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Abstract. Boolean satisfiability problems are an important benchmark for questions about
complexity, algorithms, heuristics, and threshold phenomena. Recent work on heuristics and the
satisfiability threshold has centered around the structure and connectivity of the solution space.
Motivated by this work, we study structural and connectivity-related properties of the space of
solutions of Boolean satisfiability problems and establish various dichotomies in Schaefer’s framework.
On the structural side, we obtain dichotomies for the kinds of subgraphs of the hypercube that can be
induced by the solutions of Boolean formulas, as well as for the diameter of the connected components
of the solution space. On the computational side, we establish dichotomy theorems for the complexity
of the connectivity and st-connectivity questions for the graph of solutions of Boolean formulas. Our
results assert that the intractable side of the computational dichotomies is PSPACE-complete, while
the tractable side—which includes but is not limited to all problems with polynomial-time algorithms
for satisfiability—is in P for the st-connectivity question, and in coNP for the connectivity question.
The diameter of components can be exponential for the PSPACE-complete cases, whereas in all
other cases it is linear; thus, diameter and complexity of the connectivity problems are remarkably
aligned. The crux of our results is an expressibility theorem showing that in the tractable cases, the
subgraphs induced by the solution space possess certain good structural properties, whereas in the
intractable cases, the subgraphs can be arbitrary.
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1. Introduction. In 1978, Schaefer [31] introduced a rich framework for ex-
pressing variants of Boolean satisfiability and proved a remarkable dichotomy theo-
rem: the satisfiability problem is in P for certain classes of Boolean formulas, while
it is NP-complete for all other classes in the framework. This result pinpoints the
computational complexity of numerous well-known variants of Boolean Sat, such as
3-Sat, Horn 3-Sat, Not-All-Equal 3-Sat, and 1-in-3 Sat. Schaefer’s dichotomy
theorem yields a classification of the computational complexity of constraint satisfac-
tion problems (CSPs) over the Boolean domain. Feder and Vardi [15] conjectured that
a dichotomy theorem holds for the complexity of CSPs over arbitrary finite domains.
This conjecture remains open to date, in spite of concerted efforts and some partial
progress, such as the case of domains of size 3 [8].
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In this article we concentrate on the Boolean CSPs, but we ask a new set of
questions, which was motivated from the study of random instances of satisfiability.
In recent years, the structure of the space of solutions for random instances has been
the main consideration at the basis of both algorithms for and mathematical analysis
of the satisfiability problem [3, 26, 28, 25]. It has been conjectured for 3-Sat [28, 4]
and proved for 8-Sat [27, 1] that the solution space fractures as one approaches the
critical region from below. This apparently leads to performance deterioration of the
standard satisfiability algorithms, such as WalkSAT [32] and DPLL [2]. It is also the
main consideration behind the design of the survey propagation algorithm, which has
far superior performance on random instances of satisfiability [28]. This body of work
has served as a motivation for us to pursue the investigation reported here.

Our aim in this article is to carry out a comprehensive exploration of the connec-
tivity properties of the space of solutions of Boolean formulas from a worst-case point
of view. The solutions (satisfying assignments) of a given n-variable Boolean formula
ϕ induce a subgraph G(ϕ) of the n-dimensional hypercube. Thus, the following two
decision problems, called the connectivity problem and the st-connectivity problem,
arise naturally: (i) Given a Boolean formula ϕ, is G(ϕ) connected? (ii) Given a
Boolean formula ϕ and two solutions s and t of ϕ, is there a path from s to t in
G(ϕ)?

While there has been an intensive study of the structure of the solution space of
Boolean satisfiability problems for random instances, our work seems to be the first
to explore this issue from a worst-case viewpoint. A priori, it is not clear what to
expect. Is the hardness of the satisfiability question for a given CSP at all correlated
with the properties of the graphs realizable as G(ϕ) of formulas in the given class?
What kinds of graphs are realizable? Are there Boolean CSPs whose connectivity
graphs can have connected components with exponential diameter and, if yes, can
we characterize these CSPs? What is the complexity of the st-connectivity and the
connectivity problem, and is it correlated with the answer to the previous question?

In this article, we investigate the above questions for Boolean CSPs and obtain
answers for all of them. Our first complexity-theoretic result is a dichotomy theorem
for the st-connectivity problem. This result reveals that the tractable side is much
more generous than the tractable side for satisfiability, while the intractable side is
PSPACE-complete. Specifically, Schaefer showed that the satisfiability problem is
solvable in polynomial time precisely for formulas built from Boolean relations all of
which are bijunctive, or all of which are Horn, or all of which are dual Horn, or all of
which are affine. We identify new classes of Boolean relations, called tight relations,
that properly contain the classes of bijunctive, Horn, dual Horn, and affine relations.
We show that st-connectivity is solvable in linear time for formulas built from tight
relations, and PSPACE-complete in all other cases. Our second main result is a
dichotomy theorem for the connectivity problem: it is in coNP for formulas built
from tight relations, and PSPACE-complete in all other cases.

In addition to these two complexity-theoretic dichotomies, we establish a struc-
tural dichotomy theorem for the diameter of the connected components of the solution
space of Boolean formulas. This result asserts that, in the PSPACE-complete cases,
the diameter of the connected components can be exponential, but in all other cases
it is linear. Thus, small diameter and tractability of the st-connectivity problem are
remarkably aligned.

To establish our results, the main challenge is to show that for noneasy relations,
both the connectivity problem and the st-connectivity problem are PSPACE-hard.
In Schaefer’s dichotomy theorem, NP-hardness of satisfiability was a consequence of
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an expressibility theorem, which asserted that every Boolean relation can be obtained
as a projection over a formula built from clauses in the “hard” relations. Schaefer’s
notion of expressibility is inadequate for our problem. Instead, we introduce and work
with a delicate and stricter notion of expressibility, which we call structural express-
ibility. Intuitively, structural expressibility means that, in addition to definability via
a projection, the space of witnesses of the existential quantifiers in the projection has
certain strong connectivity properties that allow us to capture the graph structure of
the relation that is being defined. It should be noted that Schaefer’s dichotomy theo-
rem can also be proved using a Galois connection and Post’s celebrated classification
of the lattice of Boolean clones (see [5]). This method, however, does not appear to
apply to connectivity, as the boundaries discovered here cut across Boolean clones.
Thus, the use of structural expressibility or some other refined definability technique
seems unavoidable.

The first step towards proving PSPACE-completeness is to show that both connec-
tivity and st-connectivity are hard for 3-CNF-formulas; this is proved by a reduction
from a generic PSPACE computation. Next, we identify the simplest relations that
are not tight: these are ternary relations whose graph is a path of length 4 between
assignments at Hamming distance 2. We show that these paths can structurally ex-
press all 3-CNF clauses. The crux of our hardness result is an expressibility theorem
to the effect that one can structurally express such a path from any set of relations
which is not tight.

Finally, we show that all tight relations have “good” structural properties. Specif-
ically, in a tight relation every component has a unique minimum element, or every
component has a unique maximum element, or the Hamming distance coincides with
the shortest-path distance in the relation. These properties are inherited by every for-
mula built from tight relations and yield both small diameter and linear algorithms
for st-connectivity.

Related work. In parallel and independently of our work, a similar dichotomy
was found for the k-colorability problem by Bonsma and Cereceda [6] and Cere-
ceda, van den Heuvel, and Johnson [9]. Specifically, Cereceda, van den Heuvel, and
Johnson [9] showed that the case of 3-colorability has properties similar to our tight
problems—its structure implies (by a proof that is much more intricate than ours for
tight problems) that the diameter of connected components of the graph of 3-colorings
is at most quadratic in the number of vertices. This implies that the st-connectivity
question for 3-colorability is in coNP. Furthermore, Bonsma and Cereceda [6] showed
that for k ≥ 4, st-connectivity is PSPACE-complete. This result shows an interesting
complexity-theoretic difference between 3-colorability and 4-colorability. It also indi-
cates that an extension of our result to larger domains will be quite challenging, since
one would have to identify a set of “tight” problems that includes 3-colorability. It is
conceivable that characterizing the complexity of the connectivity question is easier
than characterizing the complexity of the satisfiability question, but at present there
is no conjecture that generalizes both the Boolean case and the case of colorings.

In an earlier piece of related work, Brightwell and Winkler [7] considered the
connectivity of the graph of solutions of the graph-homomorphism problems (which
are a subclass of CSPs). They characterized those graphs H for which the graph-
homomorphism problem with template H , also known as the H-coloring problem,
has a graph of solutions that is always connected. Their motivation is the study of
uniqueness of Gibbs measures, which is related to the performance of standard Markov
chain algorithms for sampling and counting solutions. We note that the state-space
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of many of the Markov chains studied in this area is the set of solutions, and steps
of the chain are single-variable flips, so that the chain is just a random walk on the
graph of solutions considered here.

In a different direction, there has been a substantial body of work on dichotomy
theorems for various aspects of constraint satisfaction on the Boolean domain, in-
cluding optimization [10, 14, 21], counting [12], inverse satisfiability [20], minimal
satisfiability [22], lexicographically minimal satisfiability [30], and propositional ab-
duction [13]. Our results contribute to this body of work.

Finally, it is worth mentioning that satisfiability in the context of random in-
stances has also been considered not only for specific CSPs such as k-Sat and k-
colorability, but also for general CSPs. Several models of general random CSPs have
been studied by Creignou and Daudé [11], and independently by Molloy [29].

2. Basic concepts and statements of results. A CNF-formula is a Boolean
formula of the form C1∧· · ·∧Cn, where each Ci is a clause, i.e., a disjunction of literals.
If k is a positive integer, then a k-CNF-formula is a CNF-formula C1 ∧ · · · ∧ Cn in
which each clause Ci is a disjunction of at most k literals.

A logical relation R is a nonempty subset of {0, 1}k for some k ≥ 1; k is the
arity of R. Let S be a finite set of logical relations. A CNF(S)-formula over a set
of variables V = {x1, . . . , xn} is a finite conjunction C1 ∧ · · · ∧ Cn of clauses built
using relations from S, variables from V , and the constants 0 and 1; this means
that each Ci is an expression of the form R(ξ1, . . . , ξk), where R ∈ S is a relation of
arity k, and each ξj is a variable in V or one of the constants 0, 1. Note that the
constants 0 and 1 are allowed in CNF(S)-formulas; this is equivalent to assuming
that the set S contains the singleton logical relations {0} and {1}. One could also
consider CNF(S)-formulas without constants. In fact, this class of formulas has
already been considered by Schaefer [31], as well as by other researchers in subsequent
investigations. In particular, Schaefer [31] also established a dichotomy theorem for
the complexity of the satisfiability problem for CNF(S)-formulas without constants.
A solution of a CNF(S)-formula ϕ is an assignment s = (a1, . . . , an) of Boolean values
to the variables that makes every clause of ϕ true. A CNF(S)-formula is satisfiable
if it has at least one solution.

