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Abstract

We give a quadratic algorithm for the following structure identification problem: given a Boolean relation R and a finite set S of
Boolean relations, can the relation R be expressed as a conjunctive query over the relations in the set S? Our algorithm is derived
by first introducing the concept of a plain basis for a co-clone and then identifying natural plain bases for every co-clone in Post’s
lattice. In the process, we also give a quadratic algorithm for the problem of finding the smallest co-clone containing a Boolean
relation.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction and summary of results

The structure identification problem [10] has been recognized as a basic algorithmic problem arising in several
different areas of artificial intelligence and computer science, such as knowledge representation and computational
learning theory. Informally, structure identification is the problem of determining whether a given relation can be
“represented” by a formula in some logical formalism. The given relation can be thought of as a set of observations
or a state of knowledge; thus, the structure identification problems asks whether a given set of observations coincides
with the set of models of some formula in the logical formalism under consideration.

The structure identification problem can be formalized in different ways by considering different logical formalisms
of interest. The most well-studied formalization of this problem, originally articulated by Dechter and Pearl [10], has
become known as the Inverse Satisfiability Problem [8,13], which here will be denoted as INVSAT. The input to
an instance of the INVSAT problem is a relation R and a finite set S of relations over the same domain as R; the
question is whether R is the set of models of some CNF(S)-formula, i.e., a formula that is the conjunction of atomic
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formulas of the form T (x1, . . . , xn), where T is a relation in the set S. In other words, the question is whether R can
be obtained from the relations in S using finite Cartesian products and identification of variables. Clearly, CNF(S)

formulas generalize Boolean formulas in conjunctive normal form. Note that the INVSAT problem has connections
to both constraint satisfaction and database theory. Indeed, from a constraint-satisfaction perspective, INVSAT asks
whether the relation R is the set of solutions of a constraint network [9] built from relations in S, while, from a
database-theoretic perspective, it asks whether R can be expressed as a relational join [1] involving relations from S.
Over the Boolean domain, INVSAT is known to be a coNP-complete problem [13]. As defined above, INVSAT is a
uniform problem, in the sense that both a relation R and a finite set S of relations are part of the input. By keeping
the set S fixed, we obtain a family of non-uniform decision problems INVSAT(S) (one for each fixed set S) in which
the input is just a relation R. Kavvadias and Sideri [13] proved a Dichotomy Theorem that completely characterizes
the computational complexity of all non-uniform INVSAT(S) problems over the Boolean domain, provided the set S

contains the singletons {0} and {1} as members (equivalently, the constants 0 and 1 are allowed in CNF(S)-formulas).
Specifically, they showed that if the set S consists of Boolean relations all of which are Horn,2 or all of which are dual
Horn, or all of which are bijunctive, or all of which are affine, then INVSAT(S) is in P; in all other cases INVSAT(S)

is coNP-complete.
In view of the intractability of INVSAT, it is natural to ask: are there are tractable variants of the structure identifi-

cation problem in which formulas from more powerful formalisms are used? If S is a set of relations, then the class
of ∃CNF(S)-formulas consists of all expressions of the form ∃yϕ(x,y), where ϕ(x,y) is a CNF(S)-formula and x, y
are tuples of variables. This means that a relation R is the set of models of some ∃CNF(S)-formula if and only if R

can be obtained from the relations in S using finite Cartesian products, identification of variables, and projections.
In universal algebra, ∃CNF(S)-formulas are known as primitive positive formulas, and they play an important role in
the Galois connection between clones of functions and co-clones of relations [15,16]. They also play a crucial role
in the proof of Schaefer’s Dichotomy Theorem for generalized satisfiability SAT(S) problems [18], which is the first,
and arguably the most influential, Dichotomy Theorem in computational complexity. In database theory, ∃CNF(S)-
formulas are known as conjunctive queries or select-project-join queries, and they constitute the most frequently
asked queries in relational database systems. In fact, conjunctive queries are directly expressed in SQL through the
Select-From-Where construct, the main building block of SQL [12].

The ∃-INVSAT problem asks: given a relation R and a finite set S of relations over the same domain, is R is
the set of models of some ∃CNF(S)-formula? In other words, is R definable by a conjunctive query with relations
from S? Dalmau [8, Lemma 42] showed that, over arbitrary finite domains, ∃-INVSAT is a decidable problem. Since
the algorithm given in [8] has a running time of several exponentials, Dalmau raised the question of designing more
efficient algorithms for ∃-INVSAT or establishing lower bounds for the complexity of this problem. He also considered
the non-uniform version of this problem, that is, the family ∃-INVSAT(S) of decision problems obtained by fixing the
set S of relations (thus, the input to ∃-INVSAT(S) is just a relation R). Using the fact that every Boolean clone is finitely
generated, Dalmau [8, Corollary 11] pointed out that, for each fixed finite set S of Boolean relations, ∃-INVSAT(S) is
a polynomial-time solvable problem: the algorithm simply checks that the relation R is closed under every function in
the basis for the clone associated with the smallest co-clone containing the relations in S. The running time, however,
is bounded by a polynomial whose degree depends on the set S, and can be arbitrarily high. The reason is that if S is
a set of relations in one of the co-clones in the infinite part of Post’s lattice, then the bases for the associated clones
contain functions of arbitrarily large arity.

In this paper, we show that, over the Boolean domain, the (uniform) ∃-INVSAT problem is solvable in time quadratic
in the size of the relation R and the set S. As an immediate consequence, we have that, over the Boolean domain,
each non-uniform ∃-INVSAT(S) problem is also solvable in quadratic time. This result contrasts sharply with the
intractability of the INVSAT problem; it also reveals the difference that the choice of the logical formalism can make
on the complexity of the structure identification problem.

