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ABSTRACT

Unions of conjunctive queries, also known as select-project-
join-union queries, are the most frequently asked queries in
relational database systems. These queries are definable by
existential positive first-order formulas and are preserved
under homomorphisms. A classical result of mathemati-
cal logic asserts that existential positive formulas are the
only first-order formulas (up to logical equivalence) that
are preserved under homomorphisms on all structures, fi-
nite and infinite. It is a long-standing open problem in fi-
nite model theory, however, to determine whether the same
homomorphism-preservation result holds in the finite, that
is, whether every first-order formula preserved under homo-
morphisms on finite structures is logically equivalent to an
existential positive formula on finite structures. In this pa-
per, we show that the homomorphism-preservation theorem
holds for several large classes of finite structures of interest
in graph theory and database theory. Specifically, we show
that this result holds for all classes of finite structures of
bounded degree, all classes of finite structures of bounded
treewidth, and, more generally, all classes of finite structures
whose cores exclude at least one minor.

1. Introduction

It is well known that the most frequently asked queries
in databases are expressible in the select-project-join-union

(SPJU) fragment of relational algebra (see [1]). From the
point of view of relational calculus or first-order logic, the
class of SPJU queries corresponds to the class of queries de-
finable by existential positive formulas of first-order logic,
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that is, formulas built from atomic formulas using conjunc-
tion, disjunction, and existential quantification only. By dis-
tributing conjunctions and existential quantifiers over dis-
junctions, every existential positive formula can be writ-
ten as a disjunction of existential formulas in which the
quantifier-free part is a conjunction of atomic formulas. It is
for this reason that SPJU queries are also known as unions of

conjunctive queries. Starting with the work of Chandra and
Merlin [5], the study of conjunctive queries and their unions
has occupied a central place in database theory; in partic-
ular, researchers have investigated in depth certain funda-
mental algorithmic problems about (unions of) conjunctive
queries, such as the containment and the evaluation problem
for these queries.

Let A = (A,RA

1 , . . . , R
A

m) and B = (B,RB

1 , . . . , R
B

m) be two
relational structures over the same vocabulary (database
schema) R1, . . . , Rm. Recall that a homomorphism from

A to B is a function h : A → B such that for every rela-
tion symbol Ri and every tuple a = (a1, . . . , ar) from A, if
a ∈ RA

i then h(a) = (h(a1), . . . , h(ar)) ∈ RB

i . As already
realized by Chandra and Merlin [5], the study of conjunc-
tive queries is intimately connected to homomorphisms. In
particular, unions of conjunctive queries are preserved un-
der homomorphisms, where a query q is said to be preserved

under homomorphisms if whenever a ∈ q(A) and h is a ho-
momorphism from A to B, then h(a) ∈ q(B). Note that
if a query q is preserved under homomorphisms, then it is
also preserved under extensions, which means that when-
ever A is an induced substructure of B and a ∈ q(A), then
a ∈ q(B). In addition, such a query q is monotone, which
means that whenever a ∈ q(A) and B is obtained from A by
adding tuples to some of the relations of A, then a ∈ q(B).
These preservation properties can be thought of as assert-
ing that the query satisfies a strong form of the open world
assumption, in that a tuple in the result of the query will
remain so under the addition of new facts to the databases,
such as the introduction of new elements and new tuples in
the relations.

Classical preservation theorems of model theory are results
that match semantic properties of first-order formulas with
syntactic properties of first-order formulas. Specifically, the
 Loś-Tarski Theorem asserts that a first-order formula is pre-
served under extensions on all structures (finite and infinite)
if and only if it is logically equivalent to an existential for-



mula (see [24]). Another classical preservation theorem in
model theory, known as Lyndon’s Positivity Theorem, states
that a first-order formula is monotone on all structures (fi-
nite and infinite) if and only if it is logically equivalent to
a positive first-order formula. The non-trivial part in these
results is to show that if a first-order formula has the seman-
tic property stated, then it is logically equivalent to a first-
order formula that has the corresponding syntactic prop-
erty. The proofs make an essential use of the compactness
theorem of first-order logic (and, hence, of infinite struc-
tures). The same technique can also be used to show that
the following homomorphism-preservation theorem holds: a
first-order formula is preserved under homomorphisms on
all structures (finite and infinite) if and only if it is logically
equivalent to an existential positive first-order formula.

Research in finite model theory has shown that, unfortu-
nately, classical preservation theorems tend to fail when we
restrict ourselves to finite structures. In particular, the  Loś-
Tarski Theorem fails in the finite, that is, there is a first-
order formula that is preserved under extensions on the class
of all finite structures, but is not equivalent to any existential
formula [32, 21]. Similarly, Lyndon’s Positivity Theorem is
also known to fail in the finite [2, 31]. Although most classi-
cal preservation theorems are by now known to fail in the fi-
nite, the status of the homomorphism-preservation theorem
in the finite has not been settled thus far. In other words, the
following problem remains open: suppose a first-order for-
mula is preserved under homomorphisms on the class of all
finite structures; is this formula logically equivalent to an ex-
istential positive first-order formula? In particular, suppose
that some arbitrary relational algebra query which may also
involve the set-theoretic difference operator is preserved un-
der homomorphisms on all finite structures; can this query
be transformed to an equivalent SPJU query? This problem
has received considerable attention in the finite model theory
community, where it has been singled out as a central open
problem (Problem 5.9 on the finite model theory website
at http://www-mgi.informatik.rwth-aachen.de/FMT/). It
has motivated a lot of research in this area [4, 14, 22, 29],
but, in spite of intensive efforts, it has resisted resolution
thus far.

Although the homomorphism-preservation problem is about
the class of all finite structures over some fixed vocabulary, it
is meaningful to ask the same question for first-order formu-
las preserved under homomorphisms on restricted classes C
of finite structures. Unlike other results in finite model the-
ory that relativize, the homomorphism-preservation theo-
rem, whether it holds or fails in the finite, does not relativize
to restricted classes of finite structures. This is because re-
stricting the theorem to a subclass C′ of a class of structures
C weakens both the hypothesis and the consequence of the
theorem. This means that the homomorphism-preservation
theorem may hold for the class of all finite structures, but
it may fail for some restricted class C of finite structures.
It also means that this result may hold for some restricted
class C of finite structures, but it may fail for the class of all
finite structures.