The satisfiability problem Sat(S) associated with a finite set S of logical rela-
tions asks the following: Given a CNF(S)-formula ϕ, is it satisfiable? Many well-
known restrictions of Boolean satisfiability, such as 3-Sat, Not-All-Equal 3-Sat,
and Positive 1-in-3 Sat, can be cast as Sat(S) problems, for a suitable choice of
S. For instance, let R0 = {0, 1}3\{000}, R1 = {0, 1}3\{100}, R2 = {0, 1}3\{110},
R3 = {0, 1}3\{111}. Then 3-Sat is the problem Sat({R0, R1, R2, R3}). Similarly,
Positive 1-in-3Sat is Sat({R1/3}), where R1/3 = {100, 010, 001}.

Schaefer [31] identified the complexity of every satisfiability problem Sat(S),
where S ranges over all finite sets of logical relations. To state Schaefer’s main result,
we need to define some basic concepts.

Definition 2.1. Let R be a logical relation.
1. R is bijunctive if it is the set of solutions of a 2-CNF-formula.
2. R is Horn if it is the set of solutions of a Horn formula, where a Horn formula

is a CNF-formula such that each conjunct has at most one positive literal.
3. R is dual Horn if it is the set of solutions of a dual Horn formula, where a

dual Horn formula is a CNF-formula such that each conjunct has at most
one negative literal.

4. R is affine if it is the set of solutions of a system of linear equations over Z2.
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Each of these types of logical relations can be characterized in terms of closure
properties [31]. In what follows, we use boldface letters to denote vectors of Boolean
values or vectors of variables. A relation R is bijunctive if and only if it is closed
under the majority operation; this means that if a,b, c ∈ R, then maj(a,b, c) ∈ R,
where maj(a,b, c) is the vector whose ith bit is the majority of ai, bi, ci. A relation R
is Horn if and only if it is closed under ∧; this means that if a,b ∈ R, then a∧b ∈ R,
where a∧b is the vector whose ith bit is ai ∧ bi. Similarly, R is dual Horn if and only
if it is closed under ∨. Finally, R is affine if and only if it is closed under a ⊕ b⊕ c.

Definition 2.2. A set S of logical relations is Schaefer if at least one of the
following conditions holds:

1. Every relation in S is bijunctive.
2. Every relation in S is Horn.
3. Every relation in S is dual Horn.
4. Every relation in S is affine.

A logical relation R is Schaefer if the singleton {R} is Schaefer.
Since the property of a set being Schaefer is characterized in terms of closure

under operations that are binary or ternary, it follows that there is a cubic algorithm
to determine whether or not a given a finite set S of logical relations is Schaefer
(assuming that each relation in S is given as a list of Boolean vectors).

Theorem 2.3 (Schaefer’s dichotomy theorem [31]). Let S be a finite set of logical
relations. If S is Schaefer, then Sat(S) is in P; otherwise, Sat(S) is NP-complete.

Theorem 2.3 is called a dichotomy theorem because Ladner [23] has shown that if
P �= NP, then there are problems in NP that are neither in P nor NP-complete. Thus,
Theorem 2.3 asserts that no Sat(S) problem is a problem of the kind discovered by
Ladner. Note that the aforementioned characterization of Schaefer sets in terms of
closure properties yields a cubic algorithm for determining, given a finite set S of
logical relations, whether Sat(S) is in P or is NP-complete (here, the input size is
the sum of the sizes of the relations in S).

The more difficult part of the original proof of Schaefer’s dichotomy theorem is to
show that if S is not Schaefer, then Sat(S) is NP-complete. This is a consequence of
a powerful result about the expressibility of logical relations. We say that a relation
R is expressible from a set S of relations if there is a CNF(S)-formula ϕ(x,y) such
that R = {a| ∃yϕ(a,y)}.

Theorem 2.4 (Schaefer’s expressibility theorem [31]). Let S be a finite set of
logical relations. If S is not Schaefer, then every logical relation is expressible from
S.

In this paper, we are interested in the connectivity properties of the space of
solutions of CNF(S)-formulas. If ϕ is a CNF(S)-formula with n variables, then
the solution graph G(ϕ) of ϕ denotes the subgraph of the n-dimensional hypercube
induced by the solutions of ϕ. This means that the vertices of G(ϕ) are the solutions
of ϕ, and there is an edge between two solutions of G(ϕ) precisely when they differ
in exactly one variable.

We consider the following two algorithmic problems for CNF(S)-formulas.
Problem 1. The Connectivity Problem Conn(S). Given a CNF(S)-formula ϕ, is

G(ϕ) connected? (If ϕ is unsatisfiable, then the answer to this problem is “yes.”)
Problem 2. The st-Connectivity Problem st-Conn(S). Given a CNF(S)-formula

ϕ and two solutions s and t of ϕ, is there a path from s to t in G(ϕ)?
To pinpoint the computational complexity of Conn(S) and st-Conn(S), we need

to introduce certain new types of relations.
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Definition 2.5. Let R ⊆ {0, 1}k be a logical relation.
1. R is componentwise bijunctive if every connected component of the graph
G(R) is a bijunctive relation.

2. R is OR-free if the relation OR = {01, 10, 11} cannot be obtained from R
by setting k − 2 of the coordinates of R to a constant c ∈ {0, 1}k−2. In
other words, R is OR-free if (x1 ∨ x2) is not definable from R by fixing k− 2
variables.

3. R is NAND-free if the relation NAND = {00, 01, 10} cannot be obtained from
R by setting k − 2 of the coordinates of R to a constant c ∈ {0, 1}k−2. In
other words, R is NAND-free if (x̄1 ∨ x̄2) is not definable from R by fixing
k − 2 variables.

We are now ready to introduce the key concept of a tight set of relations.
Definition 2.6. A set S of logical relations is tight if at least one of the following

three conditions holds:
1. Every relation in S is componentwise bijunctive.
2. Every relation in S is OR-free.
3. Every relation in S is NAND-free.

A logical relation R is tight if the singleton {R} is tight.
In section 4, we show that if S is Schaefer, then it is tight. Moreover, we show

that the converse does not hold. It is also easy to see that there is a polynomial-time
algorithm (in fact, a cubic algorithm) for testing whether a given relation is tight.

Just as Schaefer’s dichotomy theorem follows from an expressibility statement,
our dichotomy theorems are derived from the following theorem, which we will call
the structural expressibility theorem. The precise definition of the concept of struc-
tural expressibility is given in section 3. Intuitively, this concept strengthens the
concept of expressibility with the requirement that the space of the witnesses to the
existentially quantified variables has certain strong connectivity properties.

Theorem 2.7 (structural expressibility theorem). Let S be a finite set of logical
relations. If S is not tight, then every logical relation is structurally expressible from
S.

Using the structural expressibility theorem, we obtain the following dichotomy
theorems for the computational complexity of Conn(S) and st-Conn(S).

Theorem 2.8. Let S be a finite set of logical relations. If S is tight, then
Conn(S) is in coNP; otherwise, it is PSPACE-complete.

Theorem 2.9. Let S be a finite set of logical relations. If S is tight, then st-

Conn(S) is in P; otherwise, st-Conn(S) is PSPACE-complete.
We also show that if S is tight, but not Schaefer, then Conn(S) is coNP-complete.
Example 1. The set S = {R1/3}, where R1/3 = {100, 010, 001}, is tight (actually,

it is componentwise bijunctive), but not Schaefer. It follows that Sat(S) is NP-
complete (recall that this problem is Positive 1-in-3 Sat), st-Conn(S) is in P, and
Conn(S) is coNP-complete.

Example 2. The set S = {RNAE}, where RNAE = {0, 1}3\{000, 111}, is not tight;
hence Sat(S) is NP-complete (this problem is Positive Not-All-Equal 3-Sat),
while both st-Conn(S) and Conn(S) are PSPACE-complete.

Example 3. The set S = {RV }, where RV = {110, 100, 000, 001, 011}, is not tight.
It is OR-free, but not NAND-free or componentwise bijunctive, and it is not Schaefer.
Hence Sat(S) is NP-complete, st-Conn(S) is in P, and Conn(S) is in coNP.

Remark. The last example illustrates that OR-free (NAND-free) relations cannot
be thought of as componentwise Horn (dual Horn).
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The dichotomy in the computational complexity of Conn(S) and st-Conn(S) is
accompanied by a parallel structural dichotomy in the size of the diameter of G(ϕ)
(where, for a CNF(S)-formula ϕ, the diameter of G(ϕ) is the maximum of the diam-
eters of the components of G(ϕ)).

Theorem 2.10. Let S be a finite set of logical relations. If S is tight, then for
every CNF(S)-formula ϕ, the diameter of G(ϕ) is linear in the number of variables
of ϕ; otherwise, there are CNF(S)-formulas ϕ such that the diameter of G(ϕ) is
exponential in the number of variables of ϕ.

Our results and their comparison to Schaefer’s dichotomy theorem are summa-
rized in the table below.

S Sat(S) st-Conn(S) Conn(S) Diameter
Schaefer P P coNP O(n)
Tight, non-Schaefer NP-complete P coNP-complete O(n)

Nontight NP-complete PSPACE-complete PSPACE-complete 2Ω(
√

n)

We conjecture that the complexity of Conn(S) exhibits a trichotomy, that is, for
every finite set S of logical relations, one of the following holds:

1. Conn(S) is in P.
2. Conn(S) is coNP-complete.
3. Conn(S) is PSPACE-complete.

As mentioned above, we will show that if S is tight but not Schaefer, then
Conn(S) is coNP-complete. We will also show that if S is bijunctive or affine, then
Conn(S) is in P. Hence, to settle the above conjecture, it remains to pinpoint the
complexity of Conn(S) whenever S is Horn and whenever S is dual Horn. In the con-
ference version [16] of the present paper, we further conjectured that if S is Horn or
dual Horn, then Conn(S) is in P. In other words, we conjectured that if S is Schaefer,
then Conn(S) is in P. This second conjecture, however, was subsequently disproved
by Makino, Tamaki, and Yamamoto [24], who discovered a particular Horn set S such
that Conn(S) is coNP-complete. Here, we go beyond the results obtained in the con-
ference version of the present paper and identify additional conditions on a Horn set S
implying that Conn(S) is in P. These new results suggest a natural dichotomy within
Schaefer sets of relations and, thus, provide evidence for the trichotomy conjecture.

