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ABSTRACT
Schema mappings are high-level specifications that describe the rela-
tionship between two database schemas. Two operators on schema
mappings, namely the composition operator and the inverse opera-
tor, are regarded as especially important. Progress on the study of
the inverse operator was not made until very recently, as even finding
the exact semantics of this operator turned out to be a fairly delicate
task. Furthermore, this notion is rather restrictive, since it is rare that
a schema mapping possesses an inverse.

In this paper, we introduce and study the notion of a quasi-inverse
of a schema mapping. This notion is a principled relaxation of the
notion of an inverse of a schema mapping; intuitively, it is obtained
from the notion of an inverse by not differentiating between instances
that are equivalent for data-exchange purposes. For schema mappings
specified by source-to-target tuple-generating dependencies (s-t tgds),
we give a necessary and sufficient combinatorial condition for the ex-
istence of a quasi-inverse, and then use this condition to obtain both
positive and negative results about the existence of quasi-inverses. In
particular, we show that every LAV (local-as-view) schema mapping
has a quasi-inverse, but that there are schema mappings specified by
full s-t tgds that have no quasi-inverse. After this, we study the lan-
guage needed to express quasi-inverses of schema mappings specified
by s-t tgds, and we obtain a complete characterization. We also char-
acterize the language needed to express inverses of schema mappings,
and thereby solve a problem left open in the earlier study of the inverse
operator. Finally, we show that quasi-inverses can be used in many
cases to recover the data that was exported by the original schema
mapping when performing data exchange.

Categories and Subject Descriptors
H.2.5 [Heterogeneous Databases]: Data translation; H.2.4 [Systems]:
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1. INTRODUCTION
Schema mappings are high-level specifications that describe the re-

lationship between two database schemas. More precisely, a schema
mapping is a triple M = (S,T,Σ) consisting of a source schema S, a
target schema T, and a set Σ of database dependencies that specify the
relationship between the source schema and the target schema. Since
schema mappings form the essential building blocks of such crucial
data inter-operability tasks as data integration and data exchange (see
the surveys [6, 7]), several different operators on schema mappings
have been singled out as deserving study in their own right [1]. The
composition operator and the inverse operator have emerged as two of
the most fundamental operators on schema mappings.

By now, the composition operator has been investigated in depth
[5, 8, 9, 10]; however, progress on the study of the inverse operator
was not made until very recently, as even finding the exact semantics
of this operator turned out to be a delicate task. In [3], the concept
of an inverse of a schema mapping was rigorously defined and its ba-
sic properties were studied. The definition of an inverse was given by
first defining the concept of the identity schema mapping Id and then
stipulating that a schema mapping M′ is an inverse of a schema map-
ping M if the composition of M with M′ yields the identity schema
mapping Id, in symbols M◦M′ = Id.

Unfortunately, the notion of an inverse of a schema mapping turned
out to be rather restrictive, since it is rare that a schema mapping pos-
sesses an inverse. Indeed, as shown in [3], if a schema mapping M
is invertible, then M satisfies the unique-solutions property, which
asserts that different source instances must have different spaces of
solutions (that is, different sets of target instances satisfying the speci-
fications of M). This necessary condition for invertibility can be used
as a simple, yet powerful, sufficient condition for non-invertibility. In
particular, none of the following natural schema mappings possesses
an inverse, because it is easy to see that none of them has the unique-
solutions property:

Projection: This is the schema mapping specified by the dependency
P (x, y) → Q(x).

Union: This is the schema mapping specified by the dependencies
P (x) → S(x) and Q(x) → S(x).

Decomposition: This is the schema mapping specified by the depen-
dency P (x, y, z) → Q(x, y) ∧R(y, z).

Moreover, the invertibility of a schema mapping is not robust, as it
is affected by changes to the source schema, even when the depen-
dencies remain intact. Specifically, assume that M = (S,T,Σ)
is an invertible schema mapping. If the source schema S is aug-
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mented with a new relation symbol R, then the new schema mapping
M∗ = (S ∪ {R},T,Σ) is no longer invertible.

In view of these limitations of the notion of an inverse of a schema
mapping, it is natural to ask: is there a good alternative notion of an
inverse that is not as restrictive as the original notion in [3], but is still
useful in data exchange? In what follows, we address this question by
formulating the notion of a quasi-inverse of a schema mapping, by ex-
ploring its properties in depth, and by making a case for its usefulness.
Conceptual contributions We introduce the notion of a quasi-inverse
of a schema mapping M = (S,T,Σ) as a principled relaxation of the
notion of an inverse mapping of M. Intuitively, the notion of a quasi-
inverse is obtained from the notion of an inverse by not differentiat-
ing between ground instances (i.e., null-free source instances) that are
equivalent for data-exchange purposes. In more formal terms, we first
consider the equivalence relation ∼M between ground instances such
that I1 ∼M I2 holds if I1 and I2 have the same space of solutions, that
is, for every target instance J , we have that (I1, J) |= Σ if and only if
(I2, J) |= Σ. We then say that a schema mapping M′ = (T,S,M′)
is a quasi-inverse of M if, in a precise technical sense, M◦M′ = Id
holds modulo the equivalence relation ∼M.

We show that the concept of a quasi-inverse of a schema mapping
is actually part of a unifying framework in which different relaxations
of the notion of an inverse of a schema mapping can be obtained by
using different equivalence relations that are refinements of the equiv-
alence relation ∼M (i.e., they are contained in ∼M). This framework
captures, as special cases, both inverses and quasi-inverses. In fact,
the notion of an inverse is the strictest one, while the notion of a quasi-
inverse is the most relaxed one; all other relaxations of the notion of
an inverse lie in between.

Numerous non-invertible schema mappings possess natural and use-
ful quasi-inverses. Indeed, let us revisit the preceding examples of
non-invertible schema mappings.

Projection: The schema mapping specified by P (x, y) → Q(x) has
a quasi-inverse specified by Q(x) → ∃yP (x, y). Intuitively, this
quasi-inverse describes the “best” you can do to recover ground
instances.

Union: The schema mapping specified by the dependencies P (x) →
S(x) and Q(x) → S(x) has a quasi-inverse specified by S(x) →
P (x) ∨ Q(x). Quasi-inverses need not be unique up to logical
equivalence (the same holds true for inverses as well). Indeed,
the schema mapping specified by S(x) → P (x) is also a quasi-
inverse, as are the schema mapping specified by S(x) → Q(x)
and the schema mapping specified by S(x) → P (x) ∧Q(x).

Decomposition: The schema mapping specified by the dependency
P (x, y, z) → Q(x, y) ∧ R(y, z) has a quasi-inverse specified
by Q(x, y) ∧ R(y, z) → P (x, y, z). Another quasi-inverse of
this schema mapping is specified by Q(x, y) → ∃zP (x, y, z) and
R(y, z) → ∃xP (x, y, z).

Finally, if M = (S,T,Σ) is an invertible schema mapping and we
augment S with a new relation symbol R, then every inverse of M is
a quasi-inverse of the resulting non-invertible schema mapping M∗ =
(S ∪ {R},T,Σ). Moreover, if a schema mapping M′ = (T,S,Σ′)
is a quasi-inverse of a non-invertible schema mapping M, then the
schema mapping M′′ = (T,S ∪ {R},Σ′) is a quasi-inverse of M∗.
Thus, unlike the notion of an inverse, the notion of a quasi-inverse is
robust when relation symbols are added to the source schema.
Technical Contributions Our results span three different directions:
an exact criterion for the existence of quasi-inverses, complete char-
acterizations of the languages needed to express quasi-inverses and
inverses, and results on the use of quasi-inverses in data exchange.
Existence of quasi-inverses For schema mappings specified by source-
to-target tuple-generating dependencies (s-t tgds), we give a necessary

