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ABSTRACT
Data exchange is the problem of taking data structured under a
source schema and creating an instance of a target schema that
reflects the source data as accurately as possible. Given a source
instance, there may be many solutions to the data exchange prob-
lem, that is, many target instances that satisfy the constraints of the
data exchange problem. In an earlier paper, we identified a special
class of solutions that we call universal. A universal solution has
homomorphisms into every possible solution, and hence is a “most
general possible” solution. Nonetheless, given a source instance,
there may be many universal solutions. This naturally raises the
question of whether there is a “best” universal solution, and hence
a best solution for data exchange. We answer this question by con-
sidering the well-known notion of the core of a structure, a notion
that was first studied in graph theory, but has also played a role in
conjunctive-query processing. The core of a structure is the small-
est substructure that is also a homomorphic image of the structure.
All universal solutions have the same core (up to isomorphism);
we show that this core is also a universal solution, and hence the
smallest universal solution. The uniqueness of the core of a uni-
versal solution together with its minimality make the core an ideal
solution for data exchange. Furthermore, we show that the core
is the best among all universal solutions for answering unions of
conjunctive queries with inequalities. After this, we investigate the
computational complexity of producing the core. Well-known re-
sults by Chandra and Merlin imply that, unless

�������
, there is

no polynomial-time algorithm that, given a structure as input, re-
turns the core of that structure as output. In contrast, in the context
of data exchange, we identify natural and fairly broad conditions
under which there are polynomial-time algorithms for computing
the core of a universal solution. Finally, we analyze the computa-
tional complexity of the following decision problem that underlies
the computation of cores: given two graphs � and � , is � the core
of � ? Earlier results imply that this problem is both NP-hard and
coNP-hard. Here, we pinpoint its exact complexity by establishing
that it is a DP-complete problem.
�
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1. Introduction and Summary of Results

The data exchange problem Data exchange is the problem of
materializing an instance that adheres to a target schema, given an
instance of a source schema and a specification of the relationship
between the source schema and the target schema. This problem
arises in many tasks requiring data to be transferred between in-
dependent applications that do not necessarily adhere to the same
data format (or schema). The importance of data exchange was
recognized a long time ago; in fact, an early data exchange sys-
tem was EXPRESS [20] from the 1970’s, whose main functional-
ity was to convert data between hierarchical schemas. The need
for data exchange has steadily increased over the years and, actu-
ally, has become more pronounced in recent years, with the pro-
liferation of web data in various formats and with the emergence
of e-business applications that need to communicate data yet re-
main autonomous. The data exchange problem is related to the
data integration problem in the sense that both problems are con-
cerned with management of data stored in heterogeneous formats.
The two problems, however, are different for the following rea-
sons. In data exchange, the main focus is on actually materializ-
ing a target instance that reflects the source data as accurately as
possible; this can be a serious challenge, due to the inherent under-
specification of the relationship between the source and the target.
In contrast, a target instance need not be materialized in data in-
tegration; the main focus there is on answering queries posed over
the target schema using views that express the relationship between
the target and source schemas.

In a previous paper [9], we formalized the data exchange problem
and embarked on an in-depth investigation of the foundational and
algorithmic issues that surround it. Our work has been motivated
by practical considerations arising in the ongoing development of
Clio [16, 19], a prototype system for schema mapping and data ex-
change between autonomous applications. A data exchange setting
is a quadruple ( 	 , 
 , ���� , �� ), where 	 is the source schema, 

is the target schema, ���� is a set of source-to-target dependencies
that express the relationship between 	 and 
 , and ��� is a set of de-
pendencies that express constraints on 
 . Such a setting gives rise
to the following data exchange problem: given an instance � over
the source schema 	 , find an instance � over the target schema

 such that � together with � satisfy the source-to-target depen-
dencies ���� , and � satisfies the target dependencies ��� . Such an
instance � is called a solution for � in the data exchange setting. In
general, many different solutions for an instance � may exist. Thus,
the question is: which solution should one choose to materialize, so
that it reflects the source data as accurately as possible? Moreover,
can such a solution be efficiently computed?



In [9], we investigated these issues for data exchange settings in
which 	 and 
 are relational schemas, ����� is a set of tuple-generating
dependencies (tgds) between 	 and 
 , and ��� is a set of tgds and
equality-generating dependencies (egds) on 
 . We isolated a class
of solutions, called universal solutions, possessing good properties
that justify selecting them as the semantics of the data exchange
problem. Specifically, universal solutions have homomorphisms
into every possible solution; in particular, they have homomor-
phisms into each other, and thus are homomorphically equivalent.
Universal solutions are the most general among all solutions and, in
a precise sense, they represent the entire space of solutions. More-
over, as we shall explain shortly, universal solutions can be used
to compute the “certain answers” of queries � that are unions of
conjunctive queries over the target schema. The set certain � ��� ��� of
certain answers of a query � over the target schema, with respect
to a source instance � , consists of all tuples that are in the intersec-
tion of all � � ��� ’s, as � varies over all solutions for � (here, � � ���
denotes the result of evaluating � on � ). The notion of the certain
answers originated in the context of incomplete databases (see [21]
for a survey). Moreover, the certain answers have been used for
query answering in data integration [14]. In the same data integra-
tion context, Abiteboul and Duschka [1] studied the complexity of
computing the certain answers.

We showed [9] that the certain answers of unions of conjunctive
queries can be obtained by simply evaluating these queries on some
arbitrarily chosen universal solution. We also showed that, un-
der fairly general, yet practical, conditions, a universal solution
exists whenever a solution exists. Furthermore, we showed that
when these conditions are satisfied, there is a polynomial-time al-
gorithm for computing a canonical universal solution; this algo-
rithm is based on the classical chase procedure [3, 15].

Data exchange with cores Even though they are homomorphically
equivalent to each other, universal solutions need not be unique. In
other words, in a data exchange setting, there may be many univer-
sal solutions for a given source instance � . Thus, it is natural to ask:
what makes a universal solution “better” than another universal so-
lution? Is there a “best” universal solution and, of course, what
does “best” really mean? If there is a “best” universal solution, can
it be efficiently computed?

The present paper addresses these questions and offers answers that
are based on using minimality as a key criterion for what constitutes
the “best” universal solution. Although universal solutions come in
different sizes, they all share a unique (up to isomorphism) com-
mon “part”, which is nothing else but the core of each of them,
when they are viewed as relational structures. By definition, the
core of a structure is the smallest substructure that is also a homo-
morphic image of the structure. The concept of the core originated
in graph theory, where a number of results about its properties have
been established (see, for instance, [12]). Moreover, in the early
days of database theory, Chandra and Merlin [4] realized that the
core of a structure is useful in conjunctive-query processing. In-
deed, since evaluating joins is the most expensive among the basic
relational algebra operations, one of the most fundamental prob-
lems in query processing is the join-minimization problem: given
a conjunctive query � , find an equivalent conjunctive query involv-
ing the smallest possible number of joins. In turn, this problem
amounts to computing the core of the relational instance �	� that
is obtained from � by putting a fact into �	� for each conjunct of �
(see [2, 4, 13]).

Consider a data exchange setting � 	 � 
 � ����� � ��
� in which ���� is
a set of tgds and �� is a set of tgds and egds. Since all universal
solutions for a source instance � are homomorphically equivalent,
it is easy to see that their cores are isomorphic. Moreover, we show
in this paper that the core of a universal solution for � is itself a
solution for � . It follows that the core of the universal solutions for
� is the smallest universal solution for � , and thus an ideal candi-
date for the “best” universal solution, at least in terms of the space
required to materialize it.

We further justify the selection of the core as the “best” universal
solution by establishing its usefulness in answering queries over
the target schema 
 . Let ��� be the core of all universal solutions
for a source instance � . As discussed earlier, since ��� is itself a
universal solution for � , the certain answers of conjunctive queries
over 
 can be obtained by simply evaluating them on ��� . In [9],
however, it was shown that there are simple conjunctive queries
with inequalities �� such that evaluating them on a universal solu-
tion produces a proper superset of the set of certain answers for
� . Nonetheless, here we show that evaluating conjunctive queries
with inequalities on the core ��� of the universal solutions yields the
best approximation (i.e., smallest superset) of the set of the certain
answers, among all universal solutions. Indeed, we show that if �
is a union of conjunctive queries with inequalities, then the set of
those tuples in � � ���� whose entries are elements from the source
instance � is equal to the intersection of all � � ��� ’s, where � varies
over all universal solutions for � .

