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ABSTRACT
Schema mappings are high-level specifications that describe the re-
lationship between two database schemas; they are considered to be
the essential building blocks in data exchange and data integration,
and have been the object of extensive research investigations. Since
in real-life applications schema mappings can be quite complex, it
is important to develop methods and tools for understanding, ex-
plaining, and refining schema mappings. A promising approach to
this effect is to use “good" data examples that illustrate the schema
mapping at hand.

We develop a foundation for the systematic investigation of data
examples and obtain a number of results on both the capabilities
and the limitations of data examples in explaining and understand-
ing schema mappings. We focus on schema mappings specified
by source-to-target tuple generating dependencies (s-t tgds) and in-
vestigate the following problem: which classes of s-t tgds can be
“uniquely characterized" by a finite set of data examples? Our in-
vestigation begins by considering finite sets of positive and negative
examples, which are arguably the most natural choice of data exam-
ples. However, we show that they are not powerful enough to yield
interesting unique characterizations. We then consider finite sets of
universal examples, where a universal example is a pair consisting
of a source instance and a universal solution for that source in-
stance. We unveil a tight connection between unique characteriza-
tions via universal examples and the existence of Armstrong bases
(a relaxation of the classical notion of Armstrong databases). On
the positive side, we show that every schema mapping specified by
LAV s-t tgds is uniquely characterized by a finite set of universal
examples with respect to the class of LAV s-t tgds. Moreover, this
positive result extends to the much broader classes of n-modular
schema mappings, n a positive integer. Finally, we show that, on
the negative side, there are schema mappings specified by GAV s-t
tgds that are not uniquely characterized by any finite set of uni-
versal examples and negative examples with respect to the class of
GAV s-t tgds (hence also with respect to the class of all s-t tgds).
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1. Introduction and Summary of Results
Schema mappings are high-level specifications that describe the

relationship between two database schemas. Schema mappings are
considered to be the essential building blocks in data exchange
[18] and data integration [19] systems. The work on schema map-
pings to date has branched into two different (and, to a large ex-
tent, independent) directions of research. The first direction is con-
cerned with the structural and algorithmic properties of schema
mappings as given objects, and with their uses in the execution of
data exchange and data integration tasks. The second direction is
concerned with the discovery of schema mappings between two
schemas, which is one of the first crucial steps taken towards the
exchange or integration of data across database schemas.

Since real-life schemas can be complex, the discovery of a schema
mapping between two schemas can be a difficult task. Conse-
quently, several commercial systems, such as Altova Mapforce,
Microsoft BizTalk Mapper, and Stylus Studio, as well as IBM’s
research prototype Clio [13, 15], have been developed to facilitate
the task of producing a schema mapping between two schemas. All
these systems adopt a common architecture towards the comple-
tion of this task: First, a user interface that displays both schemas
is used to facilitate the derivation of a set of correspondences be-
tween attributes of relations of the two schemas. The set of corre-
spondences is usually derived automatically or semi-automatically
with the help of a schema-matching engine. After this, a schema-
mapping generation component derives a schema mapping between
the source schema and the target schema that is consistent with the
set of correspondences. Typically, there are multiple schema map-
pings that are consistent with a set of correspondences between a
source schema and a target schema, and most commercial systems
produce just one of them. Actually, different commercial systems
may produce semantically different schema mappings even when
they are presented with the same set of correspondences between
a source and a target schema [3]. In research prototypes, such as
Clio, multiple schema mappings that are consistent with the set of
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correspondences are generated, and one of them is designated as
the default schema mapping.

Regardless of whether just a single schema mapping or multi-
ple schema mappings may be derived by these systems, there is
a clear and pressing need to illustrate the exact semantics of the
schema mappings that are generated. In fact, in real-life appli-
cations, schema mappings can be quite complex even if they are
derived manually. A promising approach to this effect is to use
“good” data examples that illustrate the schema mapping at hand.
This approach is motivated from the long and venerable tradition
of using test examples in understanding and debugging computer
programs. The use of data examples for schema mappings was
advocated in [26], where the concept of a mapping example was
introduced together with a set of operators for manipulating such
examples. More recently, data examples were used in [2] to aid
designers in refining various aspects of schema-mapping specifica-
tions; furthermore, in [5], the “behavior” of schema mappings was
illustrated in the form of routes from source to target data. Beyond
schema mappings, the problem of generating “illustrative” exam-
ples for dataflow programs was recently investigated in [22].

In this paper, we develop a foundation for the systematic inves-
tigation of data examples for schema mappings and obtain a num-
ber of results that shed light on both the capabilities and the lim-
itations of data examples in explaining and understanding schema
mappings. We focus on schema mappings specified by source-to-
target tuple generating dependencies (s-t tgds, in short), also known
as GLAV (global-and-local-as-view) dependencies; this class of
schema mappings comprises the most extensively studied schema
mappings to date and contains, as important special cases, the classes
of schema mappings specified by LAV (local-as-view) dependen-
cies and by GAV (global-as-view) dependencies.

Let S be a source schema and T be a target schema. We consider
schema mappings M = (S,T,Σ), where Σ is a finite set of s-t
tgds. A data example is a pair (I, J) such that I is a source instance
and J is a target instance. The central notion in our investigation
is what it means to say that a schema mapping M = (S,T,Σ)
is uniquely characterized by a finite set F of data examples with
respect to (w.r.t.) a class C of s-t tgds of interest. Informally, M
is uniquely characterized by F w.r.t. C if Σ is, up to logical equiv-
alence, the only finite set Σ′ of s-t tgds from C such that each data
example in F has the “same relationship” with Σ as it has with
Σ′. This concept is formalized by making precise the notion of the
“relationship" between a data example and a set of s-t tgds. As we
shall see, this notion can be made precise in different natural ways;
furthermore, the different notions obtained give rise to different re-
sults concerning unique characterizations of schema mappings.

Our investigation of unique characterizations begins by consid-
ering finite sets F of data examples that are positive examples or
negative examples, where a data example (I, J) is a positive exam-
ple for a schema mapping M = (S,T,Σ) if (I, J) |= Σ, and it is
a negative example if (I, J) �|= Σ. Positive and negative examples
are arguably the most natural types of data examples to consider;
in fact, these types of examples are the main objects of study in the
context of computational learning (e.g., see [17]). We show that if
the source schema S and the target schema T contain only unary
relation symbols, then every schema mapping M = (S,T,Σ),
where Σ is a finite set of s-t tgds, can be uniquely characterized by
a finite set of positive and negative examples w.r.t. the class of all
s-t tgds. This result appears to be a promising first step, but, un-
fortunately, it does not extend to schema mappings over source and
target schemas that contain non-unary relation symbols. Indeed,
we exhibit a LAV schema mapping over a source schema with one
binary relation symbol and a target schema with one binary rela-

tion symbol that is not uniquely characterizable by any finite set
of positive and negative examples w.r.t. the class of LAV s-t tgds
(hence, also w.r.t. the class of all s-t tgds). Furthermore, we exhibit
a GAV schema mapping for which a similar state of affairs holds
with respect to the class of all GAV s-t tgds (hence, also w.r.t. the
class of all s-t tgds).

In view of the failure of positive and negative examples to yield
unique characterizations beyond the very limited case of schemas
consisting of unary relation symbols only, we consider the notion
of a universal example, where a data example (I, J) is a universal
example for a schema mapping M = (S,T,Σ) if J is a universal
solution for I with respect to M. Universal solutions were intro-
duced in [9] and shown to be the preferred solutions to materialize
in data exchange because, among other reasons, they are the most
general solutions and they represent (in a precise technical sense)
the entire space of solutions for a given source instance. These
properties of universal solutions suggest that universal examples
are indeed a natural type of data example to consider as candidates
for unique characterizations of schema mappings.