Our quadratic algorithm for the ∃-INVSAT problem is designed in two stages. In the first stage, we obtain a
quadratic algorithm for the restriction of ∃-INVSAT to sets S of relations in one of the co-clones in the infinite part of
Post’s lattice. This is achieved by introducing the concept of a plain basis for a co-clone, making use of prime CNF
representations of relations, and exhibiting natural plain bases for the co-clones in the infinite part of Post’s lattice. By

2 Dechter and Pearl [10] had already shown that if S is a set of Horn relations, then INVSAT(S) is in P.
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definition, a plain basis for a co-clone I is a set B of relations in I such that every relation in I is the set of models of
a CNF(I)-formula. Thus, the notion of a plain basis is a strengthening of the notion of a basis for a co-clone I , which,
by definition, is a set B of relations in I such that every relation in I is definable by a ∃CNF(I)-formula; natural bases
for all Boolean co-clones have been exhibited in [5]. Note that our quadratic algorithm for the ∃-INVSAT problem
restricted to the co-clones in the infinite part of Post’s lattice easily yields a cubic algorithm for the full ∃-INVSAT over
the Boolean domain; this is so because the clones in the finite part of Post’s lattice have bases consisting of functions
of arities at most three. As it turns out, however, we can do better than this. Indeed, in the second stage, we exhibit
natural plain bases for all Boolean co-clones, and then use these plain bases to derive a quadratic algorithm for the
full ∃-INVSAT problem over the Boolean domain.

In the process of solving the ∃-INVSAT problem over the Boolean domain, we also use plain bases to give a
quadratic algorithm for the following problem, which is of independent interest: given a Boolean relation, find the
smallest co-clone to which it belongs.

2. Basic notions and background

This section contains the definitions of the basic notions and a minimum amount of the necessary background
material.

2.1. Boolean formulas in conjunctive normal form and prime implicates

A literal is either a variable x ( positive literal) or a negated variable ¬x (negative literal). A clause is a finite
disjunction (�1 ∨ · · · ∨ �k) of literals. A Boolean formula is said to be in Conjunctive Normal Form (CNF) if it is a
conjunction of clauses. We refer to formulas in conjunctive normal form as CNF-formulas.

If V is a set of variables, then an assignment on V is a mapping from V to {0,1}. If V is a set of variables and ϕ

is a CNF-formula over a subset of V , then a model of ϕ over V is an assignment on V that satisfies ϕ. A formula is
satisfiable if it has at least one model. If ϕ1 and ϕ2 are two propositional formulas over sets of variables V1 and V2,
respectively, then we say that ϕ1 (logically) entails ϕ2 if every model of ϕ1 over V1 ∪V2 is a model of ϕ2. We also say
that ϕ1 and ϕ2 are (logically) equivalent, denoted ϕ ≡ ϕ′, if their sets of models over V1 ∪ V2 coincide.

An n-ary Boolean relation is a set R ⊆ {0,1}n. We will be interested in the following correspondence between
Boolean relations and propositional formulas. Every n-ary Boolean relation R can be viewed as a set of assignments
to the variables x1, x2, . . . , xn, i.e., we view every vector m = (m1, . . . ,mn) ∈ R as the assignment of value mi to
variable xi , for i ∈ {1, . . . , n}. We say that a propositional formula ϕ over the variables x1, . . . , xn represents R if R is
the set of models of ϕ. A relation is Horn (respectively, dual Horn) if it is the set of models of some Horn formula
(respectively, dual Horn formula). A relation is bijunctive if it is the set of models of some 2CNF formula.

An important notion that we will use repeatedly in what follows is that of a prime implicate. Let ϕ be a propositional
formula. A clause C = (�1 ∨ · · · ∨ �k) is said to be a prime implicate of ϕ if ϕ entails C, but it does not entail any
proper subclause of C. This means that ϕ entails C, but there is no i ∈ {1, . . . , k} such that ϕ entails the clause
(�1 ∨· · ·∨ �i−1 ∨ �i+1 ∨· · ·∨ �k). A CNF-formula ϕ is said to be prime if all its clauses are prime implicates of it. For
example, the CNF-formula (x1 ∨ x2) ∧ (¬x2 ∨ ¬x3) is prime. In contrast, the CNF-formula (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨
x2 ∨ x4)∧ (x3 ∨¬x4) is not prime because it entails (x2 ∨ x3), which is a proper subclause of (x1 ∨ x2 ∨ x3). It is easy
to see that every Boolean relation is represented by some prime CNF formula.

2.2. CNF(S)-formulas, ∃CNF(S)-formulas, INVSAT(S), and ∃-INVSAT(S)

Let S be a (possibly infinite) set of Boolean relations. For every relation R in S, let R′ be a relation symbol of the
same arity as R.

• A CNF(S)-formula is a finite conjunction of expressions (sometimes called generalized clauses) of the form
T ′(x1, . . . , xk), where each T ′ is the relation symbol representing a relation T in S, and x1, . . . , xk are Boolean
variables that need not be distinct from each other (i.e., identification of variables is allowed).

• A ∃CNF(S)-formula is an expression of the form ∃y1 . . . ymϕ(x1, . . . , xn, y1, . . . , ym), where ϕ(x1, . . . , xn,

y1, . . . , ym) is a CNF(S)-formula.
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The concepts of a model of a CNF(S)-formula and of a model of a ∃CNF(S)-formula are defined in a standard way
by assuming that the variables range over the set {0,1} and each relation symbol T ′ is interpreted by the corresponding
relation T in S. For notational simplicity, in what follows we will use the same symbol, say T , for both a Boolean
relation T and the relation symbol T ′ representing it.

• SAT(S) is the following decision problem: given a CNF(S)-formula ϕ, is it satisfiable (i.e., does it have at least
one model)?