In this paper, we show that the homomorphism-preservation
theorem holds for numerous large classes of finite structures
of interest in graph theory and database theory. In its full

generality, our main result asserts that the homomorphism-
preservation theorem holds for every class C of finite struc-
tures that is closed under substructures and disjoint unions,
and has the property that the cores of the structures in C
exclude at least one minor. This result contains as spe-
cial cases the homomorphism-preservation theorem for the
classes of all structures of bounded treewidth, the classes of
all structures whose cores are of bounded treewidth, and the
classes of all structures that exclude at least one minor; in
particular, the homomorphism-preservation theorem holds
for the class of all planar graphs. To put these results in
perspective, let us briefly comment on some of the key no-
tions. The core of a structure A is a substructure B of A

such that there is a homomorphism from A to B, but there
is no homomorphism from A to a proper substructure B′ of
B. This concept originated in graph theory (see [23]), but
has found applications in conjunctive query processing and
optimization [5] and, more recently, in data exchange [13].
The treewidth is a measure of how tree-like a graph (or, more
generally, a relational structure) is. It has played a key role
in Robertson and Seymour’s celebrated work on graph mi-
nors (see [10]). Moreover, classes of structures of bounded
treewidth have turned out to possess good algorithmic prop-
erties, in the sense that various NP-complete problems, in-
cluding constraint satisfaction problems and database query
evaluation problems, are solvable in polynomial-time when
restricted to inputs of bounded treewidth [8, 10, 19, 20].

The proofs of our results make use of both earlier work about
preservation properties in the finite and rather advanced
combinatorial machinery. Ajtai and Gurevich [3] showed
that if a query q on the class of all finite structures is ex-
pressible in both Datalog and first-order logic, then it is also
definable by an existential positive formula; furthermore, ev-
ery Datalog program defining q must be bounded. This is an
important result about Datalog programs in its own right,
but it is also a partial result towards the homomorphism-
preservation theorem in the finite because all Datalog queries
are preserved under homomorphisms (since such queries are
infinitary unions of conjunctive queries). At a high level, the
proof of the Ajtai-Gurevich theorem can be decomposed into
two modular parts. The first is a combinatorial lemma to
the effect that if q is a first-order query that is preserved un-
der homomorphisms on finite structures, then the minimal

models of q satisfy a certain “density” condition (inciden-
tally, the minimal models of a query that is preserved under
homomorphisms are cores). The second part shows that if
all minimal models of a Datalog query satisfy the “density”
condition, then there are only finitely many of them. This
means that q has finitely many minimal models, which easily
implies that q is definable by a union of conjunctive queries.
To obtain our main theorem, we use the same architecture
in the proof, but, in place of the second part, we essentially
show that if C is a class of finite structures satisfying the hy-
pothesis of the theorem, then every collection of structures
in C that satisfies the “density” condition must be finite. In
turn, this requires the use of the Sunflower Lemma of Erdös
and Rado, as well as Ramsey’s Theorem.

Finally, we extend the Ajtai-Gurevich Theorem to a lan-
guage much richer than Datalog. It is known that Data-
log can be viewed as a (proper) fragment of the infinitary
logic ∃Lω,+

∞ω , which is the existential-positive fragment of the



finite-variable infinitary logic Lω
∞ω. Here, we generalize the

Ajtai-Gurevich Theorem by establishing that if a query q is
both ∃Lω,+

∞ω -definable and first-order definable on the class of
all finite structures, then it is also definable by an existential
positive formula. This result is established through a tight
connection between the number of variables in a formula of
∃Lω,+

∞ω and the treewidth of its minimal models.

In Section 2, we review some basic notions from logic and
graph theory that we will need in the sequel. Section 3 con-
tains certain combinatorial facts about the minimal mod-
els of a first-order query that is preserved under homomor-
phisms. In Sections 4 and 5, we establish the main results
regarding classes of bounded treewidth and classes with ex-
cluded minors respectively. Finally, in Section 6 we examine
the relationship of these results to definability in Datalog
and the infinitary logic ∃Lω,+

∞ω .

2. Preliminaries

This section contains the definitions of some basic notions
and a minimum amount of background material.

Relational structures A relational vocabulary σ is a finite
set of relation symbols, each with a specified arity. A σ-
structure A consists of a universe A, or domain, and an
interpretation which associates to each relation symbol R ∈
σ of some arity r, a relation RA ⊆ Ar. A graph is a structure
G = (V,E), where E is a binary relation that is symmetric
and irreflexive. Thus, our graphs are undirected, loopless,
and without parallel edges.

A σ-structure B is called a substructure of A if B ⊆ A
and RB ⊆ RA for every R ∈ σ. It is called an induced

substructure if RB = RA ∩ Br for every R ∈ σ of arity
r. Notice the analogy with the graph-theoretical concept of
subgraph and induced subgraph. A substructure B of A is
proper if A 6= B.

A homomorphism from A to B is a mapping h : A→ B from
the universe of A to the universe of B that preserves the rela-
tions, that is if (a1, . . . , ar) ∈ RA, then (h(a1), . . . , h(ar)) ∈
RB. We say that two structures A and B are homomorphi-

cally equivalent if there is a homomorphism from A to B

and a homomorphism from B to A. Note that, if A is a
substructure of B, then the injection mapping is a homo-
morphism from A to B

The Gaifman graph of a σ-structure A, denoted by G(A),
is the (undirected) graph whose set of nodes is the universe
of A, and whose set of edges consists of all pairs (a, a′) of
elements of A such that a and a′ appear together in some
tuple of a relation in A. The degree of a structure is the
degree of its Gaifman graph, that is, the maximum number
of neighbors of nodes of the Gaifman graph.

Graph Theory Let G = (V,E) be a graph. Moreover,
let u ∈ V be a node and let d ≥ 0 be an integer. The
d-neighborhood of u in G, denoted by NG

d (u), is defined
inductively as follows:

• NG
0 (u) = {u};

• NG

d+1(u) = {v ∈ V : (v, w) ∈ E for some w ∈ NG

d (u)}.

A tree is an acyclic connected graph. A tree-decomposition

of G is a labeled tree T such that

1. each node of T is labeled by a non-empty subset of V ;

2. for every edge {u, v} ∈ E, there is a node of T whose
label contains {u, v};

3. for every u ∈ V , the set X of nodes of T whose labels
include u forms a connected subtree of T.

The width of a tree-decomposition is the maximum cardi-
nality of a label in T minus one. The treewidth of G is the
smallest k for which G has a tree-decomposition of width
k. The treewidth of a σ-structure is the treewidth of its
Gaifman graph. Note that trees have treewidth one.

For every positive integer k ≥ 2, we write T (k) to denote the
class of all σ-structures of treewidth less than k. In the se-
quel, whenever we say that a collection C of σ-structures has
bounded treewidth, we mean that there is a positive integer
k such that C ⊆ T (k).

We say that a graph G is a minor of H if G can be obtained
from a subgraph of H by contracting edges. The contraction
of an edge consists in identifying its two endpoints into a
single node, and removing the resulting loop. An equivalent
characterization (see [9]) states that G is a minor of H if
there is a map that associates to each vertex v of G a non-
empty connected subgraph Hv of H such that Hu and Hv

are disjoint for u 6= v and if there is an edge between u and
v in G then there is an edge in H between some node in
Hu and some node in Hv. We will sometimes refer to the
subgraphs Hv as the connected patches that witness that G

is a minor of H.