Before delineating the capabilities and limitations of universal
examples, we unveil a very tight (and unexpected) connection be-
tween the existence of unique characterizations of schema map-
pings M = (S,T,Σ) via universal examples and the existence
of an Armstrong basis for Σ, which is a relaxation of the classi-
cal notion of an Armstrong database for Σ. As is well known, an
Armstrong database for Σ w.r.t. a class C of database dependen-
cies is a database D that satisfies all the dependencies in C that are
logical consequences of Σ, and no other dependencies in C. Arm-
strong databases were extensively studied in the context of database
dependency theory in the 1970s and 1980s (see [7] for a survey).
Clearly, if Σ and Σ′ are two sets of s-t tgds and if (I, J) is an
Armstrong database for both Σ and Σ′ w.r.t. a class C of s-t tgds
containing Σ and Σ′, then Σ is logically equivalent to Σ′. Thus,
Armstrong databases are ideal data examples for unique character-
izations of schema mappings. Nevertheless, it is rare that a schema
mapping specified by s-t tgds possesses an Armstrong database.
For this reason, we introduce and study the following relaxation of
the notion of an Armstrong database. Let Σ be a set of s-t tgds and
let D = {(I1, J1), . . . , (In, Jn)} be a finite set of data examples.
We say that D is an Armstrong basis for Σ w.r.t. a class C of s-t
tgds if for every s-t tgd σ in C, we have that Σ logically implies
σ if and only if (Ii, Ji) |= σ, for every i = 1, . . . , n. This is a
strict relaxation of the notion of an Armstrong database because
we show that there are LAV s-t tgds that have an Armstrong basis
w.r.t. the class of all LAV s-t tgds, but not an Armstrong database.
Also, it is quite easy to see that if D is an Armstrong basis for both
Σ and Σ′ w.r.t. a class C containing Σ and Σ′, then Σ is logically
equivalent to Σ′. Thus, when they exist, Armstrong bases readily
yield unique characterizations of schema mappings. We show that
a schema mapping M = (S,T,Σ), where Σ is a set of s-t tgds,
is uniquely characterized by a finite set of universal examples w.r.t.
a class C of s-t tgds containing Σ if and only if Σ possesses an
Armstrong basis w.r.t. to C. This result reinforces the “goodness”
of universal examples and, at the same time, reveals an a priori un-
expected connection between (a natural relaxation of) a key notion
in database dependency theory and a key notion in data exchange.

The following question naturally arises. Which classes of schema
mappings specified by s-t tgds possess unique characterizations via
universal examples? Equivalently, which schema mappings spec-
ified by s-t tgds possess Armstrong bases? On the positive side,
we show that every schema mapping specified by LAV s-t tgds is
uniquely characterized by a finite set of universal examples w.r.t.
the class of LAV s-t tgds. We then extend this positive result to
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the class of n-modular schema mappings M = (S,T,Σ), n ≥ 1,
where M is n-modular if whenever (I, J) is a negative example
for Σ, then there is a sub-instance I ′ of I of size at most n such
that (I ′, J) is also a negative example for Σ. The notion of n-
modularity was introduced in [24] and used to characterize schema-
mapping languages in terms of their structural properties. Finally,
on the negative side, we show that there are natural schema map-
pings specified by GAV s-t tgds that are not uniquely characterized
by any finite set of universal examples and negative examples w.r.t.
the class of GAV s-t tgds. The proof of this theorem makes use
of sophisticated results from graph theory, namely, a generalization
of Erdös’ celebrated result [6] asserting the existence of graphs of
arbitrarily large girth and chromatic number.

2. Preliminaries
A schema R is a finite sequence (R1, . . . , Rk) of relation sym-

bols, each of a fixed arity. An instance I over R is a sequence
(RI

1, . . . , R
I
k), where each RI

i is a relation of the same arity as
Ri. We shall often writeRi to denote both the relation symbol and
the relation RI

i that interprets it. An atom (over R) is a formula
P (x1, . . . , xm), where P is a relation symbol in R and x1, . . . , xm

are variables, not necessarily distinct. A fact of an instance I (over
R) is an expression P I(v1, . . . , vm), where P is a relation symbol
in R and v1, . . . , vm are values such that (v1, . . . , vm) ∈ P I . We
assume that all instances I considered are finite, which means that
every relation RI

i is finite, for 1 ≤ i ≤ k.
Schema Mappings. A schema mapping is a triple M = (S,T,Σ)
consisting of a source schema S, a target schema T, and a set Σ
of constraints. We say that M is specified by Σ. In general, the
constraints in Σ are formulas in some logical formalism. Here, we
will focus on schema mappings specified by source-to-target tuple-
generating dependencies.

A source-to-target tuple-generating dependency (s-t tgd) is a first-
order sentence ϕ of the form

∀x(ϕ(x) → ∃yψ(x,y)),

where ϕ(x) is a conjunction of atoms over S, each variable in x oc-
curs in at least one atom in ϕ(x), and ψ(x,y) is a conjunction of
atoms over T with variables in x and y. For simplicity, we will of-
ten drop the universal quantifiers ∀x in the above formula. Another
name for s-t tgds is global-and-local-as-view (GLAV) constraints
(see [19]). They contain GAV and LAV constraints as important
special cases.

A GAV (global-as-view) constraint is a s-t tgd in which the right-
hand side is a single atom, i.e., it is of the form

∀x(ϕ(x) → P (x)),

where P (x) is an atom over the target schema. A LAV (local-as-
view) constraint is a s-t tgd in which the left-hand side is a single
atom, i.e., it is of the form

∀x(Q(x) → ∃yψ(x,y)),

where Q(x) is an atom over the source schema.
Satisfaction and Logical Implication. The symbol |= will be used
to denote several different notions. If Σ is a set of first-order sen-
tences and D is an instance, then D |= Σ means that D satisfies
every sentence in Σ. If σ is a first-order sentence, then Σ |= σ
denotes logical implication, i.e., it means that for every (finite or
infinite) instance D such that D |= Σ, we have that D |= σ. If Σ′

is a set of first-order sentences, then Σ |= Σ′ means that for every
σ′ ∈ Σ′, we have that Σ |= σ′. Finally, Σ ≡ Σ′ denotes that Σ and
Σ′ are logically equivalent, i.e., Σ |= Σ′ and Σ′ |= Σ.

The notion of logical implication is defined using all (finite and
infinite) instances. There is a companion notion of logical impli-
cation in the finite, denoted by |=Fin, where Σ |=Fin σ means that
for every finite instance D such that D |= Σ, we have that D |= σ.
In general, |= and |=Fin are different notions (clearly, if Σ |= σ,
then Σ |=Fin σ, but the converse need not be true). It is easy to see,
however, that these two notions coincide on finite sets of s-t tgds.
Specifically, assume that Σ is a finite set of s-t tgds and σ is a s-t
tgd. Then Σ |= σ if and only if Σ |=Fin σ. For the non-trivial di-
rection, assume that Σ |=Fin σ but Σ �|= σ. Let (I, J) be such that
(I, J) |= Σ, but (I, J) �|= σ. Assume that σ isϕ(x) → ∃zψ(x, z).
Then there is a tuple a such that I |= ϕ(a) and J |= ∀z¬ψ(a, z).
Let I0 be the sub-instance of I consisting of the facts ϕ(a). As-
sume that Σ consists of the s-t tgds σ1, . . . , σk. Then there are
finite sub-instances Ji of J such that (I0, Ji) |= σi, i = 1, . . . , k.
Let J0 be the union of all Ji, 1 ≤ i ≤ k. Then (I0, J0) is a finite
instance that satisfies Σ but not σ, which is a contradiction.
Solutions, Homomorphisms, and Universal Solutions. We now
review some basic notions and results from [9]. We assume that we
have a fixed infinite set Const of constants and a fixed infinite set
Var of nulls that is disjoint from Const. We write adom(I) for the
active domain of an instance I , that is, the set of all values occur-
ring in I . All values occurring in a source instance I are assumed to
be constants, i.e., adom(I) ⊆ Const. In contrast, target instances
have values in Const ∪ Var. Let M = (S,T,Σ) be a schema
mapping. If I is a source instance, then a solution for I w.r.t. M is
a target instance J such that (I, J) |= Σ. From a semantic point of
view, a schema mapping M = (S,T,Σ) can be identified with the
collection {(I, J) : I is a source instance and J is a solution for I}.

Assume that K, K′ are two instances over the target schema T.
A function h from Const∪Var to Const∪Var is a homomorphism
from K to K′ if for every c ∈ Const, we have that h(c) = c, and
for every relation symbol R in T and every tuple (a1, . . . , an) ∈
RK , we have that (h(a1), . . . , h(an)) ∈ RK′

. We write K →
K′ to denote that there is a homomorphism from K to K′. The
instances K and K′ are said to be homomorphically equivalent if
K → K′ and K′ → K.

Given a schema mapping M = (S,T,Σ) and a source instance
I , a universal solution for I w.r.t. M is a solution J for I w.r.t.
M such that for every solution J ′ for I w.r.t. M, we have that
J → J ′. Intuitively, universal solutions are the “most general” so-
lutions among all solutions for I , hence the preferred solutions to
materialize in data exchange. Clearly, if both J1 and J2 are univer-
sal solutions for I , then J1 and J2 are homomorphically equivalent.
Chase. The chase procedure is an algorithm that was originally
designed to reason about database dependencies (see [1]), but it
turned out to have numerous applications to data exchange and data
integration. In particular, as shown in [9], if M = (S,T,Σ) is a
schema mapping specified by s-t tgds, then the chase procedure can
be used to produce, given a source instance I , a universal solution
chaseM(I) for I in time bounded by a polynomial in the size of I .