Having established the preceding good properties of the core in data
exchange, we then address the issue of how hard it is to compute
the core of a universal solution. Chandra and Merlin [4] showed
that join minimization is an NP-hard problem by pointing out that
a graph � is � -colorable if and only if the � -element clique ��� is
the core of the disjoint sum ������� of � with ��� . From this,
it follows that, unless

� � ���
, there is no polynomial-time algo-

rithm that, given a structure as input, outputs its core. At first sight,
this result casts doubts on the tractability of computing the core of
a universal solution. For data exchange, however, we give natural
and fairly broad conditions under which there are polynomial-time
algorithms for computing the cores of universal solutions. Specif-
ically, we show that there is a polynomial-time algorithm for com-
puting the core in a data exchange setting ( 	 , 
 , ����� , �� ) in which
���� is an arbitrary set of tgds, but ��� is empty, that is, there are
no target constraints. We then extend this result by showing that
it holds even when �� is an arbitrary set of egds. We conjecture
that there is a polynomial-time algorithm for computing the core
in even broader data exchange settings in which ��� may also con-
tain tgds, and we leave this as an open problem. We also analyze
the computational complexity of the following decision problem,
called CORE IDENTIFICATION, which underlies the computation
of cores: given two graphs � and � , is � the core of � ? As seen
above, the results by Chandra and Merlin [4] imply that this prob-
lem is NP-hard. Later on, Hell and Nešetřil [12] showed that decid-
ing whether a graph � is its own core is a coNP-complete problem;
in turn, this implies that CORE IDENTIFICATION is a coNP-hard
problem. Here, we pinpoint the exact computational complexity of
CORE IDENTIFICATION by showing that it is a DP-complete prob-
lem, where DP is the class of decision problems that can be written
as the intersection of an NP-problem and a coNP-problem.



2. Preliminaries
This section reviews the main definitions related to data exchange
that are needed for the results of this paper. In presenting the nec-
essary definitions, we follow closely our earlier paper [9].

2.1 The Data Exchange Problem

A schema is a finite sequence
� ������� ������� � �
	�� of relation sym-

bols, each of a fixed arity. An instance � (over the schema
�

) is
a sequence

���
� ������� � �
	 � that associates each relation symbol
�
�

with a relation
�
�

of the same arity as
���

. We shall often abuse
the notation and use

���
to denote both the relation symbol and the

relation
� �

that interprets it. We may refer to
� �

as the
���

relation
of � . Given a tuple � occurring in a relation

�
, we denote by

� ��� �
the association between � and

�
, and call it a fact. If

�
is a schema,

then a dependency over
�

is a sentence in some logical formalism
over

�
.

Let 	 ������� ������� � ����� and 
 ������� ������� � ���
� be two schemas
with no relation symbols in common. We refer to 	 as the source
schema and to the

���
’s as the source relation symbols. We refer to


 as the target schema and to the
���

’s as the target relation sym-
bols. We denote by

� 	 � 
 � the schema
����� ������� � ��� � ��� ������� � ���
� .

Instances over 	 will be called source instances, while instances
over 
 will be called target instances. If � is a source instance
and � is a target instance, then we write

� � � � � for the instance �
over the schema

� 	 � 
 � such that
�! � �"� �

and
�
 � �#�
$�

, when%'&)(!&)*
and

%'&,+-&).
.

A source-to-target dependency is, in general, a dependency over� 	 � 
 � of the form /10 ��2�3 �40 �'57698 �40 � � � where 2�3 �40 � is a for-
mula, with free variables 0 , of some logical formalism over 	 , and
698 �40 � is a formula, with free variables 0 , of some logical formal-
ism over 
 (these two logical formalisms may be different). We use
the notation 0 for a vector of variables : � ������� � : 	 . A target depen-
dency is, in general, a dependency over the target schema 
 (the
formalism used to express a target dependency may be different
from those used for the source-to-target dependencies). The source
schema may also have dependencies that we assume are satisfied
by every source instance. While the source dependencies may play
an important role in deriving source-to-target dependencies [19],
they do not play any direct role in data exchange, because we take
the source instance to be given.

DEFINITION 2.1. A data exchange setting � 	 � 
 , ����� � ��
� con-
sists of a source schema 	 , a target schema 
 , a set ����� of source-
to-target dependencies, and a set ��� of target dependencies. The
data exchange problem associated with this setting is the follow-
ing: given a finite source instance � , find a finite target instance �
such that

� � � � � satisfies ���� and � satisfies �� . Such a � is called
a solution for � or, simply, a solution if the source instance � is
understood from the context.

For most practical purposes, and for most of the results of this paper
(except for Proposition 2.7) each source-to-target dependency in
���� is a tuple generating dependency (tgd) [3] of the form

/10 ��2�3 �40 �;5=<?>9@�8 �40 � > � � �
where 2�3 �40 � is a conjunction of atomic formulas over 	 and @;8 �40 � > �
is a conjunction of atomic formulas over 
 . Moreover, each target
dependency in �� is either a tgd, of the form

/10 ��218 �40 �;5=<?>9@�8 �40 � > � � �

or an equality-generating dependency (egd) [3], of the form

/10 ��218 �40 �;5 �4: � � :�A � � �
In these dependencies, 2�8 �40 � and @�8 �40 � > � are conjunctions of
atomic formulas over 
 , and : � , :�A are among the variables in
0 . As in [9], we will drop the universal quantifiers in front of a
dependency, and implicitly assume such quantification. However,
we will write down all the existential quantifiers.

Source-to-target tgds are a natural and powerful language for ex-
pressing the relationship between a source schema and a target
schema. Such dependencies are automatically derived and used
as representation of a schema mapping in the Clio system [19].
Furthermore, data exchange settings with tgds as source-to-target
dependencies include as special cases both LAV and GAV data in-
tegration systems in which the views are sound and defined by con-
junctive queries (see Lenzerini’s tutorial [14] for a detailed discus-
sion of LAV and GAV data integration systems and sound views).

Indeed, a LAV data integration system with sound views defined
by conjunctive queries is a special case of a data exchange setting
( 	 , 
 , ���� , �� ), in which 	 is the source schema (consisting of
the views, in LAV terminology), 
 is the target schema (or global
schema, in LAV terminology), the set ��� of target dependencies
is empty, and each source-to-target tgd in ����� is of the form

� �40 �
5B<?>C@�8 �40 � > � , where

�
is a single relation symbol of the source

schema 	 (a view, in LAV terminology) and @;8 is a conjunction of
atomic formulas over the target schema 
 . A GAV setting is simi-
lar, but the tgds in ���� are of the form 2�3 �40 ��5 � �40 � , where

�
is

a single relation symbol over the target schema 
 (a view, in GAV
terminology), and 2�3 is a conjunction of atomic formulas over the
source schema 	 . Since, in general, a source-to-target tgd relates
a conjunctive query over the source schema to a conjunctive query
over the target schema, a data exchange setting is strictly more ex-
pressive than LAV or GAV, and in fact it can be thought of as a
GLAV (global-and-local-as-view) system [10, 14]. These similar-
ities between data integration and data exchange notwithstanding,
the main difference between the two is that in data exchange we
have to actually materialize a finite target instance that best reflects
the given source instance. In data integration no such exchange of
data is required; the target can remain virtual.

In general there may be multiple solutions for a given data ex-
change problem. The following example illustrates this issue and
raises the question of which solution to choose to materialize.

EXAMPLE 2.2. [9] Consider a data exchange problem in which
the source schema has three relation symbols D , E ,

�
, each of

them with attributes F �HG �JI , while the target schema has one re-
lation symbol

�
also with attributes F �HG �JI . We assume that

�� �LK . The source-to-target tgds and the source instance are:

����!M D �4N �PO �HQ �!5=<?RS<UT � �4N � R � T �
E �4N �PO �HQ �;5=<?VW<�X � �4V �PO � X �� �4N �PO �HQ �;5=<UY�<UZ � ��Y � Z �PQ �

� �\[ D �4N�� �HO^] � �HQ^] � � � E �4N ] ]� �HO � �HQ^] ]� � � � �4N ] ] ]� �HO^] ] ]� �HQ ���`_
Since the tgds in ���� do not completely specify the target instance,
there are multiple solutions that are consistent with the specifica-
tion. One solution is:

� �a[�� �4N�� � R � � T ��� � � �4V � �HO � � X ��� � � ��Y � � Z � �HQ ���`_ �
where V � � R � ������� represent “unknown” values, that is, values that



do not occur in the source instance. Such values are called labeled
nulls and are to be distinguished from the values occuring in the
source instance, which are called constants. Instances with con-
stants and labeled nulls are not specific to data exchange. They
have long been considered, in various forms, in the context of in-
complete or indefinite databases (see [21]) as well as in the context
of data integration (see [11, 14]). For the current example, the fol-
lowing instances are solutions as well:

� ��a[�� �4N�� �`O � �HQ ���`_ �?A �a[�� �4N�� �HO � � T � � � � ��Y � � Z � �HQ ���`_
In the above, T � � Y � and Z � are labeled nulls. Note that � � does
not use labeled nulls, but uses constants to witness the existentially
quantified variables of the tgds.

Next, we review the notion of universal solutions, proposed in [9]
as the most general solutions.