Numerous well-known variants of Boolean satisfiability can be cast as SAT(S) problems, for appropriately chosen
sets S of logical relations. For example, the prototypical NP-complete problem 3-SAT coincides with the problem
SAT(S), where S = {R0,R1,R2,R3} and R0 = {0,1}3 −{(0,0,0)} (expressing the clause (x ∨y ∨ z)), R1 = {0,1}3 −
{(1,0,0)}, R2 = {0,1}3 − {(1,1,0)}, and R3 = {0,1}3 − {(1,1,1)}. Similarly, the well-known NP-complete problem
POSITIVE-1-IN-3-SAT is precisely SAT(S), where S = {R1/3} is the singleton consisting of the relation R1/3 =
{(1,0,0), (0,1,0), (0,0,1)}.

Schaefer [18] completely characterized the computational complexity of all SAT(S) problems, as S ranges over
finite sets of Boolean relations. Specifically, he identified all finite sets S for which SAT(S) is in P, and showed that
SAT(S) is NP-complete for all other finite sets S. In particular, assume that S is a finite set of Boolean relations
containing the singletons {0} and {1} as members. Schaefer showed that if S is Horn,3 or dual Horn, or bijunctive, or
affine, then SAT(S) is in P; in all other cases, SAT(S) is NP-complete. This is called a Dichotomy Theorem because
Ladner [14] has shown that, assuming P �= NP, there are decision problems in NP that are neither NP-complete nor
in P. Thus, Schaefer’s Theorem implies that no SAT(S) problem is of the kind discovered by Ladner.

• INVSAT(S) is the following decision problem: given a Boolean relation R, is R the set of models of some CNF(S)-
formula?

INVSAT(S) is a structure identification problem as it asks whether a given Boolean relation (a set of observations)
can be represented by a formula in some particular formalism. As mentioned in Section 1, Kavvadias and Sideri
[13] proved a Dichotomy Theory for SAT(S) that parallels Schaefer’s Dichotomy Theorem. Specifically, assuming S

is a finite set of Boolean relations containing the singletons {0} and {1} as members, the polynomial-time cases of
INVSAT(S) coincide with the polynomial-time cases of SAT(S); in all other cases, INVSAT(S) is coNP-complete.

• ∃-INVSAT(S) is the following decision problem: given a Boolean relation R, is R the set of models of some
∃CNF(S)-formula?

∃-INVSAT(S) is a structure identification problem that asks whether a given Boolean relation can be represented
by a formula in a certain logical formalism that is more expressive than the logical formalism in INVSAT(S). As
mentioned in Section 1, Dalmau [8] showed that, for every finite set S of Boolean relations, ∃-INVSAT(S) is solv-
able in polynomial time via an algorithm whose running time depends on the set S. Here, we shall show that every
∃-INVSAT(S) problem is solvable in quadratic time. In fact, we shall give a quadratic algorithm for the uniform
structure identification problem ∃-INVSAT, which contains all ∃-INVSAT(S) problems as special cases.

• ∃-INVSAT is the following decision problem: given a finite set S of Boolean relations and a Boolean relation R,
is R the set of models of some ∃CNF(S)-formula?

2.3. Post’s lattice

An n-ary Boolean function is a function f : {0,1}n �→ {0,1}. If f is an n-ary Boolean function and g1, . . . , gn

are all m-ary Boolean functions, then their composition f (g1, . . . , gn) is the m-ary Boolean function defined
by f (g1, . . . , gn)(a1, . . . , am) = f (g1(a1, . . . , am), . . . , gn(a1, . . . , am)), for every (a1, . . . , am) ∈ {0,1}m. For n �

3 This means that every relation in S is the set of models of some Horn formula; the other cases are defined in a similar manner.



N. Creignou et al. / Journal of Computer and System Sciences 74 (2008) 1103–1115 1107
m � 1, the projection function πn,m is defined by πn,m(x1, . . . , xn) = xm. If f is a Boolean function, then the dual
of f is the Boolean function dual(f ) defined by dual(f )(a1, . . . an) = f (a1, . . . , an).

A (Boolean) clone is a set of Boolean functions closed under composition and containing all projections functions.
Every clone has a dual clone whose members are the dual functions of the members of the clone. Since the roles of 0
and 1 are interchangeable, properties of clones can be transferred to their dual clones.

The clones form a lattice under set inclusion, which has become known as Post’s lattice [17], since Post was the
first to give a complete description of all clones and of the inclusions between them. Post’s lattice is depicted in Fig. 1;
note that we use the notation of clones developed in [3,4].4 The infinite part of Post’s lattice consists of the clones
Sn

0 , Sn
00, Sn

01, Sn
02, n � 1, and their duals Sn

1 , Sn
10, Sn

11, Sn
12, n � 1. The remaining clones form the finite part of Post’s

lattice.
A basis for a clone Cl is a subset F of Cl such that every function in Cl can be obtained from members of F and

from the projection functions via compositions. One of the main findings of Post [17] was that every (Boolean) clone
has a finite basis. The clones in the finite part of Post’s lattice have bases in which each function has arity at most 3.
In contrast, the bases of the clones in the infinite part have members of arbitrarily large arity; these bases are depicted
in Table 1.