The remainder of this paper is organized as follows. In section 3, we prove
the structural expressibility theorem, establish the hard side of the dichotomies for
Conn(S) and for st-Conn(S), and contrast our result to Schaefer’s expressibility and
dichotomy theorems. In section 4, we describe the easy side of the dichotomy—the
polynomial-time algorithms and the structural properties for tight sets of relations.
In addition, we obtain partial results towards the trichotomy conjecture for Conn(S).

3. The hard case of the dichotomy: Nontight sets of relations. In this
section, we address the hard side of the dichotomy, where we deal with the more
computationally intractable cases. This is also the harder part of our proof. We
define the notion of structural expressibility in section 3.1 and prove the structural
expressibility theorem in section 3.2. This theorem implies that for all nontight sets
S and S′, the connectivity problems Conn(S) and Conn(S′) are polynomial-time
equivalent; moreover, the same holds for the connectivity problems st-Conn(S) and
st-Conn(S′). In addition, the diameters of the solution graphs of CNF(S)-formulas
and CNF(S′)-formulas are also related polynomially. In section 3.3, we prove that
for 3-CNF-formulas the connectivity problems are PSPACE-complete, and the di-
ameter can be exponential. This fact combined with the structural expressibility
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theorem yields the hard side of all of our dichotomy results, as well as the exponential
size of the diameter.

We will use a,b, . . . to denote Boolean vectors, and x and y to denote vectors of
variables. We write |a| to denote the Hamming weight (number of 1’s) of a Boolean
vector a. Given two Boolean vectors a and b, we write |a−b| to denote the Hamming
distance between a and b. Finally, if a and b are solutions of a Boolean formula ϕ and
lie in the same component of G(ϕ), then we write dϕ(a,b) to denote the shortest-path
distance between a and b in G(ϕ).

3.1. Structural expressibility. As stated in the previous section, in his di-
chotomy theorem, Schaefer [31] used the following notion of expressibility: a relation
R is expressible from a set S of relations if there is a CNF(S)-formula ϕ so that
R = {a| ∃yϕ(a,y)}. This notion is not sufficient for our purposes. Instead, we in-
troduce a more delicate notion which we call structural expressibility. Intuitively, we
view the relation R as a subgraph of the hypercube, rather than just a subset, and
require that this graph structure also be captured by the formula ϕ.

Definition 3.1. A relation R is structurally expressible from a set of relations
S if there is a CNF(S)-formula ϕ such that the following conditions hold:

1. R = {a| ∃yϕ(a,y)}.
2. For every a ∈ R, the graph G(ϕ(a,y)) is connected.
3. For a,b ∈ R with |a− b| = 1, there exists w such that (a,w) and (b,w) are

solutions of ϕ.
For a ∈ R, the witnesses of a are the y’s such that ϕ(a,y) is true. The last

two conditions say that the witnesses of a ∈ R are connected, and that neighboring
a,b ∈ R have a common witness. This allows us to simulate an edge (a,b) in G(R)
by a path in G(ϕ), and thus relate the connectivity properties of the solution spaces.
There is, however, a price to pay: it is much harder to come up with formulas that
structurally express a relationR. An example is when S is the set of all paths of length
4 in {0, 1}3, a set that plays a crucial role in our proof. While 3-Sat relations are easily
expressible from S in Schaefer’s sense, the CNF(S)-formulas that structurally express
3-Sat relations are fairly complicated and have a large witness space.

An example of the difference between a structural and a nonstructural expression
is shown in Figure 3.1. Consider the logical relation given by the formula (x1∨x2∨x3);
the graph of this logical relation is depicted in Figure 3.1(a). Consider also the
Not-All-Equal relation RNAE = {0, 1}3 \ {000, 111}. Figure 3.1(b) depicts the
graph of the expression ϕ(x1, x2, x3, y1, y2) = RNAE(x1, x2, y1) ∧ RNAE(x2, x3, y2) ∧
RNAE(y1, y2, 1). This is a structural expression because (x1∨x2∨x3) ≡ ∃y1, y2ϕ(x1, x2,
x3, y1, y2) and connectivity is preserved. Finally, Figure 3.1(c) depicts the graph of
the expression ψ(x1, x2, x3, y1) = RNAE(x1, x2, y1)∧RNAE(ȳ1, x3, 0)∧RNAE(y1, x2, 1).
Even though (x1 ∨ x2 ∨ x3) ≡ ∃y1ψ(x1, x2, x3, y1), this is not a structural expression
because connectivity is not preserved.

Lemma 3.2. Let S and S′ be sets of relations such that every R ∈ S′ is struc-
turally expressible from S, and, moreover, there is a polynomial-time algorithm that
produces a structural expression from S for every R ∈ S′. Given a CNF(S′)-formula
ψ(x), one can efficiently construct a CNF(S)-formula ϕ(x,y) such that

1. ψ(x) ≡ ∃y ϕ(x,y);
2. if (s,ws), (t,wt) ∈ ϕ are connected in G(ϕ) by a path of length d, then there

is a path from s to t in G(ψ) of length at most d;
3. if s, t ∈ ψ are connected in G(ψ), then for every witness ws of s, and every

witness wt of t, there is a path from (s,ws) to (t,wt) in G(ϕ).
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Fig. 3.1. Expressing the relation (x1 ∨ x2 ∨ x3) from the RNAE relation.

Proof. Suppose ψ is a formula on n variables that consists ofm clausesC1, . . . , Cm.
For clause Cj , assume that the set of variables is Vj ⊆ [n] = {1, . . . , n}, and that it
involves relation Rj ∈ S. Thus, ψ(x) is ∧m

j=1Rj(xVj ). Let ϕj be the structural ex-
pression for Rj from S′, so that Rj(xVj ) ≡ ∃yj ϕj(xVj ,yj). Let y be the vector
(y1, . . . ,ym) and let ϕ(x,y) be the formula ∧m

j=1ϕj(xVj ,yj). Then ψ(x) ≡ ∃y ϕ(x,y).
Statement 2 follows from 1 by projection of the path on the coordinates of x. For

statement 3, consider s, t ∈ ψ that are connected in G(ψ) via a path s = u0 → u1 →
· · · → ur = t . For every ui,ui+1, and clause Cj , there exists an assignment wi

j

to yj such that both (ui
Vj ,w

i
j) and (ui+1

Vj ,w
i
j) are solutions of ϕj , by condition

2 of structural expressibility. Thus (ui,wi) and (ui+1,wi) are both solutions of ϕ,
where wi = (wi

1, . . . ,wi
m). Further, for every ui, the space of solutions of ϕ(ui,y)

is the product space of the solutions of ϕj(ui
Vj ,yj) over j = 1, . . . ,m. Since these

are all connected by condition 3 of structural expressibility, G(ϕ(ui,y)) is connected.
The following describes a path from (s,ws) to (t,wt) in G(ϕ): (s,ws)� (s,w0) →
(u1,w0)� (u1,w1) → · · ·� (ur−1,wr−1) → (t,wr−1)� (t,wt). Here� indicates
a path in G(ϕ(ui,y)).

Corollary 3.3. Suppose S and S′ are sets of relations such that every R ∈ S′ is
structurally expressible from S, and, moreover, there is a polynomial-time algorithm
that produces a structural expression from S for every R ∈ S′.

1. There are polynomial-time reductions from Conn(S′) to Conn(S), and from
st-Conn(S′) to st-Conn(S).

2. If there exists a CNF(S′)-formula ψ(x) with n variables, m clauses, and
diameter d, then there exists a CNF(S)-formula ϕ(x,y), where y is a vector
of O(m) variables, such that the diameter of G(φ) is at least d.
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3.2. The structural expressibility theorem. In this subsection, we prove the
structural expressibility theorem. The main step in the proof is Lemma 3.4, which
shows that if S is not tight, then we can structurally express the 3-clause relations
from the relations in S. If k ≥ 2, then a k-clause is a disjunction of k variables or
negated variables. For 0 ≤ i ≤ k, let Di be the set of all satisfying truth assignments
of the k-clause whose first i literals are negated, and let Sk = {D0, D1, . . . , Dk}. Thus,
CNF(Sk) is the collection of k-CNF-formulas.

Lemma 3.4. If set S of relations is not tight, S3 is structurally expressible from
S.

Proof. First, observe that all 2-clauses are structurally expressible from S. There
exists R ∈ S which is not OR-free, so we can express (x1∨x2) by substituting constants
in R. Similarly, we can express (x̄1 ∨ x̄2) using a relation that is not NAND-free. The
last 2-clause (x1 ∨ x̄2) can be obtained from OR and NAND by a technique that
corresponds to reverse resolution. (x1 ∨ x̄2) = ∃y (x1 ∨ y) ∧ (ȳ ∨ x̄2). It is easy to
see that this gives a structural expression. From here onwards we assume that S
contains all 2-clauses. The proof now proceeds in four steps. First, we will express
a relation in which there exist two elements that are at graph distance larger than
their Hamming distance. Second, we will express a relation that is just a single path
between such elements. Third, we will express a relation which is a path of length 4
between elements at Hamming distance 2. Finally, we will express the 3-clauses.

Step 1. Structurally expressing a relation in which some distance expands. For
a relation R, we say that the distance between a and b expands if a and b are
connected in G(R), but dR(a,b) > |a − b|. In section 4.2, Lemma 4.3, we will
show that no distance expands in componentwise bijunctive relations. The same also
holds true for the relation RNAE = {0, 1}3 \ {000, 111}, which is not componentwise
bijunctive. Nonetheless, we show here that if R is not componentwise bijunctive,
then, by adding 2-clauses, we can structurally express a relation Q in which some
distance expands. For instance, when R = RNAE, then we can take Q(x1, x2, x3) =
RNAE(x1, x2, x3) ∧ (x̄1 ∨ x̄3), as shown in Figure 3.2. The distance between a = 100
and b = 001 in Q expands. Similarly, in the general construction, we identify a and
b on a cycle, and add 2-clauses that eliminate all the vertices along the shorter arc
between a and b.