2.2 Universal Solutions

We denote by Const the set (possibly infinite) of all values that
occur in source instances, and as before we call them constants. We
also assume an infinite set Var of values, called labeled nulls, such
that Var

�
Const

�LK
. We reserve the symbols � � � ] � � � � � A ������� for

instances over the source schema 	 and with values in Const. We
reserve the symbols � � � ] � � � � �?A ������� for instances over the target
schema 
 and with values in Const � Var. Moreover, we require
that solutions of a data exchange problem have their values drawn
from Const � Var. If

� � ��� � ������� � �
	�� is a schema and � is
an instance over

�
with values in Const � Var, then Const ��� �

denotes the set of all constants occurring in relations in � , and
Var ��� � denotes the set of labeled nulls occurring in relations in � .

DEFINITION 2.3. Let � � and �CA be two instances over
�

with
values in Const � Var.

1. A homomorphism � M � � 5 �CA is a mapping from Const ��� � ���
Var ��� � � to Const ���CA ��� Var ���CA � such that: (1) ��� Q � � Q , for
every Q�� Const ��� � � ; (2) for every fact

�
� ��� � of � � , we have
that

��� ������� � � is a fact of �CA (where, if � � �4N � ������� � N � � , then
����� � � �����4N � � , ����� , ���4N � � � ).

2. � � is homomorphically equivalent to � A if there are homo-
morphisms � M � � 5=�CA and � ] M �CA 5 � � .

DEFINITION 2.4 (UNIVERSAL SOLUTION). Consider a data
exchange setting � 	 � 
 � ���� � ��
� . If � is a source instance, then a
universal solution for � is a solution � for � such that for every
solution � ] for � , there exists a homomorphism � M � 5 � ] .

EXAMPLE 2.5. The solutions � � and �?A in Example 2.2 are not
universal. In particular, there is no homomorphism from � � to �
and there is no homomorphism from � A to � . Hence, the solutions
� � and �?A contain “extra” information that was not required by
the specification. In contrast, it can easily be shown that � has
homomorphisms to every solution. Thus, � is universal.

Universal solutions possess good properties that justify selecting
them (as opposed to arbitrary solutions) for the semantics of the
data exchange problem. A universal solution is more general than
an arbitrary solution because, by definition, it can be homomorphi-
cally mapped into that solution. Universal solutions have, also by

their definition, homomorphisms to each other and, thus, are ho-
momorphically equivalent.

Computing universal solutions In [9], we addressed the question
of how to check the existence of a universal solution and how to
compute one, if one exists. In particular, we identified fairly gen-
eral, yet practical, conditions that guarantee that universal solutions
exist whenever solutions exist. Moreover, we showed that there is
a polynomial-time algorithm for computing a canonical universal
solution, if a solution exists; this algorithm is based on the classical
chase procedure. The following result summarizes these findings.

THEOREM 2.6. [9] Assume a data exchange setting where �����
is a set of tgds, and �� is the union of a weakly acyclic set of tgds
with a set of egds.

1. The existence of a solution can be checked in polynomial time.
2. A universal solution exists if and only if a solution exists.
3. If a solution exists, then a universal solution can be produced

in polynomial time using the chase.

The notion of a weakly acyclic set of tgds first arose in a conversa-
tion between the third author and A. Deutsch in 2001. It was then
independently used in [8] and in [9] (in the former paper, under the
term constraints with stratified-witness). This class guarantees the
termination of the chase and is quite broad, as it includes both sets
of full tgds [3] and sets of acyclic inclusion dependencies [6]. We
note that, when the set �� of target constraints is empty, a univer-
sal solution always exists and a canonical one is constructible in
polynomial time by chasing

� � � K � with ���� . In the Example 2.2,
the instance � is such a canonical universal solution. If the set ���
of target constraints contains egds, then it is possible that no uni-
versal solution exists (and hence no solution exists, either, by the
above theorem). This occurs (see [9]) when the chase fails by at-
tempting to identify two constants while trying to apply some egd
of �� . If the chase does not fail, then the result of chasing

� � � K �
with ������ �� is a canonical universal solution.

Certain answers on universal solutions In a data exchange set-
ting, there may be many possible solutions for the target instance.
Hence, there is a question of what is the result of answering queries
over the target schema. In [9], and following work on data integra-
tion, we adopted the notion of the certain answers as the semantics
of query answering. Recall that the set certain � ��� ��� of the certain
answers of � with respect to a source instance � is the set of tuples
that appear in � � ��� for every solution � . Moreover, if � is an arbi-
trary solution, let us denote by � � ���
	 the set of all “null-free” tuples
in � � ��� , that is the set of all tuples in � � ��� that are formed entirely
of constants. The next proposition from [9] shows that null-free
evaluation of conjunctive queries on an arbitrarily chosen univer-
sal solution gives precisely the set of certain answers. Moreover,
universal solutions are the only solutions that have this property.

PROPOSITION 2.7. [9] Consider a data exchange setting with
	 as the source schema, 
 as the target schema, and such that the
dependencies in the sets ���� and �� are arbitrary.

1. Let � be a union of conjunctive queries over the target schema

 . If � is a source instance and � is a universal solution, then
certain � ��� ��� � � � ���
	 .

2. Let � be a source instance and � be a solution such that for
every conjunctive query � over 
 , we have that certain � ��� ��� �



� � ���
	 . Then � is a universal solution.

3. Multiple Universal Solutions

We give next a very simple example showing that, even if we re-
strict our attention to universal solutions instead of arbitrary solu-
tions, there may still be multiple, non-isomorphic, universal solu-
tions for a given data exchange problem. Although these univer-
sal solutions are homomorphically equivalent, they have different
sizes. Moreover, the example shows that evaluating conjunctive
queries with inequalities �� on universal solutions may not always
produce the certain answers. (Contrast this with Proposition 2.7,
which deals with the case of unions of conjunctive queries.)

EXAMPLE 3.1. Consider a data exchange problem in which the
source schema has one relation symbol

�
with attributes F �HG ,

while the target schema has one relation symbol
�

with attributes
F �JI . We assume that �� � K . The source-to-target tgds and the
source instance are:

���� M � �4: ��� �;5=<UT � �4: � T �
� � [ � �4N �HO � � � � �4N �PO A �`_

Then the following instances are universal solutions:

� ��a[�� �4N � T � � � � �4N � T!A �`_ � �?A �a[�� �4N � T �`_ �
where T � � T!A , and T are labeled nulls. It is easy to verify that
� � and �?A are universal. From a size perspective, we have that � A
is smaller than � � . It can be shown that every universal solution
must contain at least one tuple of the form �4N � T ] � for some null
T ] . Hence, �?A has the smallest size among all universal solutions.
We argue that �?A , rather than � � , should be used for data exchange.

By Proposition 2.7, queries that are unions of conjunctive queries
give the same answers (the certain answers) when applied to either
� � or �?A , since both solutions are universal. However, consider the
conjunctive query with one inequality:

� �4: ��� � � <UT � <UT!A � � �4: � T � ��� � � � � T!A ��� ��T � �� T!A � � �
Then � returns

[ �4N � N �`_ when evaluated on � � , and returns the
empty set when evaluated on � A . In particular, this also shows
that �4N � N � is not a certain answer; hence, query evaluation on a
universal solution ( � � in this case) may be a strict superset of the
set of certain answers (which is the empty set for this example).
On the other hand, � � �?A � coincides with the set of certain answers.
In general, the exact equality with the set of certain answers may
not always be possible, even if we use a smallest universal solution
such as �?A ; however, we always obtain a best approximation, as
we shall prove in the next section. This is further justification for
selecting �?A rather than � � .

Following the above intuition, we define and study, in the next sec-
tion, cores of universal solutions. We prove that, in general, such
cores of universal solutions enjoy two good properties. Specifically,
they are the smallest universal solutions and they provide the best
approximation of the set of certain answers (among all universal
solutions). This, combined with the fact that there is only one such
universal solution (up to isomorphism), as we shall prove, gives a
strong justification for using the core of universal solutions for data
exchange.

4. Data Exchange with Cores: Semantics and
Query Answering

4.1 Cores and Universal Solutions

We find it convenient to define not only an instance (which we de-
fined earlier), but also the closely related notion of a structure. The
difference is that a structure is defined with a universe, whereas the
universe of an instance is implicitly taken to be the “active domain”,
that is, the set of elements that appear in tuples of the instance. Fur-
thermore, unlike target instances in data exchange settings, struc-
tures do not necessarily have distinguished elements (“constants”)
that have to be mapped onto themselves by homomorphisms.

More formally, a structure � (over the schema
� � ����� ������� � �
	�� )

is a sequence
� F � ��� � ������� � ��� 	 � , where F is a non-empty set, called

the universe, and that associates each relation symbol
�
�

with a re-
lation

����
of the same arity as

���
. As with instances, we shall often

abuse the notation and use
���

to denote both the relation symbol
and the relation

����
that interprets it. We may refer to

����
as the���

relation of A. If F is finite, then we say that the structure is fi-
nite. A structure � � � G � ��	 � ������� � ��		 � is a substructure of � ifG�
 F and

� 	� 
 � �� , for
%�& ( &�

. We say that � is a proper
substructure of � if it is a substructure of � and at least one of the
containments

��	� 
 ���� , for
%'&)(!&��

, is a proper one.