A (Boolean) co-clone is a set of Boolean relations containing the equality relation EQ = {00,11} and closed under
finite Cartesian products, projections, and identification of variables. It has been shown that a Galois connection
holds between clones and co-clones so that each co-clone turns out to be a maximal class of relations closed under
every function in some clone. More precisely, let R be an m-ary Boolean relation and let f be an n-ary Boolean
function. We say that R is closed under f , or that f a polymorphism of R, if whenever f is applied coordinate-
wise to n (not necessarily distinct) m-tuples in R, then the resulting m-tuple is also in R. For instance, a binary
relation R is closed under a ternary function f if whenever (a11, a12), (a21, a22), and (a31, a32) are in R, then also
(f (a11, a21, a31), f (a12, a22, a32)) is in R. We write Pol(R) to denote the set of all polymorphisms of R. If S is a set
of Boolean relations, then we write Pol(S) to denote the set of all functions that are polymorphisms of every relation
in S. Thus, Pol(S) = ⋂

R∈S Pol(R). It is easy to verify that every Pol(S) is a clone.
Conversely, if F is a set of Boolean functions, then we write Inv(F ) to denote the set of all relations that are

closed under every function in F . It is easy to verify that every Inv(F ) is a co-clone. The functions Inv and Pol are
inverse to each other on the lattice of clones and the lattice of co-clones; thus, if F is a clone, then Pol(Inv(F )) = F ,
while if S is a co-clone, then Inv(Pol(S)) = S (for additional information, see [11,15,16,20] and also the more recent
survey [4]). In what follows, we will write ICl to denote the co-clone corresponding to clone Cl, that is, ICl = Inv(Cl);
for example, IE2 denotes the co-clone corresponding to the clone E2 in Post’s lattice. Note that a relation R belongs
to a co-clone ICl if and only if R is closed under every member of a basis for Cl.

A basis for a co-clone ICl is a subset B of ICl such that every member of ICl is the set of models of some ∃CNF(B)-
formula. In other words, every member of ICl can be obtained from members of B using finite Cartesian products,
identification of variables, and projections. A list of simple bases of all (Boolean) co-clones was given in [5].

We now introduce a new, stronger notion of a basis for a co-clone.

Definition 1. Let ICl be a co-clone in Post’s lattice. A subset B of ICl is called a plain basis for ICl if every member
of ICl is definable by a CNF(B)-formula. In other words, every member of ICl can be obtained from members of B

using finite Cartesian products and identification of variables (but no projections).

Every plain basis for ICl is also a basis for ICl; the converse, however, need not be true.

3. The smallest co-clone problem, ∃-INVSAT, and plain bases

Our goal is to give a quadratic algorithm for ∃-INVSAT on the Boolean domain. This will be achieved by first
giving a quadratic algorithm for a different computational problem about Post’s lattice, which we introduce next.

If S is a set of Boolean relations, then there is a smallest co-clone M(S) containing S as a subset. This is so
because an arbitrary intersection of co-clones is itself a co-clone, which implies that the intersection of all co-clones
containing S is the smallest co-clone containing S (as a subset).

4 The authors are grateful to Steffen Reith who provided them with the figure.
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Fig. 1. Lattice of all Boolean clones.

• MIN CO-CLONE is the following algorithmic problem: Given a finite set S of Boolean relations, find the smallest
co-clone M(S) containing S.

The following fact provides a connection between INVSAT and MIN CO-CLONE.
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Table 1
Co-clones in the infinite part of Post’s lattice and bases for the corresponding clones (where, for instance, x ∨ (y ∧ z) denotes the function
(x, y, z) �→ x ∨ (y ∧ z))

Co-clone Basis for corresponding clone Co-clone Basis for corresponding clone

ISn
0 {x → y, dual(hn)} ISn

1 {x ∧ y, hn}
IS0 {x → y} IS1 {x ∧ y}
ISn

02 {x ∨ (y ∧ z), dual(hn)} ISn
12 {x ∧ (y ∨ z), hn}

IS02 {x ∨ (y ∧ z)} IS12 {x ∧ (y ∨ z)}
ISn

01 {dual(hn), c1} ISn
11 {hn, c0}

IS01 {x ∨ (y ∧ z), c1} IS11 {x ∧ (y ∨ z), c0}
ISn

00 {x ∨ (y ∧ z), dual(hn)} ISn
10 {x ∧ (y ∨ z), hn}

IS00 {x ∨ (y ∧ z)} IS10 {x ∧ (y ∨ z)}

Fact 1. Assume that R is a Boolean relation and S is a set of Boolean relations. Then the following statements are
equivalent.

1. R is the set of models of some ∃CNF(S)-formula.
2. R belongs to the smallest co-clone M(S) containing S.
3. The smallest co-clone M({R}) containing R is a subset of the smallest co-clone M(S) containing S.

The equivalence (1) ⇐⇒ (2) can be derived from the Galois connection between clones and co-clones in Post’s
lattice [16], while the equivalence (2) ⇐⇒ (3) follows easily from the definitions. An immediate consequence of
Fact 1 is that ∃-INVSAT has a polynomial-time reduction to MIN CO-CLONE. Indeed, given R and S, we first compute
M({R}) and M(S) using an algorithm for MIN CO-CLONE, and then inspect Post’s lattice to determine in constant
time whether or not M({R}) ⊆ M(S).

Let us, for a moment, ignore the infinite part of Post’s lattice and focus only on its finite part. Every clone in
the finite part of Post’s lattice has a basis with at most 4 elements in which every function has arity at most 3. As
mentioned in Section 2.3, a relation belongs to a co-clone ICl if and only if it is closed under every member of a
basis for Cl. Consequently, if the smallest co-clone containing a relation is in the finite part of Post’s lattice, then
this smallest co-clone can be found in cubic time (in the size of the given relation). This approach, however, cannot
be applied to the infinite part of Post’s lattice. Indeed, though each basis is finite (and, in fact, contains at most two
functions), the arity of one of the two functions in these bases is unbounded (see Table 1); for instance, the basis for
Sn

0 contains a function of arity n. Thus, testing a relation for closure under the functions in those bases cannot be done
in polynomial time using the naive approach.

In the next section, we show how to efficiently solve the MIN CO-CLONE problem on the infinite part of Post’s
lattice.

3.1. Infinite part of Post’s lattice

The bases for the clones in the infinite part of Post’s lattice, as well as those for S0 and S1, are presented in Table 1
in which, for n � 1, hn denotes the (n+ 1)-ary function defined by hn(x1, . . . , xn+1) = ∨n+1

i=1 x1 ∧ · · ·∧ xi−1 ∧ xi+1 ∧
· · · ∧ xn+1, c0 denotes the 0-ary constant function 0, and c1 denotes the 0-ary constant function 1.