and sufficient combinatorial condition, called the subset property, for
the existence of a quasi-inverse. We then apply this condition to obtain
both positive and negative results about the existence of quasi-inverses.
On the positive side, we use the subset property as a sufficient con-
dition for quasi-invertibility to show that every LAV (local-as-view)
schema mapping has a quasi-inverse; this result provides a unifying
explanation for the quasi-invertibility of the projection, union, and de-
composition schema mappings. On the negative side, we use the subset
property as a necessary condition for quasi-invertibility to show that
there are simple schema mappings specified by full s-t tgds that have
no quasi-inverse; a fortiori, such schema mappings have no inverse.
The language of inverses and quasi-inverses We investigate the langu-
age needed to express quasi-inverses of schema mappings specified by
s-t tgds, and we obtain a complete characterization. Specifically, we
show that if a schema mapping specified by a finite set of s-t tgds
is quasi-invertible, then it has a quasi-inverse specified by a finite
set of target-to-source disjunctive tgds with constants and inequali-
ties (in fact, inequalities among constants suffice). Moreover, we give
an exponential-time algorithm for constructing such a quasi-inverse.
The left-hand side of a target-to-source disjunctive tgd with constants
and inequalities is a conjunction of target atoms, formulas of the form
Constant(x) that evaluate to true only when x is instantiated to a con-
stant (non-null) value, and inequalities xi 	= xj ; the right-hand side
is a disjunction of conjunctive queries over the source. We show that
our expressibility result is optimal by proving that no proper fragment
of the language of disjunctive tgds with constants and inequalities suf-
fices to express quasi-inverses; that is, both constants and inequalities
in the left-hand side of dependencies are needed, as are both disjunc-
tions and existential quantifiers in the right-hand side of dependencies.
For schema mappings specified by a finite set of full s-t tgds, we show
that if such a schema mapping is quasi-invertible, then it has a quasi-
inverse specified by a finite set of target-to-source disjunctive tgds with
inequalities; in other words, the predicate Constant is not needed in
this case. We also show that every LAV schema mapping has a quasi-
inverse specified by a finite set of target-to-source tgds with inequali-
ties and constants; thus, in this case, there is no need for disjunctions
in the right-hand side of dependencies.

Concerning the language needed to express inverses of schema map-
pings specified by s-t tgds, the paper [3] focussed only on inverses
specified by target-to-source tgds, and left open the problem of charac-
terizing the language needed to express inverses of schema mappings.
Here, we settle this problem by showing that if a schema mapping
specified by a finite set of s-t tgds is invertible, then it has an inverse
specified by a finite set of target-to-source tgds with constants and in-
equalities. This turns out to be an optimal result as well.

Although we have completely characterized the language needed
to express quasi-inverses and inverses of schema mappings specified
by a finite set of s-t tgds, the complexity of deciding the existence a
quasi-inverse and of an inverse of such schema mappings remain open
problems. In fact, even the decidability of these problems is open.
Using quasi-inverses in data exchange Since it is rare that a schema
mapping M has an inverse, we cannot hope to always obtain an ex-
act copy of the original ground instance from target instances. The
notion of a quasi-inverse is motivated from the idea that “similarity
up to the space of solutions” is often good enough for data-exchange
applications; this is why the definition of a quasi-inverse of a schema
mapping M relaxes exact equality between ground instances to ∼M-
equivalence. We show that, even though it is not possible to recover
an exact copy of the original source instance, in many cases quasi-
inverses allow us to recover a source instance that has “equivalent”
properties from the data-exchange point of view.

More formally, assume that M = (S,T,Σ) is a schema mapping
specified by a finite set of s-t tgds and M′ = (T,S,Σ′) is a quasi-
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inverse of M specified by a finite set of target-to-source disjunctive
tgds with constants and inequalities among constants. We show that
M′ is sound, which means that M′ has the following property. Let
I be an arbitrary ground instance and let U be the result of chasing
I with Σ. Suppose we chase U back from target to source with the
disjunctive dependencies in Σ′ to obtain a set V of source instances
and then we chase every member of V with the dependencies in Σ to
obtain a set U ′ of target instances. Then U ′ contains a target instance
U ′ that can be mapped homomorphically into U ; thus, the target in-
stance U ′ contains (up to a homomorphism) only facts of U , although
not necessarily all of them. Furthermore, if M′ is obtained by apply-
ing our algorithm for constructing a quasi-inverse of M, then M′ is
faithful, which means that the set U ′ contains a target instance U ′ that
is homomorphically equivalent to U . In other words, there is a source
instance V in V whose chase with Σ is homomorphically equivalent to
U . This instance V is thus “data-exchange equivalent” to the original
source instance I .

2. PRELIMINARIES
A schema R is a finite sequence (R1, . . . , Rk) of relation symbols,

each of a fixed arity. An instance I over R is a sequence (RI1, . . . , R
I
k),

where each RIi is a finite relation of the same arity as Ri. We shall
often use Ri to denote both the relation symbol and the relation RIi
that interprets it. An atom over R is a formula P (v1, . . . , vm), where
P is a relation symbol in R and v1, . . . , vm are variables.

In what follows, we assume that S is a fixed source schema and T is
a fixed target schema. We also assume that we have a fixed infinite set
Const of constants and an infinite set Var of nulls that is disjoint from
Const. For source instances, our main focus is on instances with indi-
vidual values from Const only; we call such source instances ground
instances. In contrast, target instances typically have individual values
from Const ∪ Var. Intuitively, this models the situation in which we
perform data exchange from S to T: the individual values of source
instances are known, while incomplete information in the specification
of data exchange may give rise to null values in the target instances.
Dependencies, schema mappings, and data exchange notions Re-
call that a schema mapping is a triple M = (S,T,Σ) consisting of a
source schema S, a target schema T, and a set Σ of database depen-
dencies that specify the relationship between the source schema and
the target schema. We say that M is specified by Σ.

We review several notions from [4] that will be needed in this paper.
Let M = (S,T,Σ) be a schema mapping. If I a is ground instance,
then a solution for I under M is a target instance J such that (I, J) |=
Σ. The set of all solutions for I under M is denoted by Sol(M, I).

Let J , J ′ be two target instances. A function h from Const∪Var to
Const∪Var is a homomorphism from J to J ′ if for every c in Const,
we have that h(c) = c, and for every relation symbolR in T and every
tuple (a1, . . . , an) ∈ RJ , we have that (h(a1), . . . , h(an)) ∈ RJ

′
.

The instances J and J ′ are said to be homomorphically equivalent if
there are homomorphisms from J to J ′ and from J ′ to J .

Given a schema mapping M = (S,T,Σ) and a ground instance I ,
a universal solution for I under M is a solution J for I under M such
that for every solution J ′ for I under M, there is a homomorphism
h : J → J ′. Intuitively, universal solutions are the “most general”
solutions among the space of all solutions for I .

A source-to-target tuple-generating dependency, in short, an s-t tgd,
is a first-order formula of the form ∀x(ϕ(x) → ∃yψ(x,y)), where
ϕ(x) is a conjunction of atoms over S, ψ(x,y) is a conjunction of
atoms over T, and every variable in x occurs in an atom in ϕ(x).

If M = (S,T,Σ) is a schema mapping specified by a finite set
Σ of s-t tgds, then chasing I with Σ produces a target instance U
such that U is a universal solution for I under M. We shall often
write that U = chaseΣ(I) and say that U is the result of the chase.

(In general, there may be several such instances U but they are all
homomorphically equivalent.)

Our goal in this paper is to investigate inverses and quasi-inverses of
schema mappings M = (S,T,Σ), where Σ is a finite set of s-t tgds.
In particular, we will identify the languages needed for expressing such
inverses and quasi-inverses, and will show that these languages must
be richer than the language of target-to-source tgds. The following
definition introduces the richer classes of dependencies needed.

DEFINITION 2.1. Let Constant be a relation symbol that is differ-
ent from all relation symbols in S and T.

1. A disjunctive tgd with constants and inequalities from T to S is a
first-order formula of the form

∀x(ϕ(x) →
n�

i=1

∃yiψi(x,yi)),

where:

• the formula ϕ(x) is a conjunction of
(1) atoms over T, such that every variable in x occurs in one
of them;
(2) formulas of the form Constant(x), where x is a variable
in x;
(3) inequalities x 	= x′, where x and x′ are variables in x.

• Each formula ψi(x,yi) is a conjunction of atoms over S.

Naturally, a formula Constant(x) evaluates to true if and only if x
is interpreted by a value in Const.

2. A disjunctive tgd with constants and inequalities among constants
is a disjunctive tgd with inequalities and constants where the for-
mulas Constant(x) and Constant(x′) occur as conjuncts of ϕ(x)
whenever the inequality x 	= x′ is a conjunct of ϕ(x).