There are several variants of the chase procedure. Here, we will
consider the simplest such variant, called the naive chase. Given
a source instance I , the naive chase produces a universal solution
chaseM(I) for I as follows. For every s-t tgd

∀x(ϕ(x) → ∃yψ(x,y))

in Σ and for every tuple a of constants from adom(I) such that
I |= ϕ(a), we add to chaseM(I) all facts in ψ(a,b), where b is
a tuple of new nulls interpreting the existential quantified variables
y. Thus, nulls are created independently each time and without
considering whether the right-hand side of the s-t tgd at hand could
be satisfied using facts that involve nulls created earlier.
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3. Positive and Negative Examples
Let S be a source schema and T a target schema. A data ex-

ample is a pair (I, J) such that I is a source instance and J is a
target instance. Assume now that M = (S,T,Σ) is a schema
mapping, where Σ is a finite set of s-t tgds. This is a finite syntac-
tic description of a schema mapping. As mentioned in Section 2,
from a semantic point of view, M can be identified with the infi-
nite collection {(I, J) : (I, J) |= Σ}. Our main goal in this paper
is to address the following question: can this infinite collection of
data examples be “captured" by a finite set of data examples. In
other words, does M have a finite semantic description in terms of
data examples. We make this question precise by considering dif-
ferent “types” of data examples and stipulating that a finite set F
of examples uniquely characterizes M = (S,T,Σ) w.r.t. a class
C of s-t tgds if the following holds: for every finite set Σ′ of s-t
tgds from C such that each example in F has the same “type” w.r.t.
Σ as it has w.r.t. Σ′, we have that Σ ≡ Σ′. It should be noted
that, in addition to the concept of logical equivalence (≡), two
other notions of equivalence between schema mappings have been
considered, namely data-exchange equivalence and conjunctive-
query equivalence [10]. In general, these three notions of equiv-
alence are distinct; however, they are known to coincide for s-t tgds
[10]. Thus, the preceding concept of unique characterization of a
schema mapping amounts to asserting that for every set Σ′ of s-t
tgds from C such that each example in F has the same “type” w.r.t.
Σ as it has w.r.t. Σ′, we have that Σ is data-exchange equivalent or
conjunctive-query equivalent to Σ′.

We begin by considering positive and negative examples, two
natural types of examples that have been widely used in computa-
tional learning [17].

DEFINITION 3.1. Let M = (S,T,Σ) be a schema mapping.
A positive example for M is a data example (I, J) such that

(I, J) |= Σ.
A negative example for M is a data example (I, J) such that

(I, J) �|= Σ.

DEFINITION 3.2. Let M = (S,T,Σ) be a schema mapping,
let P and N be two finite sets of positive and, respectively, negative
examples for M, and let C be a class of s-t tgds.

We say that M is uniquely characterized by P and N w.r.t. C
if for every finite set Σ′ ⊆ C such that P and N are sets of pos-
itive and, respectively, negative examples for the schema mapping
M′ = (S,T,Σ′), we have that Σ is logically equivalent to Σ′ (in
symbols, Σ ≡ Σ′).

3.1 Unary Schemas and Unique Characterizations

A schema R = (R1, . . . , Rk) is said to be unary if every re-
lation symbol Ri in R is unary (has arity 1). In this section, we
show that if both the source and the target schemas are unary, then
every schema mapping specified by a finite set of s-t tgds can be
uniquely characterized by finite sets of positive and negative exam-
ples w.r.t. the class of all s-t tgds. The proof makes essential use of
the following lemma.

LEMMA 3.3. Let S be a unary source schema and T a unary
target schema. Then, up to logical equivalence, there are finitely
many schema mappings M = (S,T,Σ) such that Σ is a finite set
of s-t tgds.

PROOF. (Hint) Assume that S and T are unary schemas. We
show that every finite set Σ of s-t tgds over S and T is logically
equivalent to a finite set of s-t tgds in a certain canonical form, and

that there are finitely many finite sets of s-t tgds in canonical form.
This canonical form is defined as follows. We say that a s-t tgd is
in canonical form if either it is a GAV s-t tgd of the form

φ1(x1) ∧ ... ∧ φk(xk) → T (xj),

or a (non-GAV) s-t tgd of the form

φ1(x1) ∧ ... ∧ φk(xk) → ∃y ψ(y),

where (a) each formula φi(xi) is a conjunction of distinct source
relational atoms that share the same variable xi; (b) if i �= l, then
the set of relational symbols in φi(xi) is different from the set of
relational symbols in φl(xl); (c) T is a relation symbol in T; and
(d) ψ(y) is a conjunction of distinct atoms over T that share the
same variable y. Since S and T are unary schemas, it is easy to
see that there are finitely many finite sets of s-t tgds in canonical
form. Furthermore, using suitable rewrite rules, it can be shown
that every finite set Σ of s-t tgds is logically equivalent to a finite
set of s-t tgds in canonical form.

In effect, the proof of the preceding Lemma 3.3 has the flavor
of a quantifier-elimination result about the class of s-t tgds over
unary source and target schemas. It is well known that first-order
logic over unary schemas admits quantifier elimination (for ex-
ample, see [16, page 66]). However, Lemma 3.3 is a more re-
fined result that cannot be derived (at least in a straightforward
way) from the quantifier-elimination result for first-order logic over
unary schemas.

THEOREM 3.4. Let S be a unary source schema and T a unary
target schema. If M = (S,T,Σ) is a schema mapping such that
Σ is a finite set of s-t tgds, then M can be uniquely characterized
by finite sets of positive and negative examples with respect to the
class of all s-t tgds.

PROOF. By Lemma 3.3, there are, up to logical equivalence,
finitely many schema mappings specified by finite sets of s-t tgds.
Consequently, there are finitely many schema mappings M′ =
(S,T,Σ′) specified by a finite set of s-t tgds such that Σ �≡ Σ′. Let
M1 = (S,T,Σ1), . . . ,Mk = (S,T,Σk) be an exhaustive list of
all (up to logical equivalence) such schema mappings. Therefore,
for each i ≤ k, we have that Σ �|= Σi or Σi �|= Σ. We construct a
finite set P of positive examples for M and a finite set N of nega-
tive examples for M as follows. Initially, both P and N are empty.
For each Mi, i ≤ k, there are two cases to consider.

Case 1. Σ �|= Σi. In this case, let (I, J) be a data example such
that (I, J) |= Σ and (I, J) �|= Σi. We add (I, J) to P .

Case 2. Σi �|= Σ. In this case, let (I, J) be a data example such
that (I, J) |= Σi and (I, J) �|= Σ. We add (I, J) to N .

By construction, P is a finite set of positive examples for M,
and N is a finite set of negative examples for M. Moreover, it
easy to verify that the sets P and N uniquely characterize M w.r.t.
the class of all s-t tgds.

3.2 Limitations of Positive and Negative Examples

The preceding Theorem 3.4 does not extend to schema map-
pings over source and target schemas that contain non-unary re-
lation symbols. As a matter of fact, if the source and the target
schema contain binary relation symbols, then there is a schema
mapping M specified by a LAV s-t tgd such that no finite sets of
positive and negative examples uniquely characterize M w.r.t. to
the class of all LAV s-t tgds. Furthermore, a similar result holds for
GAV s-t tgds.
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THEOREM 3.5. Let S be a source schema consisting of a single
binary relation symbol P and let T be a target schema consisting
of a single binary relation symbol P ′.

1. There is a schema mapping M specified by a single LAV s-t tgd
such that M is not uniquely characterizable by any finite sets
of positive and negative examples with respect to the class of
all LAV s-t tgds.

2. There is a schema mapping M′ specified by a single GAV s-t
tgd such that M′ is not uniquely characterizable by any finite
sets of positive and negative examples with respect to the class
of all GAV s-t tgds.

PROOF. For the first part, let σ be the LAV s-t tgd

P (x, y) → ∃zP ′(z, z).

Assume that P and N are finite sets of positive and, respectively,
for M = (S,T, {σ}). We will show that there is a LAV s-t tgd σ′

such that σ �≡ σ′, yet P and N are sets of positive and, respectively,
negative examples for σ′. Let n be a positive integer bigger than
the maximum size of the active domains of the data examples in
N , and let σ′ be the s-t tgd

P (x, y) → ∃x1...∃xnKn,

where Kn asserts that x1, . . . , xn form an n-clique in P ′. To see
that σ �≡ σ′, let (I, J) be the data example such that I = {(1, 2)}
and J is a n-clique. Then (I, J) |= σ′, but (I, J) �|= σ, hence
σ′ �|= σ.

