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Abstract. Fagin's theorem, the first important result of descriptive complexity, asserts that a prop-
erty of graphs is in NP if and only if it is definable by an existential second-order formula. In
this article, we study the complexity of evaluating existential second-order formulas that belong to
prefix classses of existential second-order logic, where a prefix class is the collection of al exis-
tential second-order formulas in prenex normal form such that the second-order and the first-order
quantifiers obey a certain quantifier pattern. We completely characterize the computational complex-
ity of prefix classes of existential second-order logic in three different contexts: (1) over directed
graphs, (2) over undirected graphs with self-loops and (3) over undirected graphs without self-loops.
Our main result is that in each of these three contexts a dichotomy holds, that is to say, each pre-
fix class of existential second-order logic either contains sentences that can express NP-complete
problems, or each of its sentences expresses a polynomial-time solvable problem. Although the
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boundary of the dichotomy coincides for the first two cases, it changes, as one moves to undi-
rected graphs without self-loops. The key difference is that a certain prefix class, based on the
well-known Ackermann class of first-order logic, contains sentences that can express NP-complete
problems over graphs of the first two types, but becomes tractable over undirected graphs without
self-loops. Moreover, establishing the dichotomy over undirected graphs without self-loops turns
out to be a technically challenging problem that requires the use of sophisticated machinery from
graph theory and combinatorics, including results about graphs of bounded tree-width and Ramsey’s
theorem.

Categories and Subject Descriptors: F.2.3 [Analysis of Algorithms and Problem Complexity]:
Tradeoffs between Complexity Measures, F.4.1 [Mathematical Logic and Formal Languages]:
Mathematical Logic

Genera Terms. Theory, Algorithms, Languages

Additional Key Words and Phrases: Existential second-order logic, NP-complete problems, prefix
classes, finite model theory, graph constraints, graph coloring

1. Introduction and Summary of Results

Descriptive complexity isthe study of the connections between computational com-
plexity and expressibility in logic. Over the past twenty-five years, research in this
area has established that essentially all major complexity classes have natural char-
acterizations in terms of expressibility in extensions of first-order logic on classes
of finite structures (see Immerman [1998]). The prototypical result in descriptive
complexity is the well-known Fagin’'s theorem [Fagin 1974], which asserts that a
decision problem on finite graphsisin NP if and only if it isexpressible in existen-
tial second-order logic ESO, that is, it is definable on all finite graphs by a sentence
of the form 3R, --- IR ¢, where Ry, ..., R are relational variables of various
arities and ¢ is a first-order formula. This machine-independent characterization
of NP provided the impetus for the subsequent development of descriptive com-
plexity, found numerous applications to other areas, and motivated Papadimitriou
and Yannakakis [1991] to develop a complexity theory of approximability of NP-
optimization problems.

Are there tighter connections between NP-computability and expressibility in
ESO that remain to be discovered? |deally, one would like to be able to examine a
given second-order sentence and determine whether it expresses a property that is
NP-complete or solvable in polynomial time or of intermediate complexity (recall
that Ladner [1975] showed that if P =£ NP, then there are NP-problemsthat are nei-
ther NP-compl ete nor solvable in polynomial time). This goal, however, turns out
to be entirely unattainable, since, using Trahtenbrot’s theorem [ Trahtenbrot 1963],
itiseasy to seethat if P # NP, then it is an undecidable problem to tell whether a
given second-order sentence defines an NP-complete problem. In view of this state
of affairs, one can only hopeto analyze specific syntactic fragments of ESO and de-
termine whether or not they contain sentencesthat express NP-compl ete problems.
For instance, existential second-order sentences of the form 3P; - - - AP, VX1 VX219,
whereeach P, isamonadic relational variable, x; and x, arefirst-order variablesand
v isaquantifier-free formula, can expressr-COLORABILITY. In contrast, Gradel
[1991, 1992] showed that every problem expressible by a Horn existential second-
order sentence is solvable in polynomial time, where an existential second-order
sentenceisHorn if itisof theform IR, - - - AR VX1 - - - VX, where xq, ..., X¢ are
first-order variables and ¢ is a quantifier-free formulain conjunctive normal form
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such that each conjunct contains at most one positive occurrence of each relational
variable R, 1 <i <rr.

Among al syntactic fragments of first-order and second-order logic, prefix
classes are undoubtedly the most well-studied ones. A prefix class is obtained
by considering formulas in prenex normal form and imposing restrictions on the
pattern of the quantifiersin the formulas (but, unlike Horn formulas, no restrictions
areimposed on the quantifier-free part of the formulas). Prefix classes of first-order
logic have been extensively investigated in the context of the classical decision
problem, which isthe satisfiability problem for first-order logic: given afirst-order
sentence v, is ¢ satisfiable? Since this problem is unsolvable, researchers toiled
for several decades and eventually succeeded in delineating the boundary between
solvability and unsolvability by identifying all prefix classes of first-order logic that
have a solvable satisfiability problem (see Borger et al. [1997]).

In this article, we systematically investigate and completely characterize the
computational complexity of prefix classes of ESO in three different contexts:
(1) over directed graphs, (2) over undirected graphs with self-loops, and (3) over
undirected graphs without self-loops. Our main result isthat in each of these three
contexts a dichotomy holds, that is to say, each prefix class of ESO either contains
sentencesthat can express NP-compl ete problems, or each of its sentencesexpresses
a polynomial-time solvable problem. Although the boundary of the dichotomy
coincides for the first two cases (to which we refer as general graphs from now
on), it changes, as one moves to undirected graphs without self-loops. The key
difference is that a certain prefix class, based on the well-known Ackermann class
of first-order logic, contains sentences that can express NP-complete problems
over general graphs, but becomes tractable over undirected graphs without self-
loops. Moreover, establishing the dichotomy over undirected graphs without self-
loops turns out to be a technically challenging problem that requires the use of
sophisticated machinery from graph theory and combinatorics, including results
about graphs of bounded tree-width and Ramsey’s theorem.

To describe the results of this article in precise terms, we use a specia notation
for denoting prefix classes of ESO-sentences in prenex normal form. For exam-
ple, Ejeaa denotes the prefix class of all prenex formulas of ESO of the form:
AP, --- 3R IxVyVze, where each P, isamonadic relational variable, x, y, and z
arefirst-order variables, and ¢ is aquantifier-free formula. It should be noted here,
that we represent graphs as finite structures in the standard model-theoretic way
where the universe of the structure is the set of vertices and the edges are repre-
sented by one binary relation. More generally, expressions in our specia notation
are built according to the following rules:

—E (respectively, E;) denotesthe existential quantification over asingle predicate
of arbitrary arity (arity <i).

—a (respectively, €) denotes the universal (existential) quantification of a single
first-order variable.

—If n isaquantification pattern, then n* denotes al patterns obtained by repeating
n Zero or more times.

Anexpression £ in the special notation consists of astring of existential second-
order quantification patterns (E-patterns) followed by a string of first-order quan-
tification patterns (a or e patterns); such an expression represents the class of all
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W P-complete classes
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Fic. 1. (a) ESO on arbitrary structures, directed graphs and undirected graphs with self-loops; (b)
ESO on undirected graphs without self-loops. The dotted boxes highlight the difference between the
two cases.

ESO-formulas in prenex norma form whose quantifier prefix corresponds to a
not-necessarily contiguous substring of £.

We say that a prefix class Q is NP-hard on a class K of relational structures
if at least one NP-hard property on K is expressible by aformulain Q. A prefix
class Q is polynomial-time (PTIME) on K if for each formula ® € Q, the model-
checking problem for @ is solvable in polynomial time, which means that the set
of al structures A € I suchthat A = ® isinP. A prefix classis called first-order
(FO) if every formulain it is equivalent to a first-order formula. A prefix classis
syntactically first order if its definition involves only first-order quantifiers.