Clearly, disjunctive tgds with constants and inequalities extend the lan-
guage of tgds with three features: (1) formulas of the form Constant(x)
in the left-hand side; (2) inequalities in the left-hand side; and (3) dis-
junctions in the right-hand side. If the right-hand side consists of a sin-
gle disjunct, then we talk about tgds with constants and inequalities.
The concepts of disjunctive tgds with inequalities, tgds with inequal-
ities, and other such special cases of Definition 2.1 are defined in an
analogous way. For example,

P (x, y, z) ∧ Constant(x) ∧ x 	= y → ∃wQ(x,w) ∨Q(x, y)

is a disjunctive tgd with constants and inequalities,

P (x, y, z) ∧ x 	= y → ∃wQ(x,w) ∨Q(x, y)

is a disjunctive tgd with inequalities, and

P (x, y, z) ∧ x 	= y → Q(x, y)

is a tgd with inequalities. Note that, for convenience, we have dropped
the universal quantifiers in the front.
Composing and inverting schema mappings Next, we recall the con-
cept of the composition of two schema mappings, introduced in [5, 9],
and the concept of an inverse of a schema mapping, introduced in [3].

Let M12 = (S1,S2,Σ12) and M23 = (S2,S3,Σ23) be schema
mappings. The composition M12◦M23 is a schema mapping (S1, S3,
Σ13) such that for every S1-instance I and every S3-instance K, we
have that (I,K) |= Σ13 if and only if there is an S2-instance J such
that (I, J) |= Σ12 and (J,K) |= Σ23. When the schemas involved are
understood from the context, we will often write Σ12 ◦ Σ23 to denote
the composition M12 ◦M23.

Let Ŝ be a replica of the source schema S, that is, for every relation
symbol R of S, the schema Ŝ contains a relation symbol R̂ that is not
in S and has the same arity as R. Clearly, every source instance I has
a replica instance Î over Ŝ.
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• If M∗ = (S, Ŝ,Σ∗) is a schema mapping, we write Inst(M∗) for
the set of all pairs (I1, I2) such that I1 is a ground S-instance, I2
is a ground Ŝ-instance, and (I1, I2) |= Σ∗.

• The identity schema mapping is, by definition, the schema map-
ping Id = (S, Ŝ,ΣId), where ΣId consists of the dependencies
R(x) → R̂(x) as R ranges over the relation symbols in S. Thus,
Inst(Id) consists of all pairs (I1, I2) of a ground S-instance I1
and a ground Ŝ-instance I2 such that Î1 ⊆ I2.

• Let M = (S,T,Σ) be a schema mapping. We say that a schema
mapping M′ = (T, Ŝ,Σ′) is an inverse of M if Inst(Id) =
Inst(M◦M′). This means that, for every pair (I1, I2) of a ground
S-instance I1 and a ground Ŝ-instance I2, we have that Î1 ⊆ I2 if
and only if there is a target instance J such that (I1, J) |= Σ and
(J, I2) |= Σ′.

From now on and for notational simplicity, we will write S to also
denote its replica Ŝ; it will be clear from the context if we refer to S or
to its replica. Moreover, we will use the same symbol to denote both a
ground S-instance I and its replica Ŝ-instance Î .

3. A UNIFYING FRAMEWORK
In this section, we develop a unifying framework for defining and

studying a spectrum of notions that relax the notion of an inverse of a
schema mapping in a principled manner. The key idea is not to differ-
entiate between ground instances that are equivalent for data-exchange
purposes.

DEFINITION 3.1. Let M = (S,T,Σ) be a schema mapping and
let I , I ′ be two ground instances.

We write I ∼M I ′ to denote that Sol(M, I) = Sol(M, I ′). When
M is understood from the context, we may write ∼ in place of ∼M.

Clearly, ∼M is an equivalence relation on ground instances. We
will use this equivalence relation to define relaxations of the notion of
an inverse. Before doing so, we introduce an auxiliary concept.

DEFINITION 3.2. Let ∼1 and ∼2 be two equivalence relations on
ground instances, and let D be a binary relation between ground in-
stances. We set

D[∼1,∼2] = {(I1, I2) : ∃I ′1I ′2((I1 ∼1 I
′
1) ∧

(I ′1, I
′
2) ∈ D ∧ (I2 ∼2 I

′
2))}.

It is easy to see that D[∼1,∼2] =∼1 ◦ D ◦ ∼2, where ◦ denotes the
composition of two binary relations.

In what follows, we will use the notation ∼(1,2) to denote the prod-
uct equivalence relation of two equivalence relations ∼1 and ∼2. This
means that (I1, I2) ∼(1,2) (I ′1, I

′
2) if and only if I1 ∼1 I

′
1 and I2 ∼2

I ′2. Thus, we have that

D[∼1,∼2] = {(I1, I2) : ∃I ′1I ′2((I1, I2) ∼(1,2) (I ′1, I
′
2) ∧

(I ′1, I
′
2) ∈ D)}.

We are now ready to give the crucial definition of an inverse with
respect to two equivalence relations, which generalizes the concept of
an inverse in [3].

DEFINITION 3.3. Assume that M = (S,T,Σ) is a schema map-
ping and ∼1, ∼2 are two equivalence relations on ground instances
such that ∼1⊆∼M and ∼2⊆∼M. We say that schema mapping M′ =
(T,S,Σ′) is a (∼1,∼2)-inverse of M if

Inst(Id)[∼1,∼2] = Inst(M◦M′)[∼1,∼2].

This means that, for every pair (I1, I2) of ground instances, the fol-
lowing statements are equivalent:

1. There are ground instances I ′1 and I ′2 such that (I1, I2) ∼(1,2)

(I ′1, I
′
2) and I ′1 ⊆ I ′2.

2. There are ground instances I ′′1 and I ′′2 and a target instance J such
that (I1, I2) ∼(1,2) (I ′′1 , I

′′
2 ), (I ′′1 , J) |= Σ, and (J, I ′′2 ) |= Σ′.

As an immediate consequence of the definitions, we have that M′

is an inverse of M if and only if M′ is an (=,=)-inverse of Σ. Thus,
informally, a (∼1,∼2)-inverse of M is an inverse of M modulo the
equivalence relations ∼1, ∼2.

Next, we introduce a combinatorial property that will be used to
characterize the existence of (∼1,∼2)-inverses.

DEFINITION 3.4. Let M = (S,T,Σ) be a schema mapping. We
say that M has the (∼1,∼2)-subset property if for every pair (I1, I2)
of ground instances such that Sol(M, I2) ⊆ Sol(M, I1), there is a
pair (I ′1, I

′
2) of ground instances such that (I1, I2) ∼(1,2) (I ′1, I

′
2) and

I ′1 ⊆ I ′2.

Before stating any technical results, let us give some insight to the
(∼1,∼2)-subset property. It is easy to see that if Σ is a set of s-t
tgds and I1 ⊆ I2, then Sol(M, I2) ⊆ Sol(M, I1). Note also that
the (=,=)-subset property asserts that if Sol(M, I2) ⊆ Sol(M, I1),
then I1 ⊆ I2; hence, it is the converse of the preceding fact. Thus, the
(∼1,∼2)-subset property can be construed as a weak converse of the
fact that if I1 ⊆ I2, then Sol(M, I2) ⊆ Sol(M, I1); informally, it is
a converse modulo the equivalence relations ∼1 and ∼2.

Our first theorem asserts that the (∼1,∼2)-subset property is a nec-
essary and sufficient condition for the existence of a (∼1,∼2)-inverse
of a schema mapping M = (S,T,Σ) in which Σ is a set of s-t tgds.

THEOREM 3.5. Assume that M = (S,T,Σ) is a schema mapping
in which Σ is a finite set of s-t tgds and let ∼1, ∼2 be two equivalence
relations on ground instances such that ∼1⊆∼M and ∼2⊆∼M. Then
the following are equivalent:

1. M has a (∼1,∼2)-inverse.

2. M has the (∼1,∼2)-subset property.

PROOF. (Sketch) Assume that M′ = (T,S,Σ′) is a (∼1,∼2)-
inverse of Σ. Let (I1, I2) be a pair of ground instances such that
Sol(M, I2) ⊆ Sol(M, I1). Since (I2, I2) ∈ Inst(Id), it follows that
(I2, I2) ∈ Inst(M◦M′)[∼1,∼2]. Therefore, there is a pair (I3, I4)
of ground instances and a target instance J such that (I2, I2) ∼(1,2)

(I3, I4), and such that (I3, J) |= Σ and (J, I4) |= Σ′. Since I2 ∼1 I3
and ∼1⊆∼M, we obtain that I2 ∼M I3. Hence, since (I3, J) |= Σ,
it follows that (I2, J) |= Σ. Since Sol(Σ, I2) ⊆ Sol(Σ, I1), we have
that (I1, J) |= Σ. Consequently, (I1, I4) ∈ Inst(M◦M′), which im-
plies that (I1, I4) ∈ Inst(Id)[∼1,∼2]. In turn, this implies that there
is a pair (I ′1, I

′
4) of ground instances such that (I1, I4) ∼(1,2) (I ′1, I

′
4)

and I ′1 ⊆ I ′4. Since I2 ∼2 I4 and I4 ∼2 I
′
4, we have that I2 ∼2 I

′
4.