Since S is not tight, it contains a relation R which is not componentwise bijunc-
tive. If R contains a,b where the distance between them expands, we are done. So
assume that for all a,b ∈ G(R), dR(a,b) = |a − b|. Since R is not componentwise
bijunctive, there exists a triple of assignments a,b, c lying in the same component
such that maj(a,b, c) is not in that component. Choose the triple such that the sum
of pairwise distances dR(a,b)+dR(b, c)+dR(c, a) is minimized. Let U = {i|ai �= bi},
V = {i|bi �= ci}, and W = {i|ci �= ai}. Since dR(a,b) = |a − b|, a shortest path does
not flip variables outside of U , and each variable in U is flipped exactly once. The
same holds for V and W . We note some useful properties of the sets U, V,W :

1. Every index i ∈ U ∪ V ∪W occurs in exactly two of U, V,W . Consider going
by a shortest path from a to b to c and back to a. Every i ∈ U ∪ V ∪W is
seen an even number of times along this path since we return to a. It is seen
at least once, and at most thrice, so in fact it occurs twice.

2. Every pairwise intersection U ∩ V, V ∩W , and W ∩U is nonempty. Suppose
the sets U and V are disjoint. From property 1, we must have W = U ∪ V .
But then it is easy to see that maj(a,b, c) = b. This contradicts the choice
of a,b, c.
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Fig. 3.2. Step 1 of the proof of Lemma 3.4, and an example.

3. The sets U ∩ V and U ∩W partition the set U . By property 1, each index of
U occurs in one of V and W as well. Also since no index occurs in all three
sets U, V,W this is in fact a disjoint partition.

4. For each index i ∈ U ∩W , it holds that a ⊕ ei �∈ R. Assume for the sake of
contradiction that a′ = a⊕ ei ∈ R. Since i ∈ U ∩W we have simultaneously
moved closer to both b and c. Hence we have dR(a′,b)+dR(b, c)+dR(c, a′) <
dR(a,b) + dR(b, c) + dR(c,a). Also maj(a′,b, c) = maj(a,b, c). But this
contradicts our choice of a,b, c.

Property 4 implies that the shortest paths to b and c diverge at a, since for any
shortest path to b the first variable flipped is from U ∩V , whereas for a shortest path
to c it is from W ∩ V . Similar statements hold for the vertices b and c. Thus along
the shortest path from a to b the first bit flipped is from U∩V and the last bit flipped
is from U ∩W . On the other hand, if we go from a to c and then to b, all the bits
from U ∩W are flipped before the bits from U ∩ V . We use this crucially to define
Q. We will add a set of 2-clauses that enforce the following rule on paths starting
at a: Flip variables from U ∩W before variables from U ∩ V . This will eliminate all
shortest paths from a to b since they begin by flipping a variable in U ∩ V and end
with U ∩W . The paths from a to b via c survive since they flip U ∩W while going
from a to c and U ∩ V while going from c to b. However, all remaining paths have
length at least |a − b| + 2 since they flip twice some variables not in U .

Take all pairs of indices {(i, j)|i ∈ U ∩W, j ∈ U ∩ V }. The following conditions
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hold from the definition of U, V,W : ai = c̄i = b̄i and aj = cj = b̄j . Add the 2-clause
Cij asserting that the pair of variables xixj must take values in {aiaj , cicj , bibj} =
{aiaj , āiaj , āiāj}. The new relation is Q = R ∧i,j Cij . Note that Q ⊂ R. We verify
that the distance between a and b in Q expands. It is easy to see that for any j ∈ U ,
the assignment a ⊕ ej �∈ Q. Hence there are no shortest paths left from a to b. On
the other hand, it is easy to see that a and b are still connected, since the vertex c is
still reachable from both.

Step 2. Isolating a pair of assignments whose distance expands. The relation Q
obtained in Step 1 may have several disconnected components. This cleanup step
isolates a single pair of assignments whose distance expands. By adding 2-clauses, we
show that one can express a path of length r + 2 between assignments at distance r.

Take a,b ∈ Q whose distance expands in Q and dQ(a,b) is minimized. Let
U = {i|ai �= bi} and |U | = r. Shortest paths between a and b have certain useful
properties:

1. Each shortest path flips every variable from U exactly once. Observe that
each index j ∈ U is flipped an odd number of times along any path from a
to b. Suppose it is flipped thrice along a shortest path. Starting at a and
going along this path, let b′ be the assignment reached after flipping j twice.
Then the distance between a and b′ expands, since j is flipped twice along
a shortest path between them in Q. Also dQ(a,b′) < dQ(a,b), contradicting
the choice of a and b.

2. Every shortest path flips exactly one variable i �∈ U . Since the distance be-
tween a and b expands, every shortest path must flip some variable i �∈ U .
Suppose it flips more than one such variable. Since a and b agree on these
variables, each of them is flipped an even number of times. Let i be the first
variable to be flipped twice. Let b′ be the assignment reached after flipping i
the second time. It is easy to verify that the distance between a and b′ also
expands, but dQ(a,b′) < dQ(a,b).

3. The variable i �∈ U is the first and last variable to be flipped along the path.
Assume the first variable flipped is not i. Let a′ be the assignment reached
along the path before we flip i the first time. Then dQ(a′,b) < dQ(a,b). The
distance between a′ and b expands since the shortest path between them flips
the variables i twice. This contradicts the choice of a and b. Assume j ∈ U
is flipped twice. Then as before we get a pair a′,b′ that contradict the choice
of a,b.

Every shortest path between a and b has the following structure: first a variable
i �∈ U is flipped to āi, then the variables from U are flipped in some order, and finally
the variable i is flipped back to ai.

Different shortest paths may vary in the choice of i �∈ U in the first step and in the
order in which the variables from U are flipped. Fix one such path T ⊆ Q. Assume
that U = {1, . . . , r} and the variables are flipped in this order, and the additional
variable flipped twice is r + 1. Denote the path by a → u0 → u1 → · · · → ur → b.
Next we prove that we cannot flip the r+1th variable at an intermediate vertex along
the path.

4. For 1 ≤ j ≤ r−1 the assignment uj⊕er+1 �∈ Q. Suppose that for some j we
have c = uj ⊕ er+1 ∈ Q. Then c differs from a on {1, . . . , i} and from b on
{i+ 1, . . . , r}. The distance from c to at least one of a or b must expand, or
else we get a path from a to b through c of length |a−b|, which contradicts the
fact that this distance expands. However, dQ(a, c) and dQ(b, c) are strictly
less than dQ(a,b), so we get a contradiction to the choice of a,b.
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We now construct the path of length r + 2. For all i ≥ r + 2 we set xi = ai to
get a relation on r+ 1 variables. Note that b = ā1 . . . ārar+1. Take i < j ∈ U . Along
the path T the variable i is flipped before j so the variables xixj take one of three
values {aiaj , āiaj , āiāj}. So we add a 2-clause Cij that requires xixj to take one of
these values and take T = Q ∧i,j Cij . Clearly, every assignment along the path lies
in T . We claim that these are the only solutions. To show this, take an arbitrary
assignment c satisfying the added constraints. If for some i < j ≤ r we have ci = ai

but cj = āj , this would violate Cij . Hence the first r variables of c are of the form
ā1 . . . āiai+1 . . . ar for 0 ≤ i ≤ r. If cr+1 = ār+1, then c = ui. If cr+1 = ar+1, then
c = ui ⊕ er+1. By property 4 above, such a vector satisfies Q if and only if i = 0 or
i = r, which correspond to c = a and c = b, respectively.

Step 3. Structurally expressing paths of length 4. Let P denote the set of all ternary
relations whose graph is a path of length 4 between two assignments at Hamming
distance 2. Up to permutations of coordinates, there are 6 such relations. Each
of them is the conjunction of a 3-clause and a 2-clause. For instance, the relation
M = {100, 110, 010, 011, 001} can be written as (x1 ∨ x2 ∨ x3) ∧ (x̄1 ∨ x̄3). (It is
named so because its graph looks like the letter M on the cube.) These relations are
“minimal” examples of relations that are not componentwise bijunctive. By projecting
out intermediate variables from the path T obtained in Step 2, we structurally express
one of the relations in P . We structurally express other relations in P using this
relation.

We will write all relations in P in terms of M(x1, x2, x3) = (x1∨x2∨x3)∧(x̄1∨x̄3)
by negating variables. For example, M(x̄1, x2, x3) = (x̄1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄3) =
{000, 010, 110, 111, 101}.

Define the relation P (x1, xr+1, x2) = ∃x3 . . . xr T (x1, . . . , xr+1). The table below,
listing all tuples in P and their witnesses, shows that the conditions for structural ex-
pressibility are satisfied, and P ∈ P .

x1, x2, xr+1 x3, . . . , xr

a1a2ar+1 a3 . . . ar

a1a2ār+1 a3 . . . ar

ā1a2ār+1 a3 . . . ar

ā1ā2ār+1 a3 . . . ak, ā3a4 . . . ar , ā3ā4a5 . . . ar , . . . , ā3ā4 . . . ār

ā1ā2ar+1 ā3ā4 . . . ār

Let P (x1, x2, x3) = M(l1, l2, l3), where li is one of {xi, x̄i}. We can now use P
and 2-clauses to express every other relation in P . Given M(l1, l2, l3), every relation
in P can be obtained by negating some subset of the variables. Hence it suffices to
show that we can express structurally M(l̄1, l2, l3) and M(l1, l̄2, l3) (M is symmetric
in x1 and x3). In the following let λ denote one of the literals {y, ȳ}, such that it is
ȳ if and only if l1 is x̄1.

M(l̄1, l2, l3) = (l̄1 ∨ l2 ∨ l3) ∧ (l1 ∨ l̄3)
= ∃y (l̄1 ∨ λ̄) ∧ (λ ∨ l2 ∨ l3) ∧ (l1 ∨ l̄3)
= ∃y (l̄1 ∨ λ̄) ∧ (λ ∨ l2 ∨ l3) ∧ (l1 ∨ l̄3) ∧ (λ̄ ∨ l̄3)
= ∃y (l̄1 ∨ λ̄) ∧ (l1 ∨ l̄3) ∧M(λ, l2, l3)
= ∃y (l̄1 ∨ λ̄) ∧ (l1 ∨ l̄3) ∧ P (y, x2, x3).