We now show that every (I, J) ∈ P satisfies σ′. Suppose I |=
P (a, b) for some (not necessarily distinct) values a and b. Since
(I, J) |= σ, it follows that J must contain a fact P ′(c, c) for some
value c. Hence, J |= ∃x1...∃xnKn (by mapping every variable
xi, 1 ≤ i ≤ n, to c). Next, we show that every member of N is
a negative example for σ′. If (I, J) ∈ N , then, (I, J) �|= σ, there
are values a and b such that I |= P (a, b). Towards a contradiction,
assume that there is a homomorphism h : ∃x1...∃xnKn → J .
Since n is greater than the number of distinct values in J , there
must be two variables xi and xjsuch that i �= j and h(xi) = h(xj).
Hence, P ′(h(xi), h(xj)) ∈ J and so the mapping g, where g(z) =
h(xi), is a homomorphism from ∃zP ′(z, z) to J . Thus, (I, J) |=
σ, which is a contradiction.

The second part of this theorem follows from the proof of Theo-
rem 6.4.

4. Universal Examples and Armstrong Bases
The limitations of positive and negative examples suggest that a

stronger type of data example should be considered. In this section,
we introduce universal examples and show them to be intimately
connected with Armstrong bases, a relaxation of the classical no-
tion of an Armstrong database studied in the context of dependency
theory a long time ago.

4.1 Universal Examples

DEFINITION 4.1. Let M = (S,T,Σ) be a schema mapping
in which Σ is a finite set of s-t tgds. A data example (I, J) is a
universal example for M if J is a universal solution for I w.r.t.
M.

As discussed in Section 2, universal solutions are the preferred
solutions to materialize in data exchange because (by way of hav-
ing homomorphisms to every solution) they are the “most general”
solutions. Furthermore, as shown in [9], universal solutions rep-
resent the entire space of solutions in the following sense. Let

a b

c d

e

I1

a b

c d

e

J1

I2 J2

a b a b

I3 J3
a a

Figure 1: Three universal examples that uniquely characterize
E(x, y) → F (x, y) w.r.t. GAV s-t tgds.

M = (S,T,Σ) be a schema mapping in which Σ is a set of s-t
tgds, and let (I1, J1) and (I2, J2) be two universal examples for
M. Then the space of solutions for I1 coincides with the space
of solutions for I2 if and only if J1 and J2 are homomorphically
equivalent. These properties motivate universal examples as candi-
dates for unique characterizations of schema mappings.

DEFINITION 4.2. Let M = (S,T,Σ) be a schema mapping in
which Σ is a finite set of s-t tgds, let U be a finite set of universal
examples for M, and let C be a class of s-t tgds.

We say that M is uniquely characterized by U w.r.t. C if for every
finite set Σ′ ⊆ C such that U is a set of universal examples for the
schema mapping M′ = (S,T,Σ′), we have that Σ ≡ Σ′.

Let M = (S,T, {σ}) be the schema mapping where σ is the
LAV s-t tgd P (x, y) → ∃zP ′(z, z). As seen in the proof of The-
orem 3.5, no finite sets of positive and negative examples uniquely
characterize M w.r.t. the class of all LAV s-t tgds. In contrast,
there is a finite set of universal examples that uniquely charac-
terizes M w.r.t. the class of all LAV s-t tgds. Indeed, it is not
hard to verify that the set {(I1, J1), (I2, J2)} has this property,
where I1 = {P (a, b)}, J1 = {P ′(N,N)}, I2 = {P (a, a)},
J2 = {P ′(N,N)}, and N is a null. Thus, universal examples go
beyond what positive and negative examples can offer. Later on,
however, we will see that universal examples have their own limi-
tations. For now, we illustrate further the capabilities of universal
examples by establishing unique characterizations for the binary
copy s-t tgd, which is both a LAV and a GAV s-t tgd.

PROPOSITION 4.3. Let M be the schema mapping specified by
the binary copy s-t tgd E(x, y) → F (x, y).

1. M is uniquely characterizable by a finite set of universal ex-
amples w.r.t. the class of all LAV s-t tgds.

2. M is uniquely characterizable by a finite set of universal ex-
amples w.r.t. the class of all GAV s-t tgds.

PROOF. (Sketch) For the first part, it can be shown that the set
consisting of the universal examples {(I1, J1), (I2, J2)}, where
I1 = {E(a, b)}, J1 = {F (a, b)}, I2 = {E(a, a)}, J2 = {F (a, a)},
uniquely characterizes M w.r.t. the class of all LAV s-t tgds. Ac-
tually, as we will see later on, this will also follow from a general
result to the effect that every schema mapping specified by a fi-
nite set of LAV s-t tgds is uniquely characterized by a finite set of
universal examples w.r.t. the class of all LAV s-t tgds.

For the second part, let U be the set consisting of the three uni-
versal examples (I1, J1), (I2, J2), (I3, J3) depicted in Figure 1.
With some work, it can be shown that U uniquely characterizes M

265



w.r.t. the class of all GAV s-t tgds. A detailed proof will be given in
the full version of the paper; here we limit ourselves into providing
an informal explanation. Let M′ = (S,T,Σ′) be a schema map-
ping such that Σ′ is a finite set of GAV s-t tgds and the examples in
Figure 1 are universal examples for M′. The first example (I1, J1)
is used to show that Σ |= Σ′. Indeed, if Σ �|= Σ′, then one can eas-
ily show that J1 is not a solution for I1 w.r.t. M′. The remaining
two examples (I2, J2) and (I3, J3) are used to show that Σ′ |= Σ;
this is based on the observation that every source fact that is copied
over to the target by the copy tgd is isomorphic to I2 or I3.

The results in the preceding Proposition 4.3 inevitably raise the
question as to whether or not the schema mapping M specified
by the binary copy s-t tgd can also be uniquely characterized via
universal examples w.r.t. the class of all s-t tgds. In Section 6, we
will show that such a unique characterization is not true for M.

4.2 Armstrong Databases and Armstrong Bases

Database dependencies are integrity constraints, typically ex-
pressed as formulas in some fragment of first-order logic. The
study of database dependencies was the focus of extensive research
activity during the 1970s and the early 1980s (see [12] for a sur-
vey). A central problem in this area is the implication problem for
dependencies, which is the problem of determining whether or not
a given finite set of dependencies logically implies another given
dependency. Armstrong databases turned out to be a useful tool in
attacking this problem; they were introduced explicitly and stud-
ied in their own right by Fagin [8], but, in the case of functional
dependencies, were implicit in Armstrong’s earlier work [4].

DEFINITION 4.4. Let Σ and C be two sets of database depen-
dencies over the same schema.

An Armstrong database for Σ w.r.t. C is an instance D such that
for every σ ∈ C, we have Σ |= σ if and only if D |= σ. In
other words, an Armstrong database for Σ w.r.t. C is an instance
that satisfies all the dependencies in C that are logically implied by
Σ, and no other dependencies in C.

An Armstrong database for a schema mapping M = (S,T,Σ)
w.r.t. C is an Armstrong database for Σ w.r.t. C.

A moment’s reflection tells that Armstrong databases give rise to
a new type of data examples for unique characterizations of schema
mappings. Indeed, let M = (S,T,Σ) and M′ = (S,T,Σ′) be
two schema mappings where Σ and Σ′ are finite sets of s-t tgds,
and let C be a class of s-t tgds containing Σ and Σ′. An immediate
consequence of Definition 4.4 is that if a data example (I, J) is
an Armstrong database for both M and M′ w.r.t. C, then Σ ≡
Σ′. Thus, the existence of an Armstrong database yields a unique
characterization via a single data example.

In spite of their desirable properties, Armstrong databases need
not exist, even for fairly simple sets of database dependencies (see,
e.g., [11]). We now introduce a relaxation of the notion of an Arm-
strong database.

DEFINITION 4.5. Let Σ and C be two sets of database depen-
dencies over the same schema.

An Armstrong basis for Σ w.r.t. C is a finite set D of instances
such that for every dependency σ ∈ C, we have that Σ |= σ if and
only if D |= σ, for every instance D ∈ D.

An Armstrong basis for a schema mapping M = (S,T,Σ) w.r.t.
C is an Armstrong basis for Σ w.r.t. C.

It is clear that the existence of an Armstrong database implies
the existence of an Armstrong basis, since, if D is an Armstrong
database for Σ w.r.t. C, then the singleton {D} is an Armstrong
basis for Σ w.r.t. C. The next result shows that the converse need
not be true.