Therefore, (I1, I2) ∼(1,2) (I ′1, I
′
4) where I ′1 ⊆ I ′4. This establishes

the implication (1) =⇒ (2).
For the implication (2) =⇒ (1), assume that M has the (∼1,∼2)-

subset property. Put

D = {(J, I) : J is universal for I under M}.
Let M′ = (T,S,Σ′) be the schema mapping such that (J, I) ∈ D
if and only if (J, I) |= Σ′. It can be shown that M′ is a (∼1,∼2)-
inverse of Σ; details appear in the full paper.

Theorem 3.5 yields the following necessary and sufficient condition
for the existence of an inverse.

COROLLARY 3.6. Assume that M = (S,T,Σ) is a schema map-
ping where Σ is a finite set of s-t tgds. Then the following statements
are equivalent:

1. M has an inverse.

2. M has the (=,=)-subset property, that is to say, if I1 and I2 are
two ground instances such that Sol(M, I2) ⊆ Sol(M, I1), then
I1 ⊆ I2.
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As mentioned in the Introduction, the unique-solutions property was
identified in [3] as a necessary condition for a schema mapping M to
have an inverse. By definition, this property says that if I1 and I2 are
ground instances such that I1 	= I2, then we have that Sol(M, I1) 	=
Sol(M, I2). Clearly, the (=,=)-subset property implies the unique-
solutions property. Indeed, if Sol(M, I1) = Sol(M, I2), then by ap-
plying the (=,=)-subset property twice, we have that I1 ⊆ I2 and
I2 ⊆ I1, and so I1 = I2. In the full paper we show that there is a
schema mapping M that is specified by a finite set of s-t tgds and has
the unique-solutions property, but does not have the (=,=)-property.
Hence, the unique-solutions property is not a sufficient condition for
the existence of an inverse.

By varying the equivalence relations ∼1 and ∼2, we can obtain a
variety of (∼1,∼2)-inverses. The next proposition provides a basic
tool for comparing them.

PROPOSITION 3.7. Let M be a schema mapping and let ∼1, ∼2,
∼3, ∼4 be four equivalence relations on ground instances such that
∼1⊆∼3⊆∼M and ∼2⊆∼4⊆∼M. Every (∼1,∼2)-inverse of M is
also a (∼3,∼4)-inverse of M.

Proposition 3.7 implies that the spectrum of (∼1,∼2)-inverses has
both “strongest” and “weakest” elements. Indeed, when M′ is an (=
,=)-inverse of M (i.e., M′ is an inverse of M), then for every two
equivalence relations ∼1 and ∼2 contained in ∼M, we have that M′ is
a (∼1,∼2)-inverse of M. At the other end of the spectrum, if M′ is a
(∼1,∼2)-inverse of M, then M′ is also a (∼M,∼M)-inverse of M.
In what follows, we will focus on (=,=)-inverses (i.e., on inverses)
and on (∼M,∼M)-inverses, which we will refer to from now on as
quasi-inverses.

DEFINITION 3.8. Let M = (S,T,Σ) be a schema mapping. We
say that a schema mapping M′ = (T,S,Σ′) is a quasi-inverse of M
if M′ is a (∼M,∼M)-inverse of M, that is,

Inst(Id)[∼M,∼M] = Inst(M◦M′)[∼M,∼M].

We say that M is quasi-invertible if it has a quasi-inverse, and invert-
ible if it has an inverse.

PROPOSITION 3.9. Every quasi-inverse of an invertible schema map-
ping M is an inverse of M.

This proposition holds because if M is invertible, then the unique-
solutions property implies that the equivalence relation ∼M coincides
with the equality relation = on ground instances. Thus, for invertible
schema mappings, there is no distinction between inverses and quasi-
inverses. In contrast, there are schema mappings that are not invertible,
but have natural quasi-inverses. As a matter of fact, the three examples
of schema mappings given in the Introduction (Projection, Union, and
Decomposition) have this property. We revisit one of them.

EXAMPLE 3.10. Let M be the Decomposition schema mapping
specified by the tgd

P (x, y, z) → Q(x, y) ∧R(y, z).

First, M does not have an inverse, since it does not have the unique-
solutions property. For example, if I1 and I2 are source instances,
where P I1 has exactly the tuples {(0, 0, 0), (0, 0, 1), (1, 0, 0)}, and
P I2 has these tuples along with (1, 0, 1), then I1 and I2 have exactly
the same solutions. We claim, however, that M has the (∼M,∼M)-
subset property. To see this, let I1 and I2 be two ground instances
such that Sol(M, I2) ⊆ Sol(M, I1). Let J be the solution for I2
obtained by taking QJ = π12(P

I2) and RJ = π23(P
I2). Since

Sol(M, I2) ⊆ Sol(M, I1), we have that J is also in Sol(M, I1),
so π12(P

I1) ⊆ π12(P
I2) and π23(P

I1) ⊆ π23(P
I2). Let I ′2 =

I1 ∪ I2. From the two inclusions we have just established, it follows

that I ′2 ∼M I2; moreover, we have that I1 ⊆ I ′2. This shows that M
has the (∼M,∼M)-subset property (actually, this shows that M has
the stronger (=,∼M)-subset property).

Theorem 3.5 implies that M has a quasi-inverse. As a matter of fact,
one can show directly that the schema mapping M′ = (T,S,Σ′) with
Σ′ consisting of the tgd

Q(x, y) ∧R(y, z) → P (x, y, z)

is a quasi-inverse of M. One can also show directly that another quasi-
inverse of M is the schema mapping M′′ = (T,S,Σ′′), where Σ′′

consists of the tgds

Q(x, y) → ∃zP (x, y, z)

R(y, z) → ∃xP (x, y, z).

This also shows that the notion of a quasi-inverse of a schema mapping
need not be unique up to logical equivalence. The same holds true for
the notion of an inverse [3].

The Projection, Union, and Decomposition schema mappings are
LAV (local-as-view) schema mappings, that is, the left-hand side of
each dependency is a single atom. The next result shows that every
LAV schema mapping has a quasi-inverse. The proof generalizes the
argument in Example 3.10.

PROPOSITION 3.11. If M = (S,T,Σ) is a LAV schema mapping,
then M has the (∼M,∼M)-subset property. Consequently, every LAV
schema mapping has a quasi-inverse.

PROOF. (Hint) Assume that I1 and I2 are two ground instances
such that Sol(M, I2) ⊆ Sol(M, I1). Let J1 be a universal solution
for I1, and let J2 be a universal solution for I2. Let I ′2 = I1 ∪ I2.
Clearly, I1 ⊆ I ′2. In the full paper, we show that I2 ∼M I ′2, which
implies that M has the (∼M,∼M)-subset property (and in fact the
stronger (=,∼M)-subset property).

Our next result asserts that, in contrast to LAV schema mappings,
there are schema mappings specified by full s-t tgds that have no quasi-
inverses. Recall that an s-t tgd is full if its right-hand side has no
existential quantifiers; this means that it is of the form ∀x(ϕ(x) →
ψ(x)), where ϕ(x) is a conjunction of source atoms and ψ(x) is a
conjunction of target atoms.

PROPOSITION 3.12. There is a schema mapping M that is speci-
fied by a single full s-t tgd and has no quasi-inverse.

PROOF. (Hint) Let M be the schema mapping specified by the fol-
lowing full s-t tgd:

E(x, z) ∧E(z, y) → F (x, y) ∧M(z).

It can be shown that M does not have the (∼M,∼M)-subset property,
which, by Theorem 3.5, implies that M has no quasi-inverse. The
details can be found in the full paper.

Note that the (∼M,∼M)-subset property is used “positively” in the
proof of Proposition 3.11 and “negatively” in the proof of Proposition
3.12. More precisely, the (∼M,∼M)-subset property is used as a
sufficient condition for the existence of quasi-inverses in Proposition
3.11 and as a necessary condition in Proposition 3.12.