Ouir first result completely characterizes the computational complexity of prefix
classes of ESO on general graphs. In fact, the same characterization holds true on
the collection of al finite structures over any relational vocabulary that contains
arelation symbol of arity >2. This characterization is obtained by showing that
(assuming P £ NP) there are four minimal NP-hard prefix classes and three maxi-
mal PTIME prefix classes, and that these seven classes combine to give complete
information about all other prefix classes. This means that every other prefix either
contains one of the minimal NP-hard prefix classes as a substring (and, hence, it
is NP-hard) or is a substring of a maximal PTIME prefix class (and, hence, it is
PTIME). Figure 1(a) depictsthe characterization of the NP-hard and PTIME prefix
classesof ESO fragmentson general graphs. Asseeninthat figure, thefour minimal
NP-hard classesare E; ae, E;aaa, Ezeaa, and E; E;aa, whereasthe three maximal
PTIME classesare E*e*a, E;€*aa, and Eaa. Asanexample, itiseasy to seethat
acertain encoding of SAT on general graphs can be expressed using a sentence in
Eiae. Note that the first-order prefix class ae is known as the Ackermann class and
has played akey rolein the study of the classical decision problem for fragments of
first-order logic (see Borger et a. [1997]). Asregards the maximal PTIME classes,
the prefix class E*e*a is actually FO, while the model checking problem for fixed
sentencesin the prefix classes E;e*aa and Eaa can be reduced to 2SAT and, thus,
itisin PTIME (in fact, itisin NL).
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Our second result completely characterizes the computational complexity of
prefix classesof ESO on undirected graphswithout self-loops. Asmentioned earlier,
weestablishthat adichotomy still holds, but theboundary of the dichotomy changes.
The key difference is that the prefix class E*ae turns out to be a PTIME class on
undirected graphs without self-loops, whereas its subclass E;ae is NP-hard on
general graphs. It should be pointed out that certain interesting properties of graphs
can be expressed using E*ae-formulas. Specifically, for each positive integer m,
there is a E*ae-formula expressing that a connected graph contains a cycle whose
length is divisible by m. These problems were shown to be solvable in polynomial
time by Thomassen [1988]. E*ae constitutes amaximal PTIME class, because we
show that all four extensions of E;ae by asinglefirst-order quantifier (universal or
existential) are NP-hard on undirected graphswithout self-loops. The other minimal
NP-hard prefixes on general graphs remain NP-hard on undirected graphs without
self-loops as well. Consequently, on undirected graphs without self-loopsthere are
seven minimal NP-hard prefix classes and four maximal PTIME prefix classes that
determine the computational complexity of al other prefix classes of ESO, as seen
in Figure 1(b).

From the technical point of view, the most difficult result of the article is show-
ing that the prefix class E*ae is PTIME on undirected graphs without self-loops.
First, using syntactic methods, we show that this fragment has the same expressive
power as its monadic subfragment, that is to say, each E*ae-formulais equivalent
to some Ejae-formula. After this, we analyze the prefix class Ejae on undirected
graphs without self-loops and show that the model-checking problem for each
Ejae-formulais equivalent to a natural coloring problem, which we call the sat-
uration problem. More specifically, the saturation problem asks whether thereisa
mapping with special properties from a given undirected graph without self-loops
to afixed, directed pattern graph P that is extracted from the Ejae-formula un-
der consideration. Depending on the labelings of cyclesin P, we distinguish two
cases of this coloring problem: the saturation problem for pure pattern graphs and
the saturation problem for mixed pattern graphs. We then design polynomial-time
algorithms that solve the saturation problem in each of these two cases. In sim-
plified terms and focussed on the case of connected graphs, the polynomial-time
algorithm for the saturation problem for pure pattern graphs has three main ingre-
dients. First, adapting results by Thomassen [1988] and introducing a new graph
coloring method, we show that if a Efae-formulagivesriseto apure pattern graph,
then we can find a fixed integer k such that the formulais satisfied by every undi-
rected graph without self-loops having tree-width bigger than k. Second, we use
Courcelle's theorem [Courcelle 1990] to the effect that the model-checking prob-
lem for formulas of monadic second-order logic on graphs of bounded tree-widthis
solvablein polynomial-time. Third, we use Bodlaender’sresult [Bodlaender 1996]
to the effect that, for each fixed k, there is a polynomial-time algorithm to check
if a given graph has tree width at most k. The polynomial-time algorithm for the
saturation problem for mixed pattern graphs has similar architecture overall, but
requires the development of substantial additional technical machinery, including
ageneralization of the concept of graphs of bounded tree-width. The results of the
article can be summarized in the following theorem.

THEOREM 1.1. The classificationsin Figure 1 determine the complexity of all
ESO prefix classes on graphs.
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The results presented here should be contrasted with those in an earlier paper
that gives a complete characterization of the ESO prefix classes over strings [Eiter
et a. 2000]. While graphs are structures with an arbitrary binary relation, strings
are structures consisting of unary relations (one for each letter of the alphabet) and
a binary successor relation. The main result of Eiter et a. [2000] is a dichotomy
theorem for ESO prefix classes over strings; this dichotomy, however, differsfrom
the present one in both its scope and the methods used to establish it. First of all,
the dichotomy in Eiter et a. [2000] is between NP-hard classes and classes of
regular languages, that is, languages recognized by finite automata. Second, due
to the combinatorially simpler structure of strings, some ESO prefix classes that
are NP-hard over graphs turn out to be regular over strings. Specifically, in Eiter
et a. [2000] it was shown that there are precisely two maximal polynomial ESO
prefix classes over strings: the class E*e*ae* and the class E*e*aa. It is perhaps
interesting to note that e*ae* and e*a* are the only prefix classes of first-order
logic with equality that have a solvable satisfiability problem, while for first-order
logic without equality, the prefix e*aae* has a solvable satisfiability problem as
well (see Borger et al. [1997]). In contrast, here we show that the classes E*e*ae*
and E*e*aa are NP-complete over graphs, but certain proper prefix subclasses of
them are polynomial-time. Moreover, the classification in Figure 1 holds for both
first-order logic with equality and first-order logic without equality. We also note
that, in Eiter et al. [2000], the classes E*e*ae* and E*e*aa were shown to be
regular over strings by first proving that they are actually contained in monadic
second order logic (MSO) and then using Biichi’s theorem to the effect that MSO
over strings expresses precisely the regular languages [Buichi 1960]. Since MSO
over graphs does express NP-complete properties (e.g., 3-COLORABILITY), we
cannot use this approach in the present article for establishing polynomial-time
upper bounds; instead, we have to use completely different methods from graph
theory.

The work presented here suggests several directions of future research. Firgt, it
would be interesting to investigate the complexity of prefix classes of full second-
order logic over directed graphs and over undirected graphs (with and without
self-loops). It should be noted that such a study for prefix classes of full second-
order logic over strings has aready been carried out in Eiter et al. [2002], and
the prefix classes describing regular languages have been determined. Second, it
would be interesting to investigate the complexity of ESO prefix classes on re-
stricted collections of graphs of algorithmic significance. Here, we focussed on
the complexity of ESO prefix classes on the collection of all directed graphs and
the collections of undirected graphs with and without self-loops, as these are the
most extensively studied classes of binary relational structures. It is well known,
however, that there areimportant decision problemsthat are NP-compl ete when the
inputs are arbitrary graphs (directed or undirected), but are solvable in polynomial
time on restricted collections of graphs, such as planar graphs or regular graphs.
Consequently, the boundary between tractability and intractability for ESO prefix
classes over such restricted collections of graphs may be different from the corre-
sponding boundary for ESO prefix classes over arbitrary graphs discovered in this
article, and remainsto be explored and delineated. Finally, although the quantifica-
tion pattern is arguably one of the most natural ways to obtain syntactic fragments
of logical formalisms, it is not the only one. Different fragments can be obtained
by considering syntactic properties of the quantifier-free part of formulas (such as
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Fic. 2. Encoding of clausesc; = {p1, P2, —=Ps}, C2 = {—P1, = P2, —Pa}, and ¢z = {—p1, P3}.

being Horn) or by combining quantification patterns with syntactic properties of
the quantifier-free part. Determining the complexity of such fragments of existen-
tial second-order logic on arbitrary graphs or on restricted collections of graphs
remains an open problem.

2. NP-Hardness Results

THEOREM 2.1. E;aeis NP-hard on graphs. This holds even for self-loop free
directed graphs and for undirected graphs with some self-loops.

PrOOF. We give areduction from SATISFIABILITY OF PROPOSITIONAL
FORMULAS (SAT). Let S = {cy, ..., Cn} be aset of clauses over propositional
variables pa, ..., pn. Construct an undirected graph Gs = (Vs, Es) such that Vs
containsavertex ¢; for 1 <i < m, that is, each clause is identified with a vertex;
moreover, Vs contains a couple of vertices p; and —p; 1 < i < n, that represent
the literals p; and —p;, respectively. The edge relation Es contains a self-loop
{ci,¢} forl < i < m, i.e, each vertex representing a clause has a self-loop.
Moreover, forl <i <mand1 < j < n, the edgerelation Eg contains an edge
{Ci, pj} (respectively, {ci, —p;j}), if clausec; containsliteral p; (respectively, —p;).
Finally, for 1 <i < n, thereisan edge {pi, —pi}-

Figure 2 depicts the encoding of a clause set S = {c;, Cp, C3} with ¢; =
{pl’ P2, _'p3}’ Co = {_' P1, = P2, _'p3}! and C3 = {_' P1, p3}

Let ® bethefollowing E;ae formulaover the structure Gs = (Vs, Esg):

@ ;3T Vx3y [(Es(x, X) A Es(X,y) A =Es(y.y) A T(y)) v (—Es(x, x)
A Es(X, y) A =Es(y, y) A T(X) # T(Y))]

Intuitively, themonadic predicate T expressesatruth valueassignment totheliterals
of S. The first digunct in the matrix of ® says that every clause must contain at
least one true literal. The second digunct says that opposite literals have opposite
truth valuesby T (and hence T is a correct truth value assignment). The clause set
Sisthus satisfiable iff ® evaluatesto true over Gs. It follows that the prefix class
Eiae is NP-hard over undirected graphs with (some) self-loops.