DEFINITION 4.1. A substructure � of structure � is called a
core of F if there is a homomorphism from � to � , but there is no
homomorphism from � to a proper substructure of � . A structure
� is called a core if it is a core of itself, that is, if there is no
homomorphism from � to a proper substructure of � .

Note that � is a core of � if and only if � is a core, � is a substruc-
ture of � , and there is a homomorphism from � to � . The concept
of the core of a graph has been studied extensively in graph theory
(see [12]). The next proposition summarizes some basic facts about
cores; a proof can be found in [12].

PROPOSITION 4.2. The following statements hold:

� Every finite structure has a core; moreover, all cores of the same
finite structure are isomorphic.

� Every finite structure is homomorphically equivalent to its core.
Consequently, two finite structures are homomorphically equiv-
alent if and only if their cores are isomorphic.

� If � is the core of a finite structure � , then there is a homo-
morphism � M�� 5�� such that ������� � � for every member �
of the universe of � .

In view of Proposition 4.2, if � is a finite structure, there is a unique
(up to isomorphism) core of � , which we denote by core ���	� .
We can similarly define the notions of a subinstance of an instance
and of a core of an instance. We identify the instance with the cor-
responding structure, where the universe of the structure is taken to
be the active domain of the instance, and where we distinguish the
constants in the universe. That is, we require that if � is a homo-
morphism and Q is a constant, then ��� Q � � Q (as already defined in
Section 2.2). The results about cores of structures will then carry
over to cores of instances.

As seen earlier, universal solutions for � are unique up to homomor-
phic equivalence, but they need not be unique up to isomorphism.



Proposition 4.2, however, implies that their cores are isomorphic;
in other words, all universal solutions for � have the same core up
to isomorphism. Moreover, if core � ��� is a solution for � , then it
is also a universal solution for � , since � and core � ��� are homo-
morphically equivalent. In general, if the dependencies ����� and ��
are arbitrary, then the core of a solution to an instance of the data
exchange problem need not be a solution. The next result shows,
however, that this cannot happen if ����� is a set of tgds and �� is
the union of a set of tgds with a set of egds.

PROPOSITION 4.3. Let � 	 � 
 � ���� � ��
� be a data exchange set-
ting in which ���� is a set of tgds and �� is the union of a set of tgds
with a set of egds. If � is a source instance and � is a solution for � ,
then core � ��� is a solution for � . Consequently, if � is a universal
solution for � , then also core � ��� is a universal solution for � .

Proof: Let 2�3 �40 � 5 <?>9@�8 �40 � > � be a tgd in ���� and � �
�4N � ������� � N � � a tuple of constants such that � � � 293 � � � . Since �
is a solution for � , there is a tuple � � � O � ������� �HO � � of elements of
� such that

� � � � � � � @�8 � � � � � . Let � be a homomorphism from
� to core � ��� . Then ���4N � � � N � , since each N � is a constant, for%W& (�& *

. Consequently,
� � � core � ��� � � � @�8 � � � ����� � � , where

����� � � ����� O � � ������� � ��� O � � . Thus,
� � � core � ��� � satisfies the tgd.

Next, let 218 �40 ��5�<?>9@�8 �40 � > � be a tgd in �� and � � �4N � ������� � N � �
a tuple of elements in core � ��� such that core � ��� � � 2�8 � � � . Since
core � ��� is a subinstance of � , and � is a solution, it follows that
� � � 218 � � � and that there is a tuple � � � O � ������� �HO � � of elements
of � such that � � � @�8 � � � � � . According to the last part of Propo-
sition 4.2, there is a homomorphism � from � to core � ��� such
that ������� � � , for every � in core � ��� . In particular, ���4N � � � N � ,
for

%W& (S& *
. It follows that core � ��� � � @�8 � � � ����� � � , where

����� � � ����� O � � ������� � ��� O � � � . Thus, core � ��� satisfies the tgd.

Finally, let 218 �40 �;5 �4: �� :�A � be an egd in �� . If � � �4N � ������� � N � �
is a tuple of elements in core � ��� such that core � ��� � � 2�8 � � � , then
� � � 218 � � � , because core � ��� is a subinstance of � . Since � is a
solution, it follows that N � � NUA . Thus, core � ��� satisfies every egd
in �� .

COROLLARY 4.4. Let � 	 � 
 � ���� � �� � be a data exchange set-
ting in which ���� is a set of tgds and �� is the union of a set of tgds
with a set of egds. If � is a source instance for which a universal
solution exists, then there is a unique (up to isomorphism) universal
solution �� for � having the following properties:

� �� is a core and is isomorphic to the core of every universal
solution � for � .

� If � is a universal solution for � , there is a one-to-one homo-
morphism � from �� to � . Hence,

� �� � & � � � , where
� �� � and� � � are the sizes of �� and � .

We refer to �� as the core of the universal solutions (for � ). As a
very simple illustration of the concepts discussed in this subsection,
recall the data exchange problem of Example 3.1. Then � A is the
core of the universal solutions for � .

4.2 Query Answering with Cores

Corollary 4.4 reveals that, in addition to being unique, the core ���
of the universal solutions for � is the smallest universal solution for

� , and thus it is the most compact universal solution to materialize.
In what follows, we show that using the core ��� in query answer-
ing has clear advantages over using other universal solutions for
this purpose. To begin with, if � is a union of conjunctive queries
over the target schema, then certain � ��� ��� � � � �����
	 , since �� is
a universal solution. Suppose now that � is a conjunctive query
with inequalities �� over the target schema. In general, if � is a
universal solution, then � � ���
	 may properly contain certain � ��� ��� .
In fact, this proper containment may hold even if � is the core ���
of the universal solutions. Nonetheless, the next proposition shows
that � � ����
	 equals the intersection of all choices of � � ��� , where
� varies over all universal solutions. Consequently, for unions of
conjunctive queries with inequalities, query evaluation on the core
of the universal solutions provides the best approximation (among
all universal solutions) to the set of the certain answers. Moreover,
the next proposition says that this property characterizes the core
of the universal solutions.

PROPOSITION 4.5. Let � 	 � 
 � ���� � �� � be a data exchange set-
ting in which ���� is a set of tgds and �� is the union of a set of tgds
with a set of egds. Let � be a source instance such that a universal
solution for � exists, and let �� be the core of the universal solu-
tions for � .

1. For every union � of conjunctive queries with inequalities ��
on the target schema, certain � ��� ��� 
 � � �����
	 ��� [ � � ��� M
� is a universal solution for �U_ .

2. If � � is a universal solution for � such that, for every conjunc-
tive query � with inequalities �� on the target schema 
 and for
every universal solution � , we have that � � � � �
	 
�� � ��� , then
� � is isomorphic to the core �� of the universal solutions.

Proof: It is well known and easy to see that conjunctive queries
with inequalities are preserved under one-to-one homomorphisms.
That is, if � is a one-to-one homomorphism from � � to �?A , and if �
is a

�
-ary conjunctive query with inequalities and �4N � ������� � N 	 � �� � � � � , then �����4N � � ������� � ���4N 	 � � � � � �?A � . Let � be a universal so-

lution, and let �� � � play the role of � � � �?A respectively (there is
a one-to-one homomorphism � from the core ��� to � by Corol-
lary 4.4). It follows that if � is a

�
-ary conjunctive query with

inequalities on the target schema 
 and �4N � ������� � N 	 � is a tuple of
constants from � such that �4N � ������� � N 	 � ��� � ���� , then �����4N � � , ����� ,
���4N 	 � � � �4N � ������� � N 	 � � � � ��� (recall that the homomorphism �
is the identity on the constants from � ). Thus, � � �����
	 
 � � ��� , and
hence � � ����
	 
 � [ � � ����M � universal for � _ . We now show the
reverse inclusion. Define � ]� by renaming each null of �� in such
a way that �� and � ]� have no nulls in common. Then

� [ � � ��� M
� universal for � _ 
 � � �� � � � � � ]� � . But it is easy to see that� � ���� � � � � ]� � � � � ����
	 .