4. THE LANGUAGE OF QUASI-INVERSES
One of our main results is the following theorem, characterizing the

language for quasi-inverses of schema mappings specified by tgds.

THEOREM 4.1. Let M be a schema mapping specified by a finite
set of s-t tgds. If M has a quasi-inverse then the following hold.
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1. M has a quasi-inverse M′ specified by a finite set of disjunctive
tgds with constants and inequalities.

2. There is an exponential-time algorithm for producing M′.

3. Statement (1) is not necessarily true if we disallow either constants
or inequalities in the left-hand side, or disallow disjunctions or
existential quantifiers in the right-hand side.

In fact, the quasi-inverse M′ that the algorithm produces has inequal-
ities only among constants.

We illustrate the intuition behind the construction of M′, with two
examples. We begin with the union example, where Σ consists of the
s-t tgds P (x) → S(x) and Q(x) → S(x). There are two possible
“generators” of S(x), namely P (x) and Q(x). These possibilities are
reflected by the disjunctive tgd S(x) → P (x) ∨ Q(x) (we shall put
a variation of this disjunctive tgd into Σ′). As another example, let Σ
consist of the s-t tgds S(x, y) → P (x, y) and T (x, y) → P (x, x).
There is only one possible generator of P (x, y) if x and y are differ-
ent, namely S(x, y), and this is reflected by the tgd with inequalities
P (x, y)∧(x 	= y) → S(x, y). However, there are two possible gener-
ators of P (x, x), namely S(x, x) and T (x, y), and this is reflected by
the disjunctive tgdP (x, x) → S(x, x)∨∃yT (x,y). The algorithm for
producing quasi-inverses systematically considers all such generators.

We now discuss the machinery behind the algorithm to produce M′,
including a formal definition of “generator”. If α is a conjunction of
atoms (or an instantiation of atoms), define Iα to be an instance whose
facts are the conjuncts of α. Note that Iα may not be an instance in
the usual sense, because the active domain may include variables, in
addition to constants or nulls. Thus, Iα is a type of canonical instance.
Let x be a vector of distinct variables. A complete description δ(x) is
a conjunction of equalities xi = xj and inequalities xk 	= x� among
the variables in x in a consistent manner, that completely describes
which variables are equal and which are unequal.

Let Σ be a finite set of s-t tgds. We now define a set Σ∗ that in-
cludes Σ and that is logically equivalent to Σ. For each member σ
of Σ, and for each complete description δ of the variables that each
appear in both the left-hand side and the right-hand side of σ, se-
lect a unique representative of each equivalence class determined by
δ, and let f(σ, δ) be obtained from σ by replacing every variable in
σ by the representative of its equivalence class. Let Σ∗ consist of
Σ and all such formulas f(σ, δ) (for all choices of σ in Σ and all
complete descriptions δ of the variables that each appear in both the
left-hand side and the right-hand side of σ). For example, if σ is
R(x1, x2, x3, x4) → ∃y(Q(x1, y) ∧ S(y, x2, x3)), and if δ is (x1 =
x3) ∧ (x1 	= x2) ∧ (x2 	= x3), then {x1, x3} forms one equiva-
lence class and {x2} is the other equivalence class, and f(σ, δ) is
R(x1, x2, x1, x4) → ∃y(Q(x1, y) ∧ S(y, x2, x1)).

DEFINITION 4.2. Let β(x, z) be a conjunction of source atoms,
and let ψT(x,y) be a conjunction of target atoms, where the mem-
bers of x,y, z are all distinct, and the members of x are exactly the
variables that appear in both β(x, z) and ψT(x,y). Let Σ be a fi-
nite set of s-t tgds. We say that β(x, z) is a generator of ∃yψT(x,y)
(with respect to Σ) if the s-t tgd β(x, z) → ∃yψT(x,y) is a logical
consequence of Σ.

When Σ is understood, we shall often drop the words “with respect
to Σ”. It follows easily from the standard theory of the chase that
β(x, z) is a generator of ∃yψT(x,y) with respect to Σ if and only if
the chase of Iβ(x,z) with Σ gives at least IψT(x,y′) for a substitution
where some y′ substitutes for y.

DEFINITION 4.3. The source formula β(x, z) is a minimal gener-
ator of ∃yψT(x,y) if β(x, z) is a generator of ∃yψT(x,y) and there
is no β′(x,z) that is a conjunction of a strict subset of the conjuncts
of β(x, z) such that β′(x,z) is a generator of ∃yψT(x,y).

We shall make use of the following simple lemma.

LEMMA 4.4. Let Σ be a finite set of s-t tgds, each with at most
s1 conjuncts in its left-hand side. Let ψT(x,y) be a conjunction of
s2 target atoms. Then every minimal generator of ∃yψT(x,y) with
respect to Σ has at most s1s2 conjuncts.

From Lemma 4.4, we see that there is a simple exhaustive-search
algorithm for finding minimal generators:

Algorithm MinGen(M,∃yψT(x,y))

Input: A schema mapping M = (S,T,Σ), where Σ is a finite set of
s-t tgds, and a formula ∃yψT(x,y), where ψT(x,y) is a conjunction
of target atoms, and where the variables in x,y are all distinct, and all
appear in ψT(x,y).
Output: A finite set of the minimal generators of ∃yψT(x,y) with
respect to Σ.

1. (Initialization.)
Initialize the set G of minimal generators of ∃yψT(x,y) to the
empty set.

2. (Exhaustive search.)
Let s1 and s2 be as in Lemma 4.4. Systematically check every
conjunction β(x, z) (up to renaming of variables in z) of at most
s1s2 atoms where the variables in z are distinct and distinct from
members of x,y, to see if the chase of Iβ(x,z) with Σ gives at least
IψT(x,y′) for a substitution where some y′ substitutes for y. If so,
add β(x,z) to G.

3. (Minimize.)
For each member β(x, z) of G, check to see if there is some
other β′(x,z′) in G whose conjuncts are a subset of the con-
juncts of β(x, z) (up to renaming of variables in z, z′). If so, re-
move β(x, z) from G. Continue the process until there is no more
change in G.
Return G.

The next algorithm produces a finite set of disjunctive tgds with
constants and inequalities that defines a quasi-inverse if one exists.

Algorithm QuasiInverse(M)
Input: A schema mapping M = (S,T,Σ), where Σ is a finite set of
s-t tgds.
Output: A schema mapping M′ = (T,S,Σ′), where Σ′ is a finite
set of disjunctive tgds with constants and inequalities, that is a quasi-
inverse of M if M has a quasi-inverse.

1. (Create Σ∗.)
Create Σ∗ from Σ as defined earlier.

2. (Create the formulas σ′.)
For each member σ of Σ∗, create σ′ as follows. Assume that
σ is is φS(x,u) → ∃yψT(x,y), where the variables in x are
distinct, and consist exactly of the variables that appear in both
φS(x,u) and ψT(x,y). The left-hand side of σ′ is the conjunc-
tion of ψT(x,y), along with each of the formulas Constant(x) for
members x of x, along with the formulas xi 	= xj for each pair
xi, xj of distinct variables in x. For each formula β(x, z) in the
output of MinGen(M, ∃yψT(x,y)), let ∃zβ(x, z) be a disjunct
in the right-hand side of σ′.

3. (Construct Σ′.)
Let Σ′ consist of each of these formulas σ′.
Return M′ = (T,S,Σ′).

We prove in the full paper that this algorithm defines a quasi-inverse
of M if one exists. Note that the disjunction in the right-hand side that
is created in Step (2) of the algorithm is nonempty, since φS(x,u), the
left-hand side of σ, is a generator of ∃yψT(x,y), and so some subset
of the conjunctions of φS(x,u) forms a minimal generator.
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EXAMPLE 4.5. Let Σ consist of the tgds:

P (x1, x2, x3) → ∃y(S(x1, x2, y) ∧Q(y, y))

U(x1) → ∃y(S(x1, x1, y) ∧Q(y, y) ∧Q(x1, y))

T (x3, x4) → S(x4, x4, x3)

R(x1, x2, x4) → Q(x1, x2).