PROPOSITION 4.6. Let M = (S,T,Σ) be a schema mapping,
where Σ = {P (x) → P ′(x), Q(x) → Q′(x)}.

1. There does not exist an Armstrong database for M w.r.t. the
class of all LAV s-t tgds.

2. There is an Armstrong basis for M w.r.t. the class of all LAV s-t
tgds.

PROOF. For the first part and towards a contradiction, suppose
that (I, J) is an Armstrong database for M w.r.t. the class of LAV
s-t tgds. Consider the set Σ′ = {σ1, σ2}, where σ1 is the LAV
s-t tgd P (x) → ∃yQ′(y), and σ2 is the LAV s-t tgd Q(x) →
∃yP ′(y). Since Σ �|= σ1 and Σ �|= σ2, it follows that (I, J) �|= σ1

and (I, J) �|= σ2. This implies that P (a) ∈ I and Q(b) ∈ I ,
for some values a and b. Since (I, J) |= Σ, we must have that
P ′(a) ∈ J and Q′(b) ∈ J . But this means that (I, J) |= Σ′,
which is a contradiction.

For the second part, let D = {D1,D2}, where D1 = ({P (a)},
{P ′(a)}) andD2 = ({Q(a)}, {Q′(a)}). We will show that D is an
Armstrong basis for M. Clearly, D1 |= Σ and D2 |= Σ. Next, let
σ be a LAV s-t tgd. We will show that if Σ �|= σ, then D1 �|= σ or
D2 �|= σ. There are two cases to consider. First, suppose that σ is of
the formP (x) → ∃yψ(x,y). Since Σ �|= σ, there must exist a data
example (I, J) such that (I, J) |= Σ and (I, J) �|= σ. Hence, I |=
P (b), for some value b, and J |= ¬∃yψ(b,y). Since (I, J) |=
Σ, it follows that P ′(b) ∈ J . Hence, ({P (b)}, {P ′(b)}) �|= σ.
Therefore, D1 �|= σ, sinceD1 is isomorphic to ({P (b)}, {P ′(b)}).
Finally, suppose that σ is of the form Q(x) → ∃yψ(x,y). A
similar argument is used to show that D2 �|= σ.

As far as we can tell from perusing the literature, the notion of
an Armstrong basis is new; in particular, it has not been consid-
ered during the investigation of Armstrong databases. One plausi-
ble explanation for this is that much of the research on Armstrong
databases focused on unirelational databases (i.e., on databases
over a schema consisting of a single relation) and on typed tgds (see
[8, 7] for the precise definition). It turns out that, in that context, an
Armstrong database exists if and only if an Armstrong basis exists.
The reason is that results in [8] imply that if D = {D1, . . . ,Dk}
is an Armstrong basis for a set Σ of typed tgds w.r.t. the set of
all typed tgds over a unirelational schema, then the direct product
D1 × · · · ×Dk is an Armstrong database for Σ.

Let M = (S,T,Σ) and M′ = (S,T,Σ′) be two schema map-
pings where Σ and Σ′ are finite sets of s-t tgds, and let C be a class
of s-t tgds containing Σ and Σ′. From Definition 4.5, it follows eas-
ily that if D = {D1, . . . ,Dk} is an Armstrong basis for both M
and M′ w.r.t. C, then Σ ≡ Σ′. Thus, the existence of an Armstrong
basis yields a unique characterization of the schema mapping via a
finite set of data examples.

The next simple proposition gives a connection between unique
characterizations via positive examples and Armstrong bases.

PROPOSITION 4.7. Assume that M = (S,T,Σ) is a schema
mapping, where Σ is a finite set of s-t tgds, and P is a finite set
of positive examples that uniquely characterizes M w.r.t. a class
C of s-t tgds. Then P is an Armstrong basis for M w.r.t. C. The
converse is not true in general.

PROOF. To show that P is an Armstrong basis for M w.r.t. C,
we need to show that for every σ ∈ C, we have Σ |= σ if and only
if D |= σ for every D ∈ P . It is easy to see that if Σ |= σ, then
D |= σ for every D ∈ P , since P is a set of positive examples for
Σ. The converse direction follows immediately from the fact that P
uniquely characterizes Σ. Assume that D |= σ for every D ∈ P .
Hence, P consists of positive examples for σ. Since P uniquely
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characterizes Σ w.r.t. C, it follows that Σ ≡ σ and, in particular,
Σ |= σ.

As seen in Theorem 3.5, there is a schema mapping specified
by a single LAV s-t tgd that is not uniquely characterizable by any
finite set of positive and negative examples w.r.t. the class of all
LAV s-t tgds. In Section 5, however, we shall show that every finite
set of LAV s-t tgds has an Armstrong basis w.r.t. the class of all
LAV s-t tgds.

In the next section, we establish a necessary and sufficient con-
dition for the existence of an Armstrong basis.

4.3 Armstrong Bases and Universal Examples

In this section, we show that the existence of an Armstrong basis
is equivalent to unique characterizability by a finite set of universal
examples. We begin with a lemma that will be used repeatedly in
the proofs.

LEMMA 4.8. Let C be a class of s-t tgds, let M = (S,T,Σ)
be a schema mapping where Σ is a finite set of s-t tgds, and let
(I1, J1), . . . , (Ik, Jk) be data examples.

1. Assume that {(I1, J1), . . . , (Ik, Jk)} is a set of universal ex-
amples for M that uniquely characterizes M w.r.t. C, and let
J ′

1, . . . , J
′
k be target instances such that Ji is homomorphically

equivalent to J ′
i , for all i ≤ k. Then the set {(I1, J ′

1), . . .,
(Ik, J

′
k)} is a set of universal examples that uniquely charac-

terizes M w.r.t. C.

2. Assume that {(I1, J1), . . . , (Ik, Jk)} is an Armstrong basis for
M w.r.t. C, and let J ′

1, . . . , J
′
k be target instances such that J ′

i

is a solution for Ii w.r.t. M and J ′
i → Ji, for all i ≤ k. Then

the set {(I1, J ′
1), . . . , (Ik, J

′
k)} is an Armstrong basis for M

w.r.t. C.

In particular, if {(I1, J1), . . . , (Ik, Jk)} is an Armstrong basis
for M w.r.t. C, and J ′

i is a universal solution for Ii w.r.t. M, for
all i ≤ k, then the set {(I1, J ′

1), . . . , (Ik, J
′
k)} is an Armstrong

basis for M w.r.t. C.

PROOF. The proofs of both parts follow easily from the fact that
s-t tgds are preserved under target homomorphisms, that is, if σ is
a s-t tgd, (I, J) is a data example such that (I, J) |= σ, and K is a
target instance such that J → K, then (I,K) |= σ. We leave the
details of the first part to the reader. For the second part, observe
first that if Σ |= σ, then for every i ≤ k, we have that (Ii, J

′
i) |=

σ because (I,J
′
i) |= Σ (since J ′

i is a solution for Ii w.r.t. M).
Assume now that Σ �|= σ, for some σ ∈ C. Then, by the definition
of an Armstrong basis, there is some i ≤ k such that (Ii, Ji) �|= σ.
Since s-t tgds are preserved under target homomorphisms and since
J ′

i → Ji, it follows that (Ii, J
′
i) �|= σ.

THEOREM 4.9. Assume that M = (S,T,Σ) is a schema map-
ping, where Σ is a finite set of s-t tgds, and U is a finite set of uni-
versal examples that uniquely characterizes M w.r.t. to a class C
of s-t tgds. Then U is an Armstrong basis for M w.r.t. C.

PROOF. Assume that U = {(I1, J1), ..., (Ik, Jk)}. For each
i ≤ k, let chaseM(Ii) be the universal solution for Ii w.r.t. M
obtained applying the naive chase procedure to Ii. Since Ji is ho-
momorphically equivalent to chaseM(Ii) for all i ≤ k, by the
first part of Lemma 4.8, it immediately follows that the set U ′=
{(I1, chaseM(I1)), . . .,(Ik, chaseM(Ik))} is a set of universal ex-
amples that uniquely characterizes M w.r.t. C. Next, we will show
that U ′ is an Armstrong basis for M w.r.t. C, which, by the second
part of Lemma 4.8 will imply that U is an Armstrong basis for M
w.r.t. C.