We shall provide plain bases for the corresponding co-clones. Every relation in one of them will turn out to be the
set of models of an implicative hitting set-bounded (IHSB) formula, which is a restricted Horn or dual Horn formula.
By taking advantage of the duality in Post’s lattice, we focus our attention on the right side of the infinite part of Post’s
lattice. Consequently, we define IHSB− formulas, which are restricted Horn formulas; IHSB+ formulas are defined
in a dual manner. The collection of IHSB formulas consists of all IHSB− and all IHSB+ formulas.

Definition 2 (Implicative Hitting Set-Bounded− clauses and formulas).

• A clause is said to be IHSB− if it is of one of the following types: (xi), (¬xi1 ∨ xi2), or (¬xi1 ∨ · · · ∨ ¬xik ) for
some k � 1.
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• For n � 2, an IHSB− clause is said to be of width n, denoted by IHSB−n, if it contains at most n literals.
• A CNF formula is said to be IHSB− (respectively, IHSB−n) if all its clauses are IHSB− (respectively, IHSB−n).

The next proposition establishes a link between the IHSB−n formulas, n � 1, and the co-clones whose correspond-
ing clones are in the right side of the infinite part of Post’s lattice.

Proposition 1. The following statements are true.

1. A relation is in the co-clone ISn
10 (respectively, in the co-clone IS10) if and only if every prime CNF formula

representing it is an IHSB−n formula (respectively, an IHSB− formula).
2. A relation is in the co-clone ISn

11 (respectively, in the co-clone IS11) if and only if every prime CNF formula
representing it is an IHSB−n formula (respectively, an IHSB− formula) and contains no clause of the form (xi).

3. A relation is in the co-clone ISn
12 (respectively, in the co-clone IS12) if and only if, for every prime CNF formula ϕ

representing it, we have that ϕ is an IHSB−n formula (respectively, an IHSB− formula) and for every two
variables xi , xj , if ϕ contains the clause (¬xi ∨ xj ), then it entails the clause (xi ∨ ¬xj ).

4. A relation is in the co-clone ISn
1 (respectively, in the co-clone IS1) if and only if, for every prime CNF formula ϕ

representing it, we have that ϕ is an IHSB−n formula (respectively, an IHSB− formula), ϕ contains no clause
of the form (xi), and for every two variables xi , xj , if ϕ contains the clause (¬xi ∨ xj ), then it entails the clause
(xi ∨ ¬xj ).

Proof. We give the proof of the first statement only. The other statements can be proved using similar arguments and
the statements preceding them.

Böhler et al. [5] showed that the relations represented by IHSB−n clauses form a basis of ISn
10. Hence, if a rela-

tion R is represented by some IHSB−n formula, then R must be in the co-clone ISn
10.

For the other direction, let R be a relation in ISn
10. Since the containment E2 ⊂ Sn

10 holds in Post’s lattice, we have
that R is a Horn relation, i.e., it is the set of models of some Horn formula. Let ϕ be a prime CNF formula repre-
senting R. Since every prime CNF formula representing a Horn relation must be a Horn formula [21, Proposition 3],
each clause of ϕ must contain either zero or exactly one positive literal. It remains to show that all these clauses are
IHSB−n clauses.

Clauses containing no positive literal. Towards a contradiction, assume that ϕ contains such a clause which is
“too wide,” that is to say, a clause C of the form (¬xi1 ∨ · · · ∨ ¬xim) with m > n. Since C is prime, for every j there
is a vector mj in R which falsifies the clause (¬xi1 ∨ · · · ∨ ¬̂xij ∨ · · · ∨¬xim), and since all such vectors mj satisfy C

(because ϕ represents R), we have that there are n+1 vectors m1, . . . ,mn+1 ∈ R whose projections mj � {xi1, . . . , xim}
onto {xi1, . . . , xim} are:

xi1 xi2 xi3 . . . xin−1 xin xin+1 xin+2 . . . xim

m1 � {xi1, . . . , xim} = 0 1 1 . . . 1 1 1 1 . . . 1,

m2 � {xi1, . . . , xim} = 1 0 1 . . . 1 1 1 1 . . . 1,

. . .

mn � {xi1, . . . , xim} = 1 1 1 . . . 1 0 1 1 . . . 1,

mn+1 � {xi1, . . . , xim} = 1 1 1 . . . 1 1 0 1 . . . 1. (1)

If we apply the function hn coordinate-wise to these n + 1 vectors, we obtain a vector d whose projection on
{xi1, . . . , xim} is the vector 1 . . .1; clearly, d is not in R because it falsifies C. It follows that R is not closed un-
der hn, which contradicts the hypothesis that R is in ISn

10, since hn is in Sn
10 (see Table 1).

Clauses containing one positive literal. Again towards a contradiction, assume that ϕ contains a clause of the
form C = (xi1 ∨ ¬xi2 ∨ · · · ∨ ¬xim) with m > 2. Reasoning as above, we obtain three vectors m1, m2, m3 in R whose
projections on {xi1, . . . , xim} are as below:

xi1 xi2 xi3 xi4 . . . xim

m1 � {xi1, . . . , xim} = 1 1 1 1 . . . 1,

m2 � {xi1, . . . , xim} = 0 0 1 1 . . . 1,

m � {x , . . . , x } = 0 1 0 1 . . . 1.
3 i1 im
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If we apply the function (x, y, z) �→ x ∧ (y ∨ z) coordinate-wise to these three vectors, we obtain a vector d whose
projection on {xi1, . . . , xim} is the vector 011 . . .1; clearly, d is not in R because it falsifies C, yielding a contradiction
again since the function (x, y, z) �→ x ∧ (y ∨ z) is in Sn

10.