Note that the self-loops in Gs are used to distinguish vertices that represent
clauses from vertices representing literals, i.e., they are used for typing vertices. To
seethat E;aeisalso NP-hard on directed self-loop free graphs, it sufficesto exploit
arc directions for this typing task. In this case, the clause set S is encoded by a
directed graph G5 = (Vs, Eg) wherethearcsof Egareasfollows. For1 <i <m
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FiG. 3. Encoding of same set S as self-loop free directed graph.

and1 < j <n,if p; occursin clause ¢;, then Eg contains (p;, ¢) asan arc, while
if —p; occurs in clause ¢, then Eg contains (—pj, ¢) as an arc. Moreover, Eg
containsthe arcs (p;, —p;), (—p;, p;), for 1 < j < n. SeeFigure 3.

Instead of the formula &, we now use the following formula @’ on G&:

@' 13T VXAY[(Es(y, X) A —Eg(X,y) A T(Y)) v (Es(X,Y)
A EBg(y. X) A T(X) & T(V)]- O
THEOREM 2.2. Ejaaais NP-hard on self-loop free undirected graphs.

ProOOF. The following problem POSITIVE ONE-IN-THREE 3SAT (which
we abbreviate to POIT3SAT) is well-known to be NP-complete (see Garey and
Johnson [1979]). Let U be a set of propositional variables and let S be a set of
positive 3-clauses over U, that is, each clause consists of a disjunction of three
distinct propositional variables from U. Is there a truth value assignment for U
such that in each clause of S exactly one propositional variable becomes true?

We reduce each instance S of POIT3SAT to agraph Gs = (Vg, Eg) asfollows.
Each occurrence of a propositional variable p in some clause ¢ of S givesrise to
avertex pc in the graph. Moreover, each variable p in U givesrise to a vertex p.
Thereareno other verticesin V. Verticescorresponding to occurrencesof variables
bel onging to the same clause are linked by an edge (wethus have atrianglefor each
clause). Moreover, for each vertex p. in Vs, there is an edge between p. and p.

Let ® bea Eaaa formulastating that thereisa P (intended to simulate the truth
value assignment to the propositional variables) such that:

(1) for every three nodes x, y, z forming atriangle, exactly oneisin P;

(2) for every threenodesx, y, z such that there areedges {x, y}, {X, z}, but no edge
{y, z} (i.e, X, y, zform an angle with x as pivot), at least one of the following
holds:

—bothx and y arein P;

—neither x, nor y arein P;

—both x and zarein P;

—neither x, nor zarein P.

In other words, either x and y get the same P-type or x and z get the same
P-type.

Now, we need to verify that thisformulaindeed expressesthat Sisin POIT3SAT.

Firgt, it isclear that if there is a 1-IN-3 satisfying assignment, then the formula
is satisfied by assigning a node to P if and only if the associated variable takes
value true.
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For the other direction, assuming that a graph satisfies the formula, it suffices
to show that al vertices corresponding to the same variable have the same P-type
(i.e., either all of themarein P or noneisin P).

Supposewe havetwo clauses{x, y, z} and {x, w, v}. Let{x', y, z} and {xX”, w, v}
be the associated triangles, and let x be the node that has edges to the nodes
x"and xX”. If X’ isin P then y isnot in P (by condition (1) above). Hence, by
applying condition (2) to the angle y, X', x, we infer that x must be in P. We
now claim that x” must also be in P. Otherwise, by condition (1) on the trian-
gle {x”, w, v}, we have that either w or v isin P. Assume that w isin P. But
now we have a violation of condition (2) for the angle w, x”, x as x” has dif-
ferent P-type than both w and x. So, we now have that x, x’, X" are al in P.
We can continue this way and repeat the argument for the other occurrences of x
in clauses.

It follows that, for each propositiona variablein S, the set P contains either all
or none of the nodes of G that represent the occurrences of that propositional vari-
able. Hence, P correctly describes atruth value assignment tp to the propositional
variables of S. Clearly, tp satisfies S. Moreover, each clause of S contains exactly
one literal made true by 7p. Consequently, Sisin POIT3SAT. [

THEOREM 2.3. E;Ej;aaisNP-hard on self-loop free undirected graphs.

Proor. GRAPH 3COLORABILITY (3COL) of an undirected self-loop free
graph G = (V, E) isexpressed by the following E; E;aa formula &

3IRed IGreen YxVy [(—Red(x) v —Green(x)) A (E(x, y) — diffcol(x, )],

where Red and Green are monadic predicates expressing the coloring of vertices,
where the third color, say blue is represented by the complement of Red U Green,
and where diffcol(x, y) is a quantifier-free formula stating that x and y are of
different color. [J

THEOREM 2.4. Ejeaa is NP-hard on self-loop free undirected graphs.

ProoF. GRAPH 3COLORABILITY of anundirected self-loop freegraph G =
(V, E) canbeexpressed by an Eyeaa formulaof theform3IR3zVx Vy g inasimilar
way as in the proof of Theorem 2.3, except that the colors are now expressed
differently. Specifically, it suffices to replace Red(x) by R(z, x) and Green(x) by
R(X, z). Note that z must then be colored blue, but this can be assumed without
loss of generality. [

The following NP-hardness results are of relevance to the self-loop free undi-
rected case only (Figure 1(b)). When self-loops or directed arcs are permitted, all
these results are implied by Theorem 2.1.

THEOREM 2.5. Ejeaeis NP-complete over self-loop free undirected graphs.

PrOOF. We show that E;eae expresses NP-complete problems on undirected
graphswith some self-loops by modifying the encoding of SAT used in the proof of
Theorem 2.1 (see Figure 2). Specifically, we delete all self-loops and add a special
node a with edgesto each node representing aliteral (variable or negated variable).
Thisway, each literal is part of sometriangle, but no clauseis part of any triangle.
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FIG. 4. New encoding of clausesc; = {p1, P2, = P3}, C2 = {—P1, =Pz, —P3}, and ¢3 = {—py, ps}.

Figure 4 depicts this for the clause set S = {cy, ¢y, C3} with ¢ = {p1, P2, —P3},
C2 = {—P1, =Pz, —Ps}, ad c3 = {—p1, p3}.
The sentence that defines SAT over these graphsis:

@ IP IwVxIY[(—E(w, X) = (E(X,y) A E(w, y) A P(Y)) A (E(w, X)
— (E(w, y) A E(X, y) A (P(X) & P(Y)I.

If the formulais satisfiable, then the graph satisfies the above sentence. To seethis,
let T be asatisfying truth value assignment for Sand let P beinterpreted by the set
containing al vertices that correspond to literals made true by z, and interpret w
by a. The graph then clearly satisfies ®.

Conversely, assumethat the graph satisfies ®. Then the specia nodea istheonly
node that can witness the existential quantifier 3w. The reason is that the second
conjunct of @ rules out the possibility that w represents a clause or a literal. For
example, suppose that w represents a clause ¢;. Then choose aliteral x in ¢;. By
the second conjunct of @, thereisay so that {w, X, y} form atriangle, which is
impossible. Similarly, if w represents a literal, then choose a clause x in which it
occurs, so by the second conjunct of @, thereisay so that {w, X, y} isatriangle,
which is again impossible.

Given that w must be interpreted by a, each pair x, y of vertices representing
oppositeliteras p;, —p; must be P-inequivalent, that is, P(x) # P(y). Thus, any
witness set P for @ correctly represents a truth value assignment to the variables
occurring in S. By thefirst conjunct of @, each vertex x representing a clause must
be linked to some litera y made true by this assignment. Thus, P represents a
satisfying truth value assignment for Sand hence Sis satisfiable. [

THEOREM 2.6. EjaeeisNP-complete over self-loop free undirected graphs.