Let σ1 be the first tgd in Σ. Let σ2 be

P (x1, x1, x3) → ∃y(S(x1, x1, y) ∧Q(y, y)),

the result of replacing each occurrence of x2 in σ1 by x1. Then σ1 and
σ2 are both in Σ∗. To show Step (2) of the algorithm QuasiInverse, in
this example we shall produce σ′

1 from σ1, and we shall produce σ′
2

from σ2. Thus, the algorithm puts σ′
1 and σ′

2 into Σ′.
The only generator of ∃y(S(x1, x2, y) ∧ Q(y, y)), the right-hand

side of σ1, is P (x1, x2, x3), so σ′
1 is

S(x1, x2, y) ∧Q(y, y) ∧ Constant(x1) ∧ Constant(x2)

∧(x1 	= x2) → ∃x3P (x1, x2, x3)

There are four minimal generators of ∃y(S(x1, x1, y)∧Q(y, y)), the
right-hand side of σ2. The first is P (x1, x1, x3), the left-hand side of
σ2. The second is U(x1), since its chase yields S(x1, x1, y), Q(y, y),
Q(x1, y), which includes the conjuncts in the right-hand side of σ2.
The third is T (x1, x1) ∧ R(x1, x1, x4), since chasing the two facts
in this conjunct yields S(x1, x1, x1), Q(x1, x1), where the role of y
in the right-hand side of σ2 is played by the variable x1. The fourth
is T (x3, x1) ∧ R(x3, x3, x4), since the chase of the two facts in this
conjunct yields S(x1, x1, x3), Q(x3, x3), where the role of y in the
right-hand side of σ2 is played by the variable x3. Then σ′

2 is:

S(x1, x1, y) ∧Q(y, y) ∧ Constant(x1) → ∃x3P (x1, x1, x3)

∨ U(x1)

∨ ∃x4(T (x1, x1) ∧R(x1, x1, x4))

∨ ∃x3∃x4(T (x3, x1) ∧R(x3, x3, x4))

Note that the fourth disjunct is implied by the third disjunct (by letting
the role of x3 be played by x1). So the third disjunct could be removed,
since we need only keep the more general disjunct.

The next theorem asserts that the language of quasi-inverses is slightly
simplified in the case of full s-t tgds.

THEOREM 4.6. Let M be a schema mapping specified by a finite
set of full s-t tgds. If M has a quasi-inverse, then M has a quasi-
inverse specified by a finite set of disjunctive tgds with inequalities.
Thus, constants are not needed.

Proposition 3.11 tells us that every LAV schema mapping has a
quasi-inverse. The next theorem asserts that disjunctions are not needed
in the language of quasi-inverses of LAV schema mappings.

THEOREM 4.7. Every LAV schema mapping has a quasi-inverse
specified by a finite set of tgds with constants and inequalities. Thus,
disjunctions are not needed.

4.1 Necessity of the Language
In this section, we exhibit the schema mappings used to prove Part

(3) of Theorem 4.1, which says that constants, inequalities, disjunc-
tions, and existential quantifiers are needed in general to express a
quasi-inverse. We shall take advantage of Proposition 3.9 to turn re-
sults about inverses into results about quasi-inverses. We shall also
show the optimality of Theorems 4.6 and 4.7.

THEOREM 4.8. (Necessity of constants.) There is a LAV schema
mapping that has an inverse, but no inverse specified by a set of dis-
junctive tgds with inequalities.

PROOF. (Hint) Let S consist of a binary relation symbol P , and
let T consist of a binary relation symbol Q. Let Σ consist of the tgd
P (x, y) → ∃z(Q(x, z) ∧ Q(z, y)). Let M = (S,T,Σ). Let Σ′

consist of the following tgd with constants:

Q(x, z) ∧Q(z, y) ∧ Constant(x) ∧ Constant(y) → P (x, y).

Let M′ = (T,S, Σ′). It is shown in the full paper that M′ is an
inverse of M, but M has no inverse specified by a set of disjunctive
tgds with inequalities (but no constants).

THEOREM 4.9. (Necessity of inequalities.) There is a LAV schema
mapping specified by full s-t tgds that has an inverse, but no inverse
specified by a set of disjunctive tgds with constants.

PROOF. (Hint) Let S consist of the binary relation symbol P and
the unary relation symbol T . Let T consist of the binary relation sym-
bol P ′ and the unary relation symbols Q and T ′. Let Σ consist of
the tgds P (x, y) → P ′(x, y), P (x, x) → Q(x). T (x) → T ′(x),
T (x) → P ′(x, x). Let M = (S,T,Σ). It is shown in the full paper
that M has an inverse, but no inverse specified by a set of disjunctive
tgds with constants.

THEOREM 4.10. (Necessity of disjunctions.) There is a schema
mapping specified by a finite set of full s-t tgds that has a quasi-inverse,
but has no quasi-inverse specified by a set of tgds with constants and
inequalities.

PROOF. (Hint) Let S consist of four unary relation symbols P1,
P2, P3, P4. and let T consist of six unary relation symbols S1, S2,
R13, R14, R23, R24. Let Σ consist of the tgds P1(x) → S1(x),
P2(x) → S1(x), P3(x) → S2(x), P4(x) → S2(x), along with the
four tgds Pi(x) ∧ Pj(x) → Rij(x), for i ∈ {1, 2} and j ∈ {3, 4}.
Let M = (S,T,Σ). It is shown in the full paper that M has a quasi-
inverse, but no quasi-inverse specified by a set of tgds with constants
and inequalities.

THEOREM 4.11. (Necessity of existential quantifiers.) There is a
LAV schema mapping specified by full s-t tgds that has a quasi-inverse,
but no quasi-inverse specified by a set of full disjunctive tgds with con-
stants and inequalities.

PROOF. (Hint) Let S consist of a single binary relation symbol P ,
and let T consist of two unary relation symbols R and S. Let M =
(S,T,Σ) where Σ consists of the tgds P (x, y) → R(x), P (x, x) →
S(x). Since M is a LAV mapping, it has a quasi-inverse by Propo-
sition 3.11. It is shown in the full paper that M has no quasi-inverse
that is specified by a set of full disjunctive tgds with constants and
inequalities.

Part (3) of Theorem 4.1 follows from Theorems 4.8, 4.9, 4.10, and
4.11, along with Proposition 3.9. Note that Theorems 4.9, 4.10, and
4.11 (along with Proposition 3.9) tell us that the result of Theorem 4.6
is optimal, in that inequalities, disjunctions, and existential quantifiers
are needed in general to specify a quasi-inverse of a schema mapping
specified by a finite set of full s-t tgds. Similarly, Theorems 4.8, 4.9,
and 4.11 (along with Proposition 3.9) tell us that the result of Theo-
rem 4.7 is optimal, in that constants, inequalities, and existential quan-
tifiers are needed in general to specify a quasi-inverse of a LAV schema
mapping.

5. THE LANGUAGE OF INVERSES
The focus in [3] is on inverses that are specified by a finite set of

tgds. For example, given a schema mapping M specified by a finite set
of s-t tgds, [3] gives an algorithm for constructing a schema mapping
specified by finite set of tgds that is an inverse of M if and only if there
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is an inverse of M that is specified by a finite set of tgds. If there is an
inverse M′ but there is no inverse specified by a finite set of tgds, then
the algorithm in [3] will not find M′. The “language of inverses” is
left as an open problem in [3]. This is the question as to what language
is needed to specify the inverse of M, when M is specified by a finite
set of s-t tgds. The next theorem resolves this open problem.

THEOREM 5.1. Let M be a schema mapping specified by a finite
set of s-t tgds. If M has an inverse then the following hold.

1. M has an inverse M′ specified by a finite set of full tgds with
constants and inequalities.

2. There is an exponential-time algorithm for producing M′.

3. Statement (1) is not necessarily true if we disallow either constants
or inequalities in the left-hand side, even if we allow existential
quantifiers in the right-hand side (and so allow non-full dependen-
cies to specify M′).

In fact, the inverse M′ that the algorithm produces has inequalities
only among constants.

Part (3) of Theorem 5.1 follows from Theorems 4.8 and 4.9. When
M is a schema mapping specified by a finite set of full s-t tgds, we
show in the full paper that constants are no longer needed, although
Theorem 4.9 tells us that inequalities are still needed.

We now discuss the machinery used to prove Theorem 5.1.
DEFINITION 5.2. A schema mapping M = (S,T,Σ), where Σ

is a finite set of s-t tgds, satisfies the constant-propagation property if
for every ground instance I , every member of the active domain of I
is in the active domain of chaseΣ(I).