In the second step the clause (λ̄ ∨ l̄3) is implied by the resolution of the clauses
(l̄1 ∨ λ̄) ∧ (l1 ∨ l̄3).
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For the next expression let λ denote one of the literals {y, ȳ}, such that it is
negated if and only if l2 is x̄2.

M(l1, l̄2, l3) = (l1 ∨ l̄2 ∨ l3) ∧ (l̄1 ∨ l̄3)
= ∃y (l1 ∨ l3 ∨ λ) ∧ (λ̄ ∨ l̄2) ∧ (l̄1 ∨ l̄3)
= ∃y (λ̄ ∨ l̄2) ∧M(l1, λ, l3)
= ∃y (λ̄ ∨ l̄2) ∧ P (x1, y, x3).

The above expressions are both based on resolution, and it is easy to check that they
satisfy the properties of structural expressibility.

Step 4. Structurally expressing S3. We structurally express (x1 ∨ x2 ∨ x3) from
M using a formula derived from a gadget in [17]. This gadget expresses (x1 ∨x2 ∨x3)
in terms of “Protected OR,” which corresponds to our relation M .

(x1 ∨ x2 ∨ x3) = ∃y1 . . . y5 (x1 ∨ ȳ1) ∧ (x2 ∨ ȳ2) ∧ (x3 ∨ ȳ3) ∧ (x3 ∨ ȳ4)
∧M(y1, y5, y3) ∧M(y2, ȳ5, y4).(3.1)

The table below, listing the witnesses of each assignment for (x1, x2, x3), shows that
the conditions for structural expressibility are satisfied.

x1, x2, x3 y1 . . . y5

111 00011 00111 00110 00100 01100 01101 01001 11001 11000 10000 10010 10011
110 01001 11001 11000 10000
100 10000
101 00011 00111 00110 00100 10000 10010 10011
001 00011 00111 00110 00100
011 00011 00111 00110 00100 01100 01101 01001
010 01001

From the relation (x1∨x2∨x3) we derive the other 3-clauses by reverse resolution,
for instance,

(x̄1 ∨ x2 ∨ x3) = ∃y (x̄1 ∨ ȳ) ∧ (y ∨ x2 ∨ x3).

To complete the proof of the structural expressibility theorem, we show that an
arbitrary relation can be expressed structurally from S3.

Lemma 3.5. Let R ⊆ {0, 1}k be any relation of arity k ≥ 1. R is structurally ex-
pressible from S3.

Proof. If k ≤ 3, then R can be expressed as a formula in CNF(S3) with constants,
without introducing witness variables. This kind of expression is always structural.

If k ≥ 4, then R can be expressed as a formula in CNF(Sk), without wit-
nesses (i.e., structurally). We will show that every k-clause can be expressed struc-
turally from Sk−1. Then, by induction, it can be expressed structurally from S3. For
simplicity we express a k-clause corresponding to the relation D0. The remaining
relations are expressed equivalently. We express D0 in a way that is standard in other
complexity reductions and turns out to be structural:

(x1 ∨ x2 ∨ · · · ∨ xk) = ∃y (x1 ∨ x2 ∨ y) ∧ (ȳ ∨ x3 ∨ · · · ∨ xk).

This is the reverse operation of resolution. For any satisfying assignment for x, its
witness space is either {0}, {1}, or {0, 1}, so in all cases it is connected. Furthermore,
the only way two neighboring satisfying assignments for x can have no common witness
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is if one of them has witness set {0} and the other one has witness set {1}. This implies
that the first one has (x3, . . . , xk) = (0, . . . , 0), and the other one has (x1, x2) = (0, 0),
and thus they differ in the assignments of at least two variables: one from {x1, x2}
and one from {x3, . . . , xk}. In that case they cannot be neighboring assignments.
Therefore all requirements of structural expressibility are satisfied.

3.3. Hardness results for 3-CNF-formulas. From Lemma 3.4 and Corollary
3.3, it follows that, to prove the hard side of our dichotomy theorems, it suffices to
focus on 3-CNF-formulas.

The proof that Conn(S3) and st-Conn(S3) are PSPACE-complete is fairly in-
tricate; it entails a direct reduction from the computation of a space-bounded Turing
machine. The result for st-Conn can also be proved easily using results of Hearne
and Demaine on nondeterministic constraint logic [17]. However, it does not appear
that completeness for Conn follows from their results.

Lemma 3.6. st-Conn(S3) and Conn(S3) are PSPACE-complete.
Proof. Given a CNF(S3)-formula ϕ and satisfying assignments s, t, we can guess

a path of length at most 2n between them and verify that each vertex along the
path is indeed a solution to ϕ. Hence st-Conn(S3) is in NPSPACE, which equals
PSPACE by Savitch’s theorem. Similarly for Conn(S3), by reusing space we can
check for all pairs of assignments whether they are satisfying and, if they both are,
whether they are connected in G(ϕ). It follows that both problems are in PSPACE.

Next we show that Conn(S3) and st-Conn(S3) are PSPACE-hard. Let A be a
language decided by a deterministic Turing machineM = (Q,Σ,Γ, δ, q0, qaccept, qreject)
in space nk for some constant k ≥ 1, where n is the length of the input. We give a
polynomial-time reduction from A to st-Conn(S3) and Conn(S3).

The reduction maps a string w (with |w| = n) to a 3-CNF-formula ϕ and two
satisfying assignments for the formula, which are connected in G(ϕ) if and only if M
accepts w. Furthermore, all satisfying assignments of ϕ are connected to one of these
two assignments, so that G(ϕ) is connected if and only if M accepts w.

Before we show how to construct ϕ, we modify M in several ways to obtain a new
machine M ′ which depends on w:

1. We define the tape of M ′ to be cyclical of length nk +1 with a special symbol
# written in cell 0 which cannot be overwritten. The input w is placed
after this symbol. Notice that the machine M accepts or rejects w within
nk space, and therefore the # symbol is never read when the machine is
initialized in a legal way (at the state q0, input from Σ∗, and the head at the
initial position). The # symbol may be read if the machine is initialized at
a different configuration. We modify the transitions of M so that if the #
symbol is read, the machine M ′ goes into the state qreject.

2. We add to M ′ a clock that counts from 0 to nk × |Q| × |Γ|nk

= 2O(nk+1),
which is the total number of possible distinct configurations of M when it
uses only nk space. For this, M ′ uses a separate tape of length O(nk+1) with
the alphabet {0, 1}. Before a transition happens, control is passed on to the
clock, its counter is incremented, and finally the transition is completed.

3. We define a standard accepting configuration. Whenever qaccept is reached,
the clock is stopped and set to zero, the original tape is erased (except for #)
and the head is placed in the initial position, always in state qaccept.

4. Whenever qreject is reached the machine goes into its initial configuration.
First w is written back on the input tape after the # symbol. This step
requires adding n states to the machine in order to write the n letters of w.
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This increases the number of states of M ′ to O(n). Next, the rest of the tape
is erased, the clock is set to zero, the head is placed in the initial position,
and the state is set to q0 (and thus the computation resumes).

5. Whenever the clock overflows, the machine goes into qreject.
The new machine M ′ runs forever if w is not in A, and it accepts if w is in A. It

also has the property that every configuration having # in position 0 leads either to
the accepting configuration or to the initial configuration with input w. Therefore the
space of such configurations is connected if and only if w ∈ A. Let’s denote by Q′ the
states of M ′ and by δ′ its transitions. As mentioned earlier, |Q′| = O(n), and M ′ runs
on two tapes, one of size N = nk and the other (for the clock) of size Nc = O(nk+1).
The alphabet of M ′ on one tape is Γ, and on the other {0, 1}. For simplicity we can
also assume that at each transition the machine uses only one of the two tapes and
moves its head either left or right.

Next, we construct an intermediate CNF-formula ψ whose solutions are the con-
figurations of M ′. However, the space of solutions of ψ is disconnected.

For each i ∈ [N ] and a ∈ Γ, we have a variable x(i, a). If x(i, a) = 1, this means
that the ith tape cell contains symbol a. For every i ∈ [N ] there is a variable y(i)
which is 1 if the head is at position i. For every q ∈ Q′, there is a variable z(q) which
is 1 if the current state is q. Similarly for every j ∈ [Nc] and a ∈ {0, 1} we have
variables xc(j, a) and a variable yc(j) which is 1 if the head of the clock tape is at
position j.

We enforce the following conditions:
1. Every cell contains some symbol and cell 0 contains #:

ψ1 =
∧

i∈[N ]

(∨a∈Γ x(i, a))
∧

j∈[Nc]

(
∨a∈{0,1} xc(j, a)

)
∧ x(0,#).

2. No cell contains two symbols:

ψ2 =
∧

i∈[N ]

∧
a�=a′∈Γ

(
x(i, a) ∨ x(i, a′)

) ∧
j∈[Nc]

(
xc(j, 0) ∨ xc(j, 1)

)
.

3. The head is in some position, the clock head is in some position, and the
machine is in some state:

ψ3 =
(
∨i∈[N ] y(i)

) ∧(
∨j∈[Nc] yc(j)

) ∧
(∨q∈Q′ z(q)) .

4. The main tape head is in a unique position, the clock head is in a unique
position, and the machine is in a unique state:

ψ4 =
∧

i�=i′∈[N ]

(
y(i) ∨ y(i′)

) ∧
j �=j′∈[Nc]

(
yc(j) ∨ yc(j′)

) ∧
q �=q′∈Q′

(
z(q) ∨ z(q′)

)
.

Solutions of ψ = ψ1∧ψ2∧ψ3∧ψ4 are in 1-1 correspondence with configurations of
M ′. Furthermore, the assignments corresponding to any two distinct configurations
differ in at least two variables (hence the space of solutions is totally disconnected).

Next, to connect the solution space along valid transitions of M ′, we relax condi-
tions 2 and 4 by introducing new transition variables, which allow the head to have
two states or a cell to have two symbols at the same time. This allows us to go from
one configuration to the next.

