(J).

Intuitively, universal solutions are the “most general” solutions.
Furthermore, in a precise sense, they represent the entire space
of solutions (see [9]). For this reason, universal solutions have
become the standard semantics for data exchange. Going back
to our previous example, note that J1 is a universal solution for
I w.r.t the schema mapping M specified by the LAV constraint
Doctor(x, y) → ∃w,w′Physician(w, y, w′). In contrast, J2 is
not a universal solution for I w.r.t.M, since there is no homomor-
phism from J2 to J1 that is constant on adom(I) ∩ adom(J2).

For GLAV schema mappingsM (and in fact for a much wider
class of schema mappings), a variant of the chase procedure can be
used to compute, given a source instance I , a canonical universal
solution for I w.r.t.M in time bounded by a polynomial in the size
of I (see [9]).

3. THE FITTING PROBLEM
In this section, we describe our algorithms for the fitting problem

and its variants, prove the correctness of the algorithms, and obtain
sharp complexity results for the fitting problem and its variants.

DEFINITION 3.1. Let S be a source schema and T be a target
schema. A data example is a pair (I, J) such that I is a source
instance and J is a target instance.

We say that a schema mappingM = (S,T,Σ) fits a data ex-
ample (I, J) if J is a universal solution for I w.r.t.M.

We say thatM fits a set E of data examples ifM fits every data
example (I, J) ∈ E .

Returning to the example of Section 2, the schema mapping
specified by Doctor(x, y) → ∃w,w′Physician(w, y, w′) fits the
data example (I, J1), but does not fit (I, J2).

Data examples were considered in [3] as a means to illustrate and
understand schema mappings. Several different notions of “fitting"
were explored, including the just defined notion of fitting in terms
of universal examples. This notion was shown in [3, 22] to be the
most robust and useful one for capturing schema mappings via data
examples.

One could also consider an alternative notion of “fitting” in which
a schema mappingM fits a data example (I, J) if J is a solution

136

(not necessarily a universal solution) for I w.r.t.M. The main rea-
son we chose to use universal solutions in the notion of fitting is
that universal solutions, being the most general solutions, are nat-
ural as data examples. Universal solutions contain just the infor-
mation needed to represent the desired outcome of migrating data
from source to target. In particular, they contain no extraneous or
overspecified facts, unlike arbitrary solutions in general.

We now introduce two variants of the fitting problem, namely,
the fitting generation problem, which is a function problem, and the
fitting decision problem, which is the underlying decision problem.
We begin with the latter.

DEFINITION 3.2. (GLAV Fitting Decision Problem)
Given a source schema S, a target schema T, and a finite set E of
data examples that conform to the schemas, the GLAV Fitting De-
cision Problem asks to tell whether or not there is a GLAV schema
mappingM that fits E .

DEFINITION 3.3. (GLAV Fitting Generation Problem)
Given a source schema S, a target schema T, and a set E of data ex-
amples that conform to the schemas, the GLAV Fitting Generation
Problem asks to construct a GLAV schema mappingM that fits E ,
if such a schema mapping exists, or to report that “None exists”,
otherwise.

In a similar manner, we can define analogous fitting problems
for GAV schema mappings and for LAV schema mappings. These
problems will be briefly considered towards the end of this section.
Our main focus, however, will be on the fitting problems for GLAV
schema mappings.

Note that the alternative notion of “fitting” with solutions in place
of universal solutions gives rise to trivial fitting decision and fitting
generation problems since, in this case, the schema mapping with
an empty set of constraints would “fit” every data example (I, J)
(in fact, it would be the most general “fitting” schema mapping).

3.1 The GLAV Fitting Algorithm
In this section, we present our algorithm for the GLAV Fitting

Generation Problem and establish its properties. The algorithm is
given in Figure 3. We begin by discussing the main steps of the
algorithm in detail.

As seen in Figure 3, our algorithm has two main steps. Given
a finite set E of data examples, the first step of the algorithm tests
for the existence of a GLAV schema mapping fitting E . If no such
fitting GLAV schema mapping exists, then the algorithm simply
reports that none exists. Otherwise, the second step of the algorithm
proceeds to construct a GLAV schema mapping that fits the set E .
Actually, the GLAV schema mapping constructed by our algorithm
will turn out to have a number of additional desirable properties
that we will document in what follows.
Homomorphism Extension Test Let (I, J) and (I ′, J ′) be two data
examples. We say that a homomorphism h : I → I ′ extends to a
homomorphism ĥ : J → J ′ if for all a ∈ adom(I) ∩ adom(J),
we have that ĥ(a) = h(a). The first step of the algorithm consists
of the homomorphism extension test. Specifically, for every pair of
data examples from the given set E , the algorithm tests whether ev-
ery homomorphism between the source instances of the two exam-
ples extends to a homomorphism between the corresponding target
instances. If this homomorphism extension test fails, the algorithm
reports that no GLAV schema mapping fitting the set E exists. Oth-
erwise, it proceeds to the next step.
Constructing a Fitting Canonical GLAV Schema Mapping In the
second step of the algorithm, we make crucial use of the notion of

Algorithm: GLAV Fitting
Input: A source schema S and a target schema T

A finite set E of data examples (I1, J1) . . . (In, Jn) over S,T
Output: Either a fitting GLAV schema mapping or ‘None exists’

// Homomorphism Extension Test:
// Test for existence of a fitting GLAV schema mapping
for all i, j ≤ n do

for all homomorphisms h : Ii → Ij do
if not(h extends to a homomorphism ĥ : Ji → Jj) then

fail(‘None exists’)
end if

end for
end for;
// Construct a fitting canonical GLAV schema mapping
Σ := ∅;
for all i ≤ n do

add to Σ the canonical GLAV constraint of (Ii, Ji)
end for;
return (S, T, Σ)

Figure 3: The GLAV Fitting Generation Algorithm

a canonical GLAV schema mapping associated with a set of data
examples. Intuitively, this is analogous to the familiar notion of a
canonical conjunctive query associated with a database instance.
If (I, J) is a data example, then the canonical GLAV constraint of
(I, J) is the GLAV constraint ∀x(qI(x) → ∃yqJ(x,y)), where
qI(x) is the conjunction of all facts of I (with each value from
the active domain of I replaced by a universally quantified variable
from x) and qJ(x,y) is the conjunction of all facts of J (with
each value from adom(J) \ adom(I) replaced by an existentially
quantified variable from y). If E is a finite set of data examples over
a source schema S and a target schema T, then the canonical GLAV
schema mapping of E is the schema mapping M = (S,T,Σ),
where Σ consists of the canonical GLAV constraints of the data
examples in E . The second step of the algorithm amounts simply
to computing the canonical GLAV schema mapping of the given
set of data examples. Notice that this step takes time linear in the
size of the given set E of data examples.