It is straightforward to see that M satisfies the constant-propagation
property precisely if, for each relation symbol R in S, the chase of
R(x1, . . . , xm) with Σ includes each of the m distinct variables x1,
. . ., xm, where m is the arity of R.

We shall use the following proposition from [3].

PROPOSITION 5.3. [3] Every invertible schema mapping that is
specified by a finite set of s-t tgds satisfies the constant-propagation
property.

Define a prime atom to be one that contains precisely the vari-
ables x1, x2, . . . , xk for some k, and where the initial appearance
of xi precedes the initial appearance of xj if i < j. For example,
P (x1, x2, x1, x3, x2) is a prime atom, but Q(x2, x1) and R(x2, x3)
are not. Note that for every atom, there is a unique renaming of vari-
ables to obtain a prime atom. Define a prime instance to be an instance
whose only fact is a single prime atom. As with our definition of Iα,
a prime instance is not an instance in the usual sense, but is a type of
canonical instance. We now give an algorithm that produces an inverse
if one exists.

Algorithm Inverse(M)
Input: A schema mapping M = (S,T,Σ), where Σ is a finite set of
s-t tgds.
Output: A schema mapping M′ = (T,S,Σ′), where Σ′ is a finite
set of full tgds with constants and inequalities, and M′ is an inverse
of M if M has an inverse. There is no output if M does not satisfy
the constant-propagation property.

1. (Verify that M satisfies the constant-propagation property.)
Check to see if, for each relation symbol R in S, the chase of
R(x1, . . . , xm) with Σ includes each of the m distinct variables
x1, . . . , xm, where m is the arity of R. If not, halt without output.
If so, continue to the next step.

2. (Generate all prime source atoms in lexicographic order.)
For example, if R is a ternary source relation symbol, the atoms
for R, in lexicographic order, are R(x1, x1, x1), R(x1, x1, x2),
R(x1, x2, x1), R(x1, x2, x2), R(x1, x2, x3).

3. (Construct a full tgd ω(Σ, I) for each prime instance I .)
For each prime source atom α generated in Step (1), let Iα be the
prime instance containing only α. Let ψα be the conjunction of the
facts of chaseΣ(Iα). Form a full tgd ω(Σ, Iα) whose left-hand side
is the conjunction of ψα with the formulas Constant(x) for each
variable x that appears in α, along with inequalities xi 	= xj for
each pair xi, xj of distinct variables that appear in α, and whose
right-hand side is α.

4. (Construct Σ′.)
Let Σ′ consist of each of these formulas ω(Σ, I), one for each
prime instance I .
Return M′ = (T,S,Σ′).

Assume that M satisfies the constant-propagation property. Then
the algorithm gives an output. Furthermore, ω(Σ, Iα), as formed in
Step (3), is then a well-defined full tgd with constants and inequalities,
since every variable in the right-hand side of ω(Σ, Iα) necessarily ap-
pears in the left-hand side.

EXAMPLE 5.4. Let S consist of a binary relation symbol R. Let T
consist of a binary relation symbol Q, ternary relation symbol S, and
unary relation symbol U . Let M = (S,T,Σ) where Σ consists of the
tgds:

R(x1, x2) ∧R(x2, x1) → ∃yQ(x1, y)

R(x1, x2) → ∃yS(x1, x2, y)

R(x1, x1) → U(x1)

Then M satisfies the constant-propagation property, since the chase
of R(x1, x2) is S(x1, x2, y), which contains both of the variables x1

and x2 of R(x1, x2). The two prime source atoms are R(x1, x1) and
R(x1, x2). The two prime instances are IR(x1,x1) = {R(x1, x1)} and
IR(x1,x2) = {R(x1, x2)}. The tgd ω(Σ, IR(x1,x1)) is

Q(x1, y1) ∧ S(x1, x1, y2) ∧ U(x1) ∧ Constant(x1) (1)

→ R(x1, x1)

The tgd ω(Σ, IR(x1,x2)) is

S(x1, x2, y) ∧ Constant(x1) ∧ Constant(x2) ∧ (x1 	= x2) (2)

→ R(x1, x2)

The output of Inverse(M) is M′ = (T,S,Σ′), where Σ′ consists
of (1) and (2).

We show in the full paper that if M is invertible, then the output M′

of the algorithm is an inverse of M. Also, we show that M′ is the most
general (or “weakest”) inverse, in the sense that if M′′ = (T,S,Σ′′)
is another inverse of M, then Σ′′ logically implies Σ′.

Proposition 3.9 tells us that every quasi-inverse of an invertible sche-
ma mapping M is an inverse of M. The reader might therefore won-
der why we need both the algorithms QuasiInverse and Inverse, since
the QuasiInverse algorithm will necessarily produce an inverse if the
input is an invertible schema mapping. The answer is that in this case,
the QuasiInverse algorithm will produce an inverse specified by dis-
junctive tgds with constants and equalities where disjunctions may ac-
tually appear, even though there is an inverse specified by full (and
non-disjunctive) tgds with constants and equalities that the Inverse al-
gorithm will find (an example appears in the full paper).

6. QUASI-INVERSES IN DATA EXCHANGE
Next, we shall describe two desirable properties that an “inverse”

should possess for data exchange. Here, we use the term “inverse”
loosely, to mean a schema mapping M′ that goes in the reverse di-
rection of M. We will then show that quasi-inverses have the two
properties.
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Figure 1: M′ and M′′ are faithful with respect to M.

First, it is desirable for an inverse to be sound. Specifically, assume
that M = (S,T,Σ) is a schema mapping where Σ is a finite set of
s-t tgds, and assume that M′ = (T,S,Σ′) is an “inverse” schema
mapping. For the moment, assume that Σ′ is given by a finite set of
tgds. Suppose that we perform data exchange with M, by chasing a
ground instance I with Σ, to obtain a target instance U , denoted by
U = chaseΣ(I). We can then perform a reverse data exchange from
U with M′ and obtain V (i.e., compute V = chaseΣ′(U)). Then M′

is sound with respect to M if the following holds for every choice of
ground instance I : When we redo the original exchange with Σ but
this time starting from V , we obtain a subset of the facts that are in U
(modulo homomorphic images of nulls). Intuitively, the result of the
reverse data exchange with M′, followed by a data exchange with M
(i.e., chaseΣ(V )), does not introduce any new information that cannot
be found in U . If, additionally, all the data in U can be embedded
homomorphically into chaseΣ(V ), then no information that is in U
has been lost. We then say that M′ is faithful with respect to M.

EXAMPLE 6.1. Let us revisit the earlier Decomposition example
with a schema mapping M = (S,T,Σ) where Σ consists of the fol-
lowing s-t tgd:

P (x, y, z) → Q(x, y) ∧R(y, z).

Let us recall, from Example 3.10, that M has quasi-inverses M′ and
M′′ specified by the following sets Σ′ and Σ′′ of tgds:

Σ′ = { Q(x, y) ∧R(y, z) → P (x, y, z) }
Σ′′ = { Q(x, y) → ∃zP (x, y, z),

R(y, z) → ∃xP (x, y, z) }
Let I be the ground instance shown in Figure 1. The result of chasing
I with Σ (i.e., the result of the data exchange with M) is the instance
U shown in the figure. If we now chase U with Σ′ (i.e., perform
the reverse data exchange with M′), we obtain the source instance
V1. Furthermore, if we now redo the original data exchange with M
starting from V1, the result is identical to U . In fact, it can be shown
that, for every ground instance I , the result of redoing the original data
exchange on V1 is identical to U . Hence, M′ is faithful with respect
to M.

Consider now M′′. Again, let U be the result of the first data ex-
change on I with M. Let V2 be obtained, as in the figure, by a reverse
data exchange with M′′ from U . If we now redo the original data
exchange with M starting from V2, the result is the instance U2. The
instance U2 is different from the target instance U because U2 contains

extra tuples with nulls. The two instances U and U2, however, are ho-
momorphically equivalent. It can be shown that this is true for every
ground instance I , and therefore M′′ is faithful with respect to M.

It turns out that it is not an accident that M has faithful quasi-
inverses. In this section, we show that if M is a schema mapping
that is specified by a finite set of s-t tgds and has a quasi-inverse, then
M is guaranteed to have a faithful quasi-inverse (and the algorithm
QuasiInverse produces one).