For the second part, assume that � � is a universal solution for �
such that for every union � of conjunctive queries with inequalities
�� on the target schema 
 and for every universal solution � , we
have that � � � � �
	 
 � � ��� . In particular, � � � � �
	 
 � � �� � . Let � � be
the canonical conjunctive query with inequalities associated with
� � , that is, � � is a Boolean conjunctive query with inequalities that
asserts that there exist

* �
distinct elements, where

* �
is the number

of elements of � � , and describes which tuples from � � occur in
which relations in the target schema 
 . It is clear that � � � � � � �
true, which implies that � � � ���� � true. In turn, � � � �� � � true
implies that there is a one-to-one homomorphism �

�
from � � to

�� . At the same time, there is a one-to-one homomorphism from



�� to � � , by Corollary 4.4. Hence � � is isomorphic to �� .
Thus, null-free evaluation of a union � of conjunctive queries with
inequalities on the core �� of the universal solutions gives precisely
the set of all tuples that are guaranteed to appear in the output � � ���
of � on every universal solution � . The difference between the set� [ � � ��� M � is a universal solution for �U_ and the set certain � ��� ���
of the certain answers is that the latter is the intersection of the� � ��� ’s over all solutions � for � , not just the universal solutions
for � . We have already argued that the universal solutions are the
preferred solutions to the data exchange problem. Corollary 4.5
suggests that we could introduce an alternative notion of the cer-
tain answers based on universal solutions only. In this case, evalu-
ating � on the core �� gives precisely the set of the certain answers
according to this alternative notion.

Having established the good properties of the core of the universal
solutions, we address next the problem of computing it. As men-
tioned earlier, universal solutions can be canonically computed by
using the chase. However, the result of such a chase, while a uni-
versal solution, need not be the core. This section has established
that, although it is well known that different chase sequences may
yield non-isomorphic results, the universal solutions that are the re-
sults of the chase all have the same core. In the next two sections,
we study what it takes to compute this core.

5. Complexity of Core Identification

Chandra and Merlin [4] were the first to realize that computing the
core of a relational structure is an important problem in conjunc-
tive query processing and optimization. Unfortunately, in its full
generality this problem is intractable. Note that computing the core
is a function problem, not a decision problem. One way to gauge
the difficulty of a function problem is to analyze the computational
complexity of its underlying decision problem.

DEFINITION 5.1. CORE IDENTIFICATION is the following de-
cision problem: given two structures � and � over some schema�

such that � is a substructure of � , is core ���	� � � ?

It is easy to see that CORE IDENTIFICATION is an NP-hard prob-
lem. Indeed, consider the following polynomial-time reduction
from � -COLORABILITY: a graph � is � -colorable if and only if
core � � ������� � ��� , where ��� is the complete graph with �
nodes and � is the disjoint sum operation on graphs. This reduc-
tion was already given by Chandra and Merlin [4]. Later on, Hell
and Nešetřil [12] studied the complexity of recognizing whether a
graph is a core. In precise terms, CORE RECOGNITION is the fol-
lowing decision problem: given a structure � over some schema�

, is � a core? Clearly, this problem is in coNP. The main re-
sult in Hell and Nešetřil [12] asserts that CORE RECOGNITION is a
coNP-complete problem, even if the inputs are undirected graphs.
This is established by exhibiting a rather sophisticated polynomial-
time reduction from NON- � -COLORABILITY on graphs of girth at
least

�
; the “gadgets” used in this reduction are pairwise incompa-

rable cores with certain additional properties. It follows that CORE

IDENTIFICATION is a coNP-hard problem. Nonetheless, it appears
that the exact complexity of CORE IDENTIFICATION has not been
pinpointed until now. In the sequel, we will establish that CORE

IDENTIFICATION is a DP-complete problem. We present first some
background material about the complexity class DP.

The class DP consists of all decision problems that can be writ-
ten as the intersection of an NP-problem and a coNP-problem;
equivalently, DP consists of all decision problems that can be writ-
ten as the difference of two NP-problems. This class was intro-
duced by Papadimitriou and Yannakakis [17], who discovered sev-
eral DP-complete problems. The prototypical DP-complete prob-
lem is SAT/UNSAT: given two Boolean formulas 2 and @ , is
2 satisfiable and @ unsatisfiable? Several problems that express
some “critical” property turn out to be DP-complete (see [18]).
For instance, CRITICAL SAT is DP-complete, where an instance of
this problem is a CNF-formula 2 and the question is to determine
whether 2 is unsatisfiable, but if any one of its clauses is removed,
then the resulting formula is satisfiable. Moreover, Cosmadakis [5]
showed that certain problems related to database query evaluation
are DP-complete. Note that DP contains both NP and coNP as sub-
classes; furthermore, each DP-complete problem is both NP-hard
and coNP-hard. The prevailing belief in computational complexity
is that the above containments are proper, but proving this remains
an outstanding open problem. In any case, establishing that a cer-
tain problem is DP-complete is interpreted as signifying that this
problem is intractable and, in fact, “more intractable” than an NP-
complete problem.

Here, we establish that CORE IDENTIFICATION is a DP-complete
problem by exhibiting a reduction from � -COLORABILITY/NON-
� -COLORABILITY on graphs of girth at least

�
. This reduction is

directly inspired by the reduction of NON- � -COLORABILITY on
graphs of girth at least

�
to CORE RECOGNITION, given in [12].

THEOREM 5.2. CORE IDENTIFICATION is DP-complete, even
if the inputs are undirected graphs.

In proving the above theorem, we make essential use of the follow-
ing result, which is a special case of Theorem 6 in [12]. Recall that
the girth of a graph is the length of the shortest cycle in the graph.

THEOREM 5.3. [12] For each positive integer � , there is a se-
quence � � ������� ��� of connected graphs such that:

1. each � � is � -colorable, has girth � , and each edge of � � is on
a � -cycle;

2. each � � is a core and, for every
( � + & * with

( �� + , there is
no homomorphism from � � to � � ;

3. each � � has at most
% �������	�� nodes; and

4. there is a polynomial-time algorithm that, given � , constructs
the sequence � � ������� ��� .

We now have the machinery needed to prove Theorem 5.2.

Proof of Theorem 5.2: CORE IDENTIFICATION is in DP, because,
given two structures � and � over some schema

�
such that � is

a substructure of � , to determine whether core ���	� � � one has
to check whether there is a homomorphism from � to � (which is
in NP) and whether � is a core (which is in coNP).

We will show that CORE IDENTIFICATION is DP-hard, even if
the inputs are undirected graphs, via a polynomial-time reduction
from � -COLORABILITY/NON- � -COLORABILITY. As a stepping
stone in this reduction, we will define CORE HOMOMORPHISM,
which is the following variant of CORE IDENTIFICATION: given
two structures � and � , is there a homomorphism from � to � ,



and is � a core? There is a simple polynomial-time reduction of
CORE HOMOMORPHISM to CORE IDENTIFICATION, where the in-
stance ��� � � � is mapped onto ��� �� � � � . This is a reduction,
since there is a homomorphism from � to � with � as a core if
and only if core ��� � � � � � . Thus, it remains to show that
there is a polynomial-time reduction of � -COLORABILITY/NON-
� -COLORABILITY to CORE HOMOMORPHISM.

Hell and Nešetřil [12] showed that � -COLORABILITY is NP-complete
even if the input graphs have girth at least

�
(this follows from

Theorem 7 in [12] by taking F to be a self-loop and G to be
��� ). Hence, � -COLORABILITY/NON- � -COLORABILITY is DP-
complete, even if the input graphs � and � have girth at least

�
.

So, assume that we are given two graphs � and � each having
girth at least

�
. Let � � ������� � � � be an enumeration of the nodes of

� , let �
� ������� ��� � be an enumeration of the nodes of � , and let

� � . � * . Let � � ������� � ��� be a sequence of connected graphs
having the properties listed in Theorem 5.3. This sequence can be
constructed in time polynomial in � ; moreover, we can assume
that these graphs have pairwise disjoint sets of nodes. Let � � be
the graph obtained by identifying each node � � of � with some ar-
bitrarily chosen node of � � , for

%
&)(!&).
(and keeping the edges

between nodes of � intact). Thus, the nodes of � � are the nodes
that appear in the � � ’s, and the edges are the edges in the � � ’s,
along with the edges of � under our identification. Similarly, let
� � be the graph obtained by identifying each node �

�
of � with

some arbitrarily chosen node of � � , for
. � %
&,+-& � � . � *

(and keeping the edges between nodes of � intact). We now claim
that � is � -colorable and � is not � -colorable if and only if there
is a homomorphism from � � � ��� to � � � ��� , and � � � ��� is
a core. Hell and Nešetřil [12] showed that CORE RECOGNITION is
coNP-complete by showing that a graph � of girth at least

�
is not

3-colorable if and only if the graph � � ����� is a core. We will use
this property in order to establish the above claim.

Assume first that � is � -colorable and � is not � -colorable. Since
each � � is a � -colorable graph, � � � ��� is � -colorable and so
there a homomorphism from � � ����� to � � � ��� (in fact, to
��� ). Moreover, as shown in [12], � � ����� is a core, since �
is not � -colorable. For the other direction, assume that there is a
homomorphism from � � � ��� to � � � ��� , and � � � ��� is a core.
Using again the results in [12], we infer that � is not � -colorable. It
remains to prove that � is � -colorable. Let � be a homomorphism
from � � � ��� to � � � ��� . We claim that � actually maps � �
to ��� ; hence, � is � -colorable. Let us consider the image of each
graph � � , %-&a( &a. , under the homomorphism � . Observe that
� � cannot be mapped to some � � , . � % &a+W& � � . � * ,
since, for every

(
and

+
such that

% &�(
&�.
and

. � % &#+ &
� � . � * , there is no homomorphism from � � to � � . Observe
also that the image of a cycle I under a homomorphism is a cycleI�] of length less than or equal the length of I . Since � has girth
at least

�
and since each edge of � � is on a � -cycle, the image of

� � under � cannot be contained in � . For the same reason, the
image of � � under � cannot contain nodes from � and some � � ,
for
. � % & + & � � . � * ; moreover, it cannot contain nodes

from two different � � ’s, for
. � %W&�+ & � � . � * (here,

we also use the fact that each � � has girth � ). Consequently, the
homomorphism � must map each � � , %S&L( &#. , to ��� . Hence,
� maps � � to ��� , and so � is � -colorable.