It is important to point out that the canonical GLAV schema map-
ping of a given set of data examples need not fit this set of exam-
ples; as a matter of fact, this is what makes the GLAV fitting gener-
ation problem interesting and nontrivial. To illustrate this, consider
the set E consisting of the data examples ({S(a, b)}, {T (a)}) and
({S(c, c)}, {U(c, d)}). The canonical GLAV schema mapping of
E is specified by the GLAV constraints ∀xy(S(x, y)→ T (x)) and
∀x(S(x, x) → ∃zU(x, z)). This schema mapping does not fit E ,
as the second data example violates the first constraint. Note also
that our homomorphism extension test in the first step of the algo-
rithm would detect this: the homomorphism h that maps S(a, b) to
S(c, c) does not extend to any target homomorphism from T (a) to
U(c, d). Hence, in this case, our algorithm will terminate after the
first step and report that “None exists”.

Correctness The following result establishes the correctness of the
GLAV fitting generation algorithm in Figure 3.

THEOREM 3.4. Let E be a finite set of data examples. The fol-
lowing statements are equivalent:

1. The canonical GLAV schema mapping of E fits E .
2. There is a GLAV schema mapping that fits E .
3. For all (I, J), (I ′, J ′) ∈ E , every homomorphism h : I → I ′

extends to a homomorphism ĥ : J → J ′.
PROOF HINT. The proof proceeds in a round-robin fashion. The

implication 1⇒ 2 is immediate. The implication 2⇒ 3 is proved

137

using a monotonicity property of the chase. Finally, the implica-
tion 3 ⇒ 1 follows from the construction of the canonical GLAV
schema mapping. The basic idea is that, if (I, J) and (I ′, J ′)
are data examples and ∀x(φ(x) → ∃y ψ(x,y)) is the canonical
GLAV constraint of (I, J), then each homomorphisms h : I → I ′

corresponds to an assignment for x under which φ(x) is true in I ′,
and each extension ĥ : J → J ′ of h corresponds to an assignment
for x,y under which ψ(x,y) is true in J ′.

The last condition in Theorem 3.4 is the homomorphism ex-
tension test used in the first step of the algorithm. Theorem 3.4
shows that this is a necessary and sufficient condition for determin-
ing whether GLAV schema mapping fitting E exists. Furthermore,
this condition is also a necessary and sufficient condition for de-
termining whether the canonical GLAV schema mapping of E fits
E . Hence, the algorithm is correct in that it reports that no fitting
GLAV schema mapping exists, if there is none, and it returns a
fitting GLAV schema mapping, whenever there is one.

Most General Fitting GLAV Schema Mapping Given a finite set
E of data examples, there may be a multitude of GLAV schema
mappings that fit it. For example, both R(x, y) → P (x, y) and
R(x, x) → P (x, x) fit the data example ({R(a, a)}, {P (a, a)}).
In this case, the GLAV fitting algorithm will return the latter map-
ping R(x, x) → P (x, x). We will see that our GLAV fitting al-
gorithm does this for a very good reason. Specifically, if a fitting
GLAV schema mapping exists, then our algorithm returns the most
general fitting GLAV schema mapping.

LetM = (S,T,Σ) andM′ = (S,T,Σ) be two schema map-
pings over the same source and target schemas. We say that M
is more general thanM′ if Σ′ logically implies Σ, i.e., if for ev-
ery data example (I, J) such that (I, J) satisfies Σ′, we have that
(I, J) also satisfies Σ.

THEOREM 3.5. Let E be a finite set of data examples. If there
is a GLAV schema mapping that fits E , then the canonical GLAV
schema mapping of E is the most general GLAV schema mapping
that fits E . In other words, the canonical GLAV schema mapping is
more general than any GLAV schema mapping that fits E .

Theorems 3.4 and 3.5 imply that if a fitting GLAV schema map-
ping exists for a given set E of data examples, then our GLAV fitting
algorithm returns the most general GLAV schema mapping that fits
E . Note that this most general schema mapping is unique up to
logical equivalence.

The most general schema mapping produced by our GLAV fit-
ting generation algorithm has size linear in the size of the input set
of data examples. This linear bound on the size of the most general
schema mapping cannot be improved in general. To see this, for ev-
ery integer n > 2, consider the data example (In, Jn), where In =
{E(1, 2), E(2, 3), . . . , E(n− 1, n)} and Jn = {F (1, n)}. Then,
for every n, the most general schema mapping fitting (In, Jn) is the
schema mappingMn specified by the single s-t tgd E(x1, x2) ∧
E(x2, x3)∧ . . .∧E(xn−1, xn)→ F (x1, xn). It is not hard to see
that no schema mapping logically equivalent toMn has size less
than that ofMn. This is so because, intuitively, a schema mapping
M that is logically equivalent toMn must contain an s-t tgd where
the left-hand-side has at least n− 1 atoms.

The most general GLAV schema mapping M enjoys a robust-
ness property in thatM can be used to derive the “certain certain
answers”, as we describe next. LetM = (S,T,Σ) be a schema
mapping and let q be a query over the target schema T. If I is a
source instance, then the certain answers of q on I w.r.t. M, de-

noted by certainM(q, I), are defined by

certainM(q, I) =
⋂
{q(J) : J is a solution for I w.r.t.M}.

The certain answers are the standard semantics of target queries
in data exchange [9]. Now, it is not hard to show that if M =
(S,T,Σ) andM′ = (S,T,Σ′) are two GLAV schema mappings
such that M is more general than M′, then for every source in-
stance I and for every target conjunctive query q, we have that
certainM(q, I) ⊆ certainM′(q, I). In turn, this observation im-
plies the following result.

COROLLARY 3.6. Let E be a finite set of data examples for
which there exists a GLAV schema mapping that fits it. Let G be
the set of all GLAV schema mappings that fit E and let M ∈ G
be the canonical GLAV schema mapping of E . Then, for every
source instance I and every target conjunctive query q, we have
that certainM(q, I) =

⋂
M′∈G certainM′(q, I).

Informally, Corollary 3.6 asserts that if E is a finite set of data
examples, then the certain answers of a target conjunctive query
w.r.t. to the canonical GLAV schema mapping of E are the “certain
certain answers” over all GLAV schema mappings that fit E .

Completeness for GLAV-Schema-Mapping Design A more im-
portant beneficial feature of the GLAV fitting algorithm that we
wish to highlight here is that it is complete for GLAV-schema-mapping
design, in the sense expressed by the next result.