It is not hard to see that T (k) is closed under taking minors,
that is, if G is a minor of H and the treewidth of H is less
than k, then the treewidth of G is also less than k. Since the
treewidth of Kk, the complete graph on k vertices, is k− 1,
it follows that Kk+1 is not a minor of any graph in T (k).
Finally, we will make use of the fact that Kk is a minor of
Kk−1,k−1, the complete bipartite graph on two sets of k− 1
nodes. To see this, note that if we contract the edges of a
perfect matching between two sets of size k−2 in each part,
then we obtain a complete graph on k − 2 nodes, which,
together with the remaining two nodes and all remaining
edges, gives rise to a Kk.

First-order logic and Datalog Let σ be a relational vo-
cabulary. The atomic formulas of σ are those of the form
R(x1, . . . , xr), where R ∈ σ is a relation symbol of arity r,
and x1, . . . , xr are first-order variables that are not neces-
sarily distinct. Formulas of the form x = y are also atomic
formulas, and we refer to them as equalities. The collection
of first-order formulas is obtained by closing the atomic for-
mulas under negation, conjunction, disjunction, universal
and existential first-order quantification. The collection of
existential-positive first-order formulas is obtained by closing
the atomic formulas under conjunction, disjunction, and ex-
istential quantification. By substituting variables, it is easy



to see that equalities can be eliminated from existential-
positive formulas.

An important fragment of existential-positive formulas is
formed by the collection of sentences of the form ∃x1 . . . ∃xnθ,
where θ is a conjunction of atomic formulas with variables
among x1, . . . , xn. These formulas define the class of Boolean
conjunctive queries (also known as select-project-join queries
or, in short, SPJ-queries). In the sequel, we will occasion-
ally use the term conjunctive query to denote both a for-
mula ∃x1 . . . ∃xnθ as above and the query defined by that
formula. Every finite structure A with n elements gives rise
to a canonical conjunctive query ϕA, which is obtained by
first associating a different variable xi with every element
ai of A, 1 ≤ i ≤ n, then forming the conjunction of all
atomic facts true in A, and finally existentially quantifying
all variables xi, 1 ≤ i ≤ n. In other words, the formula ϕA

is the existential closure of the positive diagram of A (see
[24]). Conversely, every conjunctive query ∃x1 . . . ∃xnθ gives
rise to a canonical structure A with n elements, where the
elements of A are the variables x1, . . . , xn and the relations
of A consist of the tuples of variables in the conjucts of θ.
As shown by Chandra and Merlin [5], this basic relationship
between conjunctive queries and finite structures plays a key
role in database query processing and optimization.

A Datalog program is a finite set of rules of the form T0 ←
T1, . . . , Tm, where each Ti is an atomic formula. The left-
hand side of each rule is called the head of the rule, while
the right-hand side is called the body. The relation symbols
that occur in the heads are the intensional database predi-
cates (IDBs), while all others are the extensional database
predicates (EDBs). Note that IDBs may occur in the bodies
too, thus, a Datalog program is a recursive specification of
the IDBs with semantics obtained via least fixed-points of
monotone operators (see [33]). For example, the following
Datalog program defines the transitive closure of the edge
relation E of a graph G = (V,E):

T (x, y) ← E(x, y);

T (x, y) ← E(x, z), T (z, y).

A key parameter in analyzing Datalog programs is the num-
ber of variables used. We write k-Datalog for the collection
of all Datalog programs with at most k variables in total.
For instance, the above is a 3-Datalog program.

Let C be a class of σ-structures. A query q on C of arity n
is a map that associates to each structure A in C an n-ary
relation q(A) on the domain of A that is preserved under
isomorphisms between structures. Let L be some logic. We
say that q is L-definable on C if there exists a formula ϕ
of L such that if A is in C, then a ∈ q(A) if and only if
A,a |= ϕ. A Boolean query is a query of arity 0, which
can be identified with an isomorphism-closed subclass of C.
Equivalently, a Boolean query is a mapping q from C to
{0, 1} that is invariant under isomorphisms. We say that a
Boolean query q is L-definable on C if there is a sentence ψ
of L such that for every A ∈ C, we have that q(A) = 1 if
and only if A |= ψ.

3. Preservation under Homomorphisms

and Minimal Models

Henceforth, we will restrict our attention to Boolean queries.
All the results we establish apply equally well to non-Boolean
queries. However, some of the definitions (such as that of
minimal models) are less intuitive when we consider non-
Boolean queries. Thus, in the interest of clarity we present
the constructions for Boolean queries only.

Let C be a class of finite σ-structures and let q be a Boolean
query on C. We say that a σ-structure A in C is a minimal

model of q in C if q(A) = 1 and there is no proper substruc-
ture B of A in C such that q(B) = 1. Recall from Section 2
that substructures are not necessarily induced. We say that
q is preserved under homomorphisms on C if for every pair
of structures A and B in C, if there is a homomorphism h
from A to B and q(A) = 1, then q(B) = 1.

Let q be a query that is preserved under homomorphisms on
all finite σ-sturctures. The first observation we make is that
the minimal models of a query that is preserved under ho-
momorphisms are cores. The concept of core was introduced
in the context of graph theory (see [23]), but it generalizes
naturally to relational structures. A substructure B of A

is called a core of A if there is a homomorphism from A

to B, but, for every proper substructure B′ of B, there is
no homomorphism from A to B′. It can be seen that ev-
ery finite structure A has a unique core up to isomorphism,
denoted by core(A), and that A is homomorphically equiv-
alent to core(A). If a structure A is its own core, we say
that A is a core. It is now clear from the definitions that if
q is a query that is preserved under homomorphisms on all
finite σ-structures, then every minimal model of q is a core.
More generally, if C is a class of finite σ-structures closed
under substructures, and q is a query preserved under ho-
momorphisms on C, then every minimal model of q in C is a
core.

The following characterization is part of the folklore, a proof
for the class of all finite σ-structures can be found in [4].
Here, we state it in a more general form for classes of finite
σ-structures that are closed under substructures, and sketch
a proof.

Theorem 1. Let C be a class of finite σ-structures that

is closed under substructures, and let q be a Boolean query

on C that is preserved under homomorphisms on C. The

following are equivalent:

1. q has finitely many minimal models in C.

2. q is definable on C by an existential-positive first-order

sentence.

Proof (sketch). The direction (1)⇒(2) is established by
constructing, for each finite structure A, a canonical con-
junctive query ϕA, as described earlier. The required ex-
istential positive formula defining q is now obtained as the
disjunction of ϕA over all minimal models A of q. This fol-
lows from the preservation of q under homomorphisms and
the fact that a structure B |= ϕA if and only if there is a
homomorphism from A to B (see [5]).



For the direction (2)⇒(1), we first use the fact that every ex-
istential positive formula is equivalent to a finite disjunction∨m

i=1 ψi, where each ψi is a conjunctive query. For each such
conjunctive query ψi, let Ai be the canonical finite structure
associated with ψi, 1 ≤ i ≤ m. Note that such a canonical
structure Ai may not be members of C. Nonetheless, it is
not hard to show that every minimal model B of q in C is
equal to a homomorphic image h(Ai) of one of the canon-
ical finite structures Ai, 1 ≤ i ≤ m. Thus, the cardinality
of every minimal model of q is C is less than or equal to the
maximum cardinality of the canonical finite structures Ai,
1 ≤ i ≤ m, which implies that q has finitely many minimal
models in C.