Consider a transition δ′(q, a) = (q′, b, R), which operates on the first tape, for
example. Fix the position of the head of the first tape to be i. The variables that are
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changed by the transition are x(i, a), y(i), z(q), x(i, b), y(i+ 1), z(q′) (some of these
may be the same variable, such as if a = b, but at least two are guaranteed to be
different since the head has to move left or right). Before the transition the first three
are set to 1, the second three are set to 0, and after the transition they are all flipped.
Corresponding to this transition (which is specified by i, q, and a), we introduce a
transition variable t(i, q, a). We now relax conditions 2 and 4 as follows:

• Replace
(
x(i, a) ∨ x(i, b)

)
by

(
x(i, a) ∨ x(i, b) ∨ t(i, q, a)

)
.

• Replace
(
y(i) ∨ y(i+ 1)

)
by

(
y(i) ∨ y(i+ 1) ∨ t(i, q, a)

)
.

• Replace
(
z(q) ∨ z(q′)

)
by

(
z(q) ∨ z(q′) ∨ t(i, q, a)

)
.

This is done for every value of q, a, and i (and also for transitions acting on the
clock tape). We add the transition variables to the corresponding clauses so that, for
example, the clause

(
x(i, a) ∨ x(i, b)

)
could potentially become very long, such as

(
x(i, a) ∨ x(i, b) ∨ t(i, q1, a) ∨ t(i, q2, a) ∨ · · ·

)
.

However, the total number of transition variables is only polynomial in n. We also
add a constraint for every pair of transition variables t(i, q, a), t(i′, q′, a′), saying
they cannot be 1 simultaneously: (t(i, q, a) ∨ t(i′, q′, a′)). This ensures that only one
transition can be happening at any time. The effect of adding the transition variables
to the clauses of ψ2 and ψ4 is that by setting t(i, q, a) to 1, we can simultaneously
set x(i, a) and x(i, b) to 1, and so on. This gives a path from the initial configuration
to the final configuration as follows: Set t(i, q, a) = 1, set x(i, b) = 1, y(i + 1) = 1,
z(q′) = 1, x(i, a) = 0, y(i) = 0, z(q) = 0, then set t(i, q, a) = 0. Thus consecutive
configurations are now connected. To avoid connecting to other configurations, we
also add an expression to ensure that these are the only assignments the 6 variables
can take when t(i, q, a) = 1:

ψi,q,a = t(i, q, a) ∨ ((x(i, a), y(i), z(q), x(i, b)), y(i+ 1), z(q′))
∈ {111000, 111100, 111110, 111111, 011111, 001111, 000111}.

This expression can of course be written in conjunctive normal form.
Call the resulting CNF-formula ϕ(x,xc,y,yc, z, t). Note that ϕ(x,xc,y,yc, z,0)

= ψ(x,xc,y,yc, z), so a solution where all transition variables are 0 corresponds to
a configuration of M ′. To see that we have not introduced any shortcut between
configurations that are not valid machine transitions, notice that in any solution of
ϕ, at most a single transition variable can be 1. Therefore none of the transitional
solutions belonging to different transitions can be adjacent. Furthermore, out of the
solutions that have a transition variable set to 1, only the first and the last correspond
to a valid configuration. Therefore none of the intermediate solutions (between the
starting and the ending configuration of a transition) can be adjacent to a solution
with all transition variables set to 0.

Finally, we define the assignment s to be the one corresponding to the initial
configuration of M ′ with w on the tape, and t to be the assignment corresponding to
the accepting configuration—where the state is qaccept, and the tape has only the #
symbol at position 0. This completes the reduction.

The formula ϕ is a CNF-formula where clause size is unbounded. We use the
same algorithm for producing structural expressions for k-clauses as in the proof of
Lemma 3.5 to get a 3-CNF-formula. By Lemma 3.2 and Corollary 3.3, st-Conn and
Conn for S3 are PSPACE-complete.
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By Lemma 3.4 and Corollary 3.3, this completes the proof of the hardness part
of the dichotomies for Conn and st-Conn (Theorems 2.8 and 2.9).

Finally, we show that 3-CNF-formulas can have exponential diameter by induc-
tively constructing a path of length at least 2

n
2 on n variables and then identifying

it with the solution space of a 3-CNF-formula with O(n2) clauses. By Lemma 3.4
and Corollary 3.3, this implies the hardness part of the diameter dichotomy (Theo-
rem 2.10).

Lemma 3.7. For n even, there is a 3-CNF-formula ϕn with n variables and
O(n2) clauses, such that G(ϕn) is a path of length greater than 2

n
2 .

Proof. The construction is in two steps: We first exhibit an induced subgraph Gn

of the n-dimensional hypercube with large diameter. We then construct a 3-CNF-
formula ϕn so that Gn = G(ϕn).

The graph Gn is a path of length 2
n
2 . We construct it using induction. For n = 2,

we take V (G2) = {(0, 0), (0, 1), (1, 1)} which has diameter 2. Assume that we have
constructed Gn−2 with 2

n−2
2 vertices, and with distinguished vertices sn−2, tn−2 such

that the shortest path from sn−2 to tn−2 in Gn−2 has length 2
n−2

2 . We now describe
the set V (Gn). For each vertex v ∈ V (Gn−2), V (Gn) contains two vertices (v, 0, 0)
and (v, 1, 1). Note that the subgraph induced by these vertices alone consists of two
disconnected copies of Gn−2. To connect these two components, we add the vertex
m = (t, 0, 1) (which is connected to (t, 0, 0) and (t, 1, 1) in the induced subgraph).
Note that the resulting graph Gn is connected, but any path from (u, 0, 0) to (v, 1, 1)
must pass through m. Further note that by induction the graph Gn is also a path.
The vertices sn = (sn−2, 0, 0) and tn = (sn−2, 1, 1) are diametrically opposite ends
of this path. The path length is at least 2 · 2 n−2

2 + 2 > 2
n
2 . Also s2 = (0, 0), sn =

(sn−2, 0, 0), tn = (sn−2, 1, 1) and hence sn = (0, . . . , 0), tn = (0, . . . , 0, 1, 1).
We construct a sequence of 3-CNF-formulas ϕn(x1, . . . , xn) so that Gn = G(ϕn).

Let ϕ2(x1, x2) = x̄1 ∨ x2. Assume we have ϕn−2(x1, . . . , xn−2). We add two variables
xn−1 and xn and the clauses

ϕn−2(x1, . . . , xn−2), x̄n−1 ∧ xn,

xn−1 ∨ x̄n ∨ x̄i for i ≤ n− 4,(3.2)
xn−1 ∨ x̄n ∨ xi for i = n− 3, n− 2.(3.3)

Note that a clause in (3.2) is just the implication (x̄n−1 ∧ xn) → x̄i. Thus clauses
(3.2), (3.3) enforce the condition that xn−1 = 0, xn = 1 implies that (x1, . . . , xn−2) =
tn−2 = (0, . . . , 0, 1, 1).

4. The easy case of the dichotomy: Tight sets of relations.

4.1. Schaefer sets of relations. We begin by showing that all Schaefer sets of
relations are tight. Schaefer relations are characterized by closure properties. We say
that an r-ary relation R is closed under some k-ary operation α : {0, 1}k → {0, 1} if
for every a1,a2, . . . ,ak ∈ R, the tuple (α(a1

1, a
2
1, . . . , a

k
1), . . . , α(a1

r , . . . , a
k
r)) is in R.

We denote this tuple by α(a1, . . . ,ak).
We will use the following lemma about closure properties on several occasions.
Lemma 4.1. If a logical relation R is closed under an operation α : {0, 1}k →

{0, 1} such that α(1, 1, . . . , 1) = 1 and α(0, 0, . . . , 0) = 0 (a.k.a. an idempotent opera-
tion), then every connected component of G(R) is closed under α.

Proof. Consider a1, . . . ,ak ∈ R, such that they all belong to the same connected
component of G(R). It suffices to prove that a = α(a1, . . . ,ak) is in the same con-
nected component of G(R). To that end we will first prove that for any s, t ∈ R if there



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2348 GOPALAN, KOLAITIS, MANEVA, AND PAPADIMITRIOU

is a path from s to t in G(R), then there is a path from α(b1, . . . ,bi−1, s,bi+1, . . . ,bk)
to α(b1, . . . ,bi−1, t,bi+1, . . . ,bk) for any b1, . . . ,bk ∈ R. This observation implies
that there is a path from a1 = α(a1,a1, . . . ,a1) to α(a1, a2, a1, . . . ,a1), from there
to α(a1,a2,a3,a1, . . . ,a1) and so on, to α(a1, a2, . . . ,ak) = a. Thus a is in the same
connected component of G(R) as a1.

Let the path from s to t be s = s1 → s2 → . . . sm = t. For every j ∈ {1, 2, . . . ,m−
1}, the tuples α(b1, . . . ,bi−1, sj,bi+1, . . . ,bm) and α(b1, . . . ,bi−1, sj+1,bi+1, . . . ,bm)
differ in at most one position (the position in which sj and sj+1 are different); therefore
they belong to the same component of G(R). Thus α(b1, . . . ,bi−1, s1,bi+1, . . . ,bm)
and α(b1, . . . ,bi−1, sm,bi+1, . . . ,bm) belong to the same component.

We are ready to prove that all Schaefer relations are tight.
Lemma 4.2. Let R be a logical relation.
1. If R is bijunctive, then R is componentwise bijunctive.
2. If R is Horn, then R is OR-free.
3. If R is dual Horn, then R is NAND-free.
4. If R is affine, then R is componentwise bijunctive, OR-free, and NAND-free.

Proof. The case of bijunctive relations follows immediately from Lemma 4.1 and
the fact that a relation is bijunctive if and only if it is closed under the ternary
majority operation maj, which is idempotent.

The cases of Horn and dual Horn are symmetric. Suppose an r-ary Horn relation
R is not OR-free. Then there exist i, j ∈ {1, . . . , r} and constants t1, . . . , tr ∈ {0, 1}
such that the relation R(t1, . . . , ti−1, x, ti+1, . . . , tj−1, y, tj+1, . . . , tr) on variables x
and y is equivalent to x ∨ y, i.e.,

R(t1, . . . , ti−1, x, ti+1, . . . , tj−1, y, tj+1, . . . , tr) = {01, 11, 10}.

Thus the tuples t00, t01t10, t11 defined by (tab
i , t

ab
j ) = (a, b) and tab

k = tk for every
k �∈ {i, j}, where a, b,∈ {0, 1} satisfy t10, t11, t01 ∈ R and t00 �∈ R. However, since
every Horn relation is closed under ∧, it follows that t01 ∧ t10 = t00 must be in R,
which is a contradiction.