THEOREM 3.7. For every GLAV schema mappingM, there is
a finite set of data examples EM, such that, when given EM as
input, the GLAV fitting algorithm returns a schema mapping that is
logically equivalent toM.

In other words, every GLAV schema mapping can be produced
(up to logical equivalence) by our GLAV fitting algorithm. The
proof of Theorem 3.7 is based on the notion of a canonical set of
examples for a GLAV schema mapping (cf. also Section 5). Let
M = (S,T,Σ) be a GLAV schema mapping. For every GLAV
constraint σ ∈ Σ of the form ∀x(φ(x) → ∃yψ(x,y)), let Iσ
be the canonical instance of φ(x) and let Jσ be the universal so-
lution of Iσ w.r.t. M obtained by chasing Iσ with Σ. We define
the canonical set of examples of M to be the set of all examples
(Iσ, Jσ) such that σ ∈ Σ. Now, it can be verified that, for ev-
ery GLAV schema mappingM, the canonical schema mapping of
the canonical set of examples ofM is logically equivalent toM;
consequently, Theorem 3.7 holds.

Complexity Analysis As mentioned earlier, the second step of
the GLAV fitting algorithm is linear in the size of the input set of
data examples. In contrast, the first step of the GLAV fitting algo-
rithm can be exponential, since the number of homomorphisms be-
tween two database instances can be exponential; thus, the GLAV
fitting algorithm runs in exponential time in the worst case. Fur-
thermore, this worst-case behavior is realized on every input for
which a fitting GLAV schema mapping exists, since, in such cases,
it is not possible to terminate early the task of verifying that ev-
ery homomorphism between the source instances of every pair of
data examples indeed extends to a homomorphism on the respec-
tive target instances. However, the GLAV fitting algorithm needs a
polynomial amount of memory only; this is so because the size of
each particular homomorphism is polynomial, and it is possible to
enumerate all homomorphisms between two instances using only a
polynomial amount of memory.

Assuming that P 6= NP, this exponential worst-case running
time is unavoidable. Indeed, every algorithm that solves the GLAV

138

Fitting Generation Problem also solves the GLAV Fitting Decision
Problem, which is NP-hard. In fact, our next result shows that the
GLAV Fitting Decision Problem is complete for the second level
Πp

2 of the polynomial hierarchy PH, hence, in all likelihood, it is
harder than NP-complete. Recall that Πp

2 (also known as coNPNP)
is the class of all decision problems that can be solved by a coNP-
algorithm using an NP-complete problem as an oracle. Further-
more, NP ∪ coNP ⊆ Πp

2 ⊆ PSPACE (see [20]).

THEOREM 3.8. The GLAV Fitting Decision Problem is Πp
2-complete.

The GLAV fitting algorithm in Figure 3 actually shows that the
GLAV fitting decision problem is in the class Πp

2 . Indeed, the
homomorphism extension test in the first step involves a univer-
sal quantification over homomorphisms followed by an existen-
tial quantification over homomorphisms; this is a Πp

2-computation.
The Πp

2-hardness of the GLAV fitting decision problem is proved
via a reduction from the evaluation problem for quantified Boolean
formulas of the form ∀x∃yψ(x,y), where ψ(x,y) is a 3CNF
Boolean formula. Perhaps surprisingly, the lower bound holds even
for inputs consisting of a single data example over fixed schemas;
roughly speaking, for a given quantified Boolean formula of the
form ∀x∃yψ(x,y), an example (I, J) is constructed in such a way
that each nontrivial endomorphism of I corresponds to a valuation
for x, and J has facts describing the clauses of ψ(x,y).

We conclude the complexity analysis by mentioning in passing a
consequence that Theorem 3.8 has for another variant of the fitting
problem.

DEFINITION 3.9. (GLAV Fitting Verification Problem)
Given a GLAV schema mappingM = (S,T,Σ) and a finite set
E of data examples, the GLAV Fitting Verification Problem asks to
tell whether or notM fits E .

COROLLARY 3.10. The GLAV Fitting Verification Problem is
Πp

2-complete.

In other words, testing for the existence of a fitting GLAV schema
mapping is no harder than testing whether a given GLAV schema
mapping fits a given set of data examples. The lower bound follows
directly from Theorems 3.4 and 3.8. The proof of the upper bound
uses (among other things) the fact that GLAV constraints belong to
the universal-existential fragment of first-order logic.

3.2 GAV and LAV Schema Mappings
GAV schema mappings and LAV schema mappings are syntac-

tically simpler types of GLAV schema mappings that enjoy sev-
eral additional good properties and are supported by many data-
exchange and data-integration systems. In this section, we consider
the GAV fitting generation problem and the LAV fitting generation
problem, i.e., the problem that asks, given a finite set E of data ex-
amples, to generate a GAV (or a LAV) schema mapping that fits
E . Note that even if, for a given set of data examples, there exists
a fitting GAV or fitting LAV schema mapping, there is no guar-
antee that a GLAV fitting generation algorithm (and, in particular,
our GLAV fitting algorithm) will produce such a GAV or a LAV
schema mapping. In what follows, we discuss how our GLAV fit-
ting generation algorithm can be adapted in order to solve the GAV
fitting generation problem and the LAV fitting generation problem.

GAV schema mappings It is known from [22] that the GAV fitting
decision problem is DP-complete, and that it is NP-complete for
inputs consisting of ground data examples. We say a data example
(I, J) is ground if adom(J) ⊆ adom(I). In other words, the
instance J consists entirely of values from I .

THEOREM 3.11 ([22]). The GAV fitting decision problem is
DP-complete. It is coNP-complete if the input consists of ground
data examples.

As in the GLAV case, the lower bounds hold already for inputs
consisting of a single example, over a fixed source schema and tar-
get schema. Recall that DP is the class of problems that can be de-
fined as the conjunction of an NP-problem and a coNP-problem.
It is known that NP ∪ coNP ⊆ DP ⊆ Πp

2 , and it is widely be-
lieved that both containments are proper. In particular, just as in
the GLAV case, we cannot hope for a polynomial-time algorithm
that solves the GAV fitting generation problem.

We present here a concrete algorithm for solving the GAV fitting
generation problem. The algorithm is given in Figure 4. It is a
variation of the algorithm for the GLAV fitting generation problem
given in Figure 3. Comparing the two algorithms, one can see that
there are three essential differences.

The first difference is that the algorithm checks that each data
example is essentially ground. Recall that we say a data example
is ground if adom(J) ⊆ adom(I). A data example is essentially
ground if there is a homomorphism h : J → J such that h(a) = a
for all a ∈ adom(I), and such that rng(h) ⊆ adom(I). This is
equivalent to saying that the core of J (as defined in [11], where
the values from adom(I) are viewed as constants, and the values
from adom(J) \ adom(I) are viewed as labeled nulls) contains
only values from adom(I).