ProOOF. We use the NP complete problem NOT-ALL-EQUAL-3SAT, the ver-
sion of 3SAT in which atruth value assignment is sought such that each clause has
at least one true and one false literal. Without loss of generality, we assume that
for eachiinstance | of NOT-ALL-EQUAL-3SAT, every literal occursin at least one
clause (if some literal o does not appear in any clause, then we can redress this by
adding two clauses {«, r, s} and {«, —r, —s} to | ; clearly, the modified instance is
in NOT-ALL-EQUAL-3SAT iff | is). Further, we require that no clause containsa
literal aswell asits negation.
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Aninstance | of thisproblem isencoded asfollowsby agraph G(1) = (V,, E)).
For each propositional variable p, create three vertices p, p’, and p*, and make a
triangle out of them, i.e., add edges (p, p’), (p, p*), and (p*, p’) to E, . Intuitively,
vertex p standsfor thevariable p, vertex p’ for itsnegation —p, and p* isadummy
vertex whose role will become clear soon. For each clause ¢;, create a vertex ¢
and link it by an edge to the vertex representing each literal occurring in it. This
compl etes the encoding.

Let @ bethefollowing Ejaee-formula

AP vx3dyAz[(triangle(X, ¥, 2) A (P(Y) & P(2) A P(X)) Vv
(E(x,y) A E(x,2) A —E(y, 2) A P(y) A =P(2))],

where triangle(x, v, 2) statesthat x, y, z form atrianglein G(I).

Weclaimthat | isayesinstance of NOT-ALL-EQUAL-3SAT iff G(I) & &.

First, assume | is ayesinstance of NOT-ALL-EQUAL-3SAT. Let t be atruth
value assignment witnessing this. Define P asfollows: P(p) iff 7(p) = true; P(p’)
iff (p) = false; and for all propositional variables p, P(p*), while for all clauses
¢, =P(c). It isclear that such a P witnesses that G(1) satisfies ®. Conversely, if
G(l) & @, then the first disunct of the formula (with x = p*) enforces P(px),
for each p; moreover, it enforces that for all vertices p and p’ it must hold that
P(p) ¥ P(p). By the second disunct, every clause ¢ must have at least one true
and onefalseliteral. Thus, | isayesinstance of NOT-ALL-EQUAL-3SAT. [

THEOREM 2.7. [Ejaeais NP-complete over self-loop free undirected graphs.

PrROOF. Consider POSITIVE 1-IN-3-SAT (POIT3SAT) again and usethe same
encoding of aninstance Sintoagraph Gs = (Vs, Es) asintheproof of Theorem2.2.
This meansthat there isanode for each occurrence of each variable; the nodes that
correspond to a clause are linked to form atriangle; for each variable x, thereisa
special node x* with edges to each node corresponding to an occurrence of x.

Let ® be a E;aea-formula asserting the following:

3P vx 3y Vz such that

(1) Thereisan edgefrom x toy and
(2) x and y have different P-type (i.e., P(x) ¢ P(y)); and
(3) if x, y, and z form atriangle, then exactly one of x, y, and zisin P;

(4) if z is connected to x, but is not connected to y, then y and z have the same
P-type(i.e., P(y) < P(2)).

Weclaimthat Gs = @ iff Sisin POIT3SAT.

If direction. If Shasa1-IN-3 satisfying assignment, then put in P the occur-
rences of variables that are true under this assignment; also, for each variable x,
put the special node x* in P if and only if x isfalse. To see that this P satisfiesthe
first-order part of the formula, observe that

—for each occurrence x of avariable, take the occurrence of avariable of different
P-type occurring in the same clause as the witness for 3y.

—for each specia node x*, take one of the occurrences of the variable x as the
witness for Jy.
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Onlyifdirection. Assumethat we haveagraph that satisfiesthe aboveformula.
We want to show that the original Boolean formulathat generated the graph has a
1-IN-3 satisfying assignment.

First, consider a special node x*. Since it has edges only to occurrences of
the variable x, the node that witnesses y must be one of these occurrences. From
condition (4), it followsthat all occurrences of the variable x havethe same P-type.

So, it suffices to show that for every triangle it is the case that exactly one of its
nodesisin P.

Let {A, B, C} be atriangle. We consider two cases. In the first case we assume
that at least one node, say A, isin P. Let w be the variable corresponding to A.
We consider the node that witnesses the existential quantifier 3y in the formula
aboveif x isinstantiated by A. If thiswitness y happens to be another node in the
same triangle, then by condition (3) exactly one of the nodes of that triangle isin
P. If not, then w* must be the witness for y (since, by condition (1), there is an
edge between x and y). By condition (2), as Aisin P, w* isnot in P. Hence, by
condition (4), as B and C are connected to A but not to w*, we have that B and C
arenot in P (they must have the same P-type asw*). Consequently, exactly one of
A, B,Cisin P, asrequired.

Intheremaining case, we assumethat neither of A, B, Cisin P. Asthefirst case
shows, this implies that we get w* as witness for vy, if we instantiate x by A. By
condition (2), it followsthat w* isin P, hence again by condition (4), the remaining
two nodes B and C of the triangle are also in P, a contradiction. This completes
the proof. [

THEOREM 2.8. Ejaaeis NP-complete over self-loop free undirected graphs.

PROOF. Onceagain, we use POIT3SAT, but the encoding is different. For each
instance Sof POIT3SAT, we construct the graph Gs = (Vs, Eg) asfollows. Create
anode for each occurrence of each variable; the nodes that correspond to a clause
arelinked to form atriangle; for each variable, we pick one of its occurrences (say,
the one that occurs in the clause ¢ with the smallest index i) and connect this
occurrenceto all other occurrences of the same variable. Note that, without |0ss of
generality, we may assume that each variable has at |east two occurrences (el se, we
eliminate it).

Let ® be a E;aae-formula asserting the following:

JP Vx Vy3z such that if x and y are connected via an edge, then one of the
following two properties holds:

(1) x,y, zform atriangle and exactly one of x, y, zisin P; or

(2) x andy havethe same P-type(i.e., P(X) < P(y)); and zisconnected to x, but
not to y; and z has different P-type than x (and than y) (i.e., P(X) & P(y)).

Weclaimthat Gs = @ iff Sisin POIT3SAT.

If. If the Boolean formula has a 1-1N-3 satisfying assignment, then put into P
the occurrences of the variables that are true under that assignment. One has to
verify then that for every pair (X, y) connected via an edge we can find a suitable
witness z. If (X, y) are part of atriangle, then z is the third node of that triangle.
If (X, y) isan edge that results from two occurrences of the same variable, then as
Z take a node in the same triangle as x that has different P-type than x (which is
possible by the 1-1N-3 satisfiability condition).
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Only if. For the more interesting direction, assume that the graph satisfies the
above formula. First, consider edges that result from different occurrences of the
samevariablex. Sincethey do not extend to atriangle, they must satisfy condition 2.
In particular, the endpoints of each such edge must have the same P-type. But since
all such edges have anodein common, we concludethat all occurrencesof the same
variable have the same P-type (all arein P or noneisin P). So, it remainsto show
that for each triangle exactly one of itsthree nodesisin P. Towardsacontradiction,
assume that we have atriangle with nodes A, B, C such that it is not the case that
exactly oneof A, B, C isin P. We distinguish two cases (in what follows, we will
write A', A”, ..., for other occurrences of the same variable as the one for the
node A):

Case l. atleast two of the nodes A, B, and C arein P. Let us assume that A
and B arein P.

As seen in the preceding paragraph, the nodes A, A”, ... must also bein P.
Consider now the edge (A, B) and the witness for 3z. This witness can not be the
nodeC, soit must beoneof A, A”, ... and alsoit must havedifferent P-typethan
A, whichisimpossible. So, this case cannot occur.

Case2. noneof thenodes A, B, Cisin P.

As before, the nodes A’, A”, ... arenot in P. Again, consider the edge (A, B)
and the witness for 3z. It cannot be C, so it must be one of A, A”, ... and must
have different P-type than A, which isimpossible. So, this case cannot occur as
well. This completes the proof. [

3. Tractability Results over General Graphs
THEOREM 3.1. E*eaisin PTIME and actually in FO over general graphs.

ProoOF. Lemmal2.2 of Eiter et al. [2000] showsthat E*e*a isFO over strings
(i.e., the inputs are monadic structures with a successor relation). An inspec-
tion of that proof reveadls that it actually holds for arbitrary relational structures
asinputs. [

THEOREM 3.2. [E;e*aaisinNL over general graphsand, hence, itisin PTIME.

PrROOF. Let ¢ be a fixed E;e*aa-sentence. Without loss of generality, we
may assume that v is of the form 3P3x; - - - IxpVyYVz AI; 9 (X1, - - .., Xm. Vs 2),
where P is a unary predicate and each (X1, ..., %Xm, ¥,2), 1 < i < k,isa
digunction of atomic or negated atomic formulas. In what follows, we describe
a logspace agorithm with oracle in NL (short, an LN algorithm) that solves the
model-checking problem for ¢ over general graphs.

Denote theinput graph by G = (V, E). Let accept be aglobal variable which is
initially set to false. The algorithm cyclesover all m-tuples(ay, ..., an) of vertices
fromV and over m-tuplesof truth valuestotheatomic statements P(ay), . . ., P(am)
until either accept = true or al pairs of m-tuples are considered. The agorithm
returns the value of the variable accept before stopping.