By Theorem 1, to establish the homomorphism-preservation
theorem for the class of all finite structures, we would need
to show that any first-order definable query preserved un-
der homomorphisms has only finitely many minimal mod-
els. Equivalently, it would suffice to show that for any such
query there is a bound on the size of the minimal mod-
els. Ajtai and Gurevich [3], in comparing the expressive
power of Datalog and first-order logic, showed that the min-
imal models of every first-order sentence preserved under
homomorphisms satisfy an interesting combinatorial prop-
erty. Intuitively speaking, they are dense. More precisely, if
there are arbitrarily large minimal models, then they can-
not be very thinly spread out, which means that they do not
contain a large set of elements all far away from each other.
Furthermore, one cannot remove a small number of elements
from a large minimal model to create such a scattered set.

The Ajtai-Gurevich proof of this property is based on Gaif-
man’s Locality Theorem for first-order logic [16]. Before we
state the precise result, we need a definition. Let G = (V,E)
be a graph. Recall the definition of d-neighborhood NG

d (u)
in Section 2. We say that a subset A ⊆ V of the nodes
is d-scattered if NG

d (u) ∩ NG

d (v) = ∅ for every two distinct
u, v ∈ A. We are ready for the result of Ajtai and Gurevich.
While they proved this for the class of all finite structures, it
is easy to see that the proof relativizes to classes satisfying
some simple restrictions. This observation follows from the
fact that disjoint union and taking a substructure are the
only constructions used in the proof in [3].

Theorem 2 ([3]). Let C be a class of finite σ-structures

that is closed under substructures and disjoint unions. Let q
be a Boolean query that is first-order definable and preserved

under homomorphisms on C. For every s ≥ 0, there exist

integers d ≥ 0 and m ≥ 0 such that if A is a minimal model

of q, then there is no B ⊆ A of size at most s such that

G(A) − B has a d-scattered set of size m, where G(A) − B
is the graph obtained from G(A) by removing all nodes in

B and the edges to which they are incident. In particular,

there exist integers d ≥ 0 and m ≥ 0 such that if A is a

minimal model of q, then G(A) does not have a d-scattered
set of size m.

Now, let C be a class of finite σ-structures that is closed
under substructures and disjoint unions. With Theorems 1
and 2 in hand, in order to establish that the homomorphism-
preservation theorem holds on C, it suffices to show that for

some s and every d and m, all sufficiently large structures
in C have d-scattered sets of size m after removing at most
s elements. Actually, it suffices to show that the collection
of Gaifman graphs of cores of the structures in C has this
property. We formulate this observation as the following
corollary, which we will use repeatedly in what follows.

Corollary 1. Let C be a class of finite σ-structures hav-

ing the following properties:

1. C is closed under substructures and disjoint unions;

2. for some s and for all d and m, there is an N so

that if A ∈ C and core(A) has more than N elements,

then there is a set B of at most s elements such that

G(core(A))−B has a d-scattered set of size m.

On the class C, every query that is first-order definable and

preserved under homomorphisms is definable by an existen-

tial positive first-order formula.

There is a case that is particularly easy in which we can take
s = 0.

Lemma 1. For every k ≥ 0, d ≥ 0, and m ≥ 0, there

exists an N ≥ 0 such that for all graphs G = (V,E) with

|V | > N and degree at most k, the graph G has a d-scattered
set of size m.

Proof. Fix d ≥ 0 and m ≥ 0, let N = mkd, and
let G = (V,E) be a graph with |V | > N . The size of
the d-neighborhood of every node in G is bounded by kd.
Therefore, there are at least m nodes in G with disjoint
d-neighborhoods.

As an immediate corollary we obtain the homomorphism-
preservation result for Boolean queries for classes of struc-
tures of bounded-degree and, actually, for classes of struc-
tures whose cores have bounded degree.

Theorem 3. Let C be a class of finite σ-structures that

is closed under substructures and disjoint unions, and such

that the class of cores of structures in C has bounded degree.

On the class C, every query that is first-order definable and

is preserved under homomorphisms is also definable by an

existential-positive first-order formula.

4. Classes with Cores of Bounded

Treewidth

In this section we establish the homomorphism-preservation
theorem for classes of bounded treewidth. Our aim is to
show a combinatorial result to the effect that if we have a
bound on the treewidth of structures in a class, then every
sufficiently large structure will contain a large scattered set,
after we have removed a small number of elements. The



results in this section are subsumed by those in Section 5,
since a class of structures of bounded treewidth excludes at
least one minor (namely, some clique). However, the proof
method for classes of bounded treewidth is simpler than the
one presented in Section 5 and also yields better bounds on
the maximum size of minimal models.

Unlike for Lemma 1, it is no longer sufficient to take s = 0.
To gain some intuition, consider the tree Sn which consists
of a single root with n children. Since every pair of nodes
is at most at distance 2, it is clear that Sn does not contain
a d-scattered set for d > 1, yet the tree can be arbitrarily
large. However, removing the root leaves a graph where the
remaining nodes are scattered as no edges are left. This
idea generalizes to arbitrary trees, in the sense that in every
sufficiently large tree, we need to remove at most one node
in order to create a large scattered set. For, either the tree
has a node of large degree or a long path. In the first case,
we remove a node of large degree and get a large number
of disconnected components, hence a scattered set. In the
second case, along the long path, we can select a set of
elements that are pairwise far away from each other. We
generalize this idea to graphs of small treewidth. It turns out
that the maximum number of nodes we need to remove to
create any desired scattered set is bounded by the treewidth.
This is proved using the Sunflower Lemma of Erdös and
Rado [12].

Theorem 4 (Sunflower Lemma). Let F be a collec-

tion of k-element subsets of a set A. If |F | > k!(p−1)k, then

F contains a sunflower with p petals, that is, a subcollection

F ′ ⊆ F of size p such that every pair of distinct sets in F ′

have a common intersection.

Here is the promised combinatorial result:

Lemma 2. For every k ≥ 1, d ≥ 0, and m ≥ 0, there

exists an N ≥ 0 such that for all graphs G = (V,E) with

|V | > N and treewidth less than k, there exists B ⊆ V of

size at most k such that G−B has a d-scattered set of size

m.