The second difference is that the homomorphism extension test
is now simplified. The test simply checks whether every homo-
morphism between the source instances of two examples is also a
partial homomorphism (i.e., a partial function that preserves facts)
between the corresponding target instances. Another way to say
the same thing is that for every pair of examples (I, J), (I ′, J ′),
every homomorphism h : I → I ′ is a homomorphism from J↓ to
J ′↓, where J↓ is the subinstance of J containing only values from
adom(I), and J ′↓ is the subinstance of J ′ containing only values
from adom(I ′).

Third, instead of constructing the canonical GLAV schema map-
ping, the algorithm constructs the canonical GAV schema mapping.
For any set E of examples, the canonical GAV schema mapping of
E is defined in the same way as the canonical GLAV schema map-
ping of E , but ignoring all target facts containing nulls. In other
words, the canonical GAV schema mapping of E is the canonical
GLAV schema mapping of {(I, J↓) | (I, J) ∈ E}), where J↓ con-
sists of all facts of J that contain only values from adom(I). Note
that this is indeed a GAV schema mapping.

The correctness of our algorithm is given by the following result.

THEOREM 3.12. Let E be a finite set of data examples. The
following are equivalent:

• The canonical GAV schema mapping of E fits E .
• There is a GAV schema mapping that E .
• Each data example (I, J) ∈ E is essentially ground, and for

all (I, J), (I ′, J ′) ∈ E , every homomorphism h : I → I ′ is a
partial homomorphism h : J → J ′.

The proof of Theorem 3.12 is along the same lines as the one of
Theorem 3.4, but using also the fact that, for GAV schema map-
pings, every source instance has a ground universal solution.

As in the GLAV case, the GAV schema mapping produced by
our algorithm is the most general fitting GAV schema mapping.

THEOREM 3.13. Let E be a finite set of data examples for which
there exists a fitting GAV schema mapping. Then the canonical
GAV schema mapping of E is the most general fitting GAV schema
mapping of E .

139

Algorithm: GAV fitting
Input: A source schema S and a target schema T

A finite set of data examples (I1, J1) . . . (In, Jn) over S,T
Output: either a fitting GAV schema mapping or ‘None exists’

// Test that each data example is essentially ground
for all i ≤ n do

if not(there is a homomorphism h : Ji → Ji such that
h(a) = a for all a ∈ adom(I) and rng(h) ⊆ adom(I)) then
fail(‘None exists’);

end if
end for;
// Simplified Homomorphism Extension Test:
// test for the existence of a fitting GAV schema mapping
for all i, j ≤ n do

for all homomorphisms h : Ii → Ij do
if not(h is a partial homomorphism h : Ji → Jj) then

fail(‘None exists’)
end if

end for
end for;
// Construct fitting canonical GAV schema mapping
Σ := ∅;
for all i ≤ n do

add to Σ the canonical GAV constraint of (Ii, Ji)
end for;
return (S, T, Σ)

Figure 4: The GAV Fitting Generation Algorithm

Theorem 3.13 is implicit in [22], even though the notion of a
canonical GAV schema mapping was not introduced there.

Furthermore, just as the GLAV fitting generation algorithm is
complete for GLAV-schema-mapping design (cf. Theorem 3.7), in
the same way the GAV fitting generation algorithm can be shown
to be complete for GAV-schema-mapping design.

THEOREM 3.14. For every GAV schema mappingM, there is
a finite set of data examples EM, such that, when given EM as
input, the GAV fitting algorithm returns a schema mapping that is
logically equivalent toM.

LAV schema mappings For LAV schema mappings, the situation
is a bit different. Unlike in the case of GLAV schema mappings or
GAV schema mappings, there is no natural notion of a canonical
LAV schema mapping, for a given set of examples. Furthermore, a
set of examples for which there are fitting LAV schema mappings
may not have a most general fitting LAV schema mapping. Indeed,
consider the single example (I, J) where I = {P (a), Q(a)} and
J = {R(a)}. It is not hard to see that there are two incompara-
ble maximally general fitting LAV schema mappings, specified by
the LAV constraints ∀x(P (x) → R(x)) and ∀x(Q(x) → R(x))
respectively. Nevertheless, the LAV fitting generation problem can
be solved in exponential time. For lack of space, we omit a detailed
description of the algorithm, and state only the following result:

THEOREM 3.15. The LAV fitting decision problem is NP-complete.

The upper bound is proved by giving a non-deterministic poly-
nomial-time algorithm that has an accepting run if and only if there
is a LAV fitting decision problem, and that, moreover, computes a
fitting LAV schema mapping if it exists. The algorithm builds on
results from [10, 11] concerning core solutions, retracts, and fact
blocks. Roughly speaking, it starts by guessing a retract of the tar-
get instance of each data example. It then computes the fact blocks
of the retracted target instances. Next, it guesses for each fact block

a single source tuple that can intuitively be seen as being respon-
sible for the creation of this fact block. Based on these guesses,
a candidate LAV schema mapping is constructed, and finally, the
algorithm tests in non-deterministic polynomial time if this LAV
schema mapping fits the original data examples.

The lower bound is proved by a reduction from the NP-complete
problem of whether two graphs are homomorphically equivalent.
The lower bound holds even for a single example over a fixed
schema, containing only two source tuples, or for two examples,
each containing a single source tuple.

4. IMPLEMENTATION
We describe briefly our approach for the implementation of the

GLAV fitting generation algorithm, presented in pseudocode in Fig-
ure 3. We will focus on the homomorphism extension test (also
known henceforth simply as the fitting test), since constructing the
canonical GLAV schema mapping is straightforward: it basically
requires a linear pass over the set of data examples.

Let E be a set of data examples for the pair of schemas (S,T).
Our system stores these data examples in the IBM DB2 database
system. The logical design being used follows closely the schemas
(S,T), with the addition of an extra attribute exid in each relation
that identifies the data example to which a particular tuple belongs.
To illustrate, reconsider the set of two data examples in step 3 of
Figure 2, which we will denote by (I1, J1) and (I2, J2). These
examples are stored in the database as in Figure 5.