For each m-tuple (ag, ..., am) of vertices from V and for each m-tuple of
truth-values to the atomic statements P(a), ..., P(an), the algorithm gener-
ates in logarithmic-space a 2CNF-formula ¢, ... a,) Whose clauses are formed as

.....
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follows; for each pair (b, ¢) of nodes from V and each formula ¢, 1 < i < Kk,
let z?i(b’c) be the propositional clause obtained from 9 (Xa, . .., Xm, Y, Z) by making
the substitutions x;/ay, ..., Xm/am, ¥/b, z/c, evaluating all atomic and negated
formulas involving the edge relation E and the equality symbol =, evaluating all
atomic and negated atomic formulas of the form P(g;), 1 <i < m, and replacing
all occurrences of the atomic formulas P(b) and P(c) by propositional variables
P, and P respectively. Note that this process gives rise to a propositional clause
with at most two literals, since either it islogically equivalent to one of the logical
constants True and False, or it is one of the clauses P(b), —P(b), P(c), =P(c),
(P(b) v P(c)), (=P(b) v P(c)), (=P(c) v P(b)), (=P(b) v =P(c)). Let ¢(a,....an)
be the 2NCF-formula

Ap e

i=1(b,c)eV?

The algorithm then queries a 2SAT oracle asking whether ¢, .., is satisfiable
and if so makes the assignment accept := true.

It is quite clear that G =  if and only if thereis an m-tuple (ay, .. ., am) of
nodes and an m-tuple of truth valuesto theatomic formulas P(a,), . . ., P(am) such
that the 2CNF-formula ¢, ... a,,) is Satisfiable. Thus, the algorithm is correct. Note
that all actions of the algorithm, except its oracle queries are computable in loga
rithmic space. Note that 2SAT isin NL (see Papadimitriou [1994, page 185]). The
algorithm isthus effectively an LN procedure. By well-known results [Immerman
1988; Szelepcsenyi 1988], LN- collapsesto NL. It follows that the model-checking
problem for v over general graphsisin NL. [J

Remark 3.1. It should be pointed out that E;e*aa-formulas can express nat-
ural NL-complete problems over graphs. For example, DISCONNECTIVITY on
directed graphsis expressible by the E;eeaa-formula

APIxaIxVYVZ(P(X1) A =P(x2) A ((P(Y) A =P(2)) — (=E(Y. 2) A —E(z. ¥)))).

Moreover, it is not hard to see that even E;eaa-formulas can express NL-
complete problems. Indeed, UNREACHABILITY on directed graphs has a
logarithmic-space reduction to instances of 2SAT in which every clause is a unit
clause p, or anegated unit clause—p, or animplication (p — q) (See Papadimitriou
[1994, Theorem 16.3, page 398]). Consequently, the restriction of 2SAT to such
2CNF-formulas is NL-complete. Note that each such 2CNF-formula y can be en-
coded by adirected graph G, with a single self-loop as follows: the nodes of G,
are the variables of x and a distinguished node a that is not a variable of y; for
every unit clause p of yx, thereis an edge E(a, p); for every negated unit clause
—pof x,thereisan edge E(p, a); for every clause (p — q) of x, thereisan edge
(p, q); finally, thereis aself-loop E(a, a) that enables us to distinguish a from all
other nodes of Gy. It isnow clear that x is satisfiable if and only if Gy satisfies
the E;eaa-sentence

APAXVYVZ(E(X, X) A (E(X,Y) = P(y)) A (E(y, X) — —=P(y))
A ((E(Y, 2D A (X # Y) A (X # 2)) > (=P(y) v P(2))).

Observe that if we consider structures over a vocabulary consisting of a binary
predicate E and a unary predicate T, then the satisfiability of x is expressible by
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the E;aa-sentence
IPVYyvz((T(y) A E(Y,2) — P(@) A (T(Y) A E(z,Y)) > —P(2)
A ((=T(Y) A=T(D A E(Y, 2) — (—=P(y) v P(2)).

Here, T is used to mark the node a, that is, only a isin T. We also note that 2-
COLORABILITY on undirected self-loop free graphs is expressible by the E;aa-
sentence

IPVyVz(E(y, 2) — (P(y) < —P(2).

This problem, however, is not known to be NL-complete. In fact, there is strong
evidence that it is not, since Jones et a. [1976] showed that 2-COLORABILITY
is logarithmic-space equivalent to UNDIRECTED REACHABILITY, a problem
which is generally believed to be of complexity strictly between L and NL.

LemmA 3.3. Every Eaa-sentence over graphs is equivalent to some Ejaa-
sentence.

PrROOF. Let m be apositive integer greater than 1 and let IRVxVyp(X, y) bea
Emaa-sentence, where R is an m-ary predicate symbol and ¢(X, y) isaquantifier-
free formula. Without loss of generality, we may assume that for every graph
G = (V, E) and every m-ary relation R® on G it is the case that

(V, E, R®) = VxVy(p(X, y) = @(¥. X)),

where ¢(y, X) is the formula obtained from ¢(x, y) by switching the occurrences
of x and y. This is because the formula YxVyg(X, y) is clearly equivalent to the
formula VxVy(e(X, ¥) A ¢(Y, X)), whose quantifier-free part possesses this sym-
metric property. Also, without loss of generality, we may assume that ¢(x, y) is
the disjunction of complete consistent types, that is to say, ¢(X, y) is of the form
\/!‘:1 % (X, y), where each v (x, y) is a conjunction of atomic or negated atomic
formulas such that for every atomic formula either the atomic formulaitself or its
negation (but not both) occur as a conjunct of ¥; (x, y). In particular, each 9; (X, y)
has exactly one of the two formulas x = y and x # y as one of its conjuncts. Let
P be aunary predicate and let

k
3 PVxVy(\/ (X, y))
i=1

be the E;aa-sentence constructed as follows:

—If 9i(X, y) has x = y as one of its conjuncts, then (X, y) is obtained from
i (X, y) by replacing every atomic formula (possibly in a negated atomic for-
mula) involving the predicate symbol R by the atomic formula P(x).

—If 9i(X, y) has x # y as one of its conjuncts, then (X, y) is obtained from
vi (X, y) by making the following changes: every occurrence of R(X, ..., X) is
replaced by P(x); every occurrence of R(y, ..., Y) isreplaced by P(y); every
occurrence of R(- - -) that involves both x and y is deleted.

We now claim that the E,aa-sentence

k
JIRVXVY (\/ 95 (X, y))

i=1
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is equivalent to the E;aa-sentence

k
IPVXVyY (\/ B/(X, y)) .

i=1

To establish this claim, assume first that G = (V, E) is a graph and RC is an
m-ary relation on V witnessing that G &= EIRVXVy(\/I 9 (X, y)). Let PC be
the diagonal of R®, that is, P = {a e V : R°a,.. a)} Then PC witnesses
that G & EIP‘v’x‘v’y(\/I 1 9{(X, y)). In the other dlrectlon assume that PC is a
unary relation on V witnessing that G = EIPVxVy(\/, _1 9{(X, y)). We define the
following m-ary relation R® on V:

—For every node a of G such that a € P€, we put the m-tuple (a, . .., a) in RC.
Since (V, E, P®) = \/*_,%/(x/a, y/a), this guarantees that (V, E, R®) =
\/:(zl ﬂi (X/av y/a)

—Let &, ..., a, be an exhaustive list of al nodes of G without repetitions. For
every pair (a,, as) of nodeswithr < s, letip < k be such that (V, E, P®) =
i (X/a, y/as). For every positive occurrence R(- - -) of Rin 9i,(x, y) that in-
volvesboth x and y, weput in R® them-tuplethat hasa, or a5 in each coordinate,
depending on whether the variable in the corresponding coordinate of R(- - -) is
x or y. For instance, if Risternary and the atomic formula R(y, X, y) is one of
the conjuncts of 9, then we put the triple (as, &, as) in RC. ThIS guarantees
that (V. E, R®) = 9;,(x/a, y/as) and, hence, (V, E. R®) = o(x/a, y/as).
By the aforementioned symmetric property of ¢(x, y), it follows that aso
(V. E, R®) = o(x/as, y/a)

Consequently, the relation R® witnessesthat G (= EIR‘v’x‘v’y(\/ik:1 vi(x,y)). O
By combining Theorem 3.2 and Lemma 3.3, we obtain the following result.

THEOREM 3.4. Eaaisin NL over general graphsand, hence, itisin PTIME.