Clearly, (Ii, chaseM(Ii)) |= Σ, for every i ≤ k, hence if σ ∈ C
and Σ |= σ, then (Ii, chaseM(Ii)) |= σ, for every i ≤ k. It
remains to show that if σ ∈ C and Σ �|= σ, then there is some
i ≤ k such that (Ii, chaseM(Ii)) �|= σ. Since Σ �|= σ, it fol-
lows that Σ �|= Σ ∪ {σ}. Consequently, there is some i ≤ k
such that chaseM(Ii) is not a universal solution for Ii w.r.t. to
the schema mapping M′ = (S,T,Σ ∪ {σ}). We claim that
(Ii, chaseM(Ii)) �|= σ. Towards a contradiction, suppose that
(Ii, chaseM(Ii)) |= σ. Hence, chaseM(Ii) is a solution for Ii

w.r.t. M′. Consider the universal solution chaseM′(Ii) for Ii w.r.t.
M′ obtained by chasing Ii with Σ ∪ {σ}. Then chaseM′(Ii) →
chaseM(Ii). At the same time, by the construction of the result of
the naive chase, we have that chaseM(Ii) ⊆ chaseM′(Ii), hence
chaseM(Ii) → chaseM′(Ii). It follows that chaseM(Ii) is ho-
momorphically equivalent to chaseM′(Ii), hence chaseM(Ii) is a
universal solution for Ii w.r.t. M′, which is a contradiction.

THEOREM 4.10. Assume that M = (S,T,Σ) is a schema
mapping, where Σ is a finite set of s-t tgds, and A is an Armstrong
basis for M w.r.t. a class C of s-t tgds. Then there is a finite set U
of universal examples that uniquely characterizes M w.r.t. C.

PROOF. Assume that A = {(I1, J1), . . . , (Ik, Jk)} is an Arm-
strong basis for M w.r.t. C. By Lemma 4.8, the set
U1 = {(I1, chaseM(I1)), . . . , (Ik, chaseM(Ik))} is an Armstrong
basis for M w.r.t. C. Let U2 be the set of all pairs (I, chaseM(I))
such that |adom(I)| ≤ n, where n is the maximum number of vari-
ables in the antecedents of s-t tgds in Σ. We will show that U1 ∪U2

is a set of universal examples for M that uniquely characterizes
M w.r.t C, i.e., if M′ = (S,T,Σ′) is a schema mapping such that
U1 ∪ U2 is a set of universal examples for M′, then Σ ≡ Σ′.

We first show that Σ |= Σ′. Let σ′ ∈ Σ′. Since U1 is an Arm-
strong basis for M w.r.t. C, if Σ �|= σ′, there exists 1 ≤ i ≤ k
such that (Ii, chaseM(Ii)) �|= σ′. This, however, contradicts our
assumption that U1 ∪ U2 is a set of universal examples for M′.

Next, we show that Σ′ |= Σ, that is, if (I ′, J ′) |= Σ′, then
(I ′, J ′) |= Σ. Let σ ∈ Σ be a s-t tgd of the form φ(x) →
∃yψ(x,y) and suppose that I ′ |= φ(a), which means that I ′

contains all the facts in φ(a). Since the number of distinct vari-
ables in the antecedent of σ is at most n, there must be a pair
(I, J) ∈ U2 such that (the instance consisting of the facts in) φ(a)
is isomorphic to I . If h is an isomorphism from I to φ(a), then
I |= φ(h−1(a)). Since h is an isomorphism from I to φ(a) and
since I ′ contains all the facts in φ(a), it follows that h is a homo-
morphism from I to I ′. From Theorem 3.9 of [24], we know that
M′ reflects source homomorphisms. By definition, this means that
for all source instances K, K′ and for all target instances L, L′

such that L is a universal solution for K and L′ is a solution for
K′, we have that every homomorphism h : K → K′ extends to
a homomorphism from L to L′. (Note that in this definition, we
do not require the homomorphisms to be constant on adom(K).)
Thus, since chaseM(I) is a universal solution for I w.r.t. M′, and
J ′ is a solution for I ′ w.r.t. M′, h can be extended to a homo-
morphism h′ : chaseM(I) → J ′. Since (I, chaseM(I)) |= σ and
I |= φ(h−1(a)), we have that chaseM(I) |= ψ(h−1(a),b) for
some b, hence J ′ |= ψ(h′(h−1(a)), h′(b)). Thus, J ′ |= ψ(a,b′),
for some values b′, which was to be shown.

By combining Theorems 4.9 and 4.10, we conclude that the ex-
istence of an Armstrong basis is equivalent to unique characteriz-
ability by universal examples.

COROLLARY 4.11. Assume that M = (S,T,Σ) is a schema
mapping, where Σ is a finite set of s-t tgds, and C is a set of s-t tgds.
Then the following statements are equivalent.
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1. There is a finite set U of universal examples for M such that U
uniquely characterizes M w.r.t. C.

2. There is an Armstrong basis for M w.r.t. C.

5. Characterizations via Universal Examples
In this section, we explore the capabilities of universal examples

in yielding unique characterizations of schema mappings specified
by s-t tgds.

THEOREM 5.1. If M is a schema mapping specified by a finite
set of LAV s-t tgds, then there is a finite set U of universal examples
for M such that U uniquely characterizes M w.r.t. the class of all
LAV s-t tgds.

PROOF. Let M = (S,T,Σ) be a schema mapping, where Σ
is a finite set of LAV s-t tgds. We will construct a finite set U of
universal examples and will show that M is uniquely characterized
by U w.r.t. the class of all LAV s-t tgds.

Suppose that the source schema S consists of the relation sym-
bols R1, ..., Rs. For each i ≤ s, let ri be the arity of Ri, and
let k be the maximum of r1, . . . , rs. Let D be a set of k distinct
elements, say, D = {d1, ..., dk}. For each relation symbol Ri,
1 ≤ i ≤ s, and each ri-ary tuple d of elements from D, construct
the data example ({Ri(d)}, chaseM({Ri(d)})). Let U be the set
of all data examples obtained via this construction. Clearly, every
member of U is a universal example for M. In what follows, we
will show that M is uniquely characterized by U w.r.t. the class
of all LAV s-t tgds. Let M′ = (S,T,Σ′) be a schema mapping,
where Σ′ is a finite set of LAV s-t tgds, and assume that every
member of U is a universal example for M′. We have to show that
Σ ≡ Σ′.

We first show that Σ |= Σ′. Let (I, J) be a data example such
that (I, J) |= Σ and let Rj(x) → ∃yφ(x,y) be a LAV s-t tgd
in Σ′ such that I |= Rj(a), for some tuple a. We will show
that J |= ∃yφ(a,y). Observe that, by the construction of U ,
the singleton instance {Rj(a)} must be isomorphic to a single-
ton instance {Rj(a

′)} used in the construction of the set U . For
notational simplicity, we will denote these singleton instances by
Rj(a) and Rj(a

′), respectively. It follows that the naive chase
procedure on these instances produces isomorphic results, that is,
we have that chaseM(Rj(a

′)) is isomorphic to chaseM(Rj(a))
via an isomorphism that maps a′ to a. Also, by the construc-
tion of U , we have that (Rj(a

′), chaseM(Rj(a
′))) ∈ U . Since

(Rj(a
′), chaseM(Rj(a

′))) is a universal example for M′, it fol-
lows that chaseM(Rj(a

′)) |= ∃yφ(a′,y), hence it must be that
chaseM(Rj(a)) |= ∃yφ(a,y). On the other hand, since (I, J) |=
Σ and Rj(a) is a sub-instance of I , we have that J is a solution
for Rj(a) w.r.t. M. Since chaseM(Rj(a)) is a universal solution
for Rj(a) w.r.t. M, this implies that chaseM(Rj(a)) → J ; con-
sequently, J |= ∃yφ(a,y).

Next, we show that Σ′ |= Σ. Suppose (I, J) |= Σ′. We will
show that (I, J) |= Σ. Let Rj(x) → ∃yφ(x,y) be a LAV s-t tgd
in Σ and assume that I |= Rj(a) for some a. We will show that
J |= ∃yφ(a,y). As before, by the construction of U , we have that
Rj(a) must be isomorphic to a source instance Rj(a

′) such that
(Rj(a

′), chaseM(Rj(a
′))) ∈ U . Moreover, chaseM(Rj(a

′)) is
isomorphic to chaseM(Rj(a)) via an isomorphism that maps a′

to a. Since the pair (Rj(a
′), chaseM(Rj(a

′))) is a universal ex-
ample for M′, it follows that chaseM(Rj(a))) is a universal so-
lution for Rj(a) w.r.t. M′. On the other hand, J is a solution
for Rj(a) w.r.t. M ′ (since J is a solution for I w.r.t. M′), hence
chaseM(Rj(a)) → J . At the same time, since chaseM(Rj(a)) is

a universal solution forRj(a) w.r.t.M, we know chaseM(Rj(a)) |=
∃yφ(a,y); consequently, J |= ∃yφ(a,y).