Since we have shown that every clause in ϕ consists of at most n negative literals or has at most 2 literals, we
conclude that ϕ is an IHSB−n formula. �

As an immediate consequence of Proposition 1, we obtain the following plain bases for co-clones corresponding
to clones in the right side of the infinite part of Post’s lattice.

Corollary 1. The following statements are true.

1. The set {(x), (¬x ∨ y), (¬x1 ∨ · · · ∨ ¬xk): k � n} of all IHSB−n clauses is a plain basis for the co-clone ISn
10.

2. The set {(¬x ∨ y), (¬x1 ∨ · · · ∨ ¬xk): k � n} is a plain basis for the co-clone ISn
11.

3. The set {(x),Eq, (¬x1 ∨ · · · ∨¬xk): k � n} is a plain basis for the co-clone ISn
11. Here, Eq is the equality relation

{00,11} (i.e., the relation represented by the formula (x ↔ y)).
4. The set {Eq, (¬x1 ∨ · · · ∨ ¬xk): k � n} is a plain basis for the co-clone ISn

1 .

By duality, results analogous to Proposition 1 and Corollary 1 can be obtained for co-clones corresponding to
clones in the left side of the infinite part of Post’s lattice; we leave it to the reader to formulate these results.

We can now give a quadratic algorithm for the MIN CO-CLONE problem on the infinite part of Post’s lattice.

Proposition 2. Given a relation R in IS10, the smallest co-clone in {ISn
1, ISn

10, ISn
12, ISn

11 | n � 1} containing R can
be found in time O(k2m2), where k is the arity of R and m is the number of elements of R. A dual result holds for
a relation R in the co-clone IS00.

Proof. Zanuttini and Hébrard [21] showed that, given a Boolean relation R, a prime CNF formula ϕ representing R

can be computed in time O(k2m2), and that ϕ contains O(km) clauses. By scanning ϕ once, one can find the maximum
size n of its clauses in time O(k2m), and also decide whether ϕ contains unary positive clauses. Finally, for every
clause of the form (¬x ∨ y) in ϕ one can decide whether ϕ entails (x ∨ ¬y) in time O(mn) by testing whether every
vector in R satisfies the clause (x ∨¬y); since ϕ contains O(km) clauses, this requires O(k2m2) operations. Once this
information is collected, one can find the smallest co-clone in {ISn

1, ISn
10, ISn

12, ISn
11 | n � 1} containing R immediately

by referring to Proposition 1. �
Proposition 2 and the remarks preceding Section 3.1 yield the following result.

Corollary 2. The MIN CO-CLONE problem and the ∃-INVSAT problem can be solved in cubic time.

By Proposition 2, the algorithms for MIN CO-CLONE and ∃-INVSAT take quadratic time on the infinite part of
Post’s lattice; however, they take cubic time on the finite part of Post’s lattice, since there we have to test that a
Boolean relation is closed under all functions in the bases of the corresponding clone, and the maximum arity of these
functions can be 3. In the next section, we shall give a quadratic algorithm for MIN CO-CLONE and ∃-INVSAT by first
obtaining plain bases for every Boolean co-clone and then reasoning as in the proof of Proposition 2.

3.2. Plain bases for co-clones and quadratic algorithms for MIN CO-CLONE and ∃-INVSAT

Table 2 gives a plain basis for every Boolean co-clone in Post’s lattice. In this table, whenever possible, we denote
relations by clauses that represent them; for example, the clause (¬x ∨y) denotes the binary relation {00,01,11}. The
positive clause (x1 ∨ · · · ∨ xk) of width k is denoted by Pk ; similarly, the negative clause (¬x1 ∨ · · · ∨¬xk) of width k

is denoted by Nk . We use a similar kind of notation for relations that are represented by linear equations; we write Eq
to denote the binary equality relation {00,11}. Finally, Complk,� denotes the (k + �)-ary relation represented by the
conjunction of clauses (x1 ∨ · · · ∨ xk ∨ ¬y1 ∨ · · · ∨ ¬y�) ∧ (¬x1 ∨ · · · ∨ ¬xk ∨ y1 ∨ · · · ∨ y�), i.e., the complementive
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Table 2
Plain bases for all co-clones

Co-clone Plain basis Property

IBF {Eq} only equalities
IR0 {Eq, (¬x)} neg1

IR1 {Eq, (x)} pos1

IR2 {Eq, (¬x), (x)} unary
IM {(¬x ∨ y)} implicative
IM0 {(¬x), (¬x ∨ y)} implicative or pos1