Note that nulls may arise when we chase I with a schema mapping
M, and also when we chase the result U with an “inverse” M′. In
particular, the result of the reverse data exchange may not necessarily
be a ground instance, but rather a source instance with nulls. However,
if the inverse is faithful, these nulls do not matter: when we redo the
data exchange with M, we obtain a target instance that is homomor-
phically equivalent to the original result U .

In order to define soundness and faithfulness in the general case,
when M′ is expressed by a set of disjunctive tgds with constants and
inequalities, we need to consider an extension of the chase for this
more general language. The standard notion of the chase can be easily
extended to handle the Constant predicate and the inequalities in the
left-hand side of the tgds in Σ′. However, when the right-hand side
of a tgd in Σ′ contains disjunction, we need to use the disjunctive
chase. Chasing with disjunctive dependencies has been considered
before in various contexts [2, 4]; we use a similar notion here, which
we make precise via the following three definitions. When defining the
disjunctive chase, we do not need to assume a separation into a source
and a target schema. However, the subsequent definitions and results
about soundness and faithfulness will apply the disjunctive chase in
the context where such separation exists.

DEFINITION 6.2. Let φ(x) be a conjunction of atoms that may in-
clude constants and inequalities as in Definition 2.1. Let K be an
instance over Const ∪ Var. A homomorphism h from φ(x) to K is a
mapping from the variables x to values in Const ∪ Var such that: (1)
for every atom T (x1, . . . , xk) in φ we have that T (h(x1), . . . , h(xk))
is a fact in K, (2) for every inequality xi 	= xj in φ, we have that
h(xi) 	= h(xj), and, (3) for every formula Constant(x) in φ, we have
that h(x) is in Const.

DEFINITION 6.3 (DISJUNCTIVE CHASE STEP). Let σ be a dis-
junctive tgd with constants and inequalities of the form:

∀x[φ(x) → (∃y1ψ1(x1,y1) ∨ . . . ∨ ∃ypψp(xp,yp))].

Let σi be the tgd with constants and inequalities that is obtained from
σ by taking just one disjunct:

∀x[φ(x) → (∃yiψi(xi,yi))]

Let K be an instance over Const∪Var. Assume that h is a homomor-
phism from φ(x) to K such that for each i ∈ {1, . . . , p}, there is no
extension of h to a homomorphism from φ(x) ∧ ψi(xi,yi) to K. We
say that σ can be applied to K with homomorphism h. Note that this
also means that σi can be be applied toK with homomorphism h (this
is the non-disjunctive definition of a chase step).

Let K1, . . . ,Kp be the instances that result by applying each of
σ1, . . . , σp to K with homomorphism h. We say that the result of ap-

plying σ toK is the set {K1, . . . ,Kp}, and writeK
σ,h−→ {K1, . . . ,Kp}.

DEFINITION 6.4 (DISJUNCTIVE CHASE). Let Σ be a finite set
of disjunctive tgds with constants and inequalities. The disjunctive
chase of an instance K with Σ is a tree (finite or infinite) that has K
as a root and for each node K′, if K′ has children K1, . . . , Kp, then

it must be the case that K′ σ,h−→ {K1, . . . ,Kp} for some σ in Σ and
some homomorphism h. Moreover, each leaf Km in the tree has the
requirement that there is no σ in Σ and no homomorphism h such that
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σ can be applied toK with h. When the chase tree is finite we say that
the result of the disjunctive chase of K with Σ is the set of leaves in
the chase tree.

In the case when the disjunctive tgds are from a schema T to a
schema S, we can chase instances of the form (J, I) where J is a
T-instance and I is an S-instance. Note that any such chase tree
will be finite (since there is no recursion). Our case of interest is ap-
plying the disjunctive chase to an instance of the form (U, ∅) where
U = chaseΣ(I), for some ground instance I . The result of such chase
is a set {(U, V1), . . . , (U, Vm)} of instances where V1, . . . , Vm are S-
instances. If V denotes the set {V1, . . . , Vm}, we shall also say that V
is the result of chasing U with Σ′ and write V = chaseΣ′(U). Fur-
thermore, let us denote by U ′ = chaseΣ(V) the set of all instances U ′

that are obtained by chasing, in the standard way, each member V of
V with Σ.

DEFINITION 6.5. LetM = (S,T,Σ) be a schema mapping where
Σ is a finite set of s-t tgds, and let M′ = (T,S,Σ′) be a schema
mapping where Σ′ is a finite set of disjunctive tgds with constants and
inequalities.

(1) We say that M′ is sound with respect to M if:

for every ground instance I over S, if U = chaseΣ(I), V =
chaseΣ′(U) and U ′ = chaseΣ(V), then there is a homomorphism
from some member of U ′ into U .

(2) We say that M′ is faithful with respect to M if:

for every ground instance I over S, if U = chaseΣ(I), V =
chaseΣ′(U) and U ′ = chaseΣ(V), then there is some member of
U ′ that is homomorphically equivalent to U .

Regarding the above definition, note that in the case when the de-
pendencies in Σ′ have no disjunction, the set V of source instances
becomes a singleton set. Thus, if M′ is faithful, chasing with Σ′ re-
covers a single source instance whose chase (with Σ) is homomorphi-
cally equivalent to U . In fact, even when the dependencies in Σ′ have
disjunction, if M′ is faithful, we can still recover a single source in-
stance: we search among the instances in V to find the source instance
whose chase (with Σ) is homomorphically equivalent to U .

The following proposition states an important property of the dis-
junctive chase in the context of bidirectional data exchange, when the
disjunctive tgds (with constants and inequalities among constants) are
part of the “reverse” mapping. The proof of this proposition, which
is essential in proving the two main theorems of this section, will be
given in the full version of this paper.

PROPOSITION 6.6. [Universality of “chase of the chase”] LetM =
(S,T,Σ) be a schema mapping where Σ is a finite set of s-t tgds and
let M′ = (T,S,Σ′) be a schema mapping where Σ′ is a finite set
of disjunctive tgds with constants and inequalities among constants.
Moreover, let I be a ground instance over S. If U = chaseΣ(I) and
V = chaseΣ′(U) then for everyK such that (I,K) ∈ Inst(M◦M′),
there is V ∈ V such that there is a homomorphism from V to K.

The next theorem shows that every quasi-inverse specified by dis-
junctive tgds with constants and inequalities among constants is sound.
We have shown earlier that this language is sufficient to express quasi-
inverses of schema mappings that are specified by s-t tgds. The second
theorem states that, furthermore, every quasi-inverse obtained by ap-
plying the QuasiInverse algorithm is faithful. The proofs of these two
results will be given in the full paper.

THEOREM 6.7. Let M be a schema mapping specified by a finite
set of s-t tgds. If M′ is a quasi-inverse of M that is specified by
a finite set of disjunctive tgds with constants and inequalities among
constants, then M′ is sound with respect to M.

THEOREM 6.8. Let M be a schema mapping specified by a finite
set of s-t tgds. If M has a quasi-inverse, then the schema mapping
obtained by applying the algorithm QuasiInverse on M is faithful with
respect to M.

7. CONCLUDING REMARKS
The notion of an inverse of a schema mapping is rather restrictive,

since it is rare that a schema mapping has an inverse. We therefore
introduced and studied a more relaxed notion of a quasi-inverse of a
schema mapping. Both inverses and quasi-inverses are special cases
of a unifying framework for inverses that we developed. We gave an
exact criterion for the existence of quasi-inverses, complete characteri-
zations of the languages needed to express quasi-inverses and inverses,
and results regarding the use of quasi-inverses in data exchange.

Some of the important remaining problems are decision and com-
plexity issues. We have shown that for LAV schema mappings, a
quasi-inverse always exists. However, the complexity of the decision
problem for the existence of a quasi-inverse of a schema mapping spec-
ified by a finite set of s-t tgds (even in the full case) remains open. We
do not know whether the problem is even decidable. Similarly, the
complexity of the decision problem for the existence of an inverse of
a schema mapping specified by a finite set of s-t tgds (even in the full
case) remains open. Again, we do not know whether the problem is
even decidable. Another open problem concerns the optimality of the
algorithms QuasiInverse and Inverse. Given a schema mapping speci-
fied by a finite set of s-t tgds, these algorithms produce a schema map-
ping that is exponential in the size of the input schema mapping. We
do not know whether the size of a quasi-inverse is necessarily expo-
nential, and similarly for an inverse. If it turns out that there is always
a polynomial-size quasi-inverse, this raises the question of finding a
polynomial-time algorithm that can produce it. Similarly, the same
question arises for inverses.
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