For the affine case, a small modification of the last step of the above argument
shows that an affine relation also is OR-free; therefore, dually, it is also NAND-free.
Namely, since a relation R is affine if and only if it is closed under ternary ⊕, it follows
that t01 ⊕ t11 ⊕ t10 = t00 must be in R.

Since the connected components of an affine relation are both OR-free and NAND-
free, the subgraphs that they induce are hypercubes, which are also bijunctive rela-
tions. Therefore an affine relation is also componentwise bijunctive.

These containments are proper. For instance, R1/3 = {100, 010, 001} is compo-
nentwise bijunctive, but not bijunctive as maj(100, 010, 001) = 000 �∈ R1/3.

4.2. Structural properties of tight sets of relations. In this section, we
explore some structural properties of the solution graphs of tight sets of relations.
These properties provide simple algorithms for Conn(S) and st-Conn(S) for tight
sets S, and also guarantee that for such sets, the diameter of G(ϕ) of CNF(S)-formula
ϕ is linear.

Lemma 4.3. Let S be a set of componentwise bijunctive relations and ϕ a
CNF(S)-formula. If a and b are two solutions of ϕ that lie in the same component
of G(ϕ), then dϕ(a,b) = |a − b|, i.e., no distance expands.

Proof. Consider first the special case in which every relation in S is bijunctive.
In this case, ϕ is equivalent to a 2-CNF-formula and so the space of solutions of
ϕ is closed under majority. We show that there is a path in G(ϕ) from a to b
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such that along the path only the assignments on variables with indices from the
set D = {i|ai �= bi} change. This implies that the shortest path is of length |D|
by induction on |D|. Consider any path a → u1 → · · · → ur → b in G(ϕ). We
construct another path by replacing ui by vi = maj(a,ui,b) for i = 1, . . . , r and
removing repetitions. This is a path because for any i vi and vi+1 differ in at most
one variable. Furthermore, vi agrees with a and b for every i for which ai = bi.
Therefore, along this path only variables in D are flipped.

For the general case, we show that every component F of G(ϕ) is the solution
space of a 2-CNF-formula ϕ′. Let R ∈ S be a relation with two components, R1, R2,
each of which are bijunctive. Consider a clause in ϕ of the form R(x1, . . . , xk). The
projection of F onto x1, . . . , xk is itself connected and must satisfy R. Hence it lies
within one of the two components R1, R2; assume it is R1. We replace R(x1, . . . , xk)
by R1(x1, . . . , xk). Call this new formula ϕ1. G(ϕ1) consists of all components ofG(ϕ)
whose projection on x1, . . . , xk lies in R1. We repeat this for every clause. Finally we
are left with a formula ϕ′ over a set of bijunctive relations. Hence ϕ′ is bijunctive and
G(ϕ′) is a component of G(ϕ). So the claim follows from the bijunctive case.

Corollary 4.4. Let S be a set of componentwise bijunctive relations. Then
1. for every ϕ ∈ CNF(S) with n variables, the diameter of each component of
G(ϕ) is bounded by n;

2. st-Conn(S) is in P;
3. Conn(S) is in coNP.

Proof. The bound on diameter is an immediate consequence of Lemma 4.3.
The following algorithm solves st-Conn(S) given vertices s, t ∈ G(ϕ). Start with

u = s. At each step, find a variable xi so that ui �= ti and such that if we flip xi,
the assignment would still be satisfying. Repeat until t is reached. If at any stage
no such variable exists, then declare that s and t are not connected. If the s and t
are disconnected, the algorithm is bound to fail. So assume that they are connected.
Correctness is proved by induction on d = |s− t|. It is clear that the algorithm works
when d = 1. Assume that the algorithm works for d − 1. If s and t are connected
and are distance d apart, Lemma 4.3 implies there is a path of length d between them
in G(ϕ). In particular, the algorithm will find a variable xi to flip. The resulting
assignment is at distance d− 1 from t, so now we proceed by induction.

Next we prove that Conn(S) ∈ coNP. A short certificate that the graph is not
connected is a pair of assignments s and t which are solutions from different com-
ponents. To verify that they are disconnected it suffices to run the algorithm for
st-Conn.

We consider sets of OR-free relations. Define the coordinatewise partial order ≤
on Boolean vectors as follows: a ≤ b if ai ≤ bi for each i. A monotone path between a
and b is a path in G(ϕ), a → u1 → · · · → ur → b such that a ≤ u1 ≤ · · · ≤ ur ≤ b.

Lemma 4.5. Let S be a set of OR-free relations and ϕ a CNF(S)-formula. Every
component of G(ϕ) contains a minimum solution with respect to the coordinatewise
order; moreover, every solution is connected to the minimum solution in the same
component via a monotone path.

Proof. We call a satisfying assignment locally minimal if it has no neighboring
satisfying assignments that are smaller than it. We will show that there is exactly
one such assignment in each component of G(ϕ).

Suppose there are two distinct locally minimal assignments u and u′ in some
component of G(ϕ). Consider the path between them where the maximum Hamming
weight of assignments on the path is minimized. If there are many such paths, pick
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one where the smallest number of assignments have the maximum Hamming weight.
Denote this path by u = u1 → u2 → · · · → ur = u′. Let ui be an assignment of
largest Hamming weight in the path. Then ui �= u and ui �= u′, since u and u′ are
locally minimal. The assignments ui−1 and ui+1 differ in exactly 2 variables, say,
in x1 and x2. So {ui−1

1 ui−1
2 , ui

1u
i
2, u

i+1
1 ui+1

2 } = {01, 11, 10}. Let û be such that
û1 = û2 = 0, and ûi = ui for i > 2. If û is a solution, then the path u1 → u2 →
· · · → ui−1 → û → ui+1 → · · · → ur contradicts the way we chose the original path.
Therefore, û is not a solution. This means that there is a clause that is violated by it
but is satisfied by ui−1, ui, and ui+1. So the relation corresponding to that clause is
not OR-free, which is a contradiction.

The unique locally minimal solution in a component is its minimum solution,
because starting from any other assignment in the component, it is possible to keep
moving to neighbors that are smaller, and the only time it becomes impossible to
find such a neighbor is when the locally minimal solution is reached. Therefore,
there is a monotone path from any satisfying assignment to the minimum in that
component.

Corollary 4.6. Let S be a set of OR-free relations. Then
1. for every ϕ ∈ CNF(S) with n variables, the diameter of each component of
G(ϕ) is bounded by 2n;

2. st-Conn(S) is in P;
3. Conn(S) is in coNP.

Proof. Given solutions s and t in the same component ofG(ϕ), there is a monotone
path from each to the minimal solution u in the component. This gives a path from
s to t of length at most 2n. To check if s and t are connected, we just check that the
minimal assignments reached from s and t are the same.

Sets of NAND-free relations are handled dually to OR-free relations. In this
case there is a maximum solution in every connected component of G(φ) and every
solution is connected to it via a monotone path. Finally, putting everything together,
we complete the proofs of all our dichotomy theorems.

Corollary 4.7. Let S be a tight set of relations. Then
1. for every ϕ ∈ CNF(S) with n variables, the diameter of each component of
G(ϕ) is bounded by 2n;

2. st-Conn(S) is in P;
3. Conn(S) is in coNP.

4.3. The complexity of CONN for tight sets of relations. We pinpoint the
complexity of Conn(S) for the tight cases which are not Schaefer, using a result of
Juban [19].

Lemma 4.8. For S tight, but not Schaefer, Conn(S) is coNP-complete.
Proof. The problem Another-Sat(S) is as follows: Given a formula ϕ in

CNF(S) and a solution s, does there exist a solution t �= s? Juban [19, Theorem 2]
shows that if S is not Schaefer, then Another-Sat is NP-complete. He also shows
[19, Corollary 1] that if S is not Schaefer, then the relation x �= y is expressible from
S through substitutions.

Since S is not Schaefer, Another-Sat(S) is NP-complete. Let ϕ, s be an instance
of Another-Sat on variables x1, . . . , xn. We define a CNF(S)-formula ψ on the
variables x1, . . . , xn, y1, . . . , yn as

ψ(x1, . . . , xn, y1, . . . , yn) = ϕ(x1, . . . , xn) ∧i (xi �= yi).
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It is easy to see that G(ψ) is connected if and only if s is the unique solution to
ϕ.

We are left with the task of determining the complexity of Conn(S) for the case
when S is a Schaefer set of relations. In Lemmas 4.9 and 4.10 we show that Conn(S)
is in P if S is affine or bijunctive. This leaves the case of Horn and dual Horn, which
we discuss at the end of this section.

Lemma 4.9. If S is a bijunctive set of relations, then there is a polynomial-time
algorithm for Conn(S).

Proof. Consider a formula φ(x1, . . . , xn) in CNF(S). Since S is a bijunctive set of
relations φ can be written as a 2-CNF-formula. Since satisfiability of 2-CNF-formulas
is decidable in polynomial time, it is easy to decide for a given variable xi whether
there exist solutions in which it takes a particular value in {0, 1}. The variables which
can take only one value are assigned that value. Without loss of generality we can
assume that the resulting 2-CNF formula is ψ(x1, . . . , xm).

Consider the graph of implications of ψ defined in the following way: The vertices
are the literals x1, . . . , xm, x̄1, . . . , x̄m. There is a directed edge from literal l1 to literal
l2 if and only if ψ contains a clause containing l2 and the negation of l1, which we
denote by l̄1 (if l1 is a negated variable x̄, then l̄1 denotes x). The directed edge
represents the fact that in a satisfying assignment if the literal l1 is assigned true,
then the literal l2 is also assigned true. We will show that G(ψ) is disconnected if
and only if the graph of implications contains a directed cycle. This property can be
checked in polynomial time.

Suppose the graph of implications contains a directed cycle of literals l1 → l2 →
l3 → · · · → lk → l1. By the construction, the graph also contains a directed cycle
on the negations of these literals, but in the opposite direction: l̄k → l̄k−1 → · · · →
l̄2 → l̄1 → l̄k. There is a satisfying assignment s in which l1 is assigned 1, and also a
satisfying assignment t in which l̄1 is assigned 1. By the implications, in s the literals
l1, l2, . . . , lk are assigned 1, and in t l̄1, l̄2, . . . , l̄k are assigned 1. Suppose there is a
path from s to t. Then let li be the first literal in the cycle whose value changes along
the path from s to t. Then there is a satisfying assignment in which li is assigned
0, whereas all other literals on the cycle are assigned 1. On the other hand, this
cannot be a satisfying assignment because the edge (li−1, li) implies that there is a
clause containing only li and the negation of li−1, and this clause is violated by the
assignment. This is a contradiction, and therefore there can be no path from s to t.