IM1 {(x), (¬x ∨ y)} implicative or neg1

IM2 {(x), (¬x), (¬x ∨ y)} implicative or unary
ISn

0 {Eq} ∪ {Pk | k � n} posn

IS0 {Eq} ∪ {Pk | k ∈ N} pos.
ISn

1 {Eq} ∪ {Nk | k � n} negn

IS1 {Eq} ∪ {Nk | k ∈ N} neg.
ISn

02 {Eq, (¬x)} ∪ {Pk | k � n} neg1 or posn

IS02 {Eq, (¬x)} ∪ {Pk | k ∈ N} neg1 or positive
ISn

12 {Eq, (x)} ∪ {Nk | k � n} pos1 or negn

IS12 {Eq, (x)} ∪ {Nk | k ∈ N} pos1 or negative
ISn

01 {(¬x ∨ y)} ∪ {Pk | k � n} implicative or posn

IS01 {(¬x ∨ y)} ∪ {Pk | k ∈ N} implicative or positive
ISn

11 {(¬x ∨ y)} ∪ {Nk | k � n} implicative or negn

IS11 {(¬x ∨ y)} ∪ {Nk | k ∈ N} implicative or negative
ISn

00 {(¬x), (¬x ∨ y)} ∪ {Pk | k � n} IHSB+n

IS00 {(¬x), (¬x ∨ y)} ∪ {Pk | k ∈ N} IHSB+
ISn

10 {(x), (¬x ∨ y)} ∪ {Nk | k � n} IHSB−n

IS10 {(x), (¬x ∨ y)} ∪ {Nk | k ∈ N} IHSB−
ID {(x ⊕ y = c) | c ∈ {0,1}} affine of width exactly 2
ID1 {(x = c) | c ∈ {0,1}} ∪ {(x ⊕ y = c) | c ∈ {0,1}} affine of width 2
ID2 {(x), (¬x), (x ∨ y), (¬x ∨ y), (¬x ∨ ¬y)} bijunctive
IL {(x1 ⊕ · · · ⊕ xk = 0) | k even} even homogeneous linear equation
IL0 {(x1 ⊕ · · · ⊕ xk = 0) | k ∈ N} homogeneous linear equation
IL1 {(x1 ⊕ · · · ⊕ xk = c) | k ∈ N, c = k mod 2} 1-valid linear equation
IL2 {(x1 ⊕ · · · ⊕ xk = c) | k ∈ N, c ∈ {0,1}} linear equation
IL3 {(x1 ⊕ · · · ⊕ xk = c) | k even, c ∈ {0,1}} even linear equation
IV {(x1 ∨ · · · ∨ xk ∨ ¬y) | k � 1} definite dual Horn and not neg1

IV0 {(x1 ∨ · · · ∨ xk ∨ ¬y) | k ∈ N} definite dual Horn
IV1 {Pk | k ∈ N} ∪ {(x1 ∨ · · · ∨ xk ∨ ¬y) | k � 1} dual Horn and not neg1

IV2 {Pk | k ∈ N} ∪ {(x1 ∨ · · · ∨ xk ∨ ¬y) | k ∈ N} dual Horn
IE {(¬x1 ∨ · · · ∨ ¬xk ∨ y) | k � 1} definite Horn and not pos1

IE0 {Nk | k ∈ N} ∪ {(¬x1 ∨ · · · ∨ ¬xk ∨ y) | k � 1} Horn and not pos1

IE1 {(¬x1 ∨ · · · ∨ ¬xk ∨ y) | k ∈ N} definite Horn
IE2 {Nk | k ∈ N} ∪ {(¬x1 ∨ · · · ∨ ¬xk ∨ y) | k ∈ N} Horn
IN {Complk,� | k, � � 1} complementive, 0-valid and 1-valid
IN2 {Complk,� | k, � ∈ N} complementive
II {(x1 ∨ · · · ∨ xk ∨ ¬y1 ∨ · · · ∨ ¬y�) | k, � � 1} 0-valid and 1-valid
II0 {(x1 ∨ · · · ∨ xk ∨ ¬y1 ∨ · · · ∨ ¬y�) | k ∈ N, � � 1} 0-valid
II1 {(x1 ∨ · · · ∨ xk ∨ ¬y1 ∨ · · · ∨ ¬y�) | k � 1, � ∈ N} 1-valid
II2 {(x1 ∨ · · · ∨ xk ∨ ¬y1 ∨ · · · ∨ ¬y�) | k, � ∈ N} any clause

In this table: (i) negn means negative and containing at most n literals, and dually for posn; (ii) definite Horn means Horn with exactly one positive
literal, and dually for definite dual Horn.

relation {0,1}k+� \ {0 . . .01 . . .1,1 . . .10 . . .0}. The last column gives the usual name given to the property satisfied
by each clause, equation or relation in the basis.

The next proposition asserts that Table 2 is correct.

Proposition 3. Each line in Table 2 gives a plain basis for the corresponding co-clone.
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Proof. The correctness of the list for co-clones in the infinite part of Post’s lattice follows from Proposition 1 and
Corollary 1. For the remaining co-clones, we proceed from the largest co-clone to the smallest one. Since the proofs
for co-clones of the form ICl, ICl0, ICl1 follow from the proofs for co-clone ICl2 in a straightforward manner, we
only consider the latter in many cases.

• [II, IIc] Obviously, every relation can be represented by a CNF formula.
• [IN, IN2] Obviously, every complementive relation can be represented by a CNF containing the clause (¬x1 ∨

· · · ∨ ¬xk ∨ y1 ∨ · · · ∨ y�) as soon as it contains (x1 ∨ · · · ∨ xk ∨ ¬y1 ∨ · · · ∨ ¬y�); grouping these clauses two
by two in the CNF formula yields a conjunction of Complk,� relations; conversely the set of models of such a
formula is complementive.

• [IE, IEc, IV, IVc, IL, ILc, ID, IDc] For the co-clones IE2, IV2, IL2, ID2, the correctness of the plain bases follows
from results in [10,18], and [21].

• [IM, IMc] The proof for IM2 follows from the inclusions IM2 ⊆ IS2
00, IS2

10 in one direction, and from the closure
of the clauses in the plain basis under and and or in the other direction.

• [IRc, IBF] In one direction, the result for IR2 follows from the inclusions IR2 ⊆ IM2, ID1, because clauses
(¬x ∨ y) of the plain basis of IM2 are not in ID1, while unary clauses are (equation (x = 1) is equivalent to
clause (x), and equation (x = 0) is equivalent to clause (¬x)). In the other direction, the proof follows from the
closure of unary clauses under both or and (x, y, z) �→ x ∧ (y ⊕ z ⊕ 1). �

Remark 1. When considering bases for mathematical objects, an important question is that of minimality. For in-
stance, Böhler et al. gave bases for all Boolean co-clones and showed that their bases are of minimal order, where the
order of a set of Boolean relations is the maximum arity of the relations in the set. As listed in Table 2, our plain bases
are minimal in the sense that they are included in every other plain basis for the same co-clone, provided replicated
variables in the scope of an atom in CNF(S)-formulas are disallowed (see [7] for more details).

We are now ready to derive the main result of this paper.