4. E*V3 over Saf-Loop Free Undirected Graphs

In order to deal with E*ae over self-loop free undirected graphs, we first show (in
Section 4.1) that this fragment is semantically contained in the monadic fragment
Ejae, thet is, that for every E*ae formula @ there exists an equivalent formula
¢’ in Ejae; as a matter of fact, this equivalence holds over arbitrary graphs, that
is, the graphs may be infinite and may also contain directed edges and self-loops.
Then in Section 4.2 we further analyze E;ae and show that on finite self-loop free
undirected graphsthe model checking problem for each formulaof thisfragment is
equivalent to a specific graph coloring problem referred to as the graph saturation
problem. The graph saturation problem isthen provento bein PTIME in Sections 5
and 6.

4.1. Ei‘ae EXPRESSES ALL OF E*ae.

THEOREM 4.1. For each E*aeformula @, thereexistsan Ejae formula W that
isequivalent to ® over all graphs.
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ProoOF. Let ® beaformulaof theform

APy, ..., BYX3yep,

where, without loss of generality, al relation symbols P, have the same arity |.
Without loss of generality, we may assume that VxVy(¢(X, y) — X # ¥y) holds,
since on graphs with at least two nodes

VX3Ayp(X, y) <= Yx3IY[(X # ¥) A (o(X, Y) V o(X, X))].

We call atuple p of length | with entries from {X, y} an xy-tuple. For each xy-
tuple p, we define the opposite xy-tuple P by interchanging x and y in p. Asan
example, (X, Y, X, X, y) isan xy-tuple of length 5 and (y, X, y, y, X) iSits opposite
tuple. We call an xy-tuple proper if it contains both x and .

We are going to construct a formula ¥ which is equivalent to ® and has the
following form:

IR, ..., Re, Q1 ..., Qs VX 3y (¥ A ¢).

Here, each R is a vector of unary relation symbols RP, one for each possible
xy-tuple p of length|. The formulas ¢ and ¢’ are quantifier-free.
If @ holdsin a graph G, then there exist relations P, ..., P« and a function
f : V—V suchthat, for each vertex v, itholds (G, P, ..., P) E ¢[x/v, y/f (V)].
The principal idea of the proof isto make W true by choosing relations RP, for

eachi and p, defined as

= {v | plx/v.y/f(v)] € R}.
To thisend, let ¢’ be the formula which results from ¢ by replacing

—each atomic formula P, (p), for i < k and proper xy-tuples p by RP(x),
—each atomic formula R (X, .. ., x) by R®=(x), and
—each atomic formula P (y, ..., y) by RI(X ,,,,, (y).

It is easy to seethat if ® holdsin G and f and the Rip are defined as above then,
for each v, v1e get G’ = ¢'[x/v, y/f(v)], where G’ denotes the extension of G by
all the sets R,

Our god is now to assure that W holds in G only if ® holds in G. It might
be possible to make IR, ..., R ¥x dy ¢’ true by chosing sets R'o that do not
correspond to any choiceof I - ary relations P, . Thiscan happen, if, for somevertl ces
v, w, it holds f(v) = w and f(w) = v, but thereisan i and a proper xy-tuple p
suchthatv e PP butw ¢ PP

To deal with this problem we make use of the following observation, which will
be verified below. The vertices of G can be colored by 6 colors 1, .. ., 6 in such
away that, for each vertex v, the colors of v and f(v) are related as indicated in
Table |, for example, if v is colored by 3, then f(v) has to be colored by 4 or 1.
Notethat v and f (f(v)) have different colors, unlessthe color of v is6.

The six colors are represented by the set variables Q1, ..., Q. Let ¥ be a
formula stating that Q;(x) holds for exactly onei € {1,...,6} and let x be a
formula expressing the conditions of Table|. Finally, let ¢ be the formula

DA XA (Qe(x)—> /\ (Rip(x)<—> RP(Y))) .

i, p proper
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TABLE I. How THE COLORS
OF v AND f(v) ARE RELATED

o)
2

3
4orl
50r1
6orl

6

OOUhrWNR<

and ¥ be

IR, ..., Re Q... QeVxAy ¥ A g

We show that ® and W are equivalent on all graphs G.

Assumefirstthat ® holdsfor G.Let Py, ..., Pcand f besuchthat, for each vertex
V,(G, Py, ..., P) E ¢[x/v, y/f(Vv)]. Wedefinethe sets Rip asbefore. Thisimplies
that, for each v, ¢'[x/v, y/f (v)] holdsin G, the extension of G by the sets RP. We
show next that sets Q;, . .., Qg can befound such that, for each v, y[X/v, y/f (V)]
holdsin G”, theextension of G’ by thesets Q;. Wedefinethe sets Q;, by inspecting
the (weakly) connected components of the graph of f. If the set of verticesisfinite,
then each such component consists of a directed cycle C of length at least two
(recall that always f(v) # v), and zero or more directed trees that are rooted at
vertices of C. In these trees, the edges are directed from the leaves to the root. If
the set of vertices is infinite, then the components of f may also include infinite
chains. Components with a cycle C with more than two vertices can be colored
with Qg, ..., Qs such that each vertex fulfils x. If C contains 3m vertices, for
some m, they can be colored by Q1, Q2, Qs inaround robin manner. If it contains
3m+ 1 vertices, then color Q4 isused for the last vertex. Analogously, if it contains
3m + 2 vertices, the colors Q4 and Qs are used for the last two vertices. Finadly, if
the component is an infinite chain, then it can be colored with just three colors.

The components with a cycle of size two can be colored such that the vertices of
the cycle are colored with Qg and the remaining verticeswith Qq, ..., Qs inaway
that assuresthat x holdsfor all vertices. If avertex v getsthecolor Qg, then f (v) # v
but f(f(v)) = v and therefore p[x/v, y/f (V)] € Pi<p[x/f(v), y/v] € Pj,
foraliand p. Hence, G” = (v A @) V(X = Yy A @")D[X/v, y/T (V)] foral v and
therefore G = W.

For the converse direction, assume that G = W. Let f be a corresponding
function, and let Qs, ..., Qg and, for eachi and p, R’ be corresponding sets. We
definerelations P, ..., Py asfollows:

Pi = {plx/v, y/f(V)] | v € RP for some p} U {(v,...,v) | v e R®¥1.
This definition ensures that, for each i and p,
RP = {v| p[x/v,y/f(V)] € P},
as, for every vertex v,
—either v € Qg and thereforev € RP if and only if f(v) € RP,
—or f(f(v)) hasadifferent color than v and thereforev £ f (f(v)).
Itisstraightforward to seethat G = ®. [J
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4.2. Ejae MODEL-CHECKING AND GRAPH COLORING.  In this section, we con-
sider Ejae-formulas over self-loop free undirected graphs G = (V, E). We show
that in this case the model-checking problem for such formulas is equivaent to a
certain graph coloring problem, which we call the graph saturation problem.

Let ® be an Ejae-formula of the form 3Py, ..., RVYx3yp, where ¢ is a
guantifier-free formula. As in the proof of Theorem 4.1, we may assume, with-
out loss of generaity, that VxVy(p(X,y) — X # y) holds. Every satisfiable
guantifier-free formula is logically equivalent to a digunction of complete con-
sistent types, that is to say, conjunctions of atomic or negated atomic formulas
involving the variables x, y and the symbols E, =, P4, ..., P« and such that for
each atomic formula in these symbols and variables either the atomic formula
itself or its negation occurs as a conjunct. In particular, this holds true for the
quantifier-free formula ¢(x, y). Moreover, since YxVy(¢(X, y) — X # y) holds
and since we are focusing on self-loop free undirected graphs, we may assume
that no disiunct contains one of the atomic formulas x = vy, E(X, X), E(y, y) as
a conjunct. We may also simplify each digunct by eliminating occurrences of the
atomic formula E(y, x) or of the atomic formula —E(y, x) (depending on which
of the two occurs), while keeping occurrences of the atomic formula E(x, y) and
the negated atomic formula —E(x, y). These considerations motivate the follow-
ing definition.

Definition 4.2. An Ejae-formula ® isin normal formif it is of the form

3P, ..., BYX3ye(X, y),

where ¢ is a disjunction of conjunctions of atomic and negated atomic formulas
such that each disjunct § of ¢ has the following conjuncts:

—For eachrelation symbol P, 1 <i <k, and each variable £ € {x, y}, either the
atomic formula P, (¢) or the negated atomic formula—P, (€) is a conjunct of .

—Either the atomic formula E(X, y) or the negated atomic formula—E(X, y) isa
conjunct of §.

—The negated atomic formula x # y isaconjunct of 8.

The remarks preceding Definition 4.2 show that over self-loop free undirected
graphs every Efae-formulaislogically equivalent to onein normal form. For this
reason, from now on, we will work with Efae-formulasin normal form.