We now consider the implications of the intractability of CORE

RECOGNITION for the problem of computing the core of a struc-
ture. As stated earlier, Chandra and Merlin [4] observed that a

graph � is � -colorable if and only if core � � � ��� � � ��� . It fol-
lows that, unless

� �����
, there is no polynomial-time algorithm

for computing the core of a given structure. Indeed, if such an algo-
rithm existed, then we could determine in polynomial-time whether
a graph is � -colorable by first running the algorithm to compute the
core of � � ��� and then checking if the answer is equal to ��� .
Note, however, that in data exchange we are interested in comput-
ing the core of a universal solution, rather than the core of an ar-
bitrary instance. Consequently, we cannot assume a priori that the
above intractability carries over to the data exchange setting, since
polynomial-time algorithms for computing the core of universal so-
lutions may exist. We address this next.

6. Computing the Core in Data Exchange
In contrast with the case of computing the core of an arbitrary in-
stance, computing the core of a universal solution in data exchange
does have polynomial-time algorithms, in certain natural data ex-
change settings. Section 6.1 gives a polynomial-time algorithm for
computing the core of a universal solution, in a data exchange set-
ting with no target constraints (i.e., ��� � K

). We then show in
Section 6.2 that essentially the same algorithm works (although the
proof is quite a bit more complicated) if we remove the emptiness
condition on �� and allow it to contain egds.

6.1 A Polynomial-Time Case: No Target Constraints

We first define some notions that are needed in order to state the
algorithm as well as to prove its correctness and polynomial-time
bound. For the next two definitions, we assume � to be an ar-
bitrary instance whose elements consists of constants from Const
and nulls from Var. We say that two elements of � are adjacent
if there exists some tuple in some relation of � in which both ele-
ments occur.

DEFINITION 6.1. The Gaifman graph of the nulls of � is an
undirected graph in which: 1) the nodes are all the nulls of � , and
2) there exists an edge between two nulls whenever the nulls are
adjacent in � . A block of nulls is the set of nulls in a connected
component of the Gaifman graph of nulls.

If � is a null of � , then we may refer to the block of nulls that
contains � as the block of � . Note that, by the definition of blocks,
the set Var ��� � of all nulls of � is partitioned into disjoint blocks.
Let � and � ] be two instances with elements in Const � Var.
Recall that � ] is a subinstance of � if every tuple of a relation of
� ] is a tuple of the corresponding relation of � .

DEFINITION 6.2. Let � be a homomorphism of � . Denote the
result of applying � to � by ����� � . If ����� � is a subinstance of � ,
then we call � an endomorphism of � . An endomorphism � of �
is useful if ����� � �� � (i.e., ����� � is a proper subinstance of � ).

The following lemma is a simple characterization of useful endo-
morphisms that we will make use of in proving the main results of
this subsection and of subsection 6.2.

LEMMA 6.3. Let � be an instance, and let � be an endomor-
phism of � . Then � is useful if and only if � is not one-to-one.

Proof: Assume that � is not one-to-one. Then there is some : that
is in the domain of � but not in the range of � (here we use the fact



that the instance is finite.) So no tuple containing : is in ����� � .
Therefore, ����� � �� � , and so � is useful.

Now assume that � is one-to-one. So � is simply a renaming of
the members of � , and so an isomorphism of � . Thus, ����� � has
the same number of tuples as � . Since ����� � is a subinstance of
� , it follows that ����� � � � (here again we use the fact that the
instance � is finite). So � is not useful.

For the rest of this subsection, we assume that we are given a data
exchange setting � 	 � 
 � ���� � K � and a source instance � . More-
over, we assume that � is a canonical universal solution for this
data exchange problem. That is, � is such that

� � � � � is the result
of chasing

� � � K � with ���� . Our goal is to compute core � ��� , that
is, a subinstance I of � such that (1) I � ��� ��� for some en-
domorphism � of � , and (2) there is no proper subinstance of I
with the same property (condition (2) is equivalent to there being
no endomorphism of I onto a proper subinstance of I ). The cen-
tral idea of the algorithm, as we shall see, is to show that the above
mentioned endomorphism � of � can be found as the composition
of a polynomial-length sequence of “local” (or “small”) endomor-
phisms, each of which can be found in polynomial time. We next
define what “local” means.

DEFINITION 6.4. Let � and � ] be two instances such that the
nulls of � ] form a subset of the nulls of � , that is, Var ��� ] � 

Var ��� � . Let � be some endomorphism of � ] , and let G be a block
of nulls of � . We say that � is � -local for G if ���4: � � : whenever
: �� G . (Since all the nulls of � ] are among the nulls of � , it
makes sense to consider whether or not a null : of � ] belongs to
the block G of � .) We say that � is � -local if it is � -local for G ,
for some block G of � .

The next lemma is crucial for the existence of the polynomial-time
algorithm for computing the core of a universal solution.

LEMMA 6.5. Assume a data exchange setting where ����� is a
set of tgds and �� � K

. Let � ] be a subinstance of the canonical
universal solution � . If there exists a useful endomorphism of � ] ,
then there exists a useful � -local endomorphism of � ] .

Proof: Let � be a useful endomorphism of � ] . By Lemma 6.3, we
know that � is not one-to-one. So there is a null � that appears in
� ] but does not appear in ��� � ] � . Let G be the block of � (in � ).
Define � ] on � ] by letting � ] �4: � � ���4: � if : � G , and � ] �4: � � :
otherwise.

We show that � ] is an endomorphism of � ] . Let � � � ������� ��� � � be
a tuple of the

�
relation of � ] ; we must show that ��� ] � � � � ������� �

� ] � � � � � is a tuple of the
�

relation of � ] . Since � ] is a subinstance
of � , the tuple � � � ������� ��� � � is also a tuple of the

�
relation of � .

Hence, by definition of a block of � , all the nulls among � � ������� ��� �
are in the same block G ] . There are two cases, depending on
whether or not G ] � G . Assume first that G ] � G . Then, by defi-
nition of � ] , for every � � among � � ������� ��� � , we have that � ] � � � � �
��� � � � if �

�
is a null, and � ] � � � � � � � � ��� � � � if �

�
is a constant.

Hence ��� ] � � � � ������� � � ] � � � � � � ����� � � � ������� � ��� � � � � . Since � is an
endomorphism of � ] , we know that ����� � � � , ����� , ��� � � � � is a tuple
of the

�
relation of � ] . Thus, ��� ] � � � � �1����� � � ] � � � � � is a tuple of

the
�

relation of � ] . Now assume that G ] �� G . So for every � �
among � � ������� ��� � , we have that � ] � � � � � � � . Hence ��� ] � � � � ������ � � ] � � � � � � � � � ������� ��� � � . Therefore, once again, ��� ] � � � � � ����� �

� ] � � � � � is a tuple of the
�

relation of � ] , as desired. Hence, � ] is
an endomorphism of � ] .
We now present our algorithm for computing the core of the uni-
versal solutions, when �� �LK .

ALGORITHM 6.6. (Core Algorithm)
Input: source instance � .
Output: the core of the universal solutions for � .

1. Compute � , the canonical universal solution, from
� � � K � by

chasing with ���� .
2. Compute the blocks of � , and initialize � ] to be � .
3. Check whether there exists a useful � -local endomorphism �

of � ] . If not, then stop with result � ] .
4. Update � ] to be ��� � ] � , and return to Step 3.

In order to prove the upper bound on the execution time of the
algorithm, we need to introduce two parameters. The first parame-
ter, denoted by O , is the maximal number of existentially quantified
variables over all tgds in ���� . Since we are taking ���� to be fixed,
the quantity O is a constant. It follows easily from the construction
of the canonical universal solution � (by chasing with ����� ) that O is
an upper bound on the size of a block in � . The second parameter,
denoted by

*
, is the maximum of the number of elements and the

number of tuples in the canonical universal solution � .

THEOREM 6.7. Assume a data exchange setting where ����� is a
set of tgds and �� �LK . Then Algorithm 6.6 is a correct, polynomial-
time algorithm for computing the core of the universal solutions.