I
2

Patient

exid pid name healthplan date

1 123 Joe Plus Jan

Doctor

exid pid docid

1 123 Anna

2 392 Bob

History

exid pid plan date docid

1 123 Plus Jan N1

Physician

exid docid name office

1 N1 Anna N2

2 Bob 392 N3

J
1

J
2

I
1

Figure 5: Database instance used to store the set of data exam-
ples in step 3 of Figure 2

The fitting test over E is implemented as a set of DB2 user-
defined functions, one for each data example in E . Intuitively, the
function associated to an exampleE1 = (I1, J1) ∈ E tries to find a
witness to the failure of the fitting test: whether for some example
E2 = (I2, J2) ∈ E , there exists a homomorphism from I1 to I2
which does not extend to a homomorphism from J1 to J2. In ef-
fect, if such a homomorphism exists, then there is no fitting GLAV
schema mapping for the set E of data examples.

From the Chandra-Merlin theorem for conjunctive queries [8],
we know that computing homomorphisms from an instance I1 to
an instance I2 is equivalent to executing the canonical query of I1
on I2. The results of executing the canonical query of I1 on I2,
hence the valuations for the variables in the canonical query of I1,
provide the homomorphisms from I1 to I2. Returning to the data
examples above, the canonical query of I1 has the following form:

QI1 : Patient(x, y, z, t) ∧Doctor(x, u)

This query contains one relational atom for each tuple in I1, and
it employs repeated variables for multiple occurrences of a value
in I1 (e.g., the variable x for the value 123). Executing QI1 on
I1 returns the identity homomorphism from I1 to itself. However,
executing QI1 on I2 returns an empty answer, since there are no
homomorphisms from I1 to I2, as there are no Patient tuples in I2.

In our implementation, the function associated to each example
E ∈ E essentially executes a nested SQL query, where the outer

140

and inner blocks are (correlated) canonical queries of the source
and target instances of E, respectively. More concretely, the nested
SQL query has the following form:

select s1.exid from S1 s1, . . . , Sp sp
where s2.exid = s1.exid and . . . and sp.exid = s1.exid

and C1 and . . . and Ck
and not exists
(select T1.exid from T1 t1, . . . , Tq tq

where t1.exid = s1.exid and . . . and tq .exid = s1.exid
and C′1 and . . . and C′m)

In the query above, the from clauses contain one variable for
each tuple of the source instance, and the target instance, respec-
tively (in other words, one variable for each relational atom in the
source and target canonical queries). The first set of equality con-
ditions in the where clauses ensure that all tuples in the result be-
long to the same data example, identified by the same exid value.
Furthermore, the conditions Ci, 1 ≤ i ≤ k are equalities corre-
sponding to multiple appearances of the same value in the source
instance. Similarly, C′j , 1 ≤ j ≤ m correspond to multiple appear-
ances of the same value in the target instance, or to a source value
appearing in the target instance.

Continuing our illustration, the instantiation of the template above
for the example (I1, J1) has the form shown at the end of this
paragraph. It will return an empty result since there are no ho-
momorphisms from I1 to I2. However, the corresponding query
for (I2, J2) will return a non-empty result. The homomorphism
{392→ 123, Bob→ Anna} from I2 to I1 cannot be consistently
extended to a homomorphism from J2 to J1, hence it represents a
witness to the failure of the fitting test.

select p.exid from Patient p,Doctor d
where d.exid = p.exid

and p.pid = d.pid
and not exists
(select h.exid from History h,Physician y

where h.exid = p.exid and y.exid = p.exid
and h.pid = p.pid and h.plan = p.healthplan
and h.date = p.date and h.docid = y.docid
and y.name = d.docid)

The fitting test succeeds if the functions corresponding to all the
data examples return empty answers.

4.1 An Optimization
The number of tuple variables in the from clauses of the nested

SQL queries described above is equal to the number of tuples in the
source and target instances of the data examples. For arbitrary sets
of data examples, this can lead to very large joins which translate
to very long execution times for the fitting test. However, in our
experience, such very large data examples proved to be uncommon
in user-interactive schema mapping design scenarios.

The following theorem provides an optimization for the fitting
test because it allows the test to be decomposed into tests that ap-
ply to disconnected components. By a connected component of a
data example (I, J) we mean a set of elements from adom(I) ∪
adom(J) that forms a connected component of the Gaifman graph
of (I, J) (i.e., the graph that contains an edge between two values
if they co-occur in a fact of I or J).

THEOREM 4.1. For all source instances I1, I2 and target in-
stances J1, J2, the following are equivalent:

• Every homomorphism h : I1 → I2 extends to a homomorphism
ĥ : J1 → J2

• Either there is no homomorphism h : I1 → I2, or for every
connected component C of I1 ∪ J1, every homomorphism h :

I1 ∩ C → I2 extends to a homomorphism ĥ : J1 ∩ C → J2.

This result justifies the decomposition of the queries that imple-
ment the fitting test into simpler uncorrelated queries which can
be evaluated independently. Intuitively, each simpler nested SQL
statement executes the canonical queries of a data example subin-
stance corresponding to a connected component. As a consequence,
the number of tuple variables in the from clauses decreases. Our
experiments confirm the intuition that such decrease leads to an im-
provement in fitting test execution times.

As an important particular case, the fitting test function we gen-
erate becomes much simpler for a data example whose target in-
stance contains only nulls. Intuitively, the nested SQL statement
generated for such a data example is replaced by a sequence of two
independent SQL statements without nesting, each implementing
the canonical query of the source and the target instance, respec-
tively. We will examine the effects of this optimization in the ex-
perimental analysis of Section 5.2.

5. EVALUATION
In the following, we present an experimental evaluation of our

framework for designing schema mappings via data examples. We
implemented our approach as a prototype in Java 6, with IBM DB2
Express-C v9.7 as the underlying database engine, running on a
Dual Intel Xeon 3.4GHz Linux workstation with 4GB RAM.

We begin by giving an overview of the datasets used in our ex-
periments. Then we present results concerning the efficiency of
our implementation of the GLAV fitting algorithm, as well as some
observations on the behavior of the fitting test when the structural
characteristics of the underlying dataset change. Finally, we test
our approach in a dynamic setting that simulates an interactive
schema mapping refinement process.

The worst-case complexity of the GLAV fitting problem notwith-
standing, the experimental results that we have obtained demon-
strate the feasibility of interactively designing schema mappings
using data examples. In particular, our experiments show that our
system achieves very good performance in real-life scenarios.

5.1 Datasets
For our experimental evaluation, we use sets of data examples

based on real-life schema mapping scenarios, as well as syntheti-
cally generated datasets.
Data examples based on real-life scenarios. We consider three
real-life mapping scenarios. The first two involve scientific bib-
liographies (DBLP: dblp.uni-trier.de/db and Amalgam:
dblab.cs.toronto.edu/~miller/amalgam, with mappings
inspired by the Clio benchmarks3), and the third is from the bio-
logical domain (on fragments of the GUS:www.gusdb.org and
BioSQL: www.biosql.org schemas). Some statistics on these
scenarios are presented in the left half of Table 1. For instance, in
the DBLP-Amalgam scenario, the source schema consists of 7 rela-
tions of average arity 6.5, and the target schema consists of 9 rela-
tions of the same average arity 6.5. Moreover, the schema mapping
in this scenario is specified by 10 GLAV constraints, averaging 1.4
atoms in the left-hand-side and 2.2 atoms in the right-hand-side.