Proof. Let k ≥ 1, d ≥ 0, and m ≥ 0 be fixed. Let p =
(m− 1)(d+ 1) + 1, M = k!(p− 1)k, and let N = k(m− 1)M .
Let G = (V,E) be a graph with |V | > N , and let us assume
its treewidth is less than k. Let (T, {Sv : v ∈ T}) be a
tree-decomposition of G with sets Sv ⊆ V of size at most k.
Observe that the size of T is at least N/k+ 1. By standard
manipulation on tree-decompositions, we may assume that
for every pair of distinct nodes u, v ∈ T , both Su − Sv and
Sv − Su are non-empty. We distinguish two cases:

Case 1: There is a node in T of degree at least m. Let v
be such a node and B = Sv. Note that |B| ≤ k. By our
assumption on the tree-decomposition, we know that Su−Sv

is non-empty for every neighbor u of v. Therefore, the graph
G − B contains at least m disconnected components, so a
d-scattered set of size m.

Case 2: There is no node in T of degree at least m. In this
case, since the size of T is more than N/k = (m−1)M , there

must exist a path in T of length at least M . Since each Sv

on this path has size at most k, and since the length of the
path is at least M = k!(p − 1)k, by the Sunflower Lemma,
there must exist p = (m− 1)(d+ 1) + 1 sets Su1

, . . . , Sup on
this path with a common intersection B. Clearly |B| ≤ k,
and all Ti = Sui

− B are pairwise disjoint and non-empty
by our assumption on the tree-decomposition. We claim
that choosing an arbitrary element in T1+i(d+1) for each i ∈
{0, . . . ,m− 1} produces a d-scattered subset in G−B. To
see this, it suffices to show that if a ∈ Ti and b ∈ Ti+2,
then the distance between a and b in G − B is at least
two. Suppose on the contrary that a and b are adjacent in
G − B. Necessarily, a and b must appear together in some
Suj

. Then, j < i+ 1 because Ti and Ti+1 are disjoint. Also,
j > i+ 1 because Ti+2 and Ti+1 are also disjoint. This is a
contradiction, which completes the proof.

An immediate consequence of Lemma 2 and Corollary 1
is that the homomorphism-preservation theorem holds for
classes of structures of bounded treewidth. Indeed, it holds
for all classes whose cores have bounded treewidth. More
precisely, for every positive integer k ≥ 2, let H(T (k)) be
the class of all finite σ-structures A such that the core of A

has treewidth less than k. These classes have been studied
in the context of constraint satisfaction in [7, 18]. It is easy
to see that for each k ≥ 2, the class H(T (k)) coincides with
the class of all finite σ-structures that are homomorphically
equivalent to a σ-structure of treewidth less than k. In the
sequel, whenever we say that the structures in a class C have

cores of bounded treewidth, we mean that there is a positive
integer k such that C ⊆ H(T (k)).

Theorem 5. Let C be a class of finite σ-structures that

is closed under substructures and disjoint unions, and such

that the structures in C have cores of bounded treewidth.

On the class C, every query that is first-order definable and

is preserved under homomorphisms is also definable by an

existential-positive first-order formula.

Many interesting classes have bounded treewidth. In par-
ticular, among others, they include all trees, all unicyclic
graphs, and all outerplanar graphs. Classes of structures
whose cores have bounded treewidth are even broader and
more pervasive. For example, the core of every non-trivial
bipartite graph is K2, the graph consisting of a single edge.
Hence, the class of bipartite graphs is contained in H(T (2)).
However, all grids are bipartite and have arbitrarily large
treewidth. Thus, T (2) is properly contained in H(T (2)); in
fact, for every k ≥ 2, we have that T (k) is properly con-
tained in H(T (k)); For another example, consider all planar
graphs that contain K4 as a subgraph. By the Four Color
Theorem for planar graphs, every such graph is 4-colorable,
hence it is homomorphically equivalent to K4 and so it is
contained in H(T (4)).

5. Classes with Excluded Minors

In this section we extend the combinatorial results from the
previous section to classes of graphs which exclude a minor.
We say a class of graphs C excludes a graph G as a minor if
no graph in C has G as a minor. Note that, every graph G is



a minor of Kk, where k is the number of nodes in G. Thus,
if C excludes G as a minor, it also excludes Kk because the
graph minor relation is transitive. It therefore suffices to
establish our result for classes of structures that exclude Kk

as a minor for some k.

We aim to show that in the class of graphs that exclude
Kk as a minor, every sufficiently large graph will contain
large scattered sets after the removal of a small number of
elements. Intuitively, if a graph does not contain such a
scattered set, then there is a large number of elements with
short paths between each pair. Either various paths must
pass through a small number of elements or or they are
nearly disjoint. In the former case, we can remove the ele-
ments to get a scattered set; in the latter, we can find Kk

as a minor in the graph. It turns out, again, that k provides
a bound on the number of elements we need to remove.

The formal proof of this intuitive idea is inspired by a con-
struction due to Kreidler and Seese [27]. Before the main
result, we establish a lemma on bipartite graphs. The proof
relies on Ramsey’s Theorem (see [17]).

Theorem 6 (Ramsey’s Theorem). For every l ≥ 0,
k ≥ 0 and m ≥ 0, there is an N ≥ 0 such that if A is a set

with |A| > N and f : [A]k → {1, . . . , l} a function on the

k-element subsets of A, there is a set I ⊆ A with |I| > m
such that f is constant on [I]k, the k-element subsets of I.

We write r(l, k,m) for the bound N obtained in Ramsey’s
Theorem. We can now state the lemma on bipartite graphs
we require.

Lemma 3. For every k ≥ 1 and m ≥ 0, there is an N ≥ 0
such that if G = (V, U,E ⊆ V ×U) is a bipartite graph such

that Kk is not a minor of G and |V | > N , then there are

sets S ⊆ V and Z ⊆ U with |S| > m and |Z| < k − 1 such

that S is 1-scattered in G−Z and for each s ∈ S and z ∈ Z
we have {s, z} ∈ E.

Proof. The case k ≤ 2 is trivial as, if K2 is not a minor
of G, then G contains no edges and taking N = m suffices.
We will therefore assume that k ≥ 3 below. Furthermore, if
the lemma is true for some value of m it is also true for all
m′ ≤ m. Thus, it suffices to prove it for all large enough m.
In what follows we assume that m ≥ k2.

Define the function b(n) = r(k + 1, k, (k − 2)n) + k − 2,
where r is the Ramsey function. Let N = bk−2(m), that is,
the function b iterated k − 2 times. We construct the sets
S and Z in a series of stages, with at most k − 1 iterations.
Begin with S0 = V and Z0 = ∅.

Now, suppose at stage r we have sets Sr ⊆ V and Zr ⊆ U ,
with |Zr| ≤ r and |Sr| > bk−2−r(m) Let < be an arbi-
trary linear ordering of Sr and let f : [Sr]k → {0, . . . , k}
be the function that assigns to each k-element subset s of
Sr the maximal size of an <-initial segment of s such that
all of its elements have a common neighbour in U − Zr.
By Ramsey’s Theorem, there is a set I ⊆ Sr, with |I| >

(k−2)bk−2−(r+1)(m)+k−2 such that f is constant on [I]k.
We consider three cases:

Case 1: f([I]k) ≤ 1. Let B denote the last k − 2 elements
of I under the order <. Then, I − B is a 1-scattered in
G − Zr as every pair of elements in I − B forms the first
two elements of some ordered k-element subset of I and
therefore cannot have a common neighbour. Note also, that
|I −B| ≥ (k− 2)bk−2−(r+1)(m). Since r < k− 2, this means
|I − B| ≥ (k − 2)m ≥ m as k ≥ 3. Thus, taking S = I − B
and Z = Zr, we are done.