Proof: We first show that Algorithm 6.6 is correct, that is, that the
final instance I at the conclusion of the algorithm is the core of
the given universal solution. Every time we apply Step 4 of the
algorithm, we are replacing the instance by a homomorphic image.
Therefore, the final instance I is the result of applying a composi-
tion of homomorphisms to the input instance, and hence is a homo-
morphic image of the canonical universal solution � . Also, since
each of the homomorphisms found in Step 3 is an endomorphism,
we have that I is a subinstance of � . Assume now that I is not
the core; we shall derive a contradiction. Since I is not the core,
there is an endomorphism � such that when � is applied to I , the
resulting instance is a proper subinstance of I . Hence, � is a useful
endomorphism of I . Therefore, by Lemma 6.5, there must exist a
useful � -local endomorphism of I . But then Algorithm 6.6 should
not have stopped in Step 3 with I . This is the desired contradiction.
Hence, I is the core of � .

We now show that Algorithm 6.6 runs in polynomial time. Recall
the parameters O and

*
introduced earlier: O is an upper bound on

the size of a block of � , while
*

is the maximum of the total number
of elements of � and the total number of tuples of � . Let � ] be
the instance in some execution of Step 3. For each block G , to
check if there is a useful endomorphism of � ] that is � -local for G ,
we can exhaustively check each of the possible functions � on the
domain of � ] such that ���4: � � : whenever : ��LG : there are at
most

*��
such functions. To check that such a function is actually a

useful endomorphism requires time
� � * � . Since there are at most*

blocks, the time to determine if there is a block with a useful � -
local endomorphism is

� � * �	� A � . The updating time in Step 4 is
then

� � * � .



By Lemma 6.3, after Step 4 is executed, there is at least one less
null in � ] than there was before. Since there are initially at most*

nulls in the instance, it follows that the number of loops that
Algorithm 6.6 performs is at most

*
. Therefore, the running time

of the algorithm (except for Step 1 and Step 2, which are executed
only once) is at most

*
(the number of loops) times

� � * �	� A � , that
is,

� � * �	� � � . Since Step 1 and Step 2 take polynomial time as well,
it follows that the entire algorithm executes in polynomial time.

The crucial observation behind the polynomial-time bound is that
the total number of endomorphisms that the algorithm explores in
Step 3 is at most

* �
for each block of � . This is in strong contrast

with the case of minimizing arbitrary instances with constants and
nulls for which we may need to explore a much larger number of
endomorphisms (up to

* �
, in general) in one minimization step.

6.2 Target Constraints

In this subsection, we extend Theorem 6.7 by showing that there is
a polynomial-time algorithm for finding the core even when ��� is
a set of egds. We do not know whether we can extend also to allow
tgds, or even full tgds; this is an interesting open problem.

Thus, we assume next that we are given a data exchange setting
� 	 � 
 � ���� � ��
� where �� is a set of egds. We are also given a
source instance � . Let us denote by � the instance over the target
schema such that

� � � � � is the result of chasing
� � � K � with ����� .

Note that � is a canonical universal solution for the case when we
replace �� in the above data exchange setting with

K
. For this rea-

son, let us call � the canonical pre-universal instance. Moreover,
let us denote by � ] the instance over the target schema such that � ]
is the result of chasing � with the set ��� of egds. That is, � ] is a
canonical universal solution for the given data exchange setting and
source instance. Our goal is to compute core � � ] � , that is, a subin-
stance I of � ] such that I � ��� � ] � for some endomorphism � of
� ] , and such that there is no proper subinstance of I with the same
property. As in the case when ��� �#K , the central idea of the algo-
rithm is to show that the above mentioned endomorphism � of � ]
can be found as the composition of a polynomial-length sequence
of “small” endomorphisms, each findable in polynomial time. As
in the case when �� � K

, “small” will mean � -local. We make
this precise in the next lemma. This lemma, crucial for the exis-
tence of the polynomial-time algorithm for computing core � � ] � , is
a non-trivial generalization of Lemma 6.5.

LEMMA 6.8. Assume a data exchange setting where ����� is a set
of tgds and �� is a set of egds. Let � be the canonical pre-universal
instance, and let � ] ] be an endomorphic image of the canonical
universal solution � ] . If there exists a useful endomorphism of � ] ] ,
then there exists a useful � -local endomorphism of � ] ] .

The proof of Lemma 6.8 requires additional definitions as well as
two additional lemmas. We start with the required definitions.

Let � be the canonical pre-universal instance, and let � ] be the
canonical universal solution produced from � by chasing with the
set �� of egds. We define a directed graph, whose nodes are the
members of � , both nulls and constants. If during the chase pro-
cess, a null � gets replaced by � (either a null or a constant), then
there is an edge from � to � in the graph. Let

&
be the reflexive,

transitive closure of this graph. It is easy to see that
&

is a reflexive
partial order. For each node � , define

� ��� to be the maximal (under

&
) node � such that �

& � . Intuitively, � eventually gets replaced
by
� ��� as a result of the chase. It is clear that every member of � ] is

of the form
� ��� . It is also clear that if � is a constant, then � � � ��� .

Let us write ��� � if
� ��� � �

� � . Intuitively, ��� � means that � and
� eventually collapse to the same element as a result of the chase.

DEFINITION 6.9. Let � be an instance whose elements are con-
stants and nulls. Let � be some element of � . We say that � is rigid
if ��� � � � � for every homomorphism � of � . (In particular, all
constants occuring in � are rigid.)

A key step in the proof of Lemma 6.8 is the following surprising
result, which says that if two nulls in different blocks of � both
collapse onto the same element � of � ] as a result of the chase, then
� is rigid, that is, ������ � � for every endomorphism � of � ] .

LEMMA 6.10 (RIGIDITY LEMMA). Assume a data exchange
setting where ���� is a set of tgds and �� is a set of egds. Let � be
the canonical pre-universal instance, and let � ] be the result of
chasing � with the set �� of egds. Let : and � be nulls of � such
that : �� , and such that

� : � is a non-rigid null of � ] . Then : and
� are in the same block of � .

Proof: Assume that : and � are nulls in different blocks of � with
: � � . We must show that

� : � is rigid in � ] . Let 2 be the dia-
gram of the instance � , that is, the conjunction of all expressions� � � � ������� ��� � � where � � � ������� ��� � � is a tuple of the

�
relation of � .

(We are treating members of � , both constants and nulls, as vari-
ables.) Let � be the egd 2 5 �4: � � � . Since : � � , it follows that
�� � � � . This is because the chase sets variables equal only when
it is logically forced to (the result appears in papers that character-
ize the implication problem for dependencies; see, for instance, [3,
15]). Since � ] satisfies �� , it follows that � ] satisfies � .

We wish to show that
� : � is rigid in � ] . Let � be a homomorphism

of � ] ; we must show that ��� � : � � � � : � . Let G be the block of : in
� . Let Y be the assignment to the variables of � obtained by letting
Y � � � � ��� � ��� � if � �aG , and Y � � � � � ��� otherwise. We now
show that Y is a valid assignment for 2 in � ] , that is, that for each
conjunct

� � � � ������� ��� � � of 2 , necessarily ��Y � � � � ������� � Y � � � � � is a
tuple of the

�
relation of � ] . Let

� � � � ������� ��� � � be a conjunct of
2 . By the construction of the chase, we know that � � � � � ������� � � � � � �
is a tuple of the

�
relation of � ] , since � � � ������� ��� � � is a tuple of

the
�

relation of � . There are two cases, depending on whether
or not some � � (with

% & (�&	�
) is in G . If no � � is in G , then

Y � � � � � � � � � for each
(
, and so ��Y � � � � ������� � Y � � � � � is a tuple of

the
�

relation of � ] , as desired. If some � � is in G , then every � �
is either a null in G or a constant (this is because � � � ������� ��� � � is
a tuple of the

�
relation of � ). If �

�
is a null in G , then Y � � � � �

��� � � � � � . If �
�

is a constant, then � � � � � � � , and so Y � � � � � � � � � �
� � � ��� � � � � ��� � � � � � , where the third equality holds since � is
a homomorphism and � � is a constant. Thus, in both cases, we
have Y � � � � � ��� � � � � � . Since � � � � � ������� � � � � � � is a tuple of the�

relation of � ] and � is a homomorphism of � ] , we know that
��� � � � � ������� � � � � � � � is a tuple of the

�
relation of � ] . So again,

��Y � � � � ������� � Y � � � � � is a tuple of the
�

relation of � ] , as desired.

Hence, Y is a valid assignment for 2 in � ] . Therefore, since � ]
satisfies � , it follows that in � ] , we have Y �4: � � Y � � � . Now
Y �4: � � ��� � : � � , since : � G . Further, Y � � � � � �
� , since � �� G
(because � is in a different block than : ). So ��� � : � � � � �
� . Since
: � � , that is,

� : � � � �
� , we have ��� � : � � � � �
� � � : � , which shows
that ��� � : � � � � : � , as desired.



The contrapositive of Lemma 6.10 says that if : and � are nulls in
different blocks of � that are set equal (perhaps transitively) during
the chase, then

� : � is rigid in � ] .