If £ isavariable, then there are 2 different complete specifications (=) Py(£) A
(m)P2A&) A--- A (—)Pi(&) that may occur in adisunct § of an Ejae-formulain
normal form. Each such specification can be identified with a“ coloring” by acolor
Ci,...,C, fromaset of colors Colors = {Cq, ..., C,}, wherer = 2X. We write
Ci (&) to indicate the “coloring” of the variable & by the complete specification
corresponding to color C;. Thus, each digunct § of an Ejae-formulain normal
form consists of acoloring C; (x), acoloring Cj(y), the atomic formula E(x, y) or
the negated atomic formula —E(X, y), and the inequality x # .

Definition 4.3. A pattern graph is adirected graph with no isolated nodes and
such that each arc is labeled @ or © (note that a pattern graph may have two arcs
with different labels from a vertex C to avertex D).

With each Ejae-formula & in normal form, we associate a pattern graph P(P)
as follows. The vertices of P(®) consist of the colors (complete types for the set
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variables) occurring in the disiuncts of ®. There is an edge (C;, C;) labeled @ in
P(®) iff there existsadigunct § in ® such that § contains as conjuncts C;(x) and
Ci(y) and E(x, y). Thereis an edge (C;, C;) labeled © in P(®) iff there exists a
disunct § in ® such that § contains as conjuncts C; (x) and Cj(y) and —E(X, y).

Definition 4.4. If P = (Colors, Arcs) isapattern graphand G = (V, E) isan
undirected graph, then acoloring of G with respectto P isafunctioncol : V —
Colors. A witness function for a given coloring col is afunction wit : V — V
such that the following hold for each x € V:

—X # W(X);
—if (x, wit(x)) € E, then (col(x), col(wit(x))) isan arc labeled ® in P; and
—if (x, wit(x)) € E, then (col(x), col(wit(x))) isan arc labeled © in P.

A coloring islegal if there exists awitness function for it.

Definition 4.5. Given a pattern graph P = (Colors, Arcs), the pattern graph
saturation problem SATU»p for P isdefined as follows:

Instance: A self-loop free undirected graph G.
Question: Istherealegal coloring of G with respect to P?

We denote by SATU(P) the set of all self-loop free undirected graphs that are
yes-instances of SATUp.

Figure 5 shows two pattern graphs P; and P, and a graph G which is a yes
instance of SATUp, viathe exhibited coloring and viaawitness function w defined
asfollows: w maps each of the five green-colored nodesto the unique yellow node,
the unique red node to the blue one, the yellow node to the blue one as well, and
the blue node to one of its green neighbours. On the other hand, G is a negative
instance of SATUp,; in other terms, G € SATU(P;) and G ¢ SATU(Py).

THEOREM 4.6. For each Ejae-formula ¢ in normal form and each self-loop
free undirected graph G, we havethat G = @ iff G € SATU(P(®)).

ProoF. Althoughtheproof isquite straightforward, weincludeit herefor mere
compl eteness reasons. _ _

Let G = (V, E). If G = @, thenthere existsan interpretation | : Py, ..., Py of
the set variables, such that for each v €_V, there exists adigunct §(v) of ® and a
vertex f(v) € V suchthat (G, Py, ..., P) ES(V)[x/v, y/f(V)].If & € {x, y} and
if § isadigunct of ®, thenlet qual (&, §) denotethe color qualification of £ in 8. We
definethe coloring col asfollows: Vv € V col(v) = qual(x, §(v)). If (v, f(v)) € E,
then, given that thedigunct §(v)[x/v, y/f (v)] issatisfied, it must contain theliteral
E(X, y), hence, by definition of P(®), (col(v), col(f(Vv))) isan arc labeled & in
P(®). Similarly, if (v, f(v)) ¢ E, then, given that the disunct §(v)[x/v, y/f (V)]
is satisfied, it must contain the literal —=E(X, y), hence (col(v), col(f(v))) is an
arc labeled © in P(®). It follows that f is a witness function for col and thus
G € SATU(P).

Conversely, assume that G € SATU(P). Let col be alegal coloring of G with
respect to P(®) and let wit be awitnessfunctionfor col. Let | : Py, ..., P« bethe
interpretation of the set variables P, . .., Py correspondingto col. Letv € V bea
vertex of G. We distinguish between two cases.
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(1) (v, wit(v)) € E. Then (col(v), col(wit(v))) isanarclabeled @ in P(®). There-
fore, by definition of P(®), there exists a disjunct 5(v) of & such that 5(v)
contains as conjuncts the qualifications col(v)(x) and col(wit(v))(y) and the
edge litera E(X, y). It then holdsthat (G, Py, ..., P) &= §(V)[x/v, y/wit(V)].
Note that col(v) represents a unary relation symbol C;.

(2) (v, wit(v)) € E. Then (col(v), col(wit(v))) isan arc labeled © in P(®). There-
fore, by definition of P(®), thereexistsadisjunct §(v) of & such that §(v) con-
tains as conjuncts the qualifications col (v)(x) and col (wit(v))(y) and the edge
literal —E(X, y). It then holds that (G, P, ..., P) E §(V)[x/v, y/wit(Vv)].

In summary, for every v € V there existsaw = wit(v) € V and adigunct §(v) of
@ suchthat (G, Py, ..., ) = 8(V)[X/v, y/w]. Thisjust meansthat G = ®. [J

Conversely, each saturation problem SATU(P) can be expressed by an Ejae-
formulain normal form.

THEOREM 4.7. For each pattern graph P, there exists an Ejae formula ®p
in normal form such that for each undirected self-loop free graph G we have that
G € SATU(P) iff G = ®p.
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ProoF. Let Colors = {Q41,..., Qn} and let P = (Colors, Arcs) be a pattern
graph. For1 <i <nand& € {x, y}, identify Q; with amonadic predicate symbol
and define

G = Q@A A -Q)
j#i,1<j<n
For each edgee = (Q;, Q;) of P, defines(e) as:
5(e) — C(X)AC(Y)ANEX y)AXx#Yy ifeislabeled @
(€ = C(x)ACj(y) A—E(X, y) Ax#Yy if eislabeled ©
Define the formula ®p by:

®p = 3Q1..... Qu¥x3y \/ 8(e).

ecEp

Observe that (up to renaming of vertices) it holds that P(®p) = P. Thus, by
Theorem 4.6, G € SATU(P) iff G & ®p. [

Consequently, themodel checking problemfor E*ae-formulasover self-loopfree
undirected graphs coincides with the pattern graph saturation problem. In Sections
5 and 6, we will show the following result.

THEOREM 4.8. The pattern graph saturation problemissolvablein polynomial
time.

Combining Theorems 4.1, 4.6 and 4.8, we get the following result which com-
pletes the proof of Theorem 1.1.

THEOREM 4.9. Eaeisin PTIME over self-loop free undirected graphs.

5. Saturation using Pure Cycles

This section and the following one are devoted to the proof of Theorem 4.8. This
section treats the case of so-called pure pattern graphs, anotion that will be defined
shortly. The case of general pattern graphsis investigated in Section 6.

Proviso 5.1. In this section, the term, graph, aways refers to self-loop free
undirected graphswhereas pattern graph refersto adirected graph with edge-labels
from {©, @}.

Thefollowing structural propertiesof pattern graphsarerelevant for our study. A
positive (negative) cycle of the pattern graph isadirected cycle al of whose edges
arelabeled @ (©). A mixed cycle of the pattern graph isadirected cycle containing
at least one edge labeled © and at least one edge labeled ®.

A pattern graph is:

—positiveif al its edges are labeled &.

—negativeif al itsedges are labeled ©.

—monotoneif it is positive or negative;

—acyclicif P doesnhot contain adirected cycle (loops do count as cycles).
—mixed if P contains a mixed cycle;

—pureif itisnot mixed.
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Note that the class of monotone pattern graphs and the class of acyclic pattern
graphs are both properly contained in the class of pure pattern graphs.
The following two simple lemmas follow easily from Definitions 4.4 and 4.5.

LEMMA 5.2. If P is a positive pattern graph, and G is a loop free undi-
rected graph, then G € SATU(P) iff for each connected component K of G,
K e SATU(P).

If G = (V, E)isagraph, then G¢ denotesits complement, that is, G¢ = (V, V?—
(EU{(v,V) : v € V})) isthe self-loop free undirected graph obtained from G by
turning edges to nonedges, and vice-versa, between pairs of distinct nodes. If P is
a pattern graph, we write P* for the pattern graph obtained from P by replacing
every ©-labeled edge by a @-labeled edge and vice-versa.

LEMMA 53. G € SATU(P) iff G¢ € SATU(P®).

Asalready mentioned, we consider in this section cases of the saturation problem
in which only pure cycles of the pattern graphs matter. In Section 5.1, we prove
that the saturation problem for pure pattern graphsisin PTIME. In Section 5.2, we
generalize thisresult to a setting where the pattern graph may contain some mixed
cycles, but these mixed cycles cannot be used for saturation.