As an immediate consequence of Theorems 4.9 and 5.1, we ob-
tain the following result that every LAV schema mapping has an
Armstrong basis w.r.t. LAV s-t tgds.

COROLLARY 5.2. If M is a schema mapping specified by a
finite set of LAV s-t tgds, then M has an Armstrong basis w.r.t. the
class of all LAV s-t tgds.

Recall that, by Proposition 4.6, there is a schema mapping spec-
ified by two LAV s-t tgds that has no Armstrong database w.r.t. the
class of all LAV s-t tgds. Thus, the preceding Corollary 5.2 cannot
be strengthened to assert that every schema mapping specified by a
finite set of LAV s-t tgds has an Armstrong database w.r.t. the class
of all LAV s-t tgds.

Are there broader classes of schema mappings that have unique
characterizations via universal examples? Equivalently, are there
broader classes of schema mappings possessing Armstrong bases?

DEFINITION 5.3. ([24, Definition 2.6]) Let n be a positive in-
teger. We say that a schema mapping M = (S,T,Σ), where Σ
is a finite set of s-t tgds, is n-modular if for every data example
(I, J) such that (I, J) �|= Σ, there is a sub-instance I ′ of I such
that |adom(I ′)| ≤ n and (I ′, J) �|= Σ.

The concept of n-modularity was introduced and studied in [24],
where schema-mapping languages were characterized in terms of
their structural properties. Intuitively, n-modularity means that ev-
ery negative example has an “explanation” of size at most n. Ev-
ery schema mapping M = (S,T,Σ) specified by a finite set of
s-t tgds is n-modular for some n; in fact, n can be taken to be
the maximum number of variables occurring in the s-t tgds in Σ
(see [24, Proposition 2.7]). Note, however, that, if S and T are
non-unary schemas, then there is no fixed number k such that ev-
ery schema mapping M = (S,T,Σ) specified by a finite set Σ
of s-t tgds is k-modular. To see this, let E be a binary source re-
lation, let F be a binary target relation, and let σn be the GAV
s-t tgd ∀x∀y(Pn(x, y) → F (x, y)), where Pn(x, y) asserts that
there is a path along E-edges of length n from x to y. Then, σn

is (n + 1)-modular, but not n-modular. In contrast, every schema
mapping M = (S,T,Σ) specified by a finite set of LAV s-t tgds is
k-modular, where k is the maximum arity of the relation symbols
in S.

Our next result shows that Theorem 5.1 can be extended to the
class of all n-modular schema mappings, n a positive integer. The
proof, which is a generalization of the proof of Theorem 5.1, will
be given in the full version of the paper.

THEOREM 5.4. Let n be a positive integer and letM = (S,T,Σ)
be a schema mapping, where Σ is a finite set of s-t tgds. If M is
n-modular, then there is a finite set U of universal examples such
that U uniquely characterizes M w.r.t. the class of all m-modular
schema mappings, m ≥ n.

Consequently, every n-modular schema mapping specified by a
finite set of s-t tgds has an Armstrong basis w.r.t. the class of all
m-modular schema mappings, m ≥ n.

The preceding Theorem 5.4, has a number of applications, in-
cluding the following one that covers many schema mappings oc-
curring in practice.

DEFINITION 5.5. An s-t tgd φ(x) → ∃yψ(x,y) is said to be
self-join-free on the source if none of the relation symbols in φ(x)
is repeated.
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COROLLARY 5.6. Let M = (S,T,Σ) be a schema mapping
where Σ is a finite set of s-t tgds that are self-join-free on the
source. Then there is a finite set U of universal examples such that
U uniquely characterizes M w.r.t. the class of all s-t tgds that are
self-join-free on the source.

PROOF. It is easy to see that if Σ consists of s-t tgds that are self-
join-free on the source, then the schema mapping M = (S,T,Σ)
is n-modular, where n is the sum of the arities of all relation sym-
bols in S. Hence, by Theorem 5.4, there is a finite set U of universal
examples such that U uniquely characterizes M w.r.t. the class of
all n-modular schema mappings and, in particular, w.r.t. the class
of s-t tgds that are self-join-free on the source.

6. Limitations of Universal Examples
So far, we have shown that several important classes of schema

mappings possess unique characterizations via universal examples.
In this section, we establish that, although superior to positive and
negative examples, universal examples have their own limitations.

By Proposition 4.3, the schema mapping M specified by the bi-
nary copy s-t tgdE(x, y) → F (x, y) can be uniquely characterized
via universal examples w.r.t. to both the class of all LAV s-t tgds
and the class of all GAV s-t tgds. Moreover, since the binary copy
s-t tgd is 2-modular, Theorem 5.4 implies that, for every m ≥ 2,
M can be uniquely characterized via universal examples w.r.t. the
class of all m-modular s-t tgds. The next proposition reveals that
these results of M do not extend to a unique characterization of
M via universal examples w.r.t. the class of all s-t tgds. Its proof
illustrates the use of the connection between Armstrong databases
and unique characterizations via universal examples.

PROPOSITION 6.1. Let M be the schema mapping specified by
the binary copy s-t tgd E(x, y) → F (x, y). Then there is no finite
set of universal examples that uniquely characterizes M w.r.t. the
class of all s-t tgds.

PROOF. By Theorem 4.9, it suffices to show that M does not
have an Armstrong basis w.r.t. the class of all s-t tgds. Towards
a contradiction, assume that {(I1, J1), . . . , (Ik, Jk)} is such an
Armstrong basis. Let n be a positive integer bigger than the max-
imum of |adom(Ii)|, for 1 ≤ i ≤ k. Also, let ci be the length of
some cycle in Ii, if Ii contains at least one cycle; if Ii contains no
cycle, then let ci = 1. Take the product m = n · c1 · . . . · ck of these
quantities and consider the following s-t tgd σ′:

Pathm(x1, . . . , xm+1) → ∃y1 . . .∃ymCyclem(y1, . . . , ym),

where Pathm is a conjunction of E-atoms asserting that the vari-
ables x1, . . . , xm+1 form a path of length m in E, and Cyclem is
a conjunction of F atoms asserting that the variables y1, . . . , ym

form cycle of length m in F . Note that σ′ is neither a LAV, nor
a GAV s-t tgd. Clearly, Σ �|= σ′. In what follows, we will show
that (Ii, Ji) |= σ′, for all i ≤ k, which will contradict the as-
sumption that (I1, J1), ..., (Ik, Jk) form an Armstrong basis for
M w.r.t. the class of all s-t tgds. Indeed, take some (Ii, Ji), where
i ≤ k. If Ii contains no cycle, then (Ii, Ji) |= σ′ trivially, because
m > |adom(Ii)|. If Ii contains a cycle, then Ji must contain all
cycles of Ii (since (Ii, Ji) satisfies the binary copy s-t tgd). Now,
Ii clearly contains a path of length m. Since Ji contains all cycles
of Ii and since m is a multiple of the length of one of the cycles in
Ii, it must be the case that Ji contains a cycle of length m; hence
(Ii, Ji) |= σ′.

We now address the question of whether or not schema mappings
specified by GAV s-t tgds possess unique characterizations via uni-
versal examples w.r.t. the class of all GAV s-t tgds. Note again that

the schema mapping M specified by the binary copy s-t tgd, which
is a GAV s-t tgd, possesses such a characterization. Our main re-
sult in this section is that there are schema mappings specified by
quite natural and simple-to-describe GAV s-t tgds for which this is
not true, even if negative examples are also used. The proof of this
result will make use of sophisticated machinery from graph theory
that we describe next.

Back in 1959, Erdös [6] showed that there are graphs of arbitrar-
ily large girth and chromatic number, where the girth of a graph
is the size of its smallest cycle (cycles are assumed to have length
at least 3), and the chromatic number of a graph is the minimum
number of colors needed to color it. This result was proved via one
of the first applications of the probabilistic method, that is, such
graphs were not constructed explicitly but, instead, were shown to
have a positive probability. Explicit constructions were given much
later; in particular, there is a family of explicitly constructed graphs,
known as Ramanujan graphs, that have arbitrarily large girth and
chromatic number [20]. Later on, Nešetřil and Rödl [21] vastly
generalized Erdös’ result using the probabilistic method. Next, we
describe this generalization following the exposition in [14, Chap-
ter 3]. We begin with a definition.

DEFINITION 6.2. Let k be a positive integer. Two graphsG and
H are said to be k-equivalent if for every graph K with at most k
vertices, there is a homomorphism fromG toK if and only if there
is a homomorphism from H to K.