LEMMA 6.11. Let � be an endomorphism of � ] . Then every
rigid element of � ] is a rigid element of ��� � ] � .

Proof: Let � be a rigid element of � ] . Then ��� � � is an element
of ��� � ] � , and so � is an element of ��� � ] � , since ��� � � � � by
rigidity. Let

�

� be a homomorphism of ��� � ] � ; we must show that
�

� � � � � � . But
�

��� � � � �

� ��� � � , since ��� � � � � . Now
�

� � is also a
homomorphism of � ] , since the composition of homomorphisms is
a homomorphism. By rigidity of � in � ] , it follows that

�

� ��� � � � � .
So

�

��� � � � �

� ��� � � � � , as desired.

We are now ready to give the proof of Lemma 6.8, after which we
will present the minimization algorithm of this subsection.

Proof of Lemma 6.8: Let � be an endomorphism of � ] such that
� ] ] � ��� � ] � , and let � ] be a useful endomorphism of ��� � ] � . By
Lemma 6.3, there is a null � that appears in ��� � ] � but does not
appear in � ] ��� � ] � . Let G be the block in � that contains � . Define
� ] ] on ��� � ] � by letting � ] ] �4: � � � ] �4: � if : � G , and � ] ] �4: � � :
otherwise. We shall show that � ] ] is a useful � -local endomorphism
of ��� � ] � .
We now show that � ] ] is an endomorphism of ��� � ] � . Let � � � ������� ��� � �
be a tuple of the

�
relation of ��� � ] � ; we must show that ��� ] ] � � � � ,����� , � ] ] � � � � � is a tuple of the

�
relation of ��� � ] � .

We first show that every non-rigid null among � � ������� ��� � is in
the same block of � . Let �

� and � � be non-rigid nulls among
� � ������� ��� � ; we show that � � and � � are in the same block of � .
Since � � � ������� ��� � � is a tuple of the

�
relation of ��� � ] � , and ��� � ] �

is a subinstance of � ] , we know that � � � ������� ��� � � is a tuple of the�
relation of � ] . By construction of � ] from � using the chase,

we know that there is � ] � where � � � � ] � for
% &"(�& �

, such that
� � ] � ������� ��� ] � � is a tuple of the

�
relation of � . Since �

� and � �
are non-rigid nulls of ��� � ] � , it follows from Lemma 6.11 that � �

and � � are non-rigid nulls of � ] . Now ��]
� is not a constant, since

��]
�
� �

� and �
� is a non-rigid null. Similarly, ��]� is not a constant.

So ��]
� and ��]� are in the same block G ] of � . Now

� �
�
� � �

� , since
�

� is in � ] . Since � ]
�
� �

� and
� �

�
� � �

� is non-rigid, it follows
from Lemma 6.10 that � ]� and �

� are in the same block of � , and
so �

�
�LG ] . Similarly, � � �LG ] . So �

� and � � are in the same
block G ] of � , as desired.

There are now two cases, depending on whether or not G�] � G .
Assume first that G ] � G . For those � � ’s that are non-rigid,
we showed that � � � G ] � G , and so � ] ] � � � � � � ] � � � � . For
those � � ’s that are rigid (including nulls and constants), we have
� ] ] � � � � � � � � � ] � � � � . So for every � � among � � ������� ��� � , we
have � ] ] � � � � � � ] � � � � . Since � ] is a homomorphism of ��� � ] � , and
since � � � ������� ��� � � is a tuple of the

�
relation of ��� � ] � , we know

that ��� ] � � � � ������� � � ] � � � � � is a tuple of the
�

relation of ��� � ] � .
Hence ��� ] ] � � � � , ����� , � ] ] � � � � � is a tuple of the

�
relation of ��� � ] � ,

as desired. Now assume that G�] �� G . For those � � ’s that are
non-rigid, we showed that �

� �LG ] , and so � � ��#G . Hence, for
those � � ’s that are non-rigid, we have � ] ] � � � � � � � . But also
� ] ] � � � � � � � for the rigid � � ’s. Thus, ��� ] ] � � � � �!����� � � ] ] � � � � �� � � � ������� ��� � � . Hence, once again, ��� ] ] � � � � ������� � � ] ] � � � � � is a
tuple of the

�
relation of ��� � ] � , as desired.

So � ] ] is an endomorphism of ��� � ] � . By definition, � ] ] is � -local.
We show that � ] ] is useful. Since � appears in ��� � ] � , Lemma 6.3
tells us that we need only show that the range of � ] ] does not contain
� . If : �,G , then � ] ] �4: � � � ] �4: � �� � , since the range of � ] does
not include � . If : �� G , then � ] ] �4: � � : �� � , since � � G . So the
range of � ] ] does not contain � , and hence � ] ] is useful. Therefore,
� ] ] is a useful � -local endomorphism of ��� � ] � .
We now present our algorithm for computing the core when ��� is
a set of egds. (As mentioned earlier, when the target constraints in-
clude egds, it may be possible that there are no solutions and hence
no universal solutions. This case is detected by our algorithm, and
“failure” is returned.)

ALGORITHM 6.12. (egd-Core Algorithm)
Input: source instance � .
Output: the core of the universal solutions for � , if solutions exist,
and “failure”, otherwise.

1. Compute � , the canonical pre-universal instance, from
� � � K �

by chasing with ���� .
2. Compute the blocks of � , and then chase � with ��� to produce

the canonical universal solution � ] . If the chase fails, then stop
with “failure”. Otherwise, initialize � ] ] to be � ] .

3. Check whether there exists a useful � -local endomorphism �
of � ] ] . If not, then stop with result � ] ] .

4. Update � ] ] to be ��� � ] ] � , and return to Step 3.

THEOREM 6.13. Assume a data exchange setting where ����� is
a set of tgds and �� is a set of egds. Then Algorithm 6.12 is a
correct, polynomial-time algorithm for computing the core of the
universal solutions.

Proof: The proof is essentially the same as that of Theorem 6.7,
except that we make use of Lemma 6.8 instead of Lemma 6.5.
We also use the fact that chasing with egds (used in Step 2) is a
polynomial-time procedure.

We note that it is essential for the polynomial-time upper bound that
the endomorphisms explored by Algorithm 6.12 are � -local and not
merely � ] -local. While, as argued earlier in the case ��� � K

, the
blocks of � are bounded in size by the constant O (the maximal
number of existentially quantified variables over all tgds in ����� ),
the same is not true, in general, for the blocks of � ] . The chase
with egds, used to obtain � ] , may generate blocks of unbounded
size. Intuitively, if an egd equates the nulls : and � that are in
different blocks of � , then this creates a new, larger, block out of
the union of the blocks of : and � .

7. Conclusions and Open Problems
In a previous paper [9], we argued that universal solutions are the
best solutions in a data exchange setting, in that they are the “most
general possible” solutions. Unfortunately, there may be many uni-
versal solutions. In this paper, we pick a particular universal solu-
tion, namely, the core of an arbitrary universal solution, and argue
that it is the best universal solution (and hence the best of the best).
The core is unique up to isomorphism, and is the universal solu-
tion of the smallest size (that is, with the fewest tuples). The core
gives the best answer, among all universal solutions, for queries that
are the union of conjunctive queries with inequalities. By “best



answer”, we mean that the core provides the best approximation
(among all universal solutions) to the set of the certain answers. In
fact, if we redefine the set of “certain answers” to be those that oc-
cur in every universal solution, then the core gives the exact answer.

We then consider the question of the complexity of computing the
core. We show that the complexity of deciding if a graph � is
the core of a graph � is DP-complete. Unless P = NP, there is no
polynomial-time algorithm for producing the core of a given arbi-
trary structure. On the other hand, in our case of interest, namely
data exchange, we give natural conditions where there are polynomial-
time algorithms for computing the core of universal solutions.

We believe that this paper opens the door to a number of fascinat-
ing questions. First, there are questions about the performance of
the core in query-answering. How well does the core perform in
answering queries more general then unions of conjunctive queries
with inequalities? Second, there are questions about the complexity
of constructing the core. Even in the case where we prove that there
is a polynomial-time algorithm for computing the core (when the
set �� of target constraints contains only egds), the exponent may
be somewhat large. Is there a more efficient algorithm for comput-
ing the core in this case? There is also the question of extending
the polynomial-time result more generally. Is there a polynomial-
time algorithm for computing the core when ��� consists of full
tgds? And what about a very general data exchange setting where
�� contains an arbitrary set of egds and (not-necessarily-full) tgds?
On a slightly different note, and given the similarities between the
two problems, it would be interesting to see if our techniques for
minimizing universal solutions can be applied to the problem of
minimizing the chase-generated universal plans that arise in the
comprehensive query optimization method introduced in [7].

Finally, the work reported here addresses data exchange only be-
tween relational schemas. In the future we hope to investigate to
what extent the results presented in this paper and in [9] can be
extended to the more general case of XML/nested data exchange.
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