We use the canonical sets of data examples, introduced in Sec-
tion 3.1, for each of the real-life mapping scenarios as input to our
fitting algorithm. In the canonical set of data examples for a schema
mapping, the source instances are the canonical instances of the

3queens.db.toronto.edu/project/clio/index.php#testschemas

141

of Avg. # of Avg. # of Avg. # Avg. # # of Time to Avg. # of Avg. # of Avg. # of Avg. # of
source source target target GLAV of LHS of RHS canonical generate nonempty tuples per nonempty tuples per

relations arity relations arity constraints atoms atoms examples canonical source source target target
examples (s) relations relation relations relation

DBLP - Amalgam 7 6.5 9 6.5 10 1.4 2.2 10 4.8 1.4 1.0 2.2 1.1
Amalgam S1 - S2 15 6.7 27 2.0 71 1.2 2.1 15 9 1.9 1.0 10.7 1.1
GUS - BioSQL 7 6.4 6 5.5 8 1.6 1.9 7 2.3 1.6 1.1 2.1 2.3

Table 1: Statistics on real-life mapping scenarios and their canonical examples

left-hand-sides for each GLAV constraint in the mapping specifi-
cation (pruned for isomorphic copies), and the target instances are
the results of chasing each source instance with the schema map-
ping. We consider here a variant of the chase procedure (see [1]),
called the naive chase. Given a source instance I , the naive chase
produces a universal solution [9] for I , denoted by chaseM(I), as
follows. For every GLAV constraint

∀x(ϕ(x)→ ∃yψ(x,y))

in the specification of M and for every tuple a of source values
from adom(I) such that I |= ϕ(a), we add to chaseM(I) all facts
in ψ(a,b), where b is a tuple of new nulls interpreting the existen-
tially quantified variables y.

Through the construction of the canonical sets of examples, the
GLAV fitting algorithm will always return a positive answer on
such sets of examples, since the chase procedure generates uni-
versal solutions. The canonical examples make a good test case to
stress our implementation of the fitting test, because the guaran-
teed positive fitting result means the system indeed iterates over all
source homomorphisms and checks for target extensions, since a
failure witness is not encountered. In addition, by Theorem 3.7, the
execution of the fitting algorithm on the set of canonical examples
for a schema mappingM will produce a schema mapping that is
logically equivalent to M. Hence, the canonical examples are a
natural choice as the starting point in an example driven refinement
of an initial mapping specification.

Statistics on the canonical data examples of the real-life scenar-
ios we used are presented in the right half of Table 1. For instance,
the set of canonical data examples for the DBLP-Amalgam sce-
nario consists of 10 data examples, and took 4.8 seconds to gener-
ate. Each canonical data example has on the average 1.4 nonempty
source relations with one tuple each, and 2.2 nonempty target rela-
tions with 1.1 tuples each.
Synthetic data examples. To stress test the performance of the
fitting test, we use synthetic sets of data examples for the schemas
of the real-life mapping scenarios. The generation of the synthetic
datasets is controlled via four parameters (n, t, d, f), as follows:
• n is the number of data examples in the dataset
• t is the number of tuples for each relation in the schemas
• d, called diversity, controls the number of occurrences of dis-

tinct values, hence determines the size of the domains for the
source and target instances of a data example
• f , called source value fraction, determines how the domain of

a target instance is split between source values and nulls.
More precisely, consider a pair of schemas (S,T). In our ex-

periments, these schemas originate in the real-life mapping sce-
narios considered above. Given a parameter tuple (n, t, d, f), a
set E of n data examples is generated as follows. Every example
E = (I, J) ∈ E contains, for each R ∈ (S,T), an R relation
consisting of t tuples. The domain of the source instance I is D =
{a1, . . . , am}, wherem = d× t×

∑
R∈S arity(R). Each value in

I is chosen through a uniform random pick fromD. The domain of
the target instance J is D′ = {a1, . . . , ak, bk+1, . . . , bm′}, where

m′ = d×t×
∑
R∈T arity(R), and k = min(|adom(I)|, f×m′).

The values {a1, . . . , ak} are among the source values appearing in
I , while the rest of the values in D′ are fresh nulls. Each value in
J is picked through a uniform random choice from D′.

5.2 Fitting Test Efficiency
We now describe the experiments we conducted to determine the

efficiency of the fitting test on the canonical sets of examples for
the real-life scenarios. The results for this first set of experiments
are presented in Table 2 (the rightmost column will be discussed in
Section 5.3), and are averaged over 50 experimental runs.

We remark that performing the GLAV fitting test on the canon-
ical examples for the real-life scenarios takes only a few seconds
(1.6, 3.6, 1.2), showing this is a promising first step in designing
schema mapping via examples, following the workflow in Figure 1.
Data examples of size comparable to the canonical examples are
common in a user-interactive schema design environment.

Number Size of Initial Fitting
of each example fitting test

examples (# of source + test per user
target tuples) (s) change (s)

DBLP - Amalgam 10 3.8 1.6 0.2
Amalgam S1 - S2 15 13.7 3.6 0.3
GUS - BioSQL 7 6.6 1.2 0.2

Table 2: Experimental results on canonical data examples of
real-life scenarios

We conducted additional experimental analysis to determine the
performance of the fitting test on different types of synthetic sets
of data examples on the schemas of the real-life scenarios. The
synthetic data examples are generated following the procedure in
Section 5.1. We used sets of n = 10 data examples, where in each
example, each source and each target relation was populated with
t = 3 tuples. In the GUS-BioSQL scenario, this translates to 21
source tuples and 18 target tuples in each data example, for a total
of 210 source tuples and 180 target tuples over the entire set of data
examples. The experimental results for the synthetic data examples
based on the GUS-BioSQL scenario are presented in Figure 6. The
trends exhibited by the sets of synthetic data examples based on the
remaining two scenarios, as well as for other values of the synthetic
data generation parameters are not shown here, but are similar. The
results we present are averaged over 200 experimental runs.