Next, suppose the graph of implications contains no directed cycle, and G(ψ) is
disconnected. Let s and t be satisfying assignments from different connected compo-
nents of G(ψ) that are at minimum Hamming distance. Let U be the set of variables
on which s and t differ. There are two literals corresponding to each variable, and
let U s and U t denote, respectively, the literals that are true in s and in t. Since the
directed graph induced by U s in the implications graph contains no directed cycle,
there exists a literal l ∈ U s without an incoming edge from another literal in U s.
Otherwise, by following the incoming edges we would find a cycle in the graph in-
duced by U s. In addition, for every literal l′ �∈ U s that is assigned true by s, there is
no edge from l′ to l because that would contradict the fact that t is also a satisfying
assignment (by the definition of U , l′ is assigned true by t). Therefore, with respect
to s the literal l does not appear in any clause in which it is implied, i.e., in which
it is the only satisfying literal. Thus, the value of the corresponding variable can be
flipped and the resulting assignment is still satisfying. This assignment is in the same
component as s but it is closer to t, which contradicts our choice of s and t.
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Lemma 4.10. If S is an affine set of relations, then there is a polynomial-time
algorithm for Conn(S).

Proof. An affine formula can be described as the set of solutions of a linear system
of equations. For any solution, if only a variable that appears in at least one of the
equations is flipped, the resulting assignment is not a solution. Therefore it suffices
to check whether the system has more than one solution (after variables that don’t
appear in any equation are removed), which is easily done by checking the rank of the
matrix obtained from the Gaussian elimination algorithm.

We are left with characterizing the complexity of Conn for sets of Horn relations
and for sets of dual Horn relations. In the conference version [16] of the present paper,
we had conjectured that if S is Horn or dual Horn, then Conn(S) is in P, but this was
disproved by Makino, Tamaki, and Yamamoto [24]. They showed that Conn({R2}) is
coNP-complete, where R2 = {0, 1}3\{110}; hence there exist Horn (and by symmetry
also dual Horn) sets of relations for which Conn is coNP-complete. Their proof
is via a reduction from Positive Not-All-Equal 3-Sat, which as seen earlier is
Sat({RNAE}), where RNAE = {0, 1}3 \ {000, 111}. This problem is also known as
3-hypergraph 2-colorability,

The relation R2 is a 3-clause with one positive literal. We will describe a natural
set of Horn relations first introduced in [14], which cannot be used to express R2. We
show that for this set there is a polynomial-time algorithm for Conn.

Definition 4.11. A logical relation R is implicative hitting set-bounded−
( IHSB−) if it is the set of solutions of a Horn formula in which all clauses of size
greater than 2 have only negative literals. Similarly, R is implicative hitting set-
bounded+ ( IHSB+) if it is the set of solutions of a dual Horn formula in which all
clauses of size greater than 2 have only positive literals.

These types of logical relations can be characterized by closure properties. A
relation R is IHSB− if and only if it is closed under a ∧ (b ∨ c); in other words if
a,b, c ∈ R, where R is of arity r, then a∧ (b∨ c) = (a1 ∧ (b1 ∨ c1), a2 ∧ (b2 ∨ c2), . . . ,
ar ∧ (br ∨ cr)) ∈ R. A relation R is IHSB+ if and only if it is closed under a∨ (b∧c).
While the definition may at first look unnatural, it comes from Post’s classification
of Boolean functions (see [5]). One of the consequences of this classification is that
IHSB− relations cannot express all Horn relations, and in particular R2, even in the
sense of Schaefer’s expressibility. For the purposes of structural expressibility we can
define an even larger class of relations which cannot structurally express R2 (unless
P = coNP).

Definition 4.12. A logical relation R is componentwise IHSB− (IHSB+) if
every connected component of G(R) is IHSB− (IHSB+).

By Lemma 4.1, every relation that is IHSB− (IHSB+) is also componentwise
IHSB− (IHSB+). Of course, the class of componentwise IHSB− relations is much
broader and in fact includes relations that are not even Horn, such as R1/3. However,
in the following lemma we consider only componentwise IHSB− (IHSB+) relations
which are Horn (dual Horn). We will say that a set of relations S is componentwise
IHSB− (IHSB+) if every relation in S is componentwise IHSB− (IHSB+).

Lemma 4.13. If S is a set of relations that are Horn (dual Horn) and compo-
nentwise IHSB− (IHSB+), then there is a polynomial-time algorithm for Conn(S).

Proof. First we consider the case in which every relation in S is IHSB−. The for-
mula can be written as a conjunction of Horn clauses, such that clauses of length
greater than 2 have only negative literals. Let all unit clauses be assigned and
propagated—their variables take the same value in all satisfying assignments. The



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

THE CONNECTIVITY OF BOOLEAN SATISFIABILITY 2353

resulting formula is also IHSB− and has two kinds of clauses: 2-clauses with one
positive and one negative literal, and clauses of size 2 or more with only negative
literals. The assignment of zero to all variables is satisfying. There is more than
one connected component if and only if there is another assignment that is locally
minimal by Lemma 4.5. A locally minimal satisfying assignment is such that if any
of the variables assigned 1 is changed to 0 the resulting assignment is not satisfying.
Thus all variables assigned 1 appear in at least one 2-clause with one positive and
one negative literal for which both variables are assigned 1. We say that such an
assignment certifies the disconnectivity.

To describe the algorithm, we first define the following implication graph G. The
vertices are the set of variables. There is a directed edge (xi, xj) if and only if (xj ∨ x̄i)
is a clause in the IHSB− representation. Let S1, . . . , Sm be the sets of variables in
clauses with only negative literals. For every variable xi let Ti denote the set of
variables reachable from xi in the directed graph. If xi ∈ Ti, then xi lies in a directed
cycle. Note that if xi is set to 1, then every variable in Ti must also be set to 1. The
algorithm rejects if and only if there exists a variable xi such that xi ∈ Ti and Ti does
not contain Sj for any j ∈ {1, . . . ,m}. We show that this happens if and only if the
solution graph is disconnected. Note that the algorithm runs in polynomial time.

Assume that the graph of solutions is disconnected and consider the satisfying
assignment s that certifies disconnectivity. Let U be the set of variables xi such that
si = 1. Since every variable in U appears in at least one 2-clause for which both
variables are from U , the directed graph induced by U is such that every vertex has
an incoming edge. By starting at any vertex in U and following the incoming edge
backwards until we repeat some vertex, we find a cycle in the subgraph induced by
U . For any variable xi in such a cycle it holds that xi ∈ Ti. Further Ti ⊆ U , since
setting xi to 1 forces all variables in Ti to be 1. Also Ti cannot contain Sj for any j,
else the corresponding clause would not be satisfied by s. Thus the algorithm rejects
whenever the solution graph is disconnected.

Conversely, if the algorithm rejects, there exists a variable xi such that xi ∈ Ti

and Ti does not contain Sj for any j ∈ {1, . . . ,m}. Consider the assignment in which
all variables from Ti are assigned 1, and the rest are assigned 0. We will show that
this assignment is satisfying and it is a certificate for disconnectivity. Clauses which
contain only negated variables are satisfied since Sj �⊂ Ti for all j. Now consider a
clause of the form (xj ∨ x̄k) and note that there is a directed edge (xk, xj). If xk = 0,
this is satisfied. If xk = 1, then xk ∈ Ti, and hence xj ∈ Ti because of the edge
(xk, xj). But then xj is set to 1, so the clause is satisfied. To show that this solution
is minimal, consider trying to set xk ∈ Ti to 0. There is an incoming edge (xj , xk) for
some xj ∈ Ti, and hence a clause (xk ∨ x̄j), which will become unsatisfied if we set
xk = 0. Thus we have a certificate for the space being disconnected.

Next, consider a formula φ(x1, . . . , xn) in CNF(S). We reduce the connectivity
question to one for a formula with IHSB− relations. Since satisfiability of Horn
formulas is decidable in polynomial time and every connected component of a Horn
relation is a Horn relation by Lemma 4.1, it is easy to decide for a given clause and a
given connected component of its corresponding relation (the relation obtained after
identifying repeated variables) whether there exists a solution for which the variables
in this clause are assigned a value in the specified connected component. If there exists
a clause for which there is more than one connected component for which solutions
exist, then the space of solutions is disconnected. This follows from the fact that the
projection of G(φ) onto the hypercube corresponding to the variables appearing in
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this clause is disconnected. Therefore we can assume that the relation corresponding
to every clause has a single connected component. Since that component is IHSB−
the relation itself is IHSB−.

It is still open whether Conn is coNP-complete for every remaining Horn set of
relations, i.e., every set of Horn relations that contains at least one relation that is not
componentwise IHSB−. Following the same line of reasoning as in the proof of our
structural expressibility theorem, we are able to show that one of the paths of length
4 defined in section 3.2, namely, M(x̄1, x̄2, x3), can be expressed structurally from
every such set of relations. Thus the trichotomy would be established if one shows
that Conn({M(x̄1, x̄2, x3)}) is coNP-hard.

5. Discussion and open problems. In section 2, we conjectured a trichotomy
for Conn(S). In view of the results established here, what remains is to pinpoint the
complexity of Conn(S) when S is Horn but not componentwise IHSB−, and when
S is dual Horn but not componentwise IHSB+. We conjecture that for those cases
Conn(S) is coNP-complete.

We mentioned that one could also consider CNF(S)-formulas without constants,
and the extension of our results to this setting is still an open problem. A more
interesting and challenging direction is the extension of our results to larger domains.

Finally, our techniques may shed light on other connectivity-related problems,
such as approximating the diameter and counting the number of components, or
proving hardness of other configuration connectivity problems. An example of the
latter appears in recent work of Ito et al. [18].
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[26] M. Mézard and R. Zecchina, Random k-satisfiability: From an analytic solution to an effi-
cient algorithm, Phys. Rev. E, 66 (2002), article 056126.
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