Case 2: 1 < f([I]k) < k. Let f([I]k) = t. If B denotes
the last k − t elements of I under the order <, then every
t-element subset of I−B has a common neighbour in U−Zr,
as it is the initial segment of size t of some k-element subset
of I. Furthermore, no t + 1 element subset of I − B has a
common neighbour in U −Zr, from which we conclude that
the maximal degree of any element in U − Zr (with respect
to I−B) is t. Now, let X1, . . . , Xk ⊆ I−B be a collection of
k pairwise disjoint sets, each with exactly t elements. Such
a collection exists, since |I − B| > (k − 2)bk−2−(r+1)(m) ≥
m ≥ k2. Then, by the argument above, for each Xi, there is
a ui ∈ U−Zr which is a common neighbour of all elements in
Xi, and ui has no other neighbours. Thus, the set Xi∪{ui}
forms a connected patch in the graph G−Zr. Similarly, for
each i and j with 1 ≤ i < j ≤ k, we can find an element uij ∈
U −Zr such that, if N(uij) denotes the set of neighbours of
uij in I, then:

1. N(uij) ⊆ Xi ∪Xj

2. N(uij) ∩Xi 6= ∅

3. N(uij) ∩Xj 6= ∅.

This is possible as Xi and Xj are disjoint and each has t > 1
elements. Thus, we can choose a subset ofXi∪Xj that meets
both sets and has exactly t elements. Any common neigh-
bour of this subset would serve as uij . Again, uij cannot
have any other neighbours in I−B, as no t+1-element sub-
set of I − B has a common neighbour. Thus, in particular,
uij has no neighbours in any Xl for l different from i and j.
We have thus found k distinct connected patches Xi ∪ {ui}
and pairwise disjoint paths (of length 2) between any pair
of them. Thus Kk is a minor of G, a contradiction. We
conclude that this case cannot occur.

Case 3: f([I]k) = k. This means that every k-element sub-
set of I has a common neighbour in U − Zr. Let X =
{x1, . . . , xk−1} be a collection of k − 1 distinct vertices in
I. As every k-element subset of I has a common neighbour,
there is a function w : I −X → U − Zr such that w(y) is a
common neighbour of X ∪ {y}. If the range of w contains
k− 1 distinct elements, G contains Kk−1,k−1 as a subgraph
and therefore Kk as a minor. We may, therefore, assume
that the range of w has fewer than k − 1 elements. Thus,
there is a J ⊆ I −X with |J | ≥ |I −X|/(k− 2) on which w
is constant. Let z ∈ U be the element to which w maps J .
We let Sr+1 = J ∪ X and Zr+1 = Zr ∪ {z}. Observe that
z is a common neighbour of all elements in Sr+1, and that
|Sr+1| ≥ |X|+|I−X|/(k−2) > (k−1)+bk−2−(r+1)(m)−1 >

bk−2−(r+1)(m) as required.



To complete the proof, we need to verify that the number
of iterations does not reach k − 1. Note that the iteration
is repeated only in case 3, and in this case, an element is
always added to the set Z. If the set were to contain k − 1
elements, as all these elements are neighbours of all elements
in S, which has at least m ≥ k elements, we would have that
G contains Kk−1,k−1, and therefore Kk as a minor. This
establishes that |Z| < k − 1.

The main combinatorial result of this paper can now be
proved by a construction that iterates Lemma 3.

Theorem 7. For every k ≥ 1, d ≥ 0, and m ≥ 0, there

is an N ≥ 0 such that if G = (V,E) is a graph such that

Kk is not a minor of G and |V | > N , then there are sets

S ⊆ V and Z ⊆ V with |S| > m and |Z| < k − 1 such that

S is d-scattered in G− Z.

Proof. Once again, we prove the statement for k ≥ 2,
as the case k = 1 is trivial.

Define the function c(n) = r(2, 2, bk−2(n)), where b is the
function defined in the proof of Lemma 3 and r is the Ram-
sey function. Let N = cd(m). We construct Z and S in
d stages. The sets Zi and Si at stage i will be such that
|Zi| < k−1 and Si is i-scattered in Gi, where Gi = G−Zi.
Moreover, |Si| > cd−i(m). Start with S0 = V and Z0 = ∅.

Suppose that Zi and Si have already been constructed. We
construct Zi+1 and Si+1. For every u ∈ Si, let Ni(u) be
the i-neighborhood of u in Gi. Consider the graph whose
set of vertices is the set of neighborhoods {Ni(u) : u ∈ Si},
and whose edges connect two different neighborhoods Ni(u)
and Ni(v) if there exist u′ ∈ Ni(u) and v′ ∈ Ni(v) such
that {u′, v′} is an edge in Gi. By Ramsey’s theorem, ei-
ther this graph contains an independent set or a clique of
more than bk−2(cd−i−1(m)) elements. The existence of such
a clique implies a Kk minor in G since the i-neighborhoods
of elements in Si are disjoint and connected in Gi. There-
fore, there must be an independent set, say {Ni(u) : u ∈ I},
where I ⊆ Si and |I| > bk−2(cd−i−1(m)). We define a bi-
partite graph H = (A,B,E ⊆ A × B) on which to apply
Lemma 3. Let A = I, and let B be the set of vertices of
Gi that are adjacent to some vertex in

⋃
u∈I

Ni(u). By
the choice of I, the sets A and B are disjoint. The edges
of H connect vertices u ∈ A with those vertices v ∈ B
that are adjacent to some vertex in Ni(u). Clearly, H has
no Kk minor; otherwise G would also have one since the
i-neighborhoods of elements in I form disjoint connected
patches in Gi. By Lemma 3, there exist S′ ⊆ A and Z ′ ⊆ B
such that |S′| > cd−i−1(m), S′ is 1-scattered in H −Z ′ and
{a, b} ∈ E for each a ∈ S′ and b ∈ Z ′. Let Zi+1 = Zi ∪ Z

′

and Si+1 = S′, which is (i+1)-scattered in Gi+1 = G−Zi+1.
The proof will be complete by showing that if |Zi+1| ≥ k−1,
then G has a Kk−1,k−1 minor, and thus a Kk minor.

Suppose that |Zi+1| ≥ k−1. By construction, {a, b} ∈ E for
each a ∈ S′ and b ∈ Z ′, which means that, in G, each b ∈ Z ′

is adjacent to some vertex in Ni(a) for every a ∈ S′. In fact,
the inductive construction guarantees that each b ∈ Zi is
also adjacent, in G, to some vertex Ni(a) for every a ∈ S′.