For the first experiment, in Figure 6(a), we kept the source value
fraction parameter f constant at 0.7, and we varied the diversity pa-
rameter d from 0.1 to 1.2 in increments of 0.1. The decrease in the
fitting test execution times as the diversity increases is justified by
the progressive simplification of the queries our system generates
(see Section 4). When the diversity of an instance increases, re-
peated occurrences of a given value become less frequent, hence
the canonical queries that are executed for the GLAV fitting test
contain where clauses with fewer conditions, the rest being equal.
This, combined with the fact that our implementation cannot make
use of indexes (since we do not possess apriori knowledge on the

142

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

10

11

12

13

14

15

16

17

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
ra

ct
io

n
 o

f
P

o
si

ti
v

e
 F

it
ti

n
g

 A
n

sw
e

rs

G
LA

V
 F

it
ti

n
g

 T
e

st
 T

im
e

 (
s)

Source Value Fraction

Influence of source value fraction parameter

GLAV Fitting Time

Positive Fit Fraction

0

0.2

0.4

0.6

0.8

1

1.2

0

10

20

30

40

50

60

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

F
ra

ct
io

n
 o

f
P

o
si

ti
v

e
 F

it
ti

n
g

 A
n

sw
e

rs

G
LA

V
 F

it
ti

n
g

 T
e

st
 T

im
e

 (
s)

Diversity

Influence of diversity parameter

GLAV Fitting Time

Positive fit fraction

(a) (b)

Figure 6: Experimental results for the fitting test on synthetic sets of data examples based on the GUS - BioSQL scenario: 10 data
examples, each consisting of 39 tuples (21 in the source and 18 in the target) (a) Influence of the diversity parameter, when the source
value fraction is 0.7; (b) Influence of the source value fraction parameter, when the diversity is 0.8.

values used in the data examples), explains the decrease in exe-
cution times. We also remark the decrease in the fraction of pos-
itive answers to the GLAV fitting test as the diversity parameter
increases. Intuitively, the number of source homomorphisms in-
creases as diversity increases (the canonical queries of the source
instances become less constrained). Since the majority of values
in the target instances are source values, it becomes increasingly
difficult to find, for each source homomorphism h, a target homo-
morphism ĥ that is in fact an extension of h.

In the second experiment, we varied the source value fraction
parameter between 0 and 1, while maintaining the diversity param-
eter constant at 0.8. As shown in Figure 6(b), we observe an initial
increase in the GLAV fitting time, followed by a decreasing trend.
The increase occurs when the source value fraction increases above
0. For the source value fraction equal to 0, the target instances con-
tain only nulls. As we mentioned in Section 4.1, the queries exe-
cuted for the fitting test in this case can be simplified, leading to
reduced execution times. When the source value fraction is greater
than 0, the fitting test implementation executes the more involved
nested and correlated SQL statements which take longer times to
execute. However, as the source value fraction increases beyond
0.1, there is a slight decrease in the fitting test times. This happens
because while the fraction of source values in the target instances
increases, target homomorphisms become more pre-determined by
the source homomorphisms. In other words, the space of target ho-
momorphisms to be explored becomes smaller. In particular, when
the source value fraction is 1, the target instances consist exclu-
sively of source values, hence the fitting tests essentially perform
only consistency checks. However, these are still more complex
and require longer time than the simpler uncorrelated queries ex-
ecuted at source value fraction equal to 0. Finally, we remark the
decrease in the fraction of positive answers to the fitting test as the
source value fraction increases. This follows the intuition that as
the source value fraction increases, the ratio of source values to
nulls in the target instances increases, and thus it becomes more
difficult to find consistent extensions of source homomorphisms to
target homomorphisms.

Although the fitting test behaves well in terms of execution time
on sets of data examples of practical size, the underlying high com-
plexity of the decision procedure resurfaces in handcrafted scenar-
ios like the following. Consider a source schema S = {P} and
a target schema T = {R}, where P and R are binary relations,
and a set E consisting of the single data example (I, J), where
I = {P (a, b1), . . . , P (a, bn)} and J = {R(c, b1), . . . , R(c, bn)}.

Even for relatively modest sizes of the data example above, such
as for n = 10, the fitting test requires very long execution times.
However, this is not entirely unexpected, since the fitting test was
shown to be Πp

2-complete (Theorem 3.8). In fact, in the scenario
above, the number of source homomorphisms from I to itself is of
the order nn. We remark that encoding our fitting tests as quanti-
fied boolean formulas (QBF), followed by testing the satisfiability
of such formulas using some of the leading QBF solvers4 leads to
similar very long execution times.

5.3 Interactive Mapping Refinement
To further investigate the practicality of our techniques, we sim-

ulate an interactive mapping refinement process via data examples,
and study the behavior of the fitting test.

The simulation starts from a set of canonical examples for a real-
life mapping scenario, or from a set of synthetic examples based on
the schemas of a real-life scenario, and consists of a sequence of
changes that a user might apply to the data examples to align them
to the intended mapping semantics. The types of user changes we
consider here are insertions and deletions of tuples in the target in-
stances of data examples. In our experiments, each run consisted of
a sequence of 20 changes, with equal probability tuple insertions or
deletions. For a deletion change, the tuple to be deleted was cho-
sen through a uniform random choice over the tuples in the target
instances. For an insertion change, the target relation to be updated
was chosen uniformly at random. Each value of the tuple to be
inserted was chosen to be either a source value (with probability
0.4), or a null. If a null was inserted, it was either a fresh value
(with probability 0.6), or one of the pre-existing nulls in the target
instance. Furthermore, after the failure of a fitting test, the previ-
ous user change is undone with probability 0.75. This improves the
realism of our simulation, by modeling situations in which the user
decides to take back a change once the fitting test fails.

The results obtained following the simulations are presented in
Table 2 for canonical sets of examples of the real-life scenarios,
and in Table 3 for synthetic sets of examples based on the same
scenarios. The synthetic examples were generated using the con-
figuration tuple (n = 10, t = 3, d = 0.6, f = 0.7), which was
chosen here for illustration purposes, as the results obtained with
other configuration parameters were similar. The numbers are av-
eraged over 50 experimental runs. The times required for the fitting
test scale as expected from the canonical data examples to the syn-

4http://www.qbflib.org/qbfeval

143

Number Size of Initial Fitting
of each example fitting test

examples (# of source + test per user
target tuples) (s) change (s)

DBLP - Amalgam 10 48 17.7 1.8
Amalgam S1 - S2 10 126 222.4 23.1
GUS - BioSQL 10 39 14.2 1.5

Table 3: Interactive mapping refinement on synthetic sets of
data examples (n = 10, t = 3, d = 0.6, f = 0.7) based on
real-life scenarios

thetic data examples, given the significant increase in the size of
each data example.