In Definition 6.2, the notion of homomorphism is the standard
one in graph theory: a homomorphism from a graph G = (V1, E1)
to a graph H = (V2, E2) is a function h from V1 to V2 that
maps edges in E1 to edges in E2, i.e., if E1(a, b) holds, then also
E2(h(a), h(b)) holds (thus, homomorphisms are not required to be
constant on some nodes)

THEOREM 6.3. ([14, Theorem 3.15]) Let k and m be two pos-
itive integers. Then every graph G has a k-equivalent graph H of
girth at least m.

The preceding Theorem 6.3 provides us with the ideal tool for
establishing the main result of this section. Before stating the main
result, we need to introduce one more concept.

Let S be a source schema consisting of a unary relation symbol
P and a binary relation symbol E, and let T be a target schema
consisting of a unary relation symbol R. If G = (V1, E1) is a
graph, then we writeQG to denote the canonical conjunctive query
ofG, that is,QG is a Boolean conjunctive query asserting that there
are |V1| nodes connected the same way as the nodes of G are. For
example, if G is the complete graph Kn on n nodes, then QG is

∃x1 . . . ∃xn

^

i�=j

E(xi, xj).

Let G = (V1, E1) be a graph and consider the first-order sen-
tence

∀x(P (x)∧QG → R(x)),

where the variable x is different from all variables occurring in
QG. This sentence is logically equivalent to a GAV s-t tgd σG

obtained by pulling the existential quantifiers in QG to the front
and turning them into universal quantifiers. In effect, σG is a unary
copy s-t tgd with a “trigger”. Specifically, assume that I is a source
instance consisting of a unary relation P I and a binary relationEI .
Then the relation P I is copied to the target relation interpreting R,
provided EI satisfies the Boolean conjunctive query QG, that is,
provided there is a homomorphism from E1 to EI . We will refer
to the GAV s-t tgd σG as the unary copy s-t tgd with trigger G.
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THEOREM 6.4. Let G = (V1, E1) be a graph containing a cy-
cle and let MG be the schema mapping specified by the unary copy
s-t tgd with trigger G.

1. There are no finite sets of universal examples and negative ex-
amples that uniquely characterize MG w.r.t. the class of all
GAV s-t tgds.

2. There are no finite sets of positive examples and negative exam-
ples that uniquely characterize MG w.r.t. the class of all GAV
s-t tgds.

PROOF. We will prove the first part; the proof of the second
part is similar. Assume that (I1, J1), . . . , (Is, Js) are universal ex-
amples for MG and (I ′1, J

′
1), . . . , (I

′
t, J

′
t) are negative examples

for MG. Let k be the maximum of |adom(Ii)|, 1 ≤ i ≤ s, and
of |adom(I ′j)|, 1 ≤ j ≤ t, and let m = girth(G) + 1, where
girth(G) stands for the girth of G. By Theorem 6.3, there is a
graph H = (V2, E2) that is k-equivalent to G and has girth at least
m. Let σH be the unary copy s-t tgd with trigger H , and let MH

be the schema mapping specified by σH . We claim that the follow-
ing hold: (a) σG �|= σH ; (b) each (Ii, Ji) is a universal example for
MH , 1 ≤ i ≤ s; and (c) each (I ′j , J

′
j) is a negative example for

MH , 1 ≤ j ≤ t.
We first show that σG �|= σH . Let I be the source instance in

which the unary relation P is interpreted by some non-empty set A
and the binary relation is interpreted by the edge relation E2 of H .
Since girth(H) > girth(G), there cannot be a homomorphism
from G to H . This implies that (the antecedent of) σG is never
“triggered” on I ; consequently, (I, ∅) |= σG. In contrast, (I, ∅) �|=
σH , since σH is “triggered” on I , but the set A is not contained in
∅ (i.e., the emptyset).

Next, we show that each (Ii, Ji) is a universal example for σH .
There are two cases to consider. In the first case, assume that there
is an assignment h from the variables of σH to values in adom(Ii)
so that the antecedent of σH becomes true. In particular, h is a
homomorphism from E2 to the binary relation EIi of Ii. To show
that Ji is a universal solution for Ii w.r.t. MH , we have to show
thatRJi = P Ii , because in this case σH is “triggered” on Ii. Since
|adom(Ii)| ≤ k and H is k-equivalent of G, it follows that there
is a homomorphism g from E1 to the binary relation EIi of Ii,
Consequently, σG is “triggered” on Ii and, since Ji is a universal
solution for Ii w.r.t. MG, we must have that RJi = P Ii . In the
second case, assume that there is no assignment from the variables
of σH to values in adom(Ii) so that the antecedent of σH becomes
true. In particular, there is no homomorphism from E2 to the bi-
nary relation EIi of Ii. In this case, to show that Ji is a universal
solution for Ii w.r.t. MH , we must show that RJi = ∅. Since
|adom(Ii)| ≤ k and H is k-equivalent of G, it follows that there
is no homomorphism from E1 to the binary relation EIi of Ii (ob-
serve that here we are using the other direction of k-equivalence).
Consequently, σG is not “triggered” on Ii and, since Ji is a univer-
sal solution for Ii w.r.t. MG, we must have that RJi = ∅.

Finally, we show that each (I ′j , J
′
j) is a negative example for

MH . Since (I ′j , J
′
j) is a negative example for MG, there is an

assignment g from the variables of the antecedent of σG to Ii so
that the following hold: (a) g is a homomorphism from E1 to the
binary relation EI′

j of I ′j ; (b) there is a value a such a ∈ P I′
j and

a �∈ RJ′
j . Since |adom(I ′j)| ≤ k and H is k-equivalent of G, it

follows that there is a homomorphism h from E2 to EI′
j . Hence,

σH is “triggered” on I ′j and so (I ′j , J
′
j) �|= σH , because a ∈ P I′

j

but a �∈ RJ′
j .

COROLLARY 6.5. Let G = (V1, E1) be a graph containing a
cycle. The schema mapping MG specified by the unary copy s-t tgd

with triggerG has no Armstrong basis w.r.t. the class of all GAV s-t
tgds.

Our negative result about schema mappings specified by GAV
s-t tgds raises the following natural question: is the unique charac-
terizability via universal examples of GAV schema mappings w.r.t.
the class of all GAV s-t tgds a decidable problem? More precisely,
is there an algorithm that solves the following decision problem:
given a schema mapping M = (S,T,Σ) specified by finite set Σ
of GAV s-t tgds, does there exist a finite set of universal examples
for M that uniquely characterizes M w.r.t. the class of all GAV
s-t tgds? In a followup paper [25], it is shown that this problem is
indeed decidable.

7. Concluding Remarks
Schema mappings specified by finite sets of s-t tgds are the most

extensively studied and widely used schema mappings in data ex-
change and data integration. A schema mapping M = (S,T,Σ),
where Σ is a finite set of s-t tgds, constitutes a finite syntactic repre-
sentation of the infinite space of all data examples (I, J) such that
(I, J) |= Σ. In this paper, we addressed the following question:
Can this infinite space of data examples be “captured” by a finite
set of data examples? We formalized this question by considering
notions of unique characterizations of schema mappings via a finite
set of examples of a certain “type” (or of certain “types”) w.r.t. a
class of s-t tgds. We showed that, although very natural, positive
and negative examples do not yield interesting unique characteri-
zations. For this reason, we focused on universal examples as can-
didates for unique characterizations of schema mappings. We de-
lineated the capabilities and limitations of universal examples, and,
in the process, unveiled an a priori unexpected connection with the
classical notion of an Armstrong database.

In this paper, we have considered positive and negative exam-
ples, and universal examples as natural candidates for unique char-
acterizations of schema mappings. Naturally, the following ques-
tion arises: Are there other “types” of data examples or combi-
nations of such “types” of examples that yield interesting unique
characterizations of rich classes of schema mappings?

It is worth pointing out that we regard the results reported here
as the first step towards a broader program aiming to develop a
methodology and a set of tools for understanding and refining schema
mappings. Beyond unique characterizations, we plan to investigate
weaker ways in which a finite set of data examples “captures” a
schema mapping. In particular, given a finite set of data examples
of various “types”, is there a schema mapping that is “consistent”
with the given data examples? This problem is analogous to prob-
lems in computational learning, where the goal is to find a concept
that is compatible with a finite set of examples that are labeled pos-
itive or negative. It should also be noted that a framework and an
accompanying cost model for discovering a schema mapping based
on a single example were recently introduced and studied in [23].

In the long term, we envision the development of a system that
would be capable of generating data examples that illustrate a schema
mapping. Furthermore, after the data examples have been gener-
ated, a mapping designer would be allowed to modify the data ex-
amples at hand, and then the system would automatically fine-tune
the existing schema mapping based on the modified data examples.
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