Consider each Ni(u), with u ∈ S′, as a connected patch in
the subgraph of G induced by

⋃
u∈S′ Ni(u) and Zi+1. Note

that these patches are disjoint. The Kk−1,k−1 minor is now
clear since |S′| ≥ k − 1 and |Zi+1| ≥ k − 1.

Combining this with Corollary 1 we get the following result.

Theorem 8. Let C be a class of finite σ-structures that

is closed under substructures and disjoint unions, and such

that the class of Gaifman graphs of cores of structures in

C excludes at least one minor. On the class C, every query

that is first-order definable and is preserved under homomor-

phisms is also definable by an existential-positive first-order

formula.

We now comment on the relationship between Theorem 8
and the earlier Theorems 5 and 3.

As noted earlier, the class T (k) of graphs of treewidth less
than k excludes Kk+1 as a minor. By the same token, the
Gaifman graphs of cores of structures in H(T (k)) exclude
Kk+1 as a minor. Thus, the homomorphism-preservation
theorem for these classes (Theorem 5) is a special case of
Theorem 8. Furthermore, there are many classes character-
ized by excluded minors that do not have bounded treewidth.
An example is the collection of planar graphs, which, by
Kuratowski’s Theorem, exclude K5 and K3,3 as minor, but
have unbounded treewidth. Another example of a class of
graphs that exclude some minor are the graphs of bounded
genus. Indeed, any class of graphs closed under taking mi-
nors and different from the class of all finite graphs must
exclude some minor; consequently, the preservation-under-
homomorphisms property holds for all these classes.

A more precise relationship between Theorems 5 and 8 can
be obtained using certain deep results by Robertson and
Seymour [28] about classes of graphs excluding a minor.
Specifically, Robertson and Seymour [28] showed that for
every graph H, the class of graphs excluding H as a minor
is of bounded treewidth if and only if H is non-planar (this
result is a consequence of the the Excluded Grid Theorem of
Robertson and Seymour [28] - see also [9, pages 264–274]).
Consequently, for every graph H, the preservation-under-
homomorphisms property for the class of graphs excluding
H as a minor can be derived from Theorem 8, but not from
Theorem 5, precisely when H is a non-planar graph.

It should also be noted that a class of graphs of bounded
degree need not exclude any minor. This can be seen by
replacing every node of a Kk by a binary tree with k − 1
leaves and connecting different pairs of trees through disjoint
pairs of leaves. The resulting graph has degree 3, but has
Kk as a minor. Therefore, Theorem 3 can not be derived
as a consequence of Theorem 8, unless one could show that
the class C under consideration has the property that the
graphs of bounded degree in C that are also cores exclude
some minor.



6. Ajtai-Gurevich Theorem Revisited

The Ajtai-Gurevich Theorem [3] asserts that every Data-
log program that is first-order definable is bounded, that
is, the associated monotone operator reaches its least fixed-
point after a uniformly bounded number of iterations on
every structure. The aim of this section is to show that the
results on treewidth in Section 4 yield an alternative and
perhaps more transparent proof of this result. Actually, we
obtain a stronger result for a logic strictly more expressive
than Datalog. We proceed in a sequence of lemmas. The
first lemma asserts that the minimal models of existential-
positive first-order formulas have treewidth bounded by the
number of variables. This is a consequence of results in [7],
following [26], where it is shown that the core of a structure
has treewidth less than k if and only if the canonical con-
junctive query of that structure is logically equivalent to an
existential-positive first-order formula with k variables. For
completeness, we outline a self-contained proof.

Lemma 4. If ϕ is an existential-positive first-order for-

mula with k variables, then every minimal model of ϕ has

treewidth less than k.

Proof. We show that every model of ϕ contains a sub-
model with treewidth less than k. Since existential quan-
tifiers commute with disjunctions and since conjunctions
distribute over disjunctions, every existential-positive first-
order sentence with k variables can be written as a finite
disjunction of existential-positive disjunction-free first-order
sentences with k variables. Hence, it suffices to show that
every model of an existential-positive disjunction-free first-
order sentence with k variables has a submodel of treewidth
less than k. Let ψ be the result of renaming all occurrences
of variables in ϕ so that each existential quantifier bounds a
different variable. Repeatedly apply the following rewriting
rules to the subformulas of ψ: replace subformulas of the
form ψ′ ∧ (∃x)(ψ′′) by (∃x)(ψ′ ∧ ψ′′), and subformulas of
the form (∃x)(ψ′) ∧ ψ′′ by (∃x)(ψ′ ∧ ψ′′). Note that these
rules preserve equivalence because each variable is quanti-
fied only once in ψ. The result is a sentence of the form
(∃x1) · · · (∃xn)θ that is equivalent to ψ, where θ is a con-
junction of atomic facts. Now, suppose A is a model of ψ.
Consider the substructure B of A whose universe consists
of the (not necessarily distinct) witnesses a1, . . . , an of the
n existential quantifiers in which R(ai1 , . . . , air ) holds if,
and only if, the atomic formula R(xi1 , . . . , xir ) appears in
θ. Let us now see that this model has treewidth less than
k. Let ψ1, ψ2, . . . , ψr be the collection of all subformulas of
ψ. View them as nodes of the parse-tree of ψ. Label each
node ψi of the tree by the set consisting of the witnesses aj

that interpret the free variables of ψi. Since ϕ has k vari-
ables in total, each ψi has at most k free variables, so each
label has size at most k. Using the fact that each variable
is quantified exactly once in ψ and that each atomic fact in
the diagram of B is a subformula of ψ, it is not hard to see
that the tree and its labeling is a tree-decomposition of B

of width at most k − 1. Hence, the treewidth of B is less
than k.

We now turn to infinitary logic as an intermediate step to-
wards the Ajtai-Gurevich Theorem. The collection of in-

finitary formulas L∞ω is obtained by closing the atomic
formulas under negation, infinitary conjunctions, infinitary
disjunctions, universal and existential quantification. The k-
variable fragment of L∞ω is denoted by Lk

∞ω. The collection
of existential-positive infinitary formulas ∃L+

∞ω is obtained
by closing the atomic formulas under infinitary conjunctions,
infinitary disjunctions, and existential quantification. The
k-variable fragment of ∃L+

∞ω is denoted by ∃Lk,+
∞ω. It was

shown in [26, Theorem 4.1] that for every positive integer
k, every k-Datalog program is expressible in ∃Lk,+

∞ω. This
provides the link between Datalog and infinitary logic.