5.1. THE SATURATION PROBLEM FOR PURE PATTERN GRAPHS. \We prove that
the saturation problem SATU(P) for a pure pattern graph P istractable.

Firstof all, wewill seethat SATU(P) can beefficiently decided for input graphsof
bounded tree-width. We assumethereader to befamiliar with the notion of treewidth
of undirected graphs [Robertson and Seymour 1986; Downey and Fellows 1999].

We denote by LINTIME the class of all problems solvable in linear time on a
random access machine. As usual, M SO denotes monadic second-order logic. The
next proposition is arestricted version of awell-known theorem of Courcelle.

THEOREM 5.4 (COURCELLE 1990). Model checking for MSO-formulas over
graphs of constant-bounded treewidth isin LINTIME.

Since SATU(P) is definable by a M SO-formula, by Theorem 4.7, we derive the
following corollary.

CoroLLARY 5.5. For each fixed constant k and pattern graph P, the problem
of deciding whether a graph of treewidth <k belongsto SATU(P) isin LINTIME.

Recognizing whether a graph has bounded treewidth is an easy problem.

THEOREM 5.6 (BODLAENDER 1996). For each fixed constant k, the problem of
checking whether a graph has treewidth <k isin LINTIME.

Hence, for fixed k, an algorithm can check whether the input graph has tree-
width <k and if thisthe case decidewhether itisin SATU(P) inlinear time. It only
remainsto show that the graph saturation problem can be solved efficiently also for
input graphs of large tree-width. Before we start with this case, we state some easy
observations.

A vertex v of apattern graph P isuseful if it lies on adirected cycle or thereisa
directed path from that node to anode lying on acycle. A vertex that isnot useful is
termed useless. The following lemma shows that it is sufficient to consider pattern
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graphsall of whose vertices are useful. If P isapattern graph, then P* denotesthe
pattern graph obtained from P by dropping all useless vertices.

LEMMA 5.7. For each pattern graph P, it holdsthat SATU(P) = SATU(P*).

ProoOF. Theinclusion SATU(P*) C SATU(P) follows trivialy from the def-
inition of the saturation problem. Let us prove SATU(P) C SATU(P*). Let
G = (V, E) € SATU(P), where P = (Colors, Arcs). Let P* = (Colors*, Arcs").
Then there exists a legal coloring col of G with respect to P and an associated
witness function w. Assume for some vertex v € V, col(v) isauseless color. Then
wit(v), wit(wit(v)), etc. must all be colored by useless colors, and at some point
we arrive at a vertex w = wit' (v) such that col(w) is a vertex having out-degree
zero inthe pattern graph P. Clearly, wit(w) cannot be colored correctly. Contradic-
tion. Thus, col(V) C Colors* and thus the function col* : V — Colors* where
Vx € V,col*(x) = col(x) is alega coloring of G with respect to P*, whence
G e SATU(P*). O

CoROLLARY 5.8. If Pisacyclic, thentheonly element of SATU(P) istheempty
graph.

To deal with cyclic pattern graphs and input graphs of large tree-width, we need
a number of auxiliary results. We start with some known results on grids and
treewidth.

As in Thomassen [1988], we define the grid Hy (where k is a natural number)

as follows: Take k digoint paths n1, ..., 7y where m; @ Xy, X2, ..., Xk and
add all edges {xi j, X j+1} wherei + j is even. Also add the edges of the paths
T = Xu1, X1.2, ..., Xpk @d w5 = X1, Xk 2, - - ., Xkk- 1he grid H; is depicted
in Figure 6.

A subdivision of an undirected graph G is a graph obtained from G by replac-
ing some edges of G with ssimple paths (i.e., by “subdividing” edges of G). The
following fundamental result is well known.

THEOREM 5.9 (ROBERTSON AND SEYMOUR 1984). For every natural number
k, there exists a natural number g(k) such that every graph of treewidth at least
g(K) contains a subdivision of Hy.

The next result is due to Carsten Thomassen [1988].
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THEOREM 5.10 (THOMASSEN 1988). For all natural numbers k and m, there
exists a natural number h(k, m) such that every subdivision of Hp m) contains as
subgraph a subdivision H; of Hy, where H is obtained from Hy by replacing each
edge of Hy by a path of length O(mod m).

A (directed or undirected) graph consisting of a single (directed or undirected)
cycle and a (directed or undirected) path such that one of the endpoints of the path
is also a vertex of the cycle and the path and the cycle have no other vertices in
common is called a racket (the form is akin to a tennis racket). A racket whose
cycle haslength ¢ and whose path has length piscalled a(c, p)-racket. Cyclesare
special cases of rackets with path length O.

If aracket R isnot acycle, then it has a unique vertex of (total) degree 1 (i.e.,
the outdegree and the indegree add up to 1). This vertex is called the endpoint of
R and is denoted by endpt(R). Moreover, the unique vertex belonging both to the
path and to the cycleis called the junction of R and is denoted by junct(R).

The following proposition was shown (in more genera form) by
Thomassen [1988]:

THEOREM 5.11 (THOMASSEN 1988). For every integer m there exists an inte-
ger r(m) such that every self-loop free undirected graph having treewidth >r(m)
contains a cycle whose length is a positive multiple of m.

The following lemma slightly generalizes Proposition 5.11.

LEMMA 5.12. For every pair (c, p) of integers there exists an integer f(c, p)
such that every self-loop free undirected graph having treewidth > f (c, p) has a
(¢, p)-racket such that ¢’ isa multiple of c.

ProoOF. If cisodd, let c; = 2c, otherwise, let ¢; := c. Let k = max(cy, p) + 1.
Observe that Hy containsa(c,, p)-racket R as subgraph and that ¢, isamultiple of
c. By Proposition 5.10 (by taking m = c), there existsanatural number h(k, ¢) such
that every subdivision of Hp ¢y contains as subgraph asubdivision H of Hy where
H/ is obtained from Hy by replacing each edge e of Hy by a path p(e) of length
O(modc). Let f(c, p) = g(h(k, c)), where g is as specified by Proposition 5.9.
By Proposition 5.9, every self-loop free undirected graph G of treewidth > f (c, p)
containsasubdivision of Hy ¢). Thus G containsasubgraph H* as specified above.
This H* containsthe image of R by the edge-replacement p where every edge e of
R isreplaced by a path p(e) of length O(mod c). Observe that p(R) isaracket. Let
¢’ be the length of the cycle of p(R) and let p’ be the length of the path of p(R).
Clearly, ¢ isamultiple of c and p’ > p. By shortening the path of o(R) to length
p, we obtain the desired racket. [

A subgraph Q of a pattern graph P is positive (negative) if all edgesin Q are
labeled @ (©).

LEMMA 5.13. Let P = (Colors, Arcs) be a pattern graph having as subgraph
apositive (c, p)-racket R. Let G = (V, E) bea connected self-loop free undirected
graph having as subgraph a (c/, p)-racket S, where ¢’ is a multiple of c. Then
G € SATU(P). Moreover, there exists a legal coloring col of G with respect to P
such that each vertex of the cycle of R is an element of col(V) and, if p # 0, then
also endpt(R) € col(V).
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PrOOF. Letr =c'/c.

Let Re bethe cycle of R. R, can be written as: C%, C?, ..., C¢, C. Denote by
Rp the path of R. If p # 0, assume without loss of generality that junct(R) = C™.
In case R, is nonempty, it can be written

Rp: DP, DP~! DP2 ... D? DY C.
Here, in case p > 0, we have endpt(R) = DP.

Let S be the cycle of racket S. Impose an arbitrary orientation S' on the cycle
&. S can then be written as:

r r r 1
..,Vl, V2,... V V1-

vyl oyl 12 2 2
S Vi, Vo, ..., VG, VI, Vs, oL,V , Ve,

s Voo s Ve -
Denote by S, the path of S. If p # 0, assume without loss of generality that
junct(S) = vi. In case S, is nonempty, it can be written

. 1
Sp I Wp, Wp_1, Wp_2, ..., Wz, Wq, Vj.

Here, in case p > 0, we have endpt(S) = wy.

The successor of a vertex « in acycle (R; or &) is denoted by succ(w); the
predecessor of « by pred(a).

We distinguish two cases according to the structure of R.

Casel. Risacycle(i.e, p=0).

We define a coloring function col : V — Colors and a witness function
V — V by the following “saturation” procedure.

(1) Forl<i<candl<j<r,letcol(v)) :=C'.

(2) For al verticesv of S, let wit(v) = succ(v).

(3) Let Settled beinitially the set of all vertices of thecycle S= S..
(4) WHILE Settled # V DO

—Choose avertex v ¢ Settled such that v is aneighbor of avertex w