Theorem 1. Given a Boolean relation R, the minimal co-clone M({R}) containing R can be found in time O(k2m2),
where k is the arity of R and m is the number of elements of R. Consequently, the MIN CO-CLONE problem and the
∃-INVSAT problem can be solved in quadratic time.

Proof. Using the results in [21] and the list of plain bases in Table 2, we design an algorithm that extends the quadratic
algorithm given in the proof of Proposition 2. Specifically, given R, first compute a prime CNF formula ϕ represent-
ing R in time O(k2m2) using the algorithm in [21]; the formula ϕ contains O(km) clauses. By the results in [21], our
Proposition 1 (and a similar reasoning for other co-clones), for every co-clone ICl whose plain basis consists entirely
of clauses, we know that ϕ is over this plain basis if and only if R is in ICl. This can be decided in time linear in the
size of ϕ; actually, in time O(k2m). Thus we are left with co-clones whose plain bases contain relations that are not
equivalent to an individual clause.

For plain bases containing the relation Eq, it is easily seen that it is enough to decide whether R entails (¬xi ∨ xj )

as soon as (xi ∨ ¬xj ) is in ϕ. In the affirmative, (xi ∨ ¬xj ) can be replaced with Eq(xi, xj ); otherwise, R is not in
the co-clone. Once again, this requires O(k2m) operations. As shown in [21], the affine co-clones can be handled in a
similar manner, by essentially replacing ∨ with ⊕ in ϕ and by testing whether each vector in R satisfies the resulting
affine formula, a task that takes time O(k2m2). The reasoning for complementive co-clones is similar.

This process makes it possible to decide membership of a relation R in each co-clone in quadratic time.
The smallest co-clone M({R}) containing R can then be computed in constant time using Post’s lattice. The
MIN CO-CLONE problem can be solved in quadratic time as follows: given a finite set S of Boolean relation, first
compute the smallest co-clone containing each member of S and then use Post’s lattice to compute the union of these
smallest co-clones. Finally, by Fact 1, the ∃-INVSAT problem can be solved in quadratic time using the quadratic
algorithm for the MIN CO-CLONE problem. �

We conclude the paper with several remarks.
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• Although the MIN CO-CLONE problem was used here as a stepping stone to solve the ∃-INVSAT problem, it is of
independent interest. In particular, the quadratic algorithm for MIN CO-CLONE implies a quadratic algorithm for
the so-called meta-problem (see [6]) associated with the classification of the complexity of a family of decision
problems Γ (S), where S is a finite set of Boolean relations, provided this classification follows the lines of Post’s
lattice.
As an illustration, consider Schaefer’s Dichotomy Theorem [18] which, as described in detail in Section 2.2,
asserts that, for every finite set of Boolean relations, either SAT(S) is in P or SAT(S) is NP-complete; moreover,
the tractable cases of SAT(S) are the cases in which S is Horn, or S is dual Horn, or S is bijunctive, or every S is
affine. Thus, the quadratic algorithm for MIN CO-CLONE implies that, given a finite set S of Boolean relations, we
can decide in quadratic time whether or not SAT(S) is in P. A similar result holds for the meta-problem associated
with the INVSAT problem studied in [13]. Earlier known algorithms for these meta-problems were cubic, as they
relied on closure properties.

• In the vein of the previous remark, we note that an important, but not well understood, issue is what makes the
classification of the complexity of a family of problems follow Post’s lattice. Indeed, assume a family of decision
problems Γ (S), where S is a finite set of relations, is such that the property S′ ⊆ M(S) (where S′ is a finite set
of relations) does not a priori guarantee that Γ (S′) is polynomial-time reducible to Γ (S). Then a complexity
classification for this family cannot a priori be obtained by using Post’s lattice.
However, assume that whenever every relation in S′ can be expressed from the relations in S using only finite
Cartesian products and identification of variables, then Γ (S′) is polynomial-time reducible to Γ (S) (which is true
of many decision problems about formulas). Then Schnoor and Schnoor [19] show that a complexity classification
for the family Γ (S) can be obtained by Post’s lattice, provided that for every finite set of relations S and for
every finite subset B of a plain basis for M(S), Γ (B) is polynomial-time reducible to Γ (S[ext]), where S[ext]
is a particular relation which they define. Consequently, our notion of a plain bases complements Schnoor and
Schnoor’s work as a step towards a deeper understanding of complexity classifications. For more details we refer
the reader to [19].

• The ∃-INVSAT problem has a dual version, which asks: given a Boolean function f and a finite set of Boolean
functions F , does f belong to the clone generated by F . This problem was shown to be solvable in polynomial
time by Bergman and Slutzki [2]; in fact, it was shown to be in NL. It is not clear, however, that this result can
be used to derive a polynomial-time algorithm for ∃-INVSAT. The main reason is that, in the problem studied by
Bergman and Slutzki, the set F of functions is given as an input. Thus, if we wanted to take advantage of their
result, then we would have to compute a basis for the clone corresponding to the smallest co-clone containing
a given set of Boolean relations, which is exactly the difficult part in the ∃-INVSAT problem.
Along these lines, note also that, by definition, the ∃-INVSAT problem could also be reformulated as the problem
of deciding whether a given set of Boolean relations S is a basis for {R} (in the standard sense of a basis, as
studied by Böhler et al.). It appears, however, that this standard notion of a basis is of no help in solving ∃-INVSAT

efficiently, whereas the stronger notion of a plain basis gives rise to a quadratic algorithm for ∃-INVSAT

• Finally, all results presented here are special to the Boolean domain, as they depend heavily on Post’s lattice.
The ∃-INVSAT problem is a perfectly meaningful, and interesting, structure identification problem over higher
domains. As mentioned earlier, Dalmau [8] pointed out that, for every finite domain, ∃-INVSAT is a decidable
problem. Its exact complexity, however, is not known on any domain with more than two elements.
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