The expressive power of ∃Lk,+
∞ω is captured by the existen-

tial k-pebble games, first defined in [25, 26]. These games
are played between two players, the Spoiler and the Dupli-
cator, on two σ-structures A and B according to the fol-
lowing rules. Each player has a set of k pebbles numbered
{1, . . . , k}. In each round of the game, the Spoiler can make
one of two different moves: either he places a free pebble on
an element of the domain of A, or he removes a pebble from
a pebbled element of A. To each move of the Spoiler, the
Duplicator must respond by placing her corresponding peb-
ble over an element of B, or removing her corresponding
pebble from B, respectively. If the Spoiler reaches a round
in which the set of pairs of pebbled elements is not a partial
homomorphism between A and B, then he wins the game.
Otherwise, we say that the Duplicator wins the game. The
following link between existential k-pebble games and ∃Lk,+

∞ω

was proved in [25, 26]: let ϕ be an ∃Lk,+
∞ω sentence; if the

Duplicator wins the existential k-pebble game on A and B,
and A is a model of ϕ, then B is also a model ϕ. We use
existential k-pebble games to prove a normal form for ∃Lk,+

∞ω

Lemma 5. On the class of all finite σ-structures, every

∃Lk,+
∞ω sentence is equivalent to an infinitary disjunction of

existential-positive first-order sentences with k variables.

Proof (sketch). Let ϕ be an ∃Lk,+
∞ω sentence. For every

model A of ϕ, let ψA be the statement “the Duplicator wins
the existential k-pebble game on A and B”. This is viewed
as a query on finite structures B. We first observe that ϕ
is equivalent to the infinitary disjunction

∨
ψA, where A

ranges over all finite models of ϕ. Indeed, if B is a model
of ϕ, then B satisfies ψB, which is one of the disjuncts of
the infinitary disjunction. Conversely, if B satisfies the in-
finitary disjunction, then it satisfies ψA for some model A

of ϕ. This means that the Duplicator wins the existential
k-pebble game on A and B; since A satisfies ϕ, it follows
that B satisfies ϕ.

So, it suffices to show that each statement ψA is definable
by an existential-positive first-order sentence with k vari-
ables. Consider the following query: “Given A and B, does
the Spoiler win the existential k-pebble game on A and B?”
It was shown in [26, Theorem 4.7] that this query is defin-
able in least fixed-point logic. Moreover, for every fixed B,
this query is expressible in k-Datalog; this is shown by in-
stantiating the inductive definition to all k-tuples of B. By
instantiating it to all tuples from A, instead of B, we can
extract a system of universal first-order formulas that are
positive in the recursive predicates, but each atomic formula
from σ occurs negatively only. More precisely, for every k-



tuple a = (a1, . . . , ak) from A, we get a k-ary relation sym-
bol Ta(y1, . . . , yk) that will be used to express the property
“the Spoiler wins from the position (a1, . . . , ak, y1, . . . , yk)”.
The resulting system of universal first-order formulas has
the property that all its finite stages are definable by formu-
las of first-order logic built using negated atomic formulas,
universal quantification, and disjunction. Using the tech-
niques in [26, Theorem 4.3], one can show that these for-
mulas can be rewritten so that only k variables are used.
Finally, it remains to show that it is enough to iterate the
system finitely many times. This follows from the fact that
there are no more than |A|k configurations for the Spoiler
in the existential k-pebble game on A and B. By negat-
ing the disjunction of these finitely many stages, we obtain
an existential-positive first-order formula with k variables
expressing ψA.

An immediate corollary of the normal form and Lemma 4
is that the collection of minimal finite models of an ∃Lk,+

∞ω

sentence has treewidth less than k. Actually, there is a con-
verse in that every query q that is preserved under homo-
morphisms and whose minimal models have treewidth less
than k can be expressed by a formula of ∃Lk,+

∞ω. This shows
the tight connection between the results we established in
Section 4 and definability in ∃Lk,+

∞ω.

Lemmas 4 and 5 together with Theorem 5 gives us the fol-
lowing:

Theorem 9. On the class of all finite σ-structures, every

query that is definable by a first-order formula and an ∃Lω,+
∞ω

formula is also definable by an existential-positive first-order

formula.

We now have all the necessary tools to give an alternative
proof of the Ajtai-Gurevich Theorem. In fact, at this point
we can give two different proofs of the Ajtai-Gurevich The-
orem. One of these proofs uses the compactness theorem of
first-order logic. Here, we sketch the second proof, which
is more in the spirit of database theory as it uses a well
known result by Sagiv and Yannakakis [30] about unions of
conjunctive queries.

Theorem 10 ([3]). If a Datalog program is first-order

definable, then it is bounded.

Proof. Let P be a Datalog program that is first-order
definable. For every n ≥ 1, let ϕn be the first-order formula
defining the n-th stage of the Datalog program. As is well
known, each ϕn is a union of conjunctive queries, so P is
definable by an infinite disjunction

∨
m≥1 qm, where qm is a

conjunctive query. Since P is first-order definable, Theorem
9 implies that P is also definable by a finite union

∨s

i=1 q
′
i,

where each q′i is a conjunctive query. Sagiv and Yannakakis
[30] have shown that a union of conjunctive queries logically
implies another union of conjunctive queries if and only if
every conjunctive query in the first union logically implies
some conjunctive query in the second union. Consequently,
there is a positive integer t such that

∨
m≥1 qm is logically

equivalent to
∨t

m=1 qm. Thus, the Datalog program P is
bounded.

7. Concluding Remarks

We have investigated the homomorphism-preservation the-
orem in the finite and have shown that it holds for numer-
ous classes of finite structures of interest in graph theory
and database theory. As noted earlier, preservation theo-
rems do not relativize to restricted classes of structures, so
our results stand by themselves independently of whether
the homomorphism-preservation theorem holds or fails on
the class of all finite structures. Indeed, one can ask the
same question for other classes of finite structures. For in-
stance, we could consider classes of bounded local treewidth
[11, 15] or of bounded cliquewidth [6]. The homomorphism-
preservation theorem for these classes does not follow from
our results, as these classes are not definable by excluded
minors. Indeed, the classes of bounded local treewidth gen-
eralise both bounded treewidth and bounded degree. Also,
the class of all cliques has bounded cliquewidth but does
not exclude any minor. However, it is worth investigating
whether the kinds of techniques we have developed could
yield results about these classes. Another line of investi-
gation would ask similar questions to those studied here
for other classical preservation theorems, and in particu-
lar, for those that fail on the class of all finite structures,
such as the  Loś-Tarski Theorem and Lyndon’s Positivity
Theorem. Moreover, it is perhaps worth mentioning that
another consequence of our results is that in order to prove
the homomorphism-preservation theorem for the class of all
finite structures, it now suffices to show that the collection
of minimal models of any first-order query preserved under
homomorphisms excludes some minor.

It should also be pointed out that our results are effective.
More precisely, for the classes of structures for which we
established the homomorphism-preservation theorem, the
proofs provide us with a computable bound on the size of the
minimal models of a first-order query preserved under ho-
momorphisms. This yields an effective procedure to produce
a union of conjunctive queries that is equivalent to a given
first-order formula that is preserved under homomorphisms.
In turn, for classes of structures whose first-order theory is
decidable, such as T (k), the computable bound can also be
used to show that it is decidable whether a first-order for-
mula is preserved under homomorphisms. This should be
compared with the undecidability of the same problem on
the class of all finite structures [4]. The exact complexity of
these problems on the class T (k) could be prohibitive, but
this remains to be determined.
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