
Peer Data Exchange

ARIEL FUXMAN

University of Toronto

PHOKION G. KOLAITIS

IBM Almaden Research Center

RENÉE J. MILLER

University of Toronto

and

WANG-CHIEW TAN

University of California, Santa Cruz

In this article, we introduce and study a framework, called peer data exchange, for sharing and

exchanging data between peers. This framework is a special case of a full-fledged peer data man-

agement system and a generalization of data exchange between a source schema and a target

schema. The motivation behind peer data exchange is to model authority relationships between

peers, where a source peer may contribute data to a target peer, specified using source-to-target

constraints, and a target peer may use target-to-source constraints to restrict the data it is willing

to receive, but cannot modify the data of the source peer.

A fundamental algorithmic problem in this framework is that of deciding the existence of a

solution: given a source instance and a target instance for a fixed peer data exchange setting, can

the target instance be augmented in such a way that the source instance and the augmented target

instance satisfy all constraints of the setting? We investigate the computational complexity of the

problem for peer data exchange settings in which the constraints are given by tuple generating

dependencies. We show that this problem is always in NP, and that it can be NP-complete even for

“acyclic” peer data exchange settings. We also show that the data complexity of the certain answers

of target conjunctive queries is in coNP, and that it can be coNP-complete even for “acyclic” peer

data exchange settings.

R. J. Miller and A. Fuxman were partially supported by grants from NSERC. W.-C. Tan is supported

in part by NSF CAREER Award IIS-0347065 and NSF grant IIS-0430994. P. G. Kolaitis is on leave

from the University of California, Santa Cruz.

A prelimnary version of this article appeared in Proceedings of the 2005 ACM Symposium on the
Principles of Database Systems (Baltimore, MD). 160–171.

Authors’ addresses: A. Fuxman and R. J. Miller, Department of Computer Science, University

of Toronto, Toronto, Ont., M5S 2E4, Canada; email: {afuxman,miller}@cs.toronto.edu; P. G.

Kolaitis, IBM Almaden Research Center, Dept. K53, 650 Harry Road, San Jose, CA 95120; email:

kolaitis@almaden.ibm.com; W.-C. Tan, Department of Computer Science, MS: SOE3, University

of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064; email: wctan@cs.ucsc.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2006 ACM 0362-5915/06/1200-1454 $5.00

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006, Pages 1454–1498.

Peer Data Exchange • 1455

After this, we explore the boundary between tractability and intractability for deciding the ex-

istence of a solution and for computing the certain answers of target conjunctive queries. To this

effect, we identify broad syntactic conditions on the constraints between the peers under which the

existence-of-solutions problem is solvable in polynomial time. We also identify syntactic conditions

between peer data exchange settings and target conjunctive queries that yield polynomial-time al-

gorithms for computing the certain answers. For both problems, these syntactic conditions turn out

to be tight, in the sense that minimal relaxations of them lead to intractability. Finally, we introduce

the concept of a universal basis of solutions in peer data exchange and explore its properties.

Categories and Subject Descriptors: H.2.5 [Database Management]: Heterogeneous Databases—

Data translation; F.2.0 [Analysis of Algorithms and Problem Complexity]: General

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Data exchange, data integration, schema mapping, certain

answers, conjunctive queries, metadata model management

1. INTRODUCTION

Several different frameworks for sharing data between independent stores have
been formulated and investigated in depth. Data exchange is one of the con-
ceptually simpler, yet technically challenging, such frameworks Fagin et al.
[2005a]. In a data exchange setting, data from a source schema is transformed
to data over a target schema according to specifications given by source-to-
target constraints. This framework models a situation in which the target pas-
sively receives data from the source, as long as the source-to-target constraints
are satisfied. Data exchange is closely related to data integration [Lenzerini
2002]. In particular, data exchange systems can be used as building blocks in
data integration systems, where data from a set of independent sources hav-
ing no interaction with each other is transformed to data in a global medi-
ated schema. Peer data management systems (PDMS) constitute a much more
powerful and complex framework than data exchange, as they model a situ-
ation in which a number of peers interact with each other and cooperate in
sharing and exchanging data [Halevy et al. 2005; Tatarinov and Halevy 2004;
Tatarinov 2004]. In a peer data management system, there is no distinction
between source and target, since a peer may simultaneously act as a distrib-
utor of data (and, thus, a source peer) and a recipient of data (and, thus, a
target peer). In such a system, the relationship between peers is specified us-
ing constraints that can be in either direction (from one peer to another, and
vice versa), instead of constraints in a single direction, as was the case in data
exchange. Furthermore, each peer can be a stand-alone database system or a
separate data integration system in which the schema of the peer is a mediated
global schema over a set of local sources accessible only by that peer.

1.1 The Peer Data Exchange Framework

In this article, we introduce and study a framework, called peer data exchange,
which is a generalization of data exchange and a special case of a full-fledged
peer data management system. This framework models a situation in which
there is interaction between two peers that have different roles and capabili-
ties: one of them, called the source peer, is an “authoritative” or “trusted” peer

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1456 • A. Fuxman et al.

that can contribute new data, while the other peer, called the target peer, im-
poses restrictions on the data that it is willing to accept, but has no permission
or capability to modify the data of the source peer. In a peer data exchange set-
ting, the relationship between the two peers is specified by constraints that go
in either direction, that is, some are source-to-target constraints and others are
target-to-source constraints; in addition, target constraints may be present. As
in data exchange, the source-to-target constraints specify what data a source
peer is willing to exchange. Unlike data exchange, however, the target is no
longer a passive recipient of source data that obeys the source-to-target con-
straints. Instead, the target peer uses target-to-source constraints to impose
restrictions on the data that it is willing to receive; moreover, the target may
have its own data. Thus the role of source-to-target and target constraints is
quite different from the role of target-to-source constraints. Specifically, source-
to-target and target constraints are used to generate new tuples in the target
relations, while target-to-source constraints eliminate extensions of the tar-
get relations that violate the target-to-source constraints. Suppose that we are
given a source instance and a target instance that may or may not satisfy the
constraints of the setting; if the constraints are not satisfied, the goal then is to
augment the target data in such a way that the given source instance and the
augmented target instance satisfy all constraints between the two peers, as well
as other existing target constraints. As an illustration, the source peer may be
an authoritative genomic database, such as Swiss-Prot [O’Donovan et al. 2002],
while the target peer may be a genomic database maintained at a university
under a different schema and populated with various data. At regular intervals
of time, the university database is willing to receive new data from Swiss-Prot
but cannot export any data back to Swiss-Prot. The target may restrict the data
it is willing to receive to only Swiss-Prot data that it views as relevant. Hence,
the data received has to satisfy constraints that go in either direction.

1.2 Algorithmic Problems

The first fundamental algorithmic problem in peer data exchange is that of
deciding the existence of a solution. More formally, a peer data exchange set-
ting consists of a source schema S, a target schema T, a set of source-to-target
constraints �st, a set of target-to-source constraints �ts, and a set �t of tar-
get constraints. Each such setting gives rise to the following decision problem:
given a source instance and a target instance, can the target instance be aug-
mented in such a way that the given source instance and the augmented target
instance satisfy all constraints of the peer exchange setting? The second fun-
damental algorithmic problem in peer data exchange is that of obtaining the
certain answers of queries posed over the target schema. The concept of the
certain answers has become the standard semantics of query answering in
data integration [Abiteboul and Duschka 1998; Lenzerini 2002], data exchange
[Fagin et al. 2005a], and peer data management [Halevy et al. 2005]; this con-
cept is also perfectly meaningful in peer data exchange.

In the sequel, we investigate these algorithmic problems for peer data ex-
change settings in which the constraints between the peers are given by a finite

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Peer Data Exchange • 1457

set of tuple-generating dependencies (tgds) [Beeri and Vardi 1984]. We also al-
low for target constraints in the form of target tgds or target equality-generating
dependencies (target egds). By definition, a tgd from one relational schema to
another is a first-order formula of the form ∀x(ϕ(x) → ∃yψ(x, y)), where ϕ(x) is
a conjunction of atomic formulas over the first schema and ψ(x, y) is a conjunc-
tion of atomic formulas over the second. An equality-generating dependency on
a relational schema is a formula of the form ∀x(ϕ(x) → z1 = z2), where ϕ(x)
is a conjunction of atomic formulas over the schema and z1, z2 are among the
variables in x. Tuple-generating dependencies have been used for specifying
data exchange between relational schemas [Fagin et al. 2005a, 2005b]; more-
over, they are the core of the mapping specification language of the Clio schema-
mapping and data exchange system [Popa et al. 2002]. Tuple-generating depen-
dencies generalize both the local-as-view (LAV) and the global-as-view (GAV)
constraints in data integration [Lenzerini 2002], since the former are tgds in
which ϕ(x) is a single atomic formula, and the latter are tgds in which ψ(x, y) is
a single atomic formula. In their full generality, tuple-generating dependencies
are GLAV (global-and-local-as-view) constraints.

1.3 Summary of Results

Consider a fixed peer data exchange setting in which �st is a finite set of source-
to-target tgds, �ts is a finite set of target-to-source tgds, and �t = ∅ (no target
constraints). Our first main result asserts that testing for the existence of solu-
tions is in NP, and that the data complexity of the certain answers of unions of
conjunctive queries is in coNP. These complexity bounds turn out to be tight, be-
cause we exhibit peer data exchange settings as above for which testing for the
existence of solutions is NP-complete, while the data complexity of the certain
answers of conjunctive queries is coNP-complete; actually, the lower bounds
hold even for peer data exchange settings in which the “dependency” graph
between the relations of the peers is acyclic. We also show that the same upper
bounds hold even if the setting allows for a set �t of target constraints that is
the union of a finite set of target egds and a finite weakly acyclic set of target
tgds.

The complexity of testing for the existence of solutions and computing the
certain answers in peer data exchange settings should be compared and con-
trasted with the complexity of the same problems for data exchange, which
can be viewed as the special case of peer data exchange in which �ts = ∅ (no
target-to-source tgds) and also J = ∅ (the target contains no data before the
exchange). Indeed, as shown in Fagin et al. [2005a] there are polynomial-time
algorithms to test for the existence of solutions and to compute the certain an-
swers of unions of conjunctive queries in every data exchange setting in which
�st is a finite set of source-to-target tgds and �t is the union of a finite set of
target egds and a finite weakly acyclic set of target tgds. Moreover, if �t = ∅
(no target constraints), then testing for the existence of solutions is trivial for
data exchange, since solutions always exist. There is also a sharp contrast
with full-fledged peer data management systems, where, as shown in Halevy
et al. [2005], computing the certain answers of conjunctive queries can be an

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1458 • A. Fuxman et al.

undecidable problem. Thus, from a computational point of view, peer data ex-
change is more challenging than ordinary data exchange, but less intractable
than full peer data management.

After this, we explore the boundary between tractability and intractability
in peer data exchange settings with no target constraints. We identify a class
of peer data exchange settings, denoted by Ctract, for which the existence-of-
solutions problem is solvable in polynomial time. The class Ctract is defined by
imposing syntactic conditions on the constraints between the peers; these condi-
tions are extracted through a careful examination of the impact of existentially
quantified variables and of their relationship to other variables occurring in the
constraints. Even though the definition of Ctract is quite technical, Ctract itself is a
broad class that contains several important special cases of peer data exchange,
including the case in which the source-to-target tgds are full tgds and the case
in which the target-to-source tgds are local-as-view (LAV) constraints. More-
over, minimal relaxations of the syntactic conditions defining Ctract are satisfied
by peer data exchange settings for which the existence-of-solutions problem is
NP-complete. Thus, Ctract turns out to be a maximal class of peer data exchange
settings with a tractable existence-of-solutions problem. As regards the data
complexity of query answering, we show that there are peer data exchange set-
tings in Ctract and conjunctive queries such that computing the certain answers
is a coNP-complete problem. Nonetheless, for every peer data exchange setting
in Ctract, we identify a large class of conjunctive queries whose certain answers
can be computed in polynomial time. In particular, for peer data exchange set-
tings with no target constraints and such that all source-to-target tgds are full,
the certain answers of every conjunctive query can be computed in polynomial
time.

Finally, to gain a deeper insight into the differences between data exchange
and peer data exchange, we introduce the concept of a universal basis of so-
lutions in peer data exchange. We compare this concept to the concept of a
universal solution in data exchange introduced in [Fagin et al. 2005a], and
study some key properties of universal bases in peer data exchange.

1.4 Related Work

There is an extensive literature on data integration using sound, complete
and exact views [Abiteboul and Duschka 1998; Grahne and Mendelzon 1999;
Lenzerini 2002]. Several different frameworks and systems for sharing data
in networks of independent sources have also been formulated and studied
[Bernstein et al. 2002; Calvanese et al. 2004b; Franconi et al. 2003, 2004; Li
2004]. In particular, a framework with semantics based on epistemic logic has
been investigated in Calvanese et al. [2004a, 2004b, 2005]. This is in contrast
to the first-order interpretation used in PDMS and in the work reported here.
An advantage of the epistemic-semantics framework is that it enjoys good
computational properties; in particular, the certain answers of fixed conjunc-
tive queries posed against a peer can be computed in polynomial time. Finally,
Bertossi and Bravo [2004] also used first-order interpretations, but proposed a
semantics drawn from the area of consistent query answering that was based

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Peer Data Exchange • 1459

on repairs [Arenas et al. 1999]. This approach has the advantage that data can
be shared between peers, even when there is no consistent solution satisfying
all constraints. However, the complexity of the problem of obtaining certain
answers is higher than in peer data exchange (�

p
2 -complete vs. coNP-complete),

and no tractability results have been given for this semantics.

2. PEER DATA EXCHANGE SETTINGS

This section contains the precise definitions of a peer data exchange setting
and the associated algorithmic problems, as well as a brief discussion of the
relationship of peer data exchange settings with data exchange settings and
peer data management systems.

2.1 Preliminaries

A schema is a finite collection R = (R1, . . . , Rk) of relation symbols, each of a
fixed arity. An instance I over R is a sequence (R I

1 , . . . , R I
k) such that each R I

i
is a finite relation of the same arity as Ri. We shall often use Ri to denote both
the relation symbol and the relation R I

i that interprets it. Given a tuple t, we
denote by R(t) the association between t and the relation R where it occurs. Let
S = (S1, . . . , Sn) and T = (T1, . . . , Tm) be two disjoint schemas. We refer to S as
the source schema and to T as the target schema. We write (S, T) to denote the
schema (S1, . . . , Sn, T1, . . . , Tm). Instances over S will be called source instances,
while instances over T will be called target instances. If I is an instance over S
and J is an instance over T, then we write (I, J) to denote the instance K over
(S, T) such that SK

i = SI
i and T K

j = T J
j , for 1 ≤ i ≤ n and 1 ≤ j ≤ m.

As usual, the active domain of an instance consists of all elements occurring
in a tuple in one of the relations of the instance. We assume that the elements
of the active domain come from two disjoint sets, the set of constants and the set
of labeled nulls. Typically, constants will be denoted by a, b, c, . . . , while labeled
nulls will be denoted by n1, n2, . . . , p1, p2,

A source-to-target tuple-generating dependency (tgd) is a formula of the form
∀x(φs(x) → ∃yψt(x, y)), where φs(x) is a conjunction of atomic formulas over
the source schema S, and ψt(x, y) is a conjunction of atomic formulas over
the target schema T. Similarly, a target-to-source tgd is a formula of the form
∀x(αt(x) → ∃yβs(x, y)), where αt(x) is a conjunction of atomic formulas over
the target schema T, and βs(x, y) is a conjunction of atomic formulas over the
source schema S. For example, if S contains a binary relation E, and T contains
a binary relation H, then the source-to-target tgd ∀x∀ y∀z(E(x, z) ∧ E(z, y) →
H(x, y)) transforms pairs of nodes connected via an E-path of length 2 to H-
edges. Similarly, ∀x∀ y(H(x, y) → ∃z(E(x, z)∧E(z, y))) is a target-to-source tgd
that transforms H-edges to pairs of nodes connected via an E-path of length 2.

A target tgd is a formula of the form ∀x(φ(x) → ∃yψ(x, y)), where both φ(x)
and ψ(x, y) are conjunctions of atomic formulas over the target schema T. A
target equality-generating dependency (egd) is a formula of the form ∀x(ϕ(x) →
z1 = z2), where ϕ(x) is a conjunction of atomic formulas over T and z1, z2 are
among the variables in x. Clearly, functional dependencies on T are special cases
of target egds. In what follows, we will often drop the universal quantifiers in

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1460 • A. Fuxman et al.

Fig. 1. Illustration of peer data exchange.

front of a dependency, and implicitly assume such quantification. However, we
will write down all existential quantifiers.

2.2 Peer Data Exchange Settings and Solutions

Definition 2.1. A peer data exchange (PDE) setting is a quintuple
P = (S, T, �st, �ts, �t) such that (see Figure 1)

—S is a source schema and T is a target schema;

—�st is a finite set of source-to-target tgds;

—�ts is a finite set of target-to-source tgds;

—�t is a finite set of target tgds and target egds.

Given a source instance I and a target instance J of P such as all elements in
the active domain of (I, J) are constants, it may be the case that (I, J) violates
the constraints of P. Thus we will be interested in finding instances (whose
active domain may also contain labeled nulls), which we call solutions, that
satisfy all constraints of P. In peer data exchange the target peer is assumed to
be willing to accept data from an authoritative, trusted source. Therefore, we
will consider solutions where the instance of the target peer may be augmented
with data from the source. However, the target peer does not have the authority
or ability to interfere with the source’s data, which therefore remain unchanged.

Definition 2.2. Let P = (S, T, �st, �ts, �t) be a PDE setting, I a source
instance, and J a target instance such that all elements in the active domain
of (I, J) are constants. We say that a target instance J ′ is a solution for (I, J)
in P if

— J ⊆ J ′;
—(I, J ′) |= �st ∪ �ts;

— J ′ |= �t .

Note that in the above definition, we could have allowed source constraints.
This, however, would not have changed the concept of a solution, as the source
instance remains unchanged. This definition generalizes the notion of solution
in data exchange settings [Fagin et al. 2005a] in two ways. The first and more
significant one is the presence of the target-to-source dependencies �ts; the

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Peer Data Exchange • 1461

second is that the input has a target instance J , in addition to the source
instance I . Thus, data exchange settings are a special case of PDE settings
where both �ts and J are empty.

As noted earlier, tuple-generating dependencies are GLAV constraints that
generalize both LAV and GAV constraints in data integration systems. Our PDE
framework is able to capture GLAV with exact views in data integration sys-
tems [Lenzerini 2002]. Indeed, consider an exact GLAV constraint ∀x(Q1(x) ↔
Q2(x)), where Q1(x) is a conjunctive query ∃yφs(x, y) over the source, and
Q2(x) is a conjunctive query ∃zψt(x, z) over the target. Then the above GLAV
constraint is equivalent to the source-to-target dependency ∀x∀y(φs(x, y) →
∃z ψt(x, z)) and the target-to-source dependency ∀x∀z(ψt(x, z) → ∃yφs(x, y)).

Although the definition of PDE setting involves two peers, it can be easily
extended to a family of source peers exchanging data with the same target peer.
Assume that S1, . . . , Sn, T are pairwise disjoint schemas. A multi-PDE setting
is a family P1 = (S1, T, �s1t , �ts1

, �t1
), . . . , Pn = (Sn, T, �snt , �tsn , �tn) of PDE

settings. Given instances I1, . . . , In of the source peers, and an instance J of the
target peer, a solution J ′ for ((I1, . . . , In), J) in P1, . . . , Pn is a target instance
J ′ containing J such that J ′ is a solution for (Im, J) in Pm, for every m ≤ n.
Note that, in defining multi-PDE settings, we could have allowed constraints
on the sources S1, . . . , Sn, as well as constraints between these sources. This,
however, would have no impact on which target instances are solutions, as the
source instances have to remain unchanged.

It is clear that J ′ is a solution for ((I1, . . . , In), J) in P1, . . . , Pn if and only if J ′

is a solution for (I1 ∪· · ·∪ In, J) in the PDE setting (S1 ∪· · ·∪Sn, T, �st , �ts, �t),
where �st = ∪n

m=1�smt , �ts = ∪n
m=1�tsm , and �t = ∪n

m=1�tm . Thus, every multi-
PDE setting can be simulated by a single PDE that has the same space of
solutions as the original multi-PDE.

2.3 Algorithmic Problems in PDE Settings

Given a source instance I and a target instance J of a PDE setting P, a solution
for (I, J) may or may not exist; furthermore, if a solution exists, it need not be
unique up to isomorphism.

Example 1. Let P be a PDE setting in which the source schema and the
target schema consist of the binary relation symbols E and H respectively, and
the constraints are as follows:

�st : E(x, z) ∧ E(z, y) → H(x, y)
�ts : H(x, y) → E(x, y)
�t : ∅ (no target constraints)

If I = {E(a, b), E(b, c)}, where a, b, and c are distinct constants, and J = ∅,
then no solution for (I, J) exists. If I = {E(a, a)} and J = ∅, then J ′ = {H(a, a)}
is the only solution for (I, J). If I = {E(a, b), E(b, c), E(a, c)} and J = ∅, then
both {H(a, c)} and {H(a, b), H(b, c), H(a, c)} are solutions for (I, J).

This example illustrates a basic difference between data exchange settings
and peer data exchange settings. Specifically, if a data exchange setting has no
target constraints (�t = ∅), then, for every source instance I , a solution always

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1462 • A. Fuxman et al.

exists. As seen above, however, this need not be true for peer data exchange
settings with �t = ∅ and J = ∅. We will study in depth the problem of deciding
the existence of a solution in a peer data exchange setting, and we will unveil
deeper differences between data exchange and peer data exchange.

Definition 2.3. Assume that P is a PDE setting. The existence-of-solutions
problem for P, denoted by SOL(P), is the following decision problem: given a
source instance I and a target instance J such that all elements of the active
domain of (I, J) are constants, is there a solution J ′ for (I, J) in P?

The other basic algorithmic problem that we will study is that of obtaining
the certain answers of target queries in PDE settings. The definition of certain
answers we use is an adaptation of the standard concept used in incomplete
databases [Grahne 1991; van der Meyden 1998] and information integration
[Abiteboul and Duschka 1998; Lenzerini 2002]; in our context, this means that
the set of “possible” worlds is the set of all solutions for a given source instance
and a given target instance in a PDE setting.

Definition 2.4. LetP be a PDE setting and q a query over the target schema
of P. Let also I be a source instance and J a target instance such that all
elements of the active domain of (I, J) are constants.

A tuple t is a certain answer of q on (I, J), denoted t ∈ certain(q, (I, J)),
if J ′ |= q[t], for every solution J ′ for (I, J) in P. We write certain(q, (I, J))
to denote the set of all certain answers of q on (I, J). If q is a Boolean query,
then certain(q, (I, J)) = true if J ′ |= q, for every solution J ′ for (I, J) in P;
otherwise, certain(q, (I, J)) = false. Note that if q is a Boolean query, then
computing the certain answers of q in the PDE setting P is a decision problem.

Let q be the Boolean query ∃x∃ y∃z(H(x, y) ∧ H(y , z)), and consider the
PDE setting in Example 1. Then certain(q, ({E(a, a)}, ∅)) = true; on the other
hand, certain(q, ({E(a, b), E(b, c), E(a, c)}, ∅)) = false.

2.4 Relationship to PDMS

Peer data management systems (PDMS), formalized and studied by Halevy
et al. [2005], constitute a decentralized, extensible architecture in which peers
interact with each other in sharing and exchanging data. As mentioned in the
Introduction, every PDE setting is a special case of a PDMS. In this section, we
describe the relationship between peer data exchange settings and peer data
management systems in precise terms.

According to Halevy et al. [2005], a PDMS N with peers P1, . . . , Pn has the
following characteristics:

—Each peer Pi has its own peer schema, which is disjoint from those of the
other peers, but visible to all other peers.

—Each peer schema is a mediated global schema over a set of local sources that
are accessible only by the peer (thus each peer can be viewed a data integra-
tion system). We will call the schema of the local sources a local schema. The
relationship between the peer schema and the local schema is specified us-
ing storage descriptions that are containment descriptions R ⊆ Q or equality

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Peer Data Exchange • 1463

descriptions R = Q , where R is one of the relations in the peer schema, and
Q is a query over the local schema of the peer.

—The relationship between peers is specified using three types of peer map-
pings: inclusion mappings, equality mappings, and definitional mappings,
where
(1) each inclusion mapping is a containment Q1(A1) ⊆ Q2(A2) between con-

junctive queries Q1(A1) and Q2(A2), where A1 and A2 are subsets of the
set of all relations in the peer schemas;

(2) each equality mapping is an equality Q1(A1) = Q2(A2) between conjunc-
tive queries Q1(A1) and Q2(A2) as above;

(3) each definitional mapping is a Datalog program with rules having single
relations from the peer schemas in both the head and the body of each
rule.

Fix a PDMS N . A stored instance of N is a set of relations conforming with
the local schemas of the peers of N . A peer instance of N is a set of relations
conforming with the peer schemas of N (in the terminology of Halevy et al.
[2005], a peer instance is called a data instance). A peer instance G is consistent
withN and a stored instance D if G together with D satisfy all the specifications
given by the storage descriptions and the peer mappings of N (see [Halevy
et al. 2005] for the precise definition). This concept captures what it means for
a peer instance to be a solution for a given set of stored relations in the PDMS
N .

We now have all the necessary background to spell out the relationship be-
tween peer data exchange settings and peer data management systems. Let
P = (S, T, �st , �ts, �t) be a PDE setting. We claim that there is a PDMS N (P)
with two peers S and T such that the solutions for a given instance in P es-
sentially coincide with the consistent peer instances for a corresponding stored
instance in N (P). The specification of the PDMS N (P) is as follows:

—The peer mappings of N (P) are given by the dependencies in �st ∪ �ts ∪ �t .
In particular, N (P) has no definitional mappings.

—For every relation symbol Si in the schema of S, there is a relation symbol
S∗

i in the local schema of S of the same arity as Si, and an equality storage
description S∗

i = Si.

—For every relation symbol Tj in the schema of T, there is a relation symbol T ∗
j

in the local schema of T of the same arity as Tj , and a containment storage
description T ∗

j ⊆ Tj .

Note that the local and peer schemas of S and T in N (P) are replicas of
the schemas of S and T in P. Intuitively, the equality storage descriptions
for S capture the fact that in peer data exchange the data of the source peer
remain unchanged, whereas the containment storage descriptions for T cap-
ture the fact that in peer data exchange the data of the target peer may be
augmented with new data. Let I be a source instance and let J be a target
instance of P. It is now easy to verify that K is a solution for (I, J) in P if and
only if (I, K) is a consistent peer instance for the stored instance (I∗, J∗) of

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1464 • A. Fuxman et al.

N (P), where I∗ and J∗ are copies of I and J over the local sources of S and T,
respectively.

In conclusion, every PDE setting can be viewed as a PDMS with equality
storage descriptions S∗

i = Si for the source peer, containment storage descrip-
tions T ∗

j ⊆ Tj for the target peer, and peer mappings given by the constraints
of the PDE.

There are peer data management systems for which testing for the existence
of solutions and computing the certain answers of conjunctive queries are un-
decidable problems [Halevy et al. 2005]. We will show that the state of affairs
is quite different for peer data exchange settings.

3. COMPLEXITY

Let P = (S, T, �st , �ts, �t) be a fixed peer data exchange setting. In this section,
we show that the existence-of-solutions problem for P is in NP, where �st and
�ts are arbitrary finite sets of source-to-target tgds and target-to-source tgds,
and �t is assumed to be the union of a finite set of target egds with a weakly
acyclic finite set of target tgds. For such settings, the data complexity of the
certain answers of unions of conjunctive queries is in coNP. We also show that
there are PDE settings with �t = ∅ for which the existence-of-solutions problem
is NP-complete, and the data complexity of the certain answers of conjunctive
queries is coNP-complete.

These results about peer data exchange settings contrast sharply both with
results about peer data management systems and with results about data ex-
change settings. As mentioned earlier, there are PDMS for which these prob-
lems are undecidable [Halevy et al. 2005]. For data exchange settings in which
�st is an arbitrary finite set of source-to-target tgds and �t is the union of a
finite set of target egds with a weakly acyclic finite set of target tgds (recall that
in data exchange settings there are no target-to-source tgds), these problems
are solvable in polynomial time [Fagin et al. 2005a]. In fact, if �t = ∅, then the
existence-of-solutions problem is trivial, as solutions always exists.

3.1 Upper Bound

The concept of a weakly acyclic set of tgds was formulated by A. Deutsch and
L. Popa in 2001, and independently used in Fagin et al. [2003] and Deutsch
and Tannen [2003] (in the latter article, under the term constraints with strat-
ified witness). The chase procedure terminates in polynomial time on such sets
of tgds. Intuitively, weak acyclicity is a syntactic condition placed on sets of
tgds to ensure that a chase step does not use labeled nulls from an attribute
to create new labeled nulls in the same attribute. This ensures that the chase
sequence is finite and, actually, that the chase procedure terminates in polyno-
mial time [Fagin et al. 2005a]. For schema mappings where �t is the union of
a weakly acyclic set of tgds with a set of egds, the existence-of-solutions prob-
lem can be checked in polynomial time using the chase procedure. Without the
weak acyclicity condition on the set of target tgds, it has been shown that the
existence-of-solutions problem may be undecidable [Kolaitis et al. 2006].

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Peer Data Exchange • 1465

Definition 3.1 (Weakly Acyclic Set of tgds). Let � be a set of tgds over a
fixed schema. Construct a directed graph, called the dependency graph, as fol-
lows:

(1) There is a node for every pair (R, A) with R a relation symbol of the schema
and A an attribute of R; call such a pair (R, A) a position.

(2) Add edges as follows: for every tgd φ(x) → ∃y ψ(x, y) in � and for every x
in x that occurs in ψ , and for every occurrence of x in φ in position (R, Ai)
(a) for every occurrence of x in ψ in position (S, Bj), add an edge (R, Ai) →

(S, Bj) (if it does not already exist);
(b) in addition, for every existentially quantified variable y and for every

occurrence of y in ψ in position (T , Ck), add a special edge (R, Ai) →
(T, Ck) (if it does not already exists).

Note that there may be two edges in the same direction between two nodes
but exactly one of the two edges is special. Then � is weakly acyclic if the
dependency graph has no cycle going through a special edge.

For example, the tgd E(x, y) → ∃z E(x, z) is weakly acyclic; in contrast, the
tgd E(x, y) → ∃z E(y , z) is not, because the dependency graph contains a self-
loop. More precisely, let (E, A) and (E, B) be the first and second positions of E.
The dependency graph consists of an edge from (E, B) to (E, A) and a special
self-loop on (E, B). It should be noted that weakly acyclic sets of tgds include
as a special case sets of full tgds, that is, tgds of the form ∀x(ϕ(x) → ψ(x)) in
which no existentially quantified variables occur in the right-hand side. They
also include acyclic sets of inclusion dependencies as a special case.

To obtain the complexity upper bounds, we extend the chase procedure as
used in [Fagin et al. 2005a] to what we call a solution-aware chase procedure. In-
tuitively, this procedure chases an instance K1 that does not satisfy a set of tgds
with a solution K that contains K1 and satisfies the tgds. Each solution-aware
chase step uses values from K to make K1 satisfy a tgd. Instead of creating
labeled nulls to witness the existential variables of a tgd during a chase step, a
solution-aware chase step uses values from the given solution K as witnesses.
These values are guaranteed to exist since K contains K1 and satisfies the
tgds. Note that values from K are used only when a chase step is applied with
a tgd that contains existential variables. Our definition of a solution-aware
chase step makes use of the concept of a homomorphism, which is defined as
follows.

Let K1 and K2 be two instances over the same schema. A homomorphism
h : K1 → K2 is a mapping from Const ∪ Var to Const ∪ Var such that

(1) h(c) = c, for every c in Const;

(2) for every fact R(t) of K1, we have that R(h(t)) is a fact of K2.

Here, Const denotes the set of all values that occur in the input (source
and target) instances, Var refers to an infinite set of labeled nulls, t denotes a
tuple (a1, . . . , an), and h(t) denotes the tuple (h(a1), . . . , h(an)); we assume that
Var ∩ Const = ∅. Similarly, a homomorphism from a conjunction φ(x) of atomic
formulas to an instance K is a mapping from the variables in x to Const ∪ Var

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1466 • A. Fuxman et al.

such that for every atom R(x1, . . . , xn) in φ(x), we have that R(h(x1), . . . , h(xn))
is a fact in K .

We are now ready to give the definition of solution-aware chase step and
solution-aware chase.

Definition 3.2 (Solution-Aware Chase Step). Let K1 be an instance.

—(tgd). Let d be a tgd ∀x(φ(x) → ∃yψ(x, y)). Let K be an instance that contains
K1 such that K satisfies d . Let h be a homomorphism from φ(x) to K1 such
that there is no extension of h to a homomorphism h′ from φ(x) ∧ ψ(x, y) to
K1. We say that d can be applied to K1 with homomorphism h and solution
K , or simply, d can be applied to K1 with homomorphism h if K is understood
from context.

Let h′ be an extension of h such that every variable in y is assigned a value
in K and h′ : ψ(x, y) → K and let K2 = K1 ∪ h′(ψ(x, y)), where h′(ψ(x, y)) =
{R(h(z1), . . . , h(zn)) : R(z1, . . . , zn) is an atom of ψ(x, y)}. We say that the re-

sult of applying d to K1 with h and solution K is K2, and write K1
d ,h,K−→ K2.

We drop K and write K1
d ,h−→ K2 if K is understood from the context.

—(egd). Let d be an egd ∀x(φ(x) → (x1 = x2)). Let h be a homomorphism from
φ(x) to K1 such that h(x1) �= h(x2). We say that d can be applied to K1 with
homomorphism h. We distinguish two cases:
—If both h(x1) and h(x2) are in Const then we say that the result of applying

d to K1 with h is “failure,” and write K1
d ,h−→ ⊥.

—Otherwise, let K2 be K1 where we identify h(x1) and h(x2) as follows: if one
is a constant, then the labeled null is replaced everywhere by the constant;
if both are labeled nulls, then one is replaced everywhere by the other. We

say that the result of applying d to K1 with h is K2, and write K1
d ,h−→ K2.

Definition 3.3 (Solution-Aware Chase). Let � be a set of tgds and egds. Let
K be an instance and K ′ be an instance that contains K and satisfies the set
of tgds in �.

—A solution-aware chase sequence of K with � and K ′ is a sequence (finite or

infinite) of solution-aware chase steps Ki
di ,hi−→ Ki+1, with i = 0, 1, . . . , with

K = K0 and di a dependency in �.

—A finite solution-aware chase of K with � and K ′ is a finite solution-aware

chase sequence Ki
di ,hi−→ Ki+1, 0 ≤ i ≤ m, with the requirement that either (a)

Km = ⊥ or (b) there is no dependency di of � and there is no homomorphism
hi such that di can be applied to Km with hi. We say that Km is the result of
the finite solution-aware chase. We refer to case (a) as the case of a failing
finite solution-aware chase and we refer to case (b) as the case of a successful
finite solution-aware chase.

It was shown in Fagin et al. [2005a] that the length of every chase sequence
of an instance with the union of a set of egds and a set of weakly acyclic tgds
is bounded by a polynomial in the size of the instance. The next lemma shows
that the same property holds even when each chase step is solution-aware.

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Peer Data Exchange • 1467

LEMMA 3.4. Let � be the union of a finite set of egds with a weakly acyclic
finite set of tgds on some schema. Then there exists a polynomial p(x) having
the following property: if K and K ′ are instances such that K ′ contains K , and
such that K ′ satisfies �, then the length of every solution-aware chase sequence
of K with � and K ′ is bounded by p(|K |), where |K | is the size of K .

PROOF. We first show that every intermediate instance in a solution-aware
chase sequence is contained in K ′. Furthermore, each solution-aware chase step
in the sequence must be the result of applying a tgd, and not an egd. After this,
we show that the length of every solution-aware chase sequence of K with the
tgds in � and K ′ is bounded by p(|K |), where |K | is the size of K .

Let � be a union of a weakly acyclic set of tgds with a set of egds and let

a solution-aware chase sequence of K with � and K ′ be Ki
di ,hi−→ Ki+1, with

i = 0, 1, . . . and K0 = K . For every Ki, we have K ′ contains Ki.

—Base case: For i = 0, we have K0 = K . Obviously, K ′ contains K0.

—Inductive case: For the induction hypothesis, we assume the claim is true
for i < m. So in particular Km−1 is contained in K ′. We show next that
Km is also contained in K ′. Suppose dm−1 is a tgd of the form: ∀x(φ(x) →
∃yψ(x, y)). By the definition of a solution-aware chase step, we have that Km

is Km−1 ∪ h′
m−1(ψ(x, y)) where h′

m−1 is an extension of hm−1 such that each
variable in y is assigned a value in K ′ and the facts of h′

m−1(ψ(x, y)) are facts
in K ′. (Note that since K ′ is a solution that contains Km−1, the extension
of hm−1 to h′

m−1 according to the definition of a solution-aware chase step is
guaranteed to exist.) Since Km is obtained by adding a set of facts in K ′ to
Km−1 and Km−1 is contained in K ′, it follows that Km is contained in K ′.
Suppose dm−1 is an egd of the form ∀x(φ(x) → (x1 = x2)). This means that
hm−1 can be applied to Km−1 with hm−1(x1) �= hm−1(x2). This implies that
Km−1 does not satisfy dm−1. Since K ′ contains Km−1 and K ′ is a solution, we
know that Km−1 satisfies dm−1, which is a contradiction. This completes the
proof of our claim.

From the proof of the claim above, it is easy to see that every solution-aware
chase step in the chase sequence applies a tgd. Next we show that the length
of every solution-aware chase sequence (with tgds) is bounded by p(|K |), where
|K | is the size of K . The proof is similar to that of Theorem 3.9 of [Fagin et al.
2005a]. For every node (R, A) in the dependency graph of �, define an incom-
ing path to be any (finite or infinite) path ending in (R, A). Define the rank
of (R, A), denoted by rank(R, A), as the maximum number of special edges on
any such incoming path. Since � is weakly acyclic, there are no cycles going
through special edges. Thus rank(R, A) is finite. Let r be the maximum, over
all positions (R, A), of rank(R, A), and let p be the total number of positions
(R, A) in the schema (equal to the number of nodes in the graph). The latter
number is a constant, since the schema is fixed. Moreover, r is at most p. Thus
r is not only finite but bounded by a constant. The next observation is that
we can partition the nodes in the dependency graph, according to their rank,
into subsets N0, N1, . . . , Nr , where Ni is the set of all nodes with rank i. Let
n be the total number of distinct values (constants or labeled nulls) that occur

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1468 • A. Fuxman et al.

in the instance K . Let K ′′ be any instance obtained from K after some arbi-
trary solution-aware chase sequence. We prove by induction on i the following
claim:

For every i there exists a polynomial Qi such that the number of distinct values
that occur in all positions (R, A) of Ni, in K ′′, is at most Qi(n).

—Base case: If (R, A) is a position in N0, then there are no incoming paths with
special edges. Thus no new values are ever created at position (R, A) during
the solution-aware chase. Hence, the values occurring at position (R, A) in
K ′′ are among the n values of the original instance K . Since this is true for
all the positions in N0, we can then take Q0(n) = n.

—Inductive case: The first kind of values that may occur at a position of Ni, in
K ′′, are those that already occur at the same position in K . The number of
such values is at most n. In addition, a value may occur at a position of Ni,
in K ′′, for two reasons: by being copied from some position in N j with j �= i,
during a solution-aware chase step, or by being extracted from a value in
K ′, also during a solution-aware chase step. We count first how many values
can be extracted from K ′. Let (R, A) be some position of Ni. A value can be
extracted from K ′ into (R, A) during a solution-aware chase step only due
to special edges. But any special edge that may enter (R, A) must start at
a node in N0 ∪ · · · ∪ Ni−1. Applying the inductive hypothesis, the number of
distinct values that can exist in all the nodes in N0 ∪ · · ·∪ Ni−1 is bounded by
P (n) = Q0(n)+· · ·+ Qi−1(n). Let d be the maximum number of special edges
that enter a position, over all positions in the schema. Then for any distinct
d -tuple of values in N0 ∪ · · · ∪ Ni−1 and for any dependency in � there is at
most one new distinct value that can be extracted from K ′ into position (R, A).
(This is a consequence of the solution-aware chase step definition and of how
the special edges have been defined. Observe that we are guaranteed to find a
tuple in K ′ to extract a value from since K ′ contains K and satisfies the tgds
in �.) Thus the total number of distinct values that can be extracted from K ′

into (R, A) is at most (P (n))d × D, where D is the number of dependencies
in �. Since the schema and � are fixed, this is still a polynomial in n. If we
consider all positions (R, A) in Ni, the total number of values that can be
generated is at most pi × (P (n))d × D where pi is the number of positions in
Ni. Let G(n) = pi × (P (n))d × D. Obviously, G is a polynomial.

We count next the number of distinct values that can be copied to positions
of Ni from positions of N j with j �= i. Such copying can happen only if there
are nonspecial edges from positions in N j with j �= i to positions in Ni.
We observe first that such nonspecial edges can originate only at nodes in
N0 ∪ · · · ∪ Ni−1, that is, they cannot originate at nodes in N j with j > i.
Otherwise, assume that there exists j > i and there exists a nonspecial edge
from some position of N j to a position (R, A) of Ni. Then the rank of (R, A)
would have to be larger than i, which is a contradiction. Hence, the number
of distinct values that can be copied in positions of Ni is bounded by the
total number of values in N0 ∪ · · · ∪ Ni−1, which is P (n) from our previous
consideration. Putting it all together, we can take Qi(n) = n + G(n) + P (n).
Since Qi is a polynomial, the claim is proven.

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Peer Data Exchange • 1469

In the above claim, i is bounded by the maximum rank r, which is a con-
stant. Hence, there exists a fixed polynomial Q such that the number of
distinct values that can exist, over all positions in K ′′ is bounded by Q(n). In
particular, the number of distinct values that can exist, at a single position
in K ′′ is also bounded by Q(n). Then the total number of tuples that can exist
in K ′′ is at most (Q(n))p (recall that p is the total number of positions in the
schema). This is also a polynomial since p is constant. Since every solution-
aware chase step with a tgd adds at least some tuple to K ′′, it follows that
the length of any chase sequence is at most (Q(n))p.

Using Lemma 3.4, we can show that whenever a solution for (I, J) exists in
a PDE in which �t is the union of a finite set of egds with a weakly acyclic finite
set of tgds, then a small solution must exist, where small means that its size is
polynomially bounded by the size of (I, J).

LEMMA 3.5. Let P = (S, T, �st , �ts, �t) be a PDE setting in which �t is the
union of a finite set of egds with a weakly acyclic finite set of tgds. Let I be a
source instance and J be a target instance. If there exists a solution J ′ for (I, J),
then there exists a solution J∗ for (I, J) that is contained in J ′ and has size
bounded by a polynomial in the size of (I, J).

PROOF. The instance J∗ can be constructed as follows: let � consists of �st ∪
�t . Note that the union of a weakly acyclic set of tgds over the target schema
T with a set of source-to-target tgds is still a weakly acyclic set of tgds over
the schema S ∪ T. Hence, � is the union of a weakly acyclic set of tgds with a
set of egds, over the schema S ∪ T. We perform a solution-aware chase of (I, J)
with � and (I, J ′). Let J∗ denote the set of tuples over T in the result of the
solution-aware chase. It is easy to see that J∗ is contained in J ′ and J∗ is a
solution for (I, J). Since (I, J ′) contains (I, J) and (I, J ′) satisfies �, we know
from Lemma 3.4 that J∗ is polynomial in the size of (I, J).

Using Lemmas 3.4 and 3.5, we can easily derive the following result.

THEOREM 3.6. Let P = (S, T, �st , �ts, �t) be a PDE setting in which �t is
the union of a finite set of egds with a weakly acyclic finite set of tgds. The
existence-of-solutions problem SOL(P) for P is in NP.

PROOF. From Lemma 3.5, if there is a solution for (I, J), then there is a
solution (I, J∗) that is polynomial in the size of (I, J). Checking that (I, J∗) |=
�st , (J∗, I) |= �ts and J∗ |= �t can be done in polynomial time in the size of
(I, J) since the peer data exchange is fixed.

By definition, a query q is monotone if it is preserved under the addition
of tuples, that is, if t ∈ q(K) and K ⊆ K ′, then t ∈ q(K ′). Clearly, unions of
conjunctive queries are monotone queries.

THEOREM 3.7. Let P = (S, T, �st , �ts, �t) be a PDE setting in which �t is
the union of a finite set of egds with a weakly acyclic finite set of tgds. If q is a
monotone query over T, then computing the certain answers of q is in coNP.

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1470 • A. Fuxman et al.

PROOF. Let q be a monotone k-ary query over T. To show that the comple-
ment of the certain answers of q is in NP, it suffices to show that there is a
polynomial p(n) such that, for every source instance I , every target instance J ,
and every tuple t of length k, we have that t �∈ certain(q, (I, J)) if and only if
there is a solution J∗ for (I, J) of size bounded by p(|(I, J)|) such that t �∈ q(J∗),
where |(I, J)| is the size of (I, J). Clearly, if there is a solution J∗ for (I, J) of
any size such that t �∈ q(J∗), then t �∈ certain(q, (I, J)). For the other direction,
recall that, by Lemma 3.5, there is a polynomial p(n) such that if J ′ is a solution
for (I, J), then there is a solution J∗ for (I, J) that is contained in J ′ and has
size bounded by p(|(I, J)|). If t �∈ certain(q, (I, J)), then there is a solution J ′

for (I, J) such that t �∈ q(J ′). Consequently, there is a solution J∗ for (I, J) that
is contained in J ′ and has size bounded by p(|(I, J)|). Since q is a monotone
query, it follows that t �∈ q(J∗).

3.2 Lower Bound

We show next that there are PDE settings with no target constraints for which
the existence-of-solutions problem is NP-hard, and computing the certain an-
swers of target conjunctive queries is coNP-hard. Although the latter result
could be derived from Abiteboul and Duschka [1998, Theorem 5.1], and Grahne
and Mendelzon [1999], Theorem 8, we give a self-contained proof using a par-
ticularly simple reduction from the 3-COLORABILITY problem whose features we
will analyze later on.

THEOREM 3.8. There exists a peer data exchange setting P with �t = ∅ for
which the existence-of-solutions problem is NP-complete. Moreover, there is a
Boolean conjunctive query q such that computing the certain answers of q in P
is a coNP-complete problem.

PROOF. From Theorem 3.6, we know that, for every fixed peer data ex-
change setting without target constraints, the existence of solutions problem is
in NP. The lower bound is established by reducing graph 3-COLORABILITY to the
existence-of-solutions problem for some particular peer data exchange setting.
As usual, a graph is a structure G = (V , E), where V is a set of nodes and
E ⊆ V 2 is a binary relation which is symmetric and irreflexive (no self-loops).

Let P be the following peer data exchange setting. The source schema S
consists of two binary relations E, F , and a unary relation H, while the target
schema T consists of a binary relation C. The constraints between S and T are
as follows:

�st : E(x, y) → ∃uC(x, u)
�ts : C(x, u) → H(u)

C(x, u) ∧ C(y , u) → F (x, y)

We now show that 3-COLORABILITY has a polynomial-time reduction to SOL(P).
Given a graph G = (V , E) with no isolated nodes, consider the source in-

stance I (G) = (E, F, H) and the target instance ∅ of the above PDE setting,
where F = V 2 \ E is the complement of the edge relation of G, and H = {r, g , b}
is a set of three colors none of which is an element of V . Note that F contains
all self-loops on V . Clearly, E, F , and H can be constructed in polynomial time
from G = (V , E).

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Peer Data Exchange • 1471

We claim that the graph G = (V , E) is 3-colorable if and only if there is
a solution for the source instance (E, F, H) and the target instance ∅. If the
graph is 3-colorable, then every 3-coloring of G = (V , E) gives rise to a solution
C such that C(x, c) holds precisely when c is the color of x. Conversely, if there
is a solution for the source instance (E, F, H), then we can use the single tgd
in �st and the first tgd in �ts to select, for every node x of G, a color c(x) in
H = {r, g , b} such that C(x, c(x)). To see that this mapping is a 3-coloring of G,
suppose that there is an edge E(x, y) such that c(x) = c(y). Then, the second
tgd in �ts implies that F (x, y) holds, which is a contradiction, since F = V 2 \ E.

Let q be the Boolean query ∃xC(x, x). It is easy to verify that the graph
G = (V , E) is 3-colorable if and only if certain(q, (I (G), ∅)) = false.
Thus, computing the certain answers of the query ∃xC(x, x) is a coNP-hard
problem.

In Halevy et al. [2005], it was shown that if in a PDMS all storage de-
scriptions are containment descriptions and all peer mappings are inclusion
mappings with an acyclic dependency graph, then the certain answers of con-
junctive queries are computable in polynomial time. The dependency graph of
a PDMS is the directed graph with nodes that are the relations of the peers,
and edges between two relations P and R if there is an inclusion peer mapping
Q1(A1) ⊆ Q2(A2) such that P occurs in Q1(A1) and R occurs in Q2(A2). Note
that the PDE setting used in the reduction of Theorem 3.8 has inclusion peer
mappings with an acyclic dependency graph, yet the problem of computing cer-
tain answers is coNP-hard. The jump in complexity arises due to the fact that
in PDE settings the source instance can never change, which means that the
constraints placed on storage descriptions in the source are not containment
descriptions, but equality descriptions.

4. A LARGE TRACTABLE CLASS

In this section, we identify syntactic conditions on PDE settings with no target
constraints that yield polynomial-time algorithms for deciding the existence of
solutions. As seen in the proof of Theorem 3.8, even such strong topological con-
ditions as the acyclicity of the dependency graph of source and target relations
cannot guarantee tractability of these problems. Instead, we consider different
conditions that are derived by taking a closer look at the existential quantifiers
in the constraints of the PDE setting.

Definition 4.1. Let P = (S, T, �st , �ts, ∅) be a PDE setting with no target
constraints.

—We say that the ith position of a relation symbol T of T is marked if �st

contains a source-to-target tgd

φs(x) → ∃yψt(x, y)

such that T (z1, . . . , zi, . . . , zn) is one of the conjuncts of ψt(x, y), and zi is one
of the existentially quantified variables y.

—We say that a variable z is marked in a target-to-source tgd

αt(x) → ∃wβs(x, w)

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1472 • A. Fuxman et al.

of �ts if one of the following two holds:
(1) z appears at a marked position of a conjunct of αt(x).
(2) z is one of the existentially quantified variables w.

Note that the two conditions in the definition of a marked variable are mutually
exclusive.

To illustrate the concepts of marked position and marked variable, let us
consider a PDE setting having the following constraints:

�st : S(x1, x2) → ∃ y∃zT (x1, y , x2, z)
�ts : T (w1, w2, w3, w4) → ∃u∃v(S(w1, u) ∧ S(w3, v))

In this setting, the marked positions are the second and fourth positions of T ,
while the marked variables in the target-to-source dependency are w2, w4, u,
and v.

Let us also consider the PDE setting in the proof of Theorem 3.8 used in the
reduction from 3-COLORABILITY:

�st : E(x, y) → ∃uC(x, u)
�ts : C(x, u) → H(u)

C(x, u) ∧ C(y , u) → F (x, y)

In this setting, the only marked position is the second position of C. The only
marked variable in the first tgd in �ts is u and the only marked variable in the
second tgd in �ts is also u.

We now introduce the class Ctract, which is the focus of this section. Below, if
αt(x) → ∃wβs(x, w) is a tgd in �ts, we will refer to αt(x) as the left-hand side of
the tgd, and to ∃wβs(x, w) as the right-hand side of the tgd.

Definition 4.2. Let P = (S, T, �st , �ts, ∅) be a PDE setting with no target
constraints. We say that P ∈ Ctract if

(1) for every tgd D in �ts, every marked variable of D appears at most once in
the left-hand side of D and

(2) for every tgd D in �ts, one of the following conditions holds:
—2.1: the left-hand side of D consists of exactly one literal; or
—2.2: for every pair of marked variables x and y of D that appear together

in a conjunct of the right-hand side of D, either

(a) x and y appear together in some conjunct of the left-hand side of D
or

(b) x and y do not appear at all in the left-hand side of D.

Observe that conditions (2.1) and (2.2) in Definition 4.2 are not mutually
exclusive. In particular, if a tgd αt(x) → ∃wβs(x, w) in �ts satisfies condition
(2.2) of Ctract and αt(x) is a single literal, then this tgd satisfies condition (2.1) as
well. However, a tgd αt(x) → ∃wβs(x, w) in �ts may satisfy condition (2.1), but
need not satisfy condition (2.2) at the same time; this happens precisely when
there are two marked variables xi and wj such that xi is among the variables
of x (i.e., it appears at a marked position of a conjunct of αt(x)), wj is one of
the existentially quantified variables w, and xi and wj appear together in some
conjunct of βs(x, w).

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Peer Data Exchange • 1473

Admittedly, the definition of the class Ctract is quite technical. We arrived at it
after carefully analyzing the causes of intractability in numerous concrete PDE
settings, such as the one used in the reduction from the 3-COLORABILITY problem.
To convey some feeling for Ctract, we should point out that it is a rather broad
class that contains several interesting families of PDE settings as subclasses.

Note that Ctract includes the union of two different (but not disjoint) classes:

(1) the class of all PDE setings in which every tgd in �ts satisfies conditions (1)
and (2.1);

(2) the class of all PDE settings in which every tgd in �ts satisfies conditions
(1) and (2.2).

The first of these classes can be described as the class of all PDE settings
P = (S, T, �st , �ts, ∅) in which every target-to-source tgd has exactly one lit-
eral in its left-hand side which has no repeated variables. Hence, this is the
class of PDE settings in which the target-to-source tgds are local-as-view (LAV)
dependencies, an important class in data integration [Lenzerini 2002].

The second class contains as a subclass the family of all PDE settings P =
(S, T, �st , �ts, ∅) in which every source-to-target tgd is a full tgd, which means
that it is of the form φs(x) → ψt(x). Indeed, if every source-to-target tgd is full,
then the only marked variables are the ones that are existentially quantified in
some target-to-source tgd. As a result, condition (1) holds for such PDE settings.
Moreover, if two marked variables appear together in the right-hand side of
some target-to-source tgd D, then neither appears in the left-hand side of D,
and hence condition (2.2) (b) is satisfied.

We are now ready to state the main result of this section.

THEOREM 4.3. Let P be a PDE setting in Ctract. Then, the existence-of-
solutions problem SOL(P) for P is solvable in polynomial time. Moreover, if
a solution exists, then a solution can be computed in polynomial time.

The proof of Theorem 4.3 is rather complicated, and will be given in the next
section; it uses a variant of the chase procedure, which we call the naive chase,
and homomorphism techniques. In the remainder of this section, we first state
some corollaries to Theorem 4.3 and then show that, in a certain sense, Ctract is
a maximal class of tractable PDE settings.

COROLLARY 4.4. Let P = (S, T, �st , �ts, ∅) be a PDE setting with no target
constraints. If �st is a set of full dependencies, then the existence-of-solutions
problem SOL(P) for P is solvable in polynomial time.

COROLLARY 4.5. Let P = (S, T, �st , �ts, ∅) be a PDE setting with no target
constraints. If every target-to-source dependency of �ts is a LAV dependency
(exactly one literal on its left-hand side which has no repeated variables), then
the existence-of-solutions problem SOL(P) for P is solvable in polynomial time.

We now show that the conditions defining Ctract are tight, in the sense that
minimal relaxations of them lead to intractability.

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1474 • A. Fuxman et al.

4.1 Necessity of Condition (1)

In order to show that condition (1) in the definition of Ctract is indispensable,
consider again the PDE setting:

�st : E(x, y) → ∃uC(x, u)
�ts : C(x, u) → H(u)

C(x, u) ∧ C(y , u) → F (x, y)

This PDE setting satisfies condition (2) of Ctract. However, it violates condition
(1), because the marked variable u appears twice in the left-hand side of the
second dependency of �ts. As seen in the proof of Theorem 3.8, the existence-
of-solutions problem for this PDE setting is NP-complete.

4.2 Necessity of Condition (2)

In order to show that condition (2) in the definition of Ctract is indispensable,
consider the following PDE setting:

�st : E(x, y) → ∃uC(x, u)
E(x, y) → E ′(x, y)

�ts : C(x, u) ∧ C(y , v) ∧ E ′(x, y) → D(u, v)

The marked variables in the target-to-source tgd are u and v. Clearly, this
PDE setting satisfies condition (1), but fails to satisfy condition (2) in the def-
inition of Ctract, since u and v appear in the atom of the right-hand side of the
dependency in �ts but do not appear together in any conjunct of the left-hand
side of that dependency.

Given a graph G = (V , E), form the source instance (E, D) and the target
instance ∅, where D = {(b, g), (g , b), (b, r), (r, b), (g , r), (r, g)} is the inequality
relation on three colors b, g , r. Then the graph G = (V , E) is 3-colorable if and
only if there is a solution for the source instance (E, D) and the target instance
∅.

4.3 PDEs with Target Constraints

Next, we show that the intractability boundary may be crossed if target con-
straints are allowed, while the source-to-target and the target-to-source depen-
dencies satisfy the conditions of Ctract.

4.3.1 PDEs with target full tgds. Consider the following PDE setting:

�st : E(x, y) → ∃uC(x, u)
E(x, y) → E ′(x, y)

�ts : D′(u, v) → D(u, v)
�t : C(x, u) ∧ C(y , v) ∧ E ′(x, y) → D′(u, v)

Note that the target-to-source tgd is a LAV dependency, so conditions (1) and
(2) are satisfied.

Given a graph G = (V , E), we form a source instance consisting of E and the
inequality relation D = {(r, b), (b, r), (r, g), (g , r), (b, g), (g , b)} on three colors r,
b, g . Then the graph G = (V , E) is 3-colorable if and only if a solution exists
for the source instance (E, D′) and the target instance ∅.

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Peer Data Exchange • 1475

4.3.2 PDEs with Target Egds. Consider the following PDE setting:

�st : E(x, y) → ∃u∃vC(x, u, y , v)
�ts : C(x, u, y , v) → D(u, v)
�t : C(x, u, y , v) ∧ C(x, u′, y ′, v′) → u = u′

C(x, u, y , v) ∧ C(y ′, v′, x, u′) → u = u′

Note that the target-to-source tgd is a LAV dependency, so conditions (1) and
(2) are satisfied.

Given a graph G = (V , E), we form, as before, a source instance consisting
of E and the inequality relation D = {(r, b), (b, r), (r, g), (g , r), (b, g), (g , b)} on
three colors r, b, g . Then the graph G = (V , E) is 3-colorable if and only if a
solution exists for the source instance (E, D) and the target instance ∅. In this
PDE setting, the two target egds enforce that every node is assigned a unique
color.

4.4 PDEs with Disjunctive Target-to-Source Dependencies

Finally, we show that the intractability boundary may also be crossed if we allow
disjunctions in the right-hand side of target-to-source tgds. For this, consider
the following PDE setting:

�st : E(x, y) → ∃uC(x, u)
E(x, y) → E ′(x, y)

�ts : E ′(x, y) ∧ C(x, u) ∧ C(y , v) →
(R(u) ∧ B(v)) ∨ (R(u) ∧ G(v))∨
(B(u) ∧ G(v)) ∨ (B(u) ∧ R(v))∨
(G(u) ∧ R(v)) ∨ (G(u) ∧ B(v))

The source relations are E, R, B, and G, while the target relations are E ′ and
C. Given a graph E, we construct a source instance consisting of E, R = {r},
G = {g}, and B = {b}; we also take the target instance J to be empty. It is easy
to see that E is 3-colorable if and only if there is a solution for this PDE setting.
Note that �st and �ts satisfy conditions (1) and (2.2) of Ctract, and there are no
target constraints.

5. PROOF OF THEOREM 4.3

This section contains the proof of Theorem 4.3. To this effect, for every PDE
settingP in Ctract, we present an algorithm that solves the existence-of-solutions
problem for P in polynomial time; moreover, given a source instance I and a
target instance J , the algorithm computes a solution for (I, J), if a solution
exists.

The proof makes use of the naive chase, which we define next. This is a variant
of the chase procedure that is different from both the chase defined in [Fagin
et al. 2005a] and from the solution-aware chase that was defined earlier in this
article. Intuitively, in the naive chase, all tgds are applied simultaneously and
nulls are generated independently of each other. Thus, each null is created by a
single tgd and is never reused to witness the existential quantifiers of another
tgd.

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1476 • A. Fuxman et al.

Definition 5.1 (Naive Chase). Let U and V be two disjoint schemas and let
� be a set of U -V tgds of the form φ(x) → ∃yψ(x, y), where φ(x) is a conjunction
of atomic formulas over U and ψ(x, y) is a conjunction of atomic formulas over
V . Let K be a U -instance and let L be a V -instance.

(1) Let d be a tgd φ(x) → ∃yψ(x, y) in �.
(a) For every homomorphism h:φ(x) → K , extend h to h′ by defining h′(y)

to be a fresh labeled null for each variable y ∈ y. We say that such a
homomorphism h is an application of d to (K , L).

(b) We write Ld to denote the V -instance that is the union of the set of facts
in ψ(h′(x), h′(y)), where h′ is the above extension of a homomorphism
h, and h ranges over all homomorphisms from φ(x) to K .

(2) The naive chase of (K , L) with � is the V -instance

L′ =
(⋃

d∈�

Ld

)
∪ L.

As an example, suppose � consists of the following two tgds:

S(x, z) → ∃ y(T (x, y) ∧ T (y , z))
S(x, z) → ∃ yT (x, y)

Let K be the instance consisting of the single fact S(a, b). The naive chase of
(K , ∅) with � is the instance consisting of the three facts T (a, n1), T (n1, b), and
T (a, n2).

As for the chase procedure used in Fagin et al. [2005a], we get two different
target instances depending on the order in which the tgds are applied. If the
first tgd is applied before the second, then the target instance generated by the
chase consists of the two facts T (a, n1) and T (n1, b). If the second tgd is applied
before the first, then the target instance generated by the chase consists of
three facts T (a, n1), T (n1, b), and T (a, n2).

Several remarks are in order now. First, observe that every fresh labeled
null in the resulting instance that is generated by the naive chase (or the chase
for that matter) is generated by exactly one application of a tgd in �; however,
unlike the chase, every labeled null is used only once to witness an existential
quantifier in the right-hand side of a tgd. This is because a null, once gen-
erated, is never reused in other applications of tgds. Second, as seen in the
preceding example, the result of chasing an instance (under the definition of
Fagin et al. [2005a]) is dependent on the order of applications of tgds and the
homomorphisms. The naive chase of an instance, however, is always unique up
to renaming of nulls, since the order of applications of tgds in the naive chase
is irrelevant by definition. Finally, for a fixed �, the size of L′ (the result of
applying the naive chase) is polynomial in the size of (K , L).

The proof of Theorem 4.3 will make use of two other results (Theorem 5.3)
and Theorem 5.4), which we state after introducing some notation and defining
some additional concepts.

For the rest of this section, we assume that P is a PDE setting, I is a source
instance, J is a target instance, Jcan is the naive chase of (I, J) with �st, and
Ican is the naive chase (Jcan, ∅) with �ts.

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Peer Data Exchange • 1477

Fig. 2. Illustration of the method for solving the existence-of-solutions problem.

The concepts of the graph of the nulls and of a block of nulls of an instance
were introduced in Fagin et al. [2005b]. The precise definition is as follows.

Definition 5.2. Let K be an instance.

(1) The graph of the nulls of K is the undirected graph defined as follows.
(a) The nodes are the nulls of K .
(b) There is an edge between two nulls if and only if the nulls appear to-

gether in some fact of K .

(2) A block of nulls of K is a connected component of the graph of the nulls of
K .

In the sequel, when we write that a quantity is bounded, we mean that the
quantity is bounded by some constant that depends only on a fixed PDE setting
(and not on the instances).

We are now ready to state the two results needed to establish Theorem 4.3.

THEOREM 5.3. Let P be a PDE setting that satisfies condition (1) of the defi-
nition of Ctract. Then, there exists a solution for (I, J) in P if and only if there is
a homomorphism from Ican to I .

THEOREM 5.4. Let P be a PDE setting that satisfies condition (2) of the defi-
nition of Ctract. Then, the size of every block of nulls of Ican is bounded.

Figure 2 illustrates our method, based on Theorem 5.3, for solving the
existence-of-solutions problem for a PDE setting. For simplicity, we have de-
picted Ican as the naive chase of Jcan (instead of the naive chase of (Jcan, ∅))
with �ts. Our algorithm determines whether a solution exists for a PDE set-
ting that satisfies condition (1) of the definition of Ctract by checking whether
there is a homomorphism from Ican to I . For this, we show that there is a ho-
momorphism from Ican to I if and only if (a) every null-free tuple of Ican occurs
in I ; and (b) for every block of nulls B of Ican, there is a homomorphism from
IB to I , where IB is the set of all tuples in Ican that contain at least one null
from B. It remains to show that if a PDE setting also satisfies condition (2) of
the definition of Ctract (and, thus, is a PDE setting in Ctract), then the preceding
test can be carried out in polynomial time. From Theorem 5.4, we know that
if a PDE setting satisfies condition (2) of the definition of Ctract, then the size
of every block of nulls of Ican is bounded. From this and the fact that the size
of Ican is polynomial in the size of (I, J), it follows that the number of blocks of
nulls of Ican is polynomial. Consequently, one can determine in polynomial time
whether there is a homomorphism from Ican to I , since there are polynomially

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1478 • A. Fuxman et al.

many blocks of nulls in Ican and the size of each block is bounded. Furthermore,
if a solution exists, then our algorithm computes a solution in polynomial time.

The next two sections contain the proofs of Theorems 5.3 and 5.4. The proof
of Theorem 4.3 is then given in Section 5.3.

5.1 Condition 1 and the Existence of Solutions

The proof of Theorem 5.3 makes use of an important lemma which we shall ex-
plain next. Let P be a PDE setting which satisfies condition (1) of the definition
of Ctract. Let αt(x) → ∃wβs(x, w) be a target-to-source tgd in �ts and let Jcan be
the naive chase of (I, J) with �st . The next lemma states that if Jimg = h(Jcan),
for some constant-preserving function h, then whenever Jimg |= αt(c) for some
values c that occur in Jimg, there are some values d that occur in Jcan such that
h(d) = c and Jcan |= αt(d). It is easy to see that this property does not hold in
general. Consider the following tgd that maps paths of length two to a single
tuple:

T1(x, y) ∧ T2(y , z) → S(x, z).

Let Jcan = {T1(a, N1), T2(N2, c)} and let h be a homomorphism such that h(a) =
a, h(N1) = b, h(N2) = b and h(c) = c. Let Jimg = h(Jcan). Hence, Jimg =
{T1(a, b), T2(b, c)}. It is easy to see that Jimg |= T1(x, y) ∧ T2(y , z) but Jcan does
not. Observe that variable y appears in two literals of the tgd and the null
values N1 and N2 appear at the positions of y in the tuples of Jcan. A null
value in Jcan can only appear at a marked position. Assuming that the above
tgd is in �ts of some PDE setting P, the variable y is a marked variable. Thus,
P violates condition (1) of Ctract. We show next that, if condition (1) of Ctract is
satisfied, we get the desired property. In the lemma below, we use Dom(I) to
denote the active domain of I . If d = (d1, . . . , dm) is a tuple of values, we will
write d ∈ Dom(I) to denote that di ∈ Dom(I), for every i ≤ m.

LEMMA 5.5. Let P be a PDE setting that satisfies condition (1) of the def-
inition of Ctract. Let ∀x αt(x) → ∃y βs(x, y) be a dependency in �ts. Define
Jimg = h(Jcan), where h is a function that preserves constants. If Jimg |= αt(c),
where c ∈ Dom(Jimg), then there exists d ∈ Dom(Jcan) such that h(d) = c and
Jcan |= αt(d).

PROOF. Let αt(x) denote the conjunction of relational atoms T1(x1) ∧ · · · ∧
Tn(xn), where Ti, 1 ≤ i ≤ n, is the ith relational symbol in αt , and xi denotes
the vector of variables in Ti. Construct a mapping v1 so that v1 maps xi to ci,
where xi denotes the ith variable in the vector of variables x of αt(x), and ci

denotes the ith value in the vector c of αt(c). It is easy to see that v1 is a valid
assignment, since Jimg |= αt(c). For every 1 ≤ i ≤ n, we use ci to denote the
vector of values v1(xi). Therefore, T1(v1(x1)) ∧ · · · ∧ Tn(v1(xn)) is the same as
T1(c1) ∧ · · · ∧ Tn(cn).

Since Jimg = h(Jcan), it follows that, for every 1 ≤ i ≤ n, there is a tuple
Ti(di) in Jcan such that Ti(h(di)) = Ti(ci). Hence, we have a sequence of tuples
T1(d1), . . . , Tn(dn) from Jcan. We will show that {T1(d1), . . . , Tn(dn)} |= T1(x1) ∧
· · · ∧ Tn(xn). For this, construct a mapping v2 that maps, for every 1 ≤ i ≤ n,
and 1 ≤ j ≤ |xi|, the variable at the j th position of xi to the value at the j th

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Peer Data Exchange • 1479

position of di. We will show next that v2 is a valid assignment: v2 maps every
relational atom Ti(xi) to a tuple in Jcan, and v2 is a function in that, if a variable
z occurs at two distinct places among x1, . . . , xn, then z is assigned the same
value under the mapping scheme we have just described.

From the construction of v2, it is easy to see that Ti(v2(xi)) = Ti(di), which is
a tuple in Jcan. Therefore, it remains to be shown that v2 is a function under the
mapping scheme we have described. Suppose there is a variable z that occurs
at two different positions, say xp

i and xq
j (the pth variable in xi, and the qth

variable in xj), and z is assigned to two different values. That is, dp
i �= dq

j (the
value of di at position p is not the same as the value of d j at position q). Since
P satisfies condition (1) of the definition of Ctract, it follows that z cannot be
a marked variable. Since nulls can only appear at marked positions in Jcan,
we have that dp

i and dq
j are constants. Now, since h maps constants to their

identity, we have that cp
i �= cq

j . So v1 maps z to two different constants, and,
therefore, v1 is not a valid assignment; thus, a contradiction.

Hence, we have Jcan |= αt(d), where d = v2(x). It is easy to see that d ∈
Dom(Jcan) and h(d) = c by the construction of the mapping scheme v2.

Before we present the proof of Theorem 5.3, we state below a lemma which
we will use repeatedly in the proof of Theorem 5.3.

LEMMA 5.6. Let U and V be disjoint schemas. Let � be a set of U-V tgds. Let
K , K ′′ be instances over U, and let L and L′′ be instances over V such that L′′

contains L, there is a homomorphism from (K , L) to (K ′′, L′′), and (K ′′, L′′) |= �.
Then, there is a homomorphism from (K , L′) to (K ′′, L′′), where L′ is the naive
chase of (K , L) with �.

PROOF. For every application of a tgd d in � of the form φ(x) → ∃yψ(x, y),
let h be the homomorphism from φ(x) to K and let h′ be the extension of h that
was used in that application. Since there is a homomorphism f from (K , L) to
(K ′′, L′′), there is a homomorphism f ◦ h : φ(x) → K ′′. Because (K ′′, L′′) |= �,
there must be an extension of f ◦ h to h′′ so that the image of ψ(x, y) under h′′

are facts in L′′. We define g on Dom(K ∪ L′) as follows: for each application of
a tgd d on (K , L), we define g (h′(y)) = h′′(y) for every y ∈ y. For every null or
constant v in Dom(K ∪ L), we define g (v) = f (v).

We now show that g is a homomorphism from (K , L′) to (K ′′, L′′). For facts
in (K , L′) that are also in (K , L), this is true since f is a homomorphism from
(K , L) to (K ′′, L′′) and g agrees with f on values from Dom(K ∪ L). Let T (a, b)
be a fact in (K , L′) that does not occur in (K , L), where a denotes the val-
ues that occur in K and b denotes the fresh labeled nulls created during the
naive chase. Since T (a, b) is a fact that does not occur in (K , L), it must have
been created through an application of some tgd φ(x) → ∃yψ(x, y). Let h be
the homomorphism from φ(x) to K used in that application, let h′ be the ex-
tension of h that was used in that application, and let h′′ be the extension of
f ◦ h, as described earlier. There must be an atom T (x0, y0) in ψ(x, y), where
x0 and y0 denote subsets of the variables in x and y respectively, such that
h′(x0) = a and h′(y0) = b. Therefore, under the function g , the fact T (g (a), g (b))
is equal to T (g (h′(x0)), g (h′(y0))). Because h′(x) = h(x) for every variable x

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1480 • A. Fuxman et al.

Fig. 3. Illustration of the construction in the proof of Theorem 5.3.

in x and g (h′(y)) = h′′(y) for every variable y ∈ y, this is in turn equal to
T (g (h(x0)), h′′(y0)). Since g (v) = f (v) for v ∈ Dom(K ∪ L) and h′′ is an exten-
sion of f ◦ h, we arrive at T (h′′(x0), h′′(y0)). Since h′′ : ψ(x, y) → L′′, it follows
that T (g (a), g (b)) is a fact in L′′.

We are now ready to prove Theorem 5.3. Lemma 5.5 is used in the “if” part
of the proof for this theorem and we we will frequently refer to Figure 3 in our
proof. Figure 3 is an extension of Figure 2. The instance Jsol is a solution for
(I, J). For simplicity, we have depicted I ′ to be the naive chase of Jsol (instead
of (Jsol, ∅)) with �ts. We state Theorem 5.3 again below.

THEOREM 5.3. Let P be a PDE setting that satisfies condition (1) of the defi-
nition of Ctract. Then, there exists a solution for (I, J) in P if and only if there is
a homomorphism from Ican to I .

PROOF. (⇒) Let Jsol be a solution for (I, J) in P. Let I ′ be the naive chase
of (Jsol, ∅) with �ts. We will show that there is a homomorphism from Ican to I
by exhibiting two homomorphisms: one from Ican to I ′ (h1 in Figure 3) and one
from I ′ to I (h2 in Figure 3). Consequently, a homomorphism from Ican to I can
be obtained by composing h1 with h2.

Since Jsol is a solution, we know that (I, Jsol) |= �st . Furthermore, Jsol con-
tains J . Clearly, there is a homomorphism, which is the identity mapping, from
(I, J) to (I, Jsol). Hence, by Lemma 5.6, there is a homomorphism from (I, Jcan)
to (I, Jsol). In particular, this means that there is a homomorphism from Jcan

to Jsol, which is denoted as h3 in Figure 3.
Since I ′ is the naive chase of (Jsol, ∅) with �ts, it follows that (Jsol, I ′) |=

�ts. We know that there is a homomorphism h3 from (Jcan, ∅) to (Jsol, I ′). By
applying Lemma 5.6, we obtain a homomorphism from (Jcan, Ican) to (Jsol, I ′).
In particular, this means there is a homomorphism, call it h1, from Ican to I ′.
Since I ′ is the naive chase of (Jsol, ∅) with �ts and (Jsol, I) |= �ts, there is also a
homomorphism, call it h2, from I ′ to I .

(⇐) Let h be a homomorphism from Ican to I . From h, we will construct a
function hJ and define Jimg to be hJ (Jcan). We then show that Jimg is a solution
for (I, J) in P. The function hJ is defined as follows:

—hJ (x) = h(x) if x ∈ (Dom(Jcan) ∩ Dom(Ican));

—hJ (x) = x if x ∈ (Dom(Jcan) − Dom(Ican)).

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Peer Data Exchange • 1481

Observe that, by the definition of Jimg, hJ is a homomorphism from Jcan to Jimg.
In order to show that Jimg is a solution for (I, J) in P, we will show next that
J ⊆ Jimg, (I, Jimg) |= �st and (Jimg, I) |= �ts.

Since Jcan is the naive chase of (I, J) with �st, we have that J ⊆ Jcan. We show
next that hJ (J) = J and therefore, J ⊆ Jimg. Let c be an element from Dom(J).
Since J is an instance without null values, c is a constant. Furthermore, since
J ⊆ Jcan, we have that c ∈ Dom(Jcan). If c ∈ Dom(Ican), then hJ (c) = h(c) = c,
because h maps constants to their identity. If c �∈ Dom(Ican), then hJ (c) = c.
Therefore it is always the case that hJ (c) = c. It follows that hJ (J) = J . Since
J ⊆ Jcan and Jimg = hJ (Jcan), we have that J ⊆ Jimg.

We show next that (I, Jimg) |= �st. Let φs(x1, x2) → ∃yψt(x1, y) be a tgd
in �st , where x1 are the universally quantified variables that occur in ψt .
Assume that c1, c2 ∈ Dom(I) are such that I |= φs(c1, c2). Note that c1, c2

contain only constants, since I is an instance without null values. Since
(I, Jcan) |= �st, this means Jcan |= ψt(c1, d), for some d ∈ Dom(Jcan). So c1 occurs
in Dom(Jcan) as well. Since hJ is a homomorphism from Jcan to Jimg, we have
Jimg |= ψt(hJ (c1), hJ (d)). Because hJ (c1) = c1, it follows that Jimg |= ψt(c1, e),
for some e ∈ Dom(Jimg). Hence, (I, Jimg) |= �st.

Next, we show that (Jimg, I) |= �ts. Consider a target-to-source tgd in �ts of
the form αt(x1, x2) → ∃yβs(x1, y), where x1 are the universally quantified vari-
ables that are used in βs. Assume that there are some c1 and c2 in Dom(Jimg)
such that Jimg |= αt(c1, c2). By Lemma 5.5, it follows that there exists d1 and
d2 in Dom(Jcan) such that hJ (d1) = c1, hJ (d2) = c2 and Jcan |= αt(d1, d2).
Since (Jcan, Ican) |= �ts, we have Ican |= βs(d1, e) for some e ∈ Dom(Ican).
This means that d1 occurs in Dom(Ican). Under the homomorphism h, we have
I |= βs(h(d1), h(e)). Since d1 is also in Dom(Jcan), we have that d1 occurs in
Dom(Jcan) ∩ Dom(Ican). Therefore, we have h(d1) = hJ (d1) = c1 and this gives
us I |= βs(c1, h(e)). Hence, we conclude that (Jimg, I) |= �ts.

Since Jimg contains J , (I, Jimg) |= �st and (Jimg, I) |= �ts, we have that Jimg

is a solution for (I, J) in P, which was to be shown.

In effect, Theorem 5.3 gives us an algorithm for checking if there exists a
solution, and computing a solution if one exists, given the source and target
instances (I, J) and a PDE setting P. To check whether a solution exists for I
in P, we use the naive chase on (I, ∅) with �st to obtain Jcan, and then we use
the naive chase on (Jcan, ∅) with �ts to obtain Ican. Finally, we check whether
there exists a homomorphism from Ican to I . Indeed, if there is a homomor-
phism from Ican to I , the instance Jimg that was constructed in the proof of
Theorem 5.3 is a solution for (I, J) in P. We therefore arrive at the following
corollary.

COROLLARY 5.7. Let P be a PDE setting that satisfies condition (1) of the
definition of Ctract. If there is a homomorphism h from Ican to I , then hJ (Jcan) is
a solution for (I, J) in P, where hJ is defined as follows:

—hJ (x) = h(x) if x ∈ (Dom(Jcan) ∩ Dom(Ican));
—hJ (x) = x if x ∈ (Dom(Jcan) − Dom(Ican)).

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1482 • A. Fuxman et al.

A natural question that arises is whether the algorithm proposed earlier for
determing whether a solution exists, and computing a solution if one exists, can
be performed in polynomial time for a fixed PDE setting P that satisfies condi-
tion (1) of Ctract. However, as we have seen with the reduction that illustrates
the necessity of condition (2) in the previous section, unless P = NP, this is not
true. In the next section, we show how one can determine whether there exists
a homomorphism from Ican to I in polynomial time if the PDE setting P also
satisfies condition (2) of the definition of Ctract.

5.2 Condition 2 and Blocks of Bounded Size

In this section, we prove Theorem 5.4, which states that if every tgd in �ts

satisfies condition 2 of Ctract then the size of every block of nulls of Ican is bounded.
The proof of Theorem 5.4 makes use of the following crucial lemma.

LEMMA 5.8. Let P be a PDE setting. Let B be a block of nulls in Jcan and let
JB denote the set of all tuples in Jcan that contain at least one null from B. Let
IJB be the naive chase of (JB, ∅) with �ts. Then, the number of distinct nulls in
IJB is bounded.

PROOF. Let the maximum number of existentially quantified variables in a
tgd in �st be k1. Similarly, let the maximum number of existentially quantified
variables in a tgd in �ts be k′

1. Let the maximum number of relational atoms in
the right-hand side of a tgd in �st be k2. Note that k1, k′

1, and k2 are constants
that depend only on the PDE settingP. Then the number of nulls inB is bounded
by k1, while the number of tuples in JB is bounded by k2; this is so because in
the naive chase each block of nulls is determined by a single application of a
tgd. Since the schemas in P are fixed, the size of Dom(JB) is bounded by some
constant k3 that depends only on P. Next we analyze the maximum number
of fresh labeled nulls that can be generated by the naive chase of (JB, ∅) with
�ts. Let d : αt(x) → ∃yβs(x, y) be a target-to-source tgd in �ts. Since the size of
Dom(JB) is bounded by k3, there are at most k|x|

3 homomorphisms from αt(x) to
JB, where |x| denotes the number of variables in x. In the worst case, each of
these homomorphisms generates k′

1 nulls. Therefore, there are at most k′
1 ∗ k|x|

3

nulls that are generated in all possible applications of d . In turn, this means
there can be at most k′

1 ∗ kk4

3 ∗ |�ts| nulls that are generated during the naive
chase of JB with �ts, where k4 denotes the maximum number of universally
quantified variables in a tgd in �ts and |�ts| denotes the number of tgds in �ts.
Since the nulls of B may be copied to IJB during the naive chase, there can be at

most k1 + k′
1 ∗ kk4

3 ∗ |�ts| distinct nulls in IJB , which is a constant that depends
only on P.

We are now ready to prove Theorem 5.4, which we state again below.

THEOREM 5.4. Let P be a PDE setting that satisfies condition (2) of the defi-
nition of Ctract. Then the size of every block of nulls of Ican is bounded.

PROOF. We prove the theorem by analyzing the blocks of nulls of Ican. Let B
be a block of nulls from Ican.

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Peer Data Exchange • 1483

Case 1. B does not contain nulls from Jcan. In this case, the nulls of B are
freshly generated during the naive chase of (Jcan, ∅) with �ts. This means there
is exactly one application of a tgd in �ts that generates these nulls since dif-
ferent applications of tgds cannot produce a single block of nulls without nulls
from Jcan. Therefore, the size of B is bounded by the maximum number of ex-
istentially quantified variables in a tgd in �ts. This is a constant that depends
only on P.

Case 2. B contains at least one null from Jcan. Let n be the null in B that also
occurs in Jcan. Let B′ be the block of nulls in Jcan that contains n, and let JB′ be
the set of all tuples in Jcan that contain at least one null from B′. Let IJB′ be the
set of tuples that are added to Ican, as a consequence of applying tgds on (JB′ , ∅),
during the naive chase of (Jcan, ∅) with �ts. It is easy to see that IJB′ is identical
to the naive chase of (JB′ , ∅) with �ts, up to the renaming of nulls. Henceforth,
we refer to IJB′ as the naive chase of (JB′ , ∅) with �ts. Let p0, p1, . . . , pk be a path
in the graph of nulls of B, where p0 = n. We show by induction on the number
of nodes in the path that every node in the path occurs in B′ ∪ Var(IJB′).

If the number of nodes in the path is 1, the path consists of only n. We know
that n occurs in B′. Hence, n occurs in B′ ∪ Var(IJB′). Now assume that pi is a
null in B′ ∪ Var(IJB′) for every i < j , where 1 < j ≤ k. Let i = j − 1. We show
next that pi+1 is also a null in B′ ∪ Var(IJB′). Since pi and pi+1 are adjacent
in the graph of nulls of B, there must be a fact T (c) in Ican that contains both
pi and pi+1. This fact must have been placed in Ican by an application of a tgd
d : αt(x) → ∃yβs(x, y) in �ts with some homomorphism h. Let h′ be the extension
of h that was used in that application. Hence, the relational atom T (z) occurs
in βs(x, y), where z ⊆ x ∪ y and T (h′(z)) = T (c). Let u and v be two variables in
z where h′(u) = pi and h′(v) = pi+1. Note that u and v are marked variables. We
prove the induction by analyzing the following cases, depending on whether pi

is a null in B′ or Var(IJB′).

—Case (a). pi is a null in B′. This means that u is a marked variable that occurs
in αt(x). There are two cases to consider, depending on whether pi+1 is a null
that does not occur in Jcan (i.e., pi+1 is a null that is freshly generated during
the naive chase of (Jcan, ∅) with �ts) or pi+1 is a null from Jcan.
—Case (i). pi+1 is a null not from Jcan. This means that v is a variable in y.

In turn, this means that d cannot satisfy condition (2.2) of Ctract because
u occurs in αt(x) but v does not. So d must satisfy condition (2.1) of Ctract.
Thus αt consists of exactly one literal. Since pi is a null in B′, it follows that
the fact represented by h(αt(x)) occurs in JB′ and, therefore, pi+1 occurs in
Var(IJB′).

—Case (ii). pi+1 is a null from Jcan. This means that v is a variable that
occurs in αt(x). If d satisfies condition (2.1) of Ctract, then we know that
pi and pi+1 occur together in some fact in Jcan. Since pi occurs in B′, this
means that pi+1 is also a null in B′. Otherwise, it must be that d satisfies
condition (2.2)(a) of Ctract. Note that d cannot satisfy condition (2.2)(b) of
Ctract because u occurs in αt(x). With condition (2.2)(a), we know that pi

and pi+1 must occur together in some fact in Jcan. Since pi occurs in B′, we
have that pi+1 must also occur in B′.

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1484 • A. Fuxman et al.

—Case (b). pi is a null in Var(IJB′). Note that the nulls in Var(IJB′) are either
nulls from B′ or nulls that are newly generated during the naive chase of
(JB′ , ∅) with �ts. If pi is a null in B′, then by a similar argument shown in
case (a), we have that pi+1 occurs in B′ ∪ Var(IJB′). If pi is a newly generated
null, then pi is generated by exactly the application of d with h. Every other
application during the naive chase of (Jcan, ∅) with �ts will generate fresh
nulls that are different from pi. Hence, every fact in h(αt(x)) must occur in
JB′ in order for pi to be a null in Var(IJB′). Therefore, all facts in h′(βs(x, y))
occur in IJB′ . In particular, the fact T (c) occurs in IJB′ and so pi+1 occurs in
Var(IJB′).

Since the nodes in every path reachable from n in the graph of nulls ofB occur
in B′ ∪ Var(IJB′) and since every null in B is reachable from n by some path, it
follows thatB ⊆ B′∪Var(IJB′). The size ofB′ is bounded by the maximum number
of existentially quantified variables in a tgd in �st; moreover, by Lemma 5.8,
the size of Var(IJB′) is bounded. It follows that the size of B is bounded.

In the next section, we describe a polynomial time algorithm using the results
we have developed so far: the algorithm determines whether a solution exists
for (I, J) in a fixed peer data exchange setting P that satisfies both conditions
of Ctract, and computes a solution if a solution exists.

5.3 Proof of Theorem 4.3

Using Theorem 5.3, one can determine whether a solution exists for (I ,J) in
P by checking whether there is a homomorphism from Ican to I . We show next
in Proposition 5.9 how to decompose the task of checking whether a homomor-
phism exists from Ican to I . In addition, Corollary 5.7 gives us a procedure that
makes use of the homomorphism from Ican to I for computing a solution, if a
solution exists. Putting these results together, we now have an algorithm, de-
picted in Figure 4, for determining whether a solution exists for an instance
(I, J) in a fixed peer data exchange setting P that satisfies both conditions of
Ctract. This algorithm also computes a solution, if a solution exists.

PROPOSITION 5.9. There is a homomorphism from K1 to K2 if and only if (1)
every null-free fact of K1 is in K2 and (2) for every block of nulls B of K1 there
exists a homomorphism from KB to K2, where KB is the set of all tuples in K1

that contain at least one null from B.

PROOF. (⇒) Suppose there is a homomorphism h from K1 to K2. Let R(t)
be a null-free fact of K1. Since h is a constant-preserving homomorphism, it
follows that R(t) is also fact in K2. For every block of nulls B of K1, define a
mapping hB from Dom(KB) to Dom(I) as follows:

hB(x) = h(x) for every x ∈ Dom(KB).

Let R(t) be a fact in KB. Since R(hB(t)) = R(h(t)) and h is a homomorphism from
K1 to K2, we have that R(h(t)) is a fact in K2. Therefore, hB is a homomorphism
from KB to K2, which was to be shown.

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Peer Data Exchange • 1485

Algorithm ComputeASolutionP (I, J) : T
Let Jcan be the naive chase of (I, J) with �st.
Let Ican be the naive chase of (Jcan, ∅) with �ts.

Let h = ∅.

For each block of nulls B of Ican
Let IB denote the set of all tuples in Ican containing at least a null from B.

If there is no homomorphism from IB to I
Return “No solution”

Else
Let h′ denote a homomorphism from IB to Ican.

Extend h with h′: Define h = h ∪ h′.
End If

End For
Let Ic denote the set of all null-free tuples in Ican.

If there is a fact in Ic that does not occur in I
Return “No solution”

EndIf
Define hJ (x) = h(x) if x ∈ Dom(Jcan) ∩ Dom(Ican), and hJ (x) = x otherwise.

Return hJ (Jcan).

Fig. 4. Algorithm ComputeASolutionP .

(⇐) Suppose every null-free fact of K1 occurs in K2 and there are n blocks
of nulls in K1. Let Bi denote the ith block of nulls of K1 and let hi denote the
homomorphism from KBi to K2. Let h be defined as follows:

h(x) =
{

hi(x) if x is in Dom(KBi), 1 ≤ i ≤ n,
x if x is a constant in K1.

Since a null in K1 occurs in exactly one of the blocks of nulls and h j (c) = c for
every constant c that occurs in KB j and for every j ≤ n, we have that h is a
function.

We show next that h is a homomorphism from K1 to K2. If R(t) is a null-free
fact of K1, then R(h(t)) = R(t) and by assumption, R(t) occurs in K2. Suppose
R(t) is a fact K1 that contains at least one null. Then R(t) belongs to exactly
one KBi , for some 1 ≤ i ≤ n. Since hi is a homomorphism from KBi to K2 and
R(h(t)) = R(hi(t)), we conclude that R(h(t)) is a fact in K2. Therefore, h is a
homomorphism from K1 to K2, which was to be shown.

We are now ready to prove Theorem 4.3, which we state again below.

THEOREM 4.3. LetP be a PDE setting in Ctract. Then, the existence-of-solutions
problem SOL(P) for P is solvable in polynomial time. Moreover, if a solution
exists, then a solution can be computed in polynomial time.

PROOF. We will show that algorithm ComputeASolutionP of Figure 4 cor-
rectly determines whether a solution exists for (I, J) and computes a solution
if it exists. We will show that this algorithm runs in polynomial time in the size
of (I, J).

The correctness of ComputeASolutionP follows from Theorem 5.3, Proposition
5.9, and Corollary 5.7. Assume that, for every block of nulls B of Ican, there is a
homomorphism from IB to I , where IB is the set of all tuples in Ican that each
contains at least a null from B. Furthermore, every null-free tuple of Ican occurs

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1486 • A. Fuxman et al.

in I . Then, by Proposition 5.9, there is a homomorphism from Ican to I . Hence,
by Theorem 5.3, there is a solution for (I, J) in P. If there is no homomorphism
from IB of to I for some B or some null-free tuple of Ican does not occur in I ,
then, by Proposition 5.9, there is no homomorphism from Ican to I . Hence, by
Theorem 5.3, there is no solution for (I, J) in I . The extension of h with h′ is
well-defined at each iteration, since h′(c) = c for every constant c from Ican and
every block of nulls of Ican are pairwise disjoint. From Corollary 5.7, it follows
that hJ (Jcan) is a solution as defined in the algorithm.

Next, we show that ComputeASolutionP runs in polynomial time in the size
of (I, J) by providing an upper bound on the running time of the algorithm. We
first show that the size of Jcan is polynomial in the size of (I, J). Let φs(x) →
∃yψt(x, y) be a source-to-target tgd in �st. Let the number of variables in x be
k1. Then there are at most |Dom(I)|k1 homomorphisms from φs(x) to I . Since
each application of a tgd adds a fixed number of facts to the target, it follows
that all applications of the tgd adds a polynomial number of facts to the target.
Since there is also a fixed number of tgds in �st, the size of Jcan is a polynomial
in the size of (I, J). Let this polynomial be p(n), where n is the size of (I, J). By a
similar argument, there is also a polynomial in the size of Jcan that bounds the
size of Ican. Let this polynomial be q(m) where m denotes the size of Jcan. Hence,
the size of Ican is at most q(p(n)). It follows that the number of blocks of nulls
in Ican is at most q(p(n)). From Theorem 5.4, we know that every block of nulls
B of Ican is bounded. Hence, checking whether there exists a homomorphism
from IB to I can be performed in polynomial time: First, we define the following
mapping f . For every null N of IB, we define f (N) to be a value from I . For
every constant c of IB, we define f (c) = c. If f (IB) is a subset of I , we conclude
that there is a homomorphism from IB to I . Otherwise, we repeat the process
with another definition for f . If there is no homomorphism from IB to I for every
f defined in this way, we conclude that there is no homomorphism from IB to I .
Since |Dom(I)| ≤ n, there are at most n|B| possible definitions for f . Computing
f (IB) takes at most q(p(n)) time. Checking whether f (IB) is a subset of I takes
at most q(p(n))∗n time. Hence, it takes n|B| ∗ (q(p(n))+q(p(n))∗n) time to check
whether there is a homomorphism from IB to I . Let this polynomial be r(n).
Extending h with h′ takes at most |Dom(IB)| time. So each iteration takes at
most r(n) + q(p(n)) time.

Since the algorithm iterates through the blocks of nulls of Ican, there are at
most q(p(n)) iterations. Therefore, the for-loop of the algorithm takes at most
q(p(n)) ∗ (r(n) +q(p(n))) time, which is a polynomial in the size of (I, J). Also, it
takes q(p(n)) ∗ n time to check whether every null-free tuple of Ican occurs in I .
Finally, to construct hJ (Jcan), we scan each value v of Jcan and apply h on v if
v ∈ Dom(Jcan) ∩ Dom(Ican). Since Ican and Jcan are both polynomial in the size
of (I, J), it follows that hJ (Jcan) can be constructed in polynomial time.

6. QUERY ANSWERING

As seen in Theorem 3.8, there are PDE settings and conjunctive queries such
that testing for the existence of solutions is a NP-complete problem and com-
puting the certain answers of these queries is a coNP-complete problem. For

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Peer Data Exchange • 1487

PDE settings in Ctract, however, we showed that testing for the existence of so-
lutions is solvable in polynomial time. It is natural to ask whether, for PDE
settings in Ctract, the certain answers of conjunctive queries are polynomial-
time computable. In this section, we show that, unless P = NP, this is not true.
Specifically, we show that there is a PDE setting P in Ctract and a conjunctive
query q such that computing the certain answers of q in P is a coNP-hard
problem. After this, we identify syntactic conditions between PDE settings and
conjunctive queries that guarantee the tractability of computing the certain an-
swers for PDE settings in Ctract. It turns out that these conditions are satisfied
by every conjunctive query in PDE settings in which the source-to-target tgds
are full tgds. Consequently, there is a polynomial-time algorithm for computing
the certain answers of arbitrary (but fixed) conjunctive queries in PDE settings
in which the source-to-target tgds are full tgds.

THEOREM 6.1. There exists a PDE setting P in Ctract and a Boolean conjunc-
tive query q such that computing the certain answers of q inP is a coNP-complete
problem.

PROOF. Let P be the following peer data exchange setting. The source
schema S consists of one binary relation E and one unary relation H, and
the target schema T consists of two binary relations C and F . There are no
target dependencies, that is, �t = ∅. Finally, the constraints between S and T
are as follows:

�st : E(x, y) → ∃vC(x, v)
E(x, y) → F (x, y)

�ts : C(x, v) → H(v)

Clearly, P is a PDE setting in Ctract. In fact, �ts is a LAV setting with no
repeated variables in the left-hand side. Let q be the conjunctive query

∃x∃ y∃v(C(x, v) ∧ C(y , v) ∧ F (x, y)).

From Theorem 3.7, we know that the problem of computing the certain answers
of q in P is in coNP. We establish the coNP-hardness of this problem via a
reduction from 3-COLORABILITY. Given a graph G = (V , E), consider the source
instance I = (E, H), where H = {r, g , b} is a set of three colors, and the target
instance ∅. We now claim that G is 3-colorable if and only if certain(q, (I, ∅)) =
false.

If G is 3-colorable, we can construct a solution Jsol for (I, ∅) in P as follows.
Using a fixed 3-coloring of G, we form C by assigning each node of G its color
in that 3-coloring; we also take F = E. By construction, there are no two
F -adjacent nodes having the same color. Thus, q(Jsol) = false, which implies
that certain(q, (I, ∅)) = false.

Conversely, assume that certain(q, (I, ∅)) = false. Hence, there is some
solution Jsol for (I, ∅) in P such that q(Jsol) = false. For each node of G, pick a
color from H = {r, g , b} using the first dependency in �st and the dependency
in �ts. Since q(Jsol) = false, no two F -adjacent nodes of G get the same color.
By the second dependency in �st, we have that E ⊆ F . Consequently, no two
E-adjacent nodes get the same color, which means that G is 3-colorable.

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1488 • A. Fuxman et al.

We now consider syntactic conditions between PDE settings and conjunctive
queries, and use them to introduce a restricted class of conjunctive queries
relative to a given PDE setting.

Definition 6.2. Let P be a PDE setting with no target constraints and let
q be a conjunctive query over the target schema of P. We say that a variable
z is marked in q if z appears at a position of a literal R of q that is a marked
position for R in P.

Definition 6.3. Let P be a PDE setting with no target constraints and let
q be a conjunctive query over the target schema of P. We say that q ∈ Qtract(P)
if every free variable of q is not a marked variable and every marked variable
of q appears exactly once in q.

As an example, consider the PDE setting P and the conjunctive query q in
the proof of Theorem 6.1. Clearly, q �∈ Qtract(P), since the marked variable v
appears twice in q. In contrast, the conjunctive query

∃x∃ y∃z∃v(C(x, v) ∧ F (x, y) ∧ F (y , z) ∧ F (z, x))

is in Qtract(P), since there are no free variables and v occurs only once in the
above query.

Note that if P is a PDE setting with no target constraints and such that
�st consists of full source-to-target tgds, then every conjunctive query over the
target schema of P is in Qtract(P), since in this case no position is marked.

THEOREM 6.4. If P is a PDE setting in Ctract and q is a conjunctive query in
Qtract(P), then there is a polynomial-time algorithm for computing the certain
answers of q in P.

PROOF. We will show that the problem of computing the certain answers of
q in P is reducible to the existence-of-solutions problem for a PDE setting P ′ in
Ctract; the latter problem is tractable by Theorem 4.3.

Assume that P = (S, T, �st, �ts, ∅) and that q is a k-ary conjunctive query
of the form ∃yψ(x, y), where x are the free variables of q and ψ(x, y) is a con-
junction of atoms over T. Here we assume that k ≥ 1; Boolean queries can be
handled using a similar and, in fact, simpler argument. We construct another
PDE setting P ′ = (S′, T′, �′

st, �′
ts, ∅) as follows:

—S′ = S ∪ {S1, S2}, where S1 is a new k-ary relation symbol and S2 is a new
unary relation symbol.

—T′ = T ∪ {T1}, where T1 is a new k-ary relation symbol.

—�′
st = �st ∪ {S1(x) → T1(x)}.

—�′
ts = �ts ∪ {T1(x) ∧ ψ(x, y) → ∃zS2(z)}.

Since the query q is in Qtract(P), every free variable in q is not a marked
variable and no marked variable in q appears more than once in ψ(x, y). It
follows that the target-to-source tgd T1(x)∧ψ(x, y) → ∃zS2(z) satisfies condition
(1) in the definition of Ctract; furthermore, it is clear that it satisfies condition
(2.2) in the definition of Ctract as well. From this fact and the hypothesis that P
is in Ctract, it follows that P ′ is also in Ctract.

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Peer Data Exchange • 1489

Suppose we are given a source instance I , a target instance J , and a
k-tuple t of constants from I . Form the source instance I ′ = I ∪ {S1(t)} and
the target instance J ′ = J (that is, S2 = ∅ in I ′ and T1 = ∅ in J ′). We claim
that t ∈ certain(q, (I, J)) if and only if there is no solution for (I ′, J ′) in P ′.

Assume that t ∈ certain(q, (I, J)). Toward a contradiction, assume also that
there is an instance J ′

sol over T′ such that J ′
sol is a solution for (I ′, J ′) in P ′. Let

Jsol be the restriction of J ′
sol to T, that is, Jsol is obtained from J ′

sol by removing
the interpretation of the relation symbol T1. Since J ′

sol is a solution for (I ′, J ′) in
P ′ and since S1 and T1 are not among the relation symbols of S and T, we have
that Jsol is a solution for (I, J) in P. Since t ∈ certain(q, (I, J)), it follows that
t ∈ q(Jsol), which means that there is a tuple b of elements in Jsol such that
Jsol |= ψ(t, b). From this, it follows that J ′

sol |= T1(t) ∧ ψ(t, b), which, in turn,
implies that I ′ |= ∃zS2(z), since (J ′

sol, I ′) |= ∀x∀y(T1(x)∧ψ(x, y) → ∃zS2(z)). By
construction, however, S2 = ∅ in I ′; thus we have arrived at a contradiction.

Assume that there is no solution for (I ′, J ′) in P ′. Toward a contradiction,
assume also that t �∈ certain(q, (I, J)). It follows that there is a solution Jsol

for (I, J) in P such that t �∈ q(Jsol), which means that Jsol |= ∀y¬ψ(t, y). Let
J ′

sol = Jsol ∪ {T1(t)}. Clearly, J ′ ⊆ J ′
sol. Furthermore, (J ′

sol, I ′) |= ∀x∀y(T1(x) ∧
ψ(x, y) → ∃zS2(z)) because t is the only tuple in T1 in J ′

sol and Jsol |= ∀y¬ψ(t, y).
Since Jsol is a solution for (I, J) in P and since S1 and T1 do not appear in any
tgd of �st or of �ts, we have that (I ′, J ′

sol) |= �st and (J ′
sol, I ′) |= �ts. It follows

that J ′
sol is a solution for (I ′, J ′) in P ′, which is a contradiction.

As an immediate consequence of Theorem 6.4 and the preceding observation
about full tgds, we obtain the following result.

COROLLARY 6.5. Let P = (S, T, �st, �ts, �t) be a PDE setting such that �st is
a set of full source-to-target tgds and �t = ∅. For every target conjunctive query
q, there is a polynomial-time algorithm for computing the certain answers of q
in P.

7. UNIVERSAL SOLUTIONS AND UNIVERSAL BASES IN PEER
DATA EXCHANGE

In the preceding section, we saw that computing the certain answers of fixed
conjunctive queries in peer data exchange settings can be a coNP-complete
problem, even when there are no target dependencies and the existence-of-
solutions problem is solvable in polynomial time. This state of affairs for peer
data exchange contrasts sharply with data exchange, where, as shown in Fagin
et al. [2005a], the certain answers of conjunctive queries are computable in
polynomial time for data exchange settings S = (S, T, �st, �t) in which �st is
a set of source-to-target tgds and �t is the union of a set of target egds with a
weakly acyclic set of target tgds. This result hinges on the following three facts:

(1) If a solution exists for a given source instance I , then a universal solution
for I exists, that is, a solution Ju for I such that, for every solution J ′ for
I , there is a homomorphism from Ju to J ′.

(2) There is a polynomial-time algorithm based on the chase procedure, such
that, given a source instance I , the algorithm determines whether a solution

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1490 • A. Fuxman et al.

for I exists and, if a solution exists, it returns a universal solution Ju

for I .

(3) Every universal solution is adequate for computing the certain answers
of target conjunctive queries. This means that if q is a target conjunc-
tive query, I is a source instance, and Ju is a universal solution for I ,
then certain(q, I) = q(Ju)↓, where q(Ju)↓ is the subset of q(Ju) consist-
ing of all null-free tuples in q(Ju).

Note that ifS is a data exchange setting with no target dependencies (�t = ∅),
then for every instance I , a solution exists. It follows that in this case, for every
source instance I , there is a polynomial-time computable universal solution Ju

for I ; moreover, Ju is adequate for computing the certain answers of conjunctive
queries. It should also be noted that results in Calı̀ et al. [2003, 2004], imply
that the certain answers of fixed target conjunctive queries are computable
in polynomial time for data exchange settings in which the target constraints
consist of key constraints and of restricted types of inclusion dependencies (such
as foreign key constraints). In such settings, the target tgds need not form a
weakly acyclic set, yet the certain answers can be computed by using a finite
part of a potentially infinite target obtained via the chase procedure.

To gain a deeper insight into the differences between data exchange and peer
data exchange, we now introduce the concept of a universal solution for peer
data exchange.

Definition 7.1. Let P = (S, T, �st, �ts, �t) be a peer data exchange setting,
I a source instance, and J a target instance. We say that a target instance Ju is
a universal solution for (I, J) if Ju is a solution for (I, J) and for every solution
J ′ for (I, J), there is a homomorphism from Ju to J ′.

It is clear that a universal solution for a source instance I in a data exchange
setting S = (S, T, �st, �t) is a universal solution for (I, ∅) in the peer data
exchange setting P = (S, T, �st, ∅, �t) (i.e., �ts = ∅).

The next example shows that there is a peer data exchange setting in the
class Ctract and a source instance for which solutions exist, but universal so-
lutions do not. Moreover, no solution is adequate for computing the certain
answers of target conjunctive queries.

Example 2. Let S be a schema consisting of two unary relation symbols
P and R, and let T be a schema consisting of a binary relation symbol T .
Consider the following PDE setting with S as its source schema and T as its
target schema:

�st : P (x) → ∃zT (x, z)
�ts : T (x, z) → P (x)

T (x, z) → R(z)

Clearly this PDE setting is in Ctract. If I = {P (a), R(b1), . . . , R(bn)} and J = ∅,
then a target instance J ′ is a solution for (I, J) if and only if J ′ = {T (a, bk) :
k ∈ K } for some nonempty subset K of {1, . . . , n}. In particular, there are expo-
nentially many solutions for (I, J). It is easy to see, however, that none of these
solutions is universal, since homomorphisms must map each constant from I

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Peer Data Exchange • 1491

to itself. For instance, the solution {T (a, b1)} is not universal because there is
no homomorphism from {T (a, b1)} to the solution {T (a, b2)}.

Let q be the target conjunctive query T (x, y). Clearly, certain(q, (I, J)) = ∅,
while at the same time if J ′ is a solution for (I, J), then q(J ′)↓ �= ∅. Thus no
solution for (I, J) is adequate for computing the certain answers of q.

Since universal solutions may not exist even for PDE settings in Ctract, we
introduce the concept of a universal basis as a relaxation of the concept of a
universal solution. We note that Nash et al. [2006] independently introduced the
concept of a universal set solution for data exchange, which is the same concept,
but in the context of data exchange with arbitrary embedded dependencies (not
just source-to-target dependencies and target dependencies).

Definition 7.2. Let P = (S, T, �st, �ts, �t) be a peer data exchange setting.
If I is a source instance and J is a target instance, then a universal basis for
(I, J) in P is a finite, nonempty set U of solutions for (I, J) such that, for every
solution Jsol for (I, J), there is a Ju ∈ U such that a homomorphism from Ju to
Jsol exists.

It is clear that every finite set of solutions containing a universal basis is
also a universal basis. In the special case of data exchange, a singleton set with
a universal solution for a source instance I as its member forms a universal
basis for I . In the preceding Example 2, the set U0 = {{T (a, bi)} : 1 ≤ i ≤ n}
forms a universal basis for (I, J); however, no proper subset of U is a universal
basis for (I, J). In the same example, since there are finitely many solutions for
(I, J), the set SOL(I, J) of all solutions for (I, J) is a universal basis for (I, J).
Thus, in this example, the universal bases for (I, J) are precisely the sets U of
solutions for (I, J) such that U0 ⊆ U ⊆ SOL(I, J).

We also introduce the concept of an adequate set for computing the certain
answers of queries in peer data exchange settings.

Definition 7.3. Let P = (S, T, �st, �ts, �t) be a peer data exchange setting,
I a source instance, J a target instance, and q a target query. We say that a set
U of solutions for (I, J) is adequate for computing the certain answers of q in P
if certain(q, (I, J)) = ⋂

J ′∈U q(J ′)↓.

It turns out that there is a tight connection between universal bases and
adequate sets.

PROPOSITION 7.4. Let P = (S, T, �st, �ts, �t) be a peer data exchange setting,
I a source instance, J a target instance, and U a finite, nonempty set of solutions
for (I, J). Then the following statements are equivalent:

(1) U is a universal basis for (I, J).
(2) U is adequate for computing the certain answers of every finite union of

target conjunctive queries.

PROOF. Assume first that U is a universal basis for (I, J). Let q be a fi-
nite union (q1 ∨ · · · ∨ qm) of target conjunctive queries q1, . . . , qm. We have to
show that if t is a tuple of constants from I , then t ∈ certain(q, (I, J)) if and

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1492 • A. Fuxman et al.

only if t ∈ ⋂
J ′∈U q(J ′)↓. Since U is a set of solutions for (I, J), it is obvious

that if t ∈ certain(q, (I, J)), then t ∈ ⋂
J ′∈U q(J ′)↓. Toward the other direc-

tion, assume that t ∈ ⋂
J ′∈U q(J ′)↓. Let Jsol be an arbitrary solution for (I, J).

Since U is a universal basis for (I, J), there is a solution Ju ∈ U and a homo-
morphism h from Ju to Jsol. Since unions of conjunctive queries are preserved
under homomorphisms and since t ∈ q(Ju), we have that h(t) ∈ q(Jsol). More-
over, h(t) = t, since homomorphisms map constants from I to themselves. Thus,
t ∈ q(Jsol) and so t ∈ certain(q, (I, J)), since Jsol was taken to be an arbitary
solution.

The proof of the other direction makes use of a connection, first discovered by
Chandra and Merlin [1977], between homomorphisms and canonical conjunc-
tive queries. If K is an instance with n elements (constants or labeled nulls)
in its active domain, then the canonical conjunctive query of K is the Boolean
conjunctive query qK obtained by taking the conjunction of all the facts of K
and then replacing all labeled nulls by existentially quantified variables. For
example, if

K = {E(a, b), E(b, n1), E(n1, n2), E(n2, a)},
where a, b are constants and n1, n2 are labeled nulls, then qK is the Boolean
conjunctive query

∃x1∃x2(E(a, b) ∧ E(b, x1) ∧ E(x1, x2) ∧ E(x2, a)).

Chandra and Merlin [1977] showed that, if K and K ′ are two instances over
the same schema, then there is a homomorphism from K to K ′ if and only if
qK (K ′) = true. With this basic result at hand, we are now ready to complete
the proof.

Assume that U is adequate for computing the certain answers of finite unions
of target conjunctive queries. Let J1, . . . , Jm be an enumeration of all members
of U and let q be the finite union (qJ1 ∨ · · · ∨ qJm) of the canonical conjunctive
queries of J1, . . . , Jm. Clearly, for every i ≤ m, we have that q(Ji) = true, which
implies that

⋂
J ′∈U q(J ′)↓ = true. Consequently, by the adequacy of U , we have

that certain(q, (I, J)) = true. This implies that if Jsol is an arbitrary solution
for (I, J), then q(Jsol) = true, which, in turn, implies that there is some i ≤ m
such that qJi (Jsol) = true. It follows that there is a homomorphism from Ji to
Jsol and, thus, U is a universal basis for (I, J).

Several remarks are in order now. First, an inspection of the proof of the
preceding Proposition 7.4 reveals that, if U is a universal basis, then U is ade-
quate for computing the certain answers of every target query that is preserved
under homomorphisms; in particular, U is adequate for computing the certain
answers of unions of conjunctive queries. Moreover, for U to be a universal basis,
it suffices to be adequate for computing the certain answers of finite unions of
Boolean target conjunctive queries. It should also be noted that Proposition 7.4
can be construed as analogous to Proposition 4.2 in Fagin et al. [2005a] about
data exchange; the latter proposition asserts that, in the case of data exchange,
a solution is universal if and only if it is adequate for computing the certain
answers of conjunctive queries.

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Peer Data Exchange • 1493

Next, we show that in peer data exchange settings with no target constraints,
universal bases exist if and only if solutions exist. Moreover, we establish an
upper bound on the size of the smallest universal basis.

THEOREM 7.5. Let P = (S, T, �st, �ts, ∅) be a peer data exchange setting with
no target constraints. Then, for every source instance I and every target instance
J, the following statements are equivalent:

(1) There is a solution J ′ for (I, J) in P.
(2) There is a universal basis U for (I, J) such that the cardinality of U is at

most exponential in the sizes of I and J, and every member of U is of size at
most polynomial in the sizes of I and J.

Moreover, there is an exponential time algorithm that, given a source instance
I and a target instance J, determines if a solution for (I, J) exists and, when a
solution exists, constructs a universal basis for (I, J) as above.

PROOF. Consider the peer data exchange setting S = (S, T, �st, ∅, ∅) ob-
tained fromP = (S, T, �st, �ts, ∅) by removing all target-to-source dependencies
in �ts. The proofs of the results in Fagin et al. [2005a] about the chase proce-
dure in data exchange can be extended in a straightforward manner to show
that there is a polynomial-time algorithm that, given a source instance I and
a target instance J , returns a canonical universal solution Jcan for (I, J) in S.
In particular, Jcan has the following properties: (a) J ⊆ Jcan; (b) (I, J) |= �st;
(c) if Jsol is a solution for (I, J) in S, then there is a homomorphism from Jcan

to Jsol. Note that the naive chase, which we introduced in Section 5, could also
be used to derive a (different) universal solution for (I, J) in polynomial time.

We are now ready to describe an exponential-time algorithm that, given a
source instance I and a target instance J , determines whether a solution for
(I, J) in the peer data exchange setting P = (S, T, �st, �ts, ∅) exists and, if it
does, returns a universal basis for (I, J) in P.

Step 1. By chasing (I, J) with �st, construct a canonical universal solution
Jcan for (I, J) in S.

Note that the active domain Dom(Jcan) of Jcan is the union of a subset of the
active domain Dom(I) of I , the active domain Dom(J) of J , and the set N of
nulls generated by the chase procedure. Let B be a set of new values such that
B ∩ N = ∅ and |B| = |N |.

Step 2. For every mapping h : Dom(Jcan) → Dom(I) ∪ Dom(J) ∪ B such that
h(c) = c for every c ∈ Dom(I)∪Dom(J), form a target instance h(Jcan) so that h is
an onto homomorphism from Jcan to h(Jcan). This means that the facts of h(Jcan)
are precisely the tuples (h(d1), . . . , h(dk)) such that (d1, . . . , dk) is a fact of Jcan.

Step 3. For every target instance h(Jcan) created in step 2, test whether
h(Jcan) is a solution for (I, J) in P. If no such instance is a solution for (I, J)
in P, then return: “no solution for (I, J) in P exists”; otherwise, return the set

U = {h(Jcan) : h(Jcan) is a solution for (I, J) in P}
of all such solutions.

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1494 • A. Fuxman et al.

We claim that the algorithm runs in time exponential in the size of I and
the size of J . To see this, note that step 1 can be carried out in polynomial time
in the size of I and the size of J ; in particular, Jcan and B are of polynomial
size. step 2 and step 3 can be carried out in exponential time in the size of
I and the size of J , since there are exponentially many mappings h from
Dom(Jcan) to Dom(I) ∪ Dom(J) ∪ B and for each such mapping h considered,
we can test in polynomial time whether h(Jcan) is a solution for (I, J) in P.
Moreover, each target instance h(Jcan) in U is of size polynomial in the sizes of I
and J .

Clearly, if the algorithm terminates by returning a set U , then a solution
for (I, J) in P exists. So, to show the correctness of this algorithm, it suffices
to show that if a solution for (I, J) exists, then the algorithm returns a set U
that is a universal basis for (I, J) in P.

Let Jsol be a solution for (I, J) in P. Since Jsol is also a solution for (I, J) in S
and Jcan is a universal solution for (I, J) in S, there is a homomorphism h′ from
Jcan to Jsol. Note that, since homomorphisms map constants from I and J to
themselves, we have that h′(c) = c for every c ∈ Dom(Jcan)∩(Dom(I)∪Dom(J)).
Let h′(Jcan) be the image of Jcan under h′, that is, h′(Jcan) is the subinstance of
Jsol consisting of all tuples (h′(d1), . . . , h′(dk)) such that (d1, . . . , dk) is a fact of
Jcan.

We claim that h′(Jcan) is a solution for (I, J) in P. To begin with, we
have that J ⊆ h′(Jcan), since J ⊆ Jcan and h′ is the identity mapping on
J . We now have to show that (I, h′(Jcan)) |= �st ∪ �ts. Suppose first that
∀x(φs(x) → ∃yψt(x, y)) is a source-to-target tgd in �st and a is a tuple of
values from I such that I |= φs(a). Since Jcan is a solution for (I, J) in S,
there is a tuple b = (b1, . . . , bm) of values in Jcan such that Jcan |= ψt(a, b).
Since h′ is a homomorphism from Jcan to Jsol and h′(a) = a, it follows that
h(Jcan) |= ψt(a, h′(b)), where h′(b) = (h′(b1), . . . , h′(bm)). This shows that
(I, h(Jcan)) |= �st. Finally, if ∀x(αt(x) → ∃yβs(x, y)) is a target-to-source tgd in
�ts and c is a tuple of values from h′(Jcan) such that h′(Jcan) |= αt(c), then there
is a tuple d of values from I such that I |= βs(c, d). This is so because h′(Jcan)
is a subinstance of Jsol and (Jsol, I) |= ∀x(αt(x) → ∃yβs(x, y)). This shows that
(I, h′(Jcan)) |= �ts, which the proof of the claim that h′(Jcan) is a solution for (I, J)
in P.

Next we claim that h′(Jcan) is isomorphic to a target instance of the form
h(Jcan) for some mapping h : Dom(Jcan) → Dom(Jcan) ∪ B such that h(c) = c for
every c ∈ Dom(I) ∪ Dom(J), as in step 2 of the algorithm. Intuitively, h(Jcan) is
obtained from h′(Jcan) by renaming the images of the nulls of Jcan by elements
of B. More precisely, let D = {h′(w) : w ∈ N }, that is, D is the set of the images
of the nulls of Jcan under h′. Since |D| ≤ |N | ≤ |B|, there is a one-to-one map-
ping h′′ : D → B. Then the desired mapping h : Dom(Jcan) → Dom(Jcan) ∪ B
is defined as follows: if c ∈ Dom(I) ∪ Dom(J), then h(c) = c; if c ∈ N , then
h(c) = h′′(h′(c)).

Since h(Jcan) is isomorphic to h′(Jcan) and h′(Jcan) is a solution for (I, J)
in P, we have that h(Jcan) is also a solution for (I, J) in P and, thus, it is a
member of U . Moreover, there is a homomorphism from h(Jcan) to Jsol, since
h(Jcan) is isomorphic to the subinstance h′(Jcan) of Jsol.

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Peer Data Exchange • 1495

Suppose that P = (S, T, �st, �ts, ∅) is a peer data exchange setting such that
�st is a set of full source-to-target tgds. In this case, Jcan has no nulls and, conse-
quently, the universal basis returned by the algorithm in the proof of Theorem
7.5 is the singleton U = {Jcan}. This yields a different proof of Corollary 6.5. It
also yields a much simpler algorithm for computing the certain answers of tar-
get conjunctive queries in such peer data exchange settings, namely, evaluate
the query on Jcan. These observations are summarized in the following result.

COROLLARY 7.6. Suppose that P = (S, T, �st, �ts, ∅) is a PDE setting such
that �st is a set of full source-to-target tgds. Then, for every source instance I
and every target instance J, the following statements are equivalent:

(1) There is a solution J ′ for (I, J) in P.
(2) Jcan is a solution for (I, J) in P, where Jcan is the result of chasing (I, J)

with �st.

Moreover, if a solution for (I, J) exists, then Jcan is adequate for computing
the certain answers of target conjunctive queries. Consequently, for every target
conjunctive query q, there is a polynomial-time algorithm for computing the
certain answers of q in P.

It should be noted that there are PDE settings in Ctract for which every univer-
sal basis has exponential size. For example, consider the following PDE setting:

�st : E(x, y) → ∃vC(x, v)
�ts : C(x, v) → H(v)

C(x, v) → ∃ y E(x, y)

Assume that G = (V , E) is an arbitrary graph and H = {r, g , b} is the set of
three colors r, g , b. Then a solution exists for the source instance (E, H) and the
target instance ∅. Actually, for every function c : V → H, the target instance
C = {(v, c(v)) : v ∈ V } is a solution. Note that there are 3|V | such solutions and
no homomorphism exists between any two distinct solutions. It follows that
every universal basis must contain all such solutions and, thus, must be of size
at least 3|V |.

Finally, it should be pointed out that the proof of Theorem 7.5 does not go
through if target dependencies are allowed in the peer data exchange setting.
The problem is that, in the presence of target tgds, the instance h′(Jcan) may
not be a solution for (I, J). If, however, �t is a set of target egds, then h′(Jcan)
is a solution, because it is a subinstance of the solution Jsol and satisfaction
of egds is preserved under subinstances. Thus Theorem 7.5 also holds if
target egds are allowed. It remains an open problem to study the existence of
universal bases for peer data exchange settings in which both target egds and
target tgds are allowed.

8. CONCLUSIONS

We have introduced a conceptually simple, yet powerful, framework for data
sharing among independent peers. Peer data exchange models a scenario in
which a target peer receives data from an autonomous source and has no au-
thority to modify the data of the source peer. At the same time, the target

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1496 • A. Fuxman et al.

peer may specify what data it is willing to receive, and the exchange makes
use of source-to-target and target-to-source schema mappings. Peer data ex-
change is both a generalization of data exchange and a special case of peer data
management. This intermediate strength of peer data exhange is reflected in
the computational complexity of the two main algorithmic problems associated
with it: testing for the existence of solutions and computing the certain an-
swers of target queries. Indeed, we have shown that, in peer data exchange,
the existence-of-solutions problem is NP-complete and the data complexity of
the certain answers of target conjunctive queries is coNP-complete. In contrast,
these two problems are tractable for fairly general data exchange settings and
undecidable for full-fledged peer data management systems.

We have also explored the boundary between tractability and intractability
for the two main algorithmic problems in peer data exchange. To this effect, we
identified a broad class of PDE settings with no target constraints for which
the existence-of-solutions problem is solvable in polynomial time. Moreover,
for every peer data exchange setting in this class, we have found a maximal
collection of target conjunctive queries whose certain answers can be computed
in polynomial time. An important consequence of our results is that for peer data
exchange settings with no target constraints and such that all source-to-target
tgds are full, both the existence-of-solutions and the computation of the certain
answers of every target conjunctive query are tractable problems. Finally, we
have shed additional light on the differences between peer data exchange and
data exchange by introducing and studying the notion of a universal basis of
solutions in peer data exchange, which is a relaxation of the notion of a universal
solution in data exchange.

It remains an open problem to identify broad classes of peer data exchange
settings with target constraints for which testing for the existence of solutions
and computing the certain answers of target conjunctive queries are tractable
problems. In a different direction, it would be worth exploring alternative se-
mantics in peer data exchange. Specifically, semantics based on repairs [Arenas
et al. 1999; Bertossi and Bravo 2004] may be a meaningful alternative for query
answering when no solutions exists. Moreover, “good approximate” solutions
may turn out to be useful for actual exchange of data when solutions do exist,
but none is universal.

ACKNOWLEDGMENTS

We wish to thank the three anonymous referees for their careful reviews of an
earlier version of this article.

REFERENCES

ABITEBOUL, S. AND DUSCHKA, O. M. 1998. Complexity of answering queries using materialized

views. In Proceedings of the ACM Symposium on Principles of Database Systems (PODS). 254–

263.

ARENAS, M., BERTOSSI, L., AND CHOMICKI, J. 1999. Consistent query answers in inconsistent

databases. In Proceedings of the ACM Symposium on Principles of Database Systems (PODS).

68–79.

BEERI, C. AND VARDI, M. 1984. A proof procedure for data dependencies. J. Assoc. Comput.
Mach. 31, 4, 718–741.

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Peer Data Exchange • 1497

BERNSTEIN, P., GIUNCHIGLIA, F., KEMENTSIETSIDIS, A., MYLOPOULOS, J., SERAFINI, L., AND ZAIHRAYEU, I.

2002. Data management for peer-to-peer computing: A vision. In Proceedings of the Interna-
tional Workshop on the Web and Databases (WebDB). 89–94.

BERTOSSI, L. AND BRAVO, L. 2004. Query answering in peer-to-peer data exchange systems. In

Proceedings of the EDBT Workshop on Peer-to-Peer Computing and Databases. 476–485.

CALı̀, A., CALVANESE, D., DE GIACOMO, G., AND LENZERINI, M. 2004. Data integration under integrity

constraints. Inform. Syst. 29, 147–163.

CALı̀, A., LEMBO, D., AND ROSATI, R. 2003. On the decidability and complexity of query answering

over inconsistent and incomplete databases. In Proceedings of the ACM Symposium on Principles
of Database Systems (PODS). 260–271.

CALVANESE, D., DAMAGGIO, E., DE GIACOMO, G., LENZERINI, M., AND ROSATI, R. 2004a. Semantic data

integration in P2P systems. In Databases, Information Systems, and Peer-to-Peer Computing.

Lecture Notes in Computer Science, vol. 2944. Springer-Verlag, Berlin, Germany, 77–90.

CALVANESE, D., DE GIACOMO, G., LEMBO, D., LENZERINI, M., AND ROSATI, R. 2005. Inconsistency toler-

ance in P2P data integration: An epistemic logic approach. In Database Programming Languages.

Lecture Notes in Computer Science, vol. 3774. Springer-Verlag, Berlin, Germany, 90–105.

CALVANESE, D., DE GIACOMO, G., LENZERINI, M., AND ROSATI, R. 2004b. Logical foundations of peer-to-

peer data integration. In Proceedings of the ACM Symposium on Principles of Database Systems
(PODS). 241–251.

CHANDRA, A. K. AND MERLIN, P. M. 1977. Optimal implementation of conjunctive queries in re-

lational data bases. In Proceedings of the ACM Symposium on Theory of Computing (STOC).

77–90.

DEUTSCH, A. AND TANNEN, V. 2003. Reformulation of XML queries and constraints. In Proceedings
of the International Conference on Database Theory (ICDT). 225–241.

FAGIN, R., KOLAITIS, P. G., MILLER, R. J., AND POPA, L. 2003. Data exchange: Semantics and query

answering. In Proceedings of the International Conference on Database Theory (ICDT). 207–224.

FAGIN, R., KOLAITIS, P. G., MILLER, R. J., AND POPA, L. 2005a. Data exchange: Semantics and query

answering. Theoret. Comput. Sci. (special issue with selected papers from ICDT 2003) 336, 1,

89–124.

FAGIN, R., KOLAITIS, P. G., AND POPA, L. 2005b. Data exchange: Getting to the core. ACM Trans.
Database Syst. (special issue with selected papers from PODS 2003) 30, 1, 174–210.

FRANCONI, E., KUPER, G., LOPATENKO, A., AND SERAFINI, L. 2003. A robust logical and computational

characterisation of peer-to-peer database systems. In Proceedings of the VLDB Workshop on
Databases, Information Systems and Peer-to-Peer Computing.

FRANCONI, E., KUPER, G., LOPATENKO, A., AND ZAIHRAYEU, I. 2004. The coDB robust peer-to-peer

database system. In Proceedings of the Symposium on Advanced Database Systems. 382–393.

GRAHNE, G. 1991. The Problem of Incomplete Information in Relational Databases. Lecture Notes

in Computer Science, vol. 554. Springer-Verlag, Berlin, Germany.

GRAHNE, G. AND MENDELZON, A. 1999. Tableau techniques for querying information sources

through global schemas. In Proceedings of the International Conference on Database Theory
(ICDT). 332–347.

HALEVY, A., IVES, Z., SUCIU, D., AND TATARINOV, I. 2005. Schema mediation for large-scale semantic

data sharing. VLDB J. 14, 1, 68–83.

KOLAITIS, P. G., PANTTAJA, J., AND TAN, W. 2006. The complexity of data exchange. In Proceedings
of the ACM Symposium on Principles of Database Systems (PODS). To appear.

LENZERINI, M. 2002. Data integration: A theoretical perspective. In Proceedings of the ACM Sym-
posium on Principles of Database Systems (PODS). 233–246.

LI, C. 2004. Raccoon: A peer-based system for data integration and sharing. In Proceedings of
the International Conference on Data Engineering (ICDE). 852. (System Demonstration).

NASH, A., DEUTSCH, A., AND REMMEL, J. 2006. Data exchange, data integration, and chase. Tech.

rep. CS2006-0859, University of California, San Diego, San Diego, CA.

O’DONOVAN, C., MARTIN, M. J., GATTIKER, A., GASTEIGER, E., BAIROCH, A., AND APWEILER, R. 2002.

High-quality protein knowledge resource: Swiss-prot and trembl. Briefings Bioinformat. 3, 3,

275–284.

POPA, L., VELEGRAKIS, Y., MILLER, R. J., HERNÁNDEZ, M. A., AND FAGIN, R. 2002. Translating Web

data. In Proceedings of the International Conference on Very Large Data Bases (VLDB). 598–609.

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1498 • A. Fuxman et al.

TATARINOV, I. 2004. Semantic data sharing with a peer data management system. Ph.D. disser-

tation. University of Washington, Seattle, Washington.

TATARINOV, I. AND HALEVY, A. Y. 2004. Efficient query reformulation in peer data management

systems. In Proceedings of the ACM SIGMOD International Conference on Management of Data.

539–550.

VAN DER MEYDEN, R. 1998. Logical approaches to incomplete information: A survey. In Logics for
Databases and Information Systems, J. Chomicki and G. Saake, Eds. Kluwer, Dordrecht, The

Netherlands, 307–356.

Received October 2005; revised May 2006; accepted July 2006

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