We remark a sharp decrease in the time needed for the fitting
test after each of the user changes (column 5), from the initial test
before the first user change (column 4). For instance, on the canon-
ical sets of examples for the real-life scenarios, the decrease is from
1.6s to 0.2s, from 3.6s to 0.3s, and from 1.2s to 0.2s. This is a con-
sequence of our implementation technique. In our experiments, the
example sets were small enough to fit entirely in the DB2 buffer
pool in main memory. Moreover, there were no other concurrent
workloads on the database. Thus, the user changes updated data in
main memory. Since there are no other workloads competing for
buffer space, the updated examples are still in main memory when
the next fitting test is performed. Hence these fitting tests execute
much faster than the initial test, which needs to read the data from
disk. In addition, after each user change on a data example E, only
the definition of the function associated to E (see Section 4) has to
be altered, redeployed to DB2 and recompiled.

Another consequence of our implementation approach is that a
negative result for a fitting test is obtained faster than a positive re-
sult. In our experiments, positive fitting results represent a minor-
ity, which is not surprising, since intuitively it is difficult to main-
tain the existence of a fitting mapping through random changes.
However, we observed that the times required for positive and neg-
ative fitting tests do not differ significantly. Hence, the sharp de-
crease in execution times during the interactive design simulation
we discussed above is not significantly affected by this phenomenon.

6. CONCLUDING REMARKS
We developed a principled framework for the interactive design

and refinement of schema mappings using data examples. A fun-
damental component of our framework is the GLAV fitting genera-
tion problem, which we brought into center stage and investigated
in depth. We presented an algorithm that, given a finite set of data
examples, either produces a GLAV schema mapping that fits these
examples, or reports that none exists. We showed that the fitting
schema mapping produced by the algorithm, if one such schema
mapping exists, possesses several desirable properties. In particu-
lar, it is guaranteed to be the most general GLAV schema mapping
that fits the given data examples, and also to have length linear in
the total size of the input data examples. Furthermore, our GLAV
fitting algorithm is complete for GLAV-schema-mapping design, in
the sense that (up to logical equivalence) every GLAV schema map-
ping can be obtained by our algorithm when given the right set of
data examples. In the worst-case, our GLAV fitting algorithm runs
in exponential time, which is an inevitable consequence of the NP-
hardness of the underlying GLAV fitting decision problem (in fact,
we showed that this problem is complete for Πp

2 , hence harder than
NP-complete). In spite of this worst-case complexity, extensive ex-
perimental evaluation of our prototype implementation established
the viability of the example-driven approach to schema mapping

design. In particular, interactive response times were achieved for
real-life scenarios.

We believe that the example-driven approach to schema mapping
design proposed here can be fruitfully combined with other extant
approaches. Concretely, our approach may be used as a module
within other schema-mapping-design systems, such as those de-
scribed in the Introduction. After an initial candidate schema map-
ping is derived (for instance, on the basis of a visual specification),
an initial set of data examples could be generated from this candi-
date schema mapping and presented to a user, who may either ac-
cept or modify the examples. By running our GLAV fitting gener-
ation algorithm on the updated set of data examples, a new schema
mapping can then be generated, and this interactive process can be
iterated until the user is satisfied with the result.

7. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases.

Addison-Wesley, 1995.
[2] B. Alexe, L. Chiticariu, R. J. Miller, and W. C. Tan. Muse: Mapping

Understanding and deSign by Example. In ICDE, pages 10–19, 2008.
[3] B. Alexe, P. G. Kolaitis, and W. C. Tan. Characterizing schema

mappings via data examples. In ACM PODS, pages 261–272, 2010.
[4] B. Alexe, W. C. Tan, and Y. Velegrakis. STBenchmark: Towards a

Benchmark for Mapping Systems. PVLDB, 1(1):230–244, 2008.
[5] P. Barceló. Logical foundations of relational data exchange.

SIGMOD Record, 38(1):49–58, 2009.
[6] P. A. Bernstein, T. J. Green, S. Melnik, and A. Nash. Implementing

Mapping Composition. VLDB Journal, 17(2):333–353, 2008.
[7] A. Bonifati, E. Q. Chang, T. Ho, V. S. Lakshmanan, and R. Pottinger.

HePToX: Marrying XML and Heterogeneity in Your P2P Databases.
In VLDB, pages 1267–1270, 2005.

[8] A. K. Chandra and P. M. Merlin. Optimal implementation of
conjunctive queries in relational data bases. In STOC, pages 77–90,
1977.

[9] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data Exchange:
Semantics and Query Answering. TCS, 336(1):89–124, 2005.

[10] R. Fagin, P. G. Kolaitis, A. Nash, and L. Popa. Towards a Theory of
Schema-Mapping Optimization. In ACM PODS, pages 33–42, 2008.

[11] R. Fagin, P. G. Kolaitis, and L. Popa. Data Exchange: Getting to the
Core. ACM TODS, 30(1):174–210, 2005.

[12] G. H. Fletcher and C. M. Wyss. Towards a general framework for
effective solutions to the data mapping problem. Journal on Data
Semantics, XIV, 2009.

[13] G. H. L. Fletcher, M. Gyssens, J. Paredaens, and D. V. Gucht. On the
expressive power of the relational algebra on finite sets of relation
pairs. TKDE, 21(6):939–942, 2009.

[14] G. Gottlob and P. Senellart. Schema mapping discovery from data
instances. JACM, 57(2), 2010.

[15] L. M. Haas, M. A. Hernández, H. Ho, L. Popa, and M. Roth. Clio
Grows Up: From Research Prototype to Industrial Tool. In ACM
SIGMOD, pages 805–810, 2005.

[16] P. G. Kolaitis. Schema Mappings, Data Exchange, and Metadata
Management. In ACM PODS, pages 61–75, 2005.

[17] M. Lenzerini. Data Integration: A Theoretical Perspective. In ACM
PODS, pages 233–246, 2002.

[18] H. Mannila and K.-J. Räihä. Automatic generation of test data for
relational queries. JCSS, 38(2):240–258, 1989.

[19] C. Olston, S. Chopra, and U. Srivastava. Generating example data for
dataflow programs. In ACM SIGMOD, pages 245–256, 2009.

[20] C. H. Papadimitriou. Computational Complexity. Addison-Wesley,
1994.

[21] A. D. Sarma, A. G. Parameswaran, H. Garcia-Molina, and J. Widom.
Synthesizing view definitions from data. In ICDT, pages 89–103,
2010.

[22] B. ten Cate, P. G. Kolaitis, and W. C. Tan. Database constraints and
homomorphism dualities. In CP, 2010.

[23] L. Yan, R. J. Miller, L. M. Haas, and R. Fagin. Data-Driven
Understanding and Refinement of Schema Mappings. In ACM
SIGMOD, pages 485–496, 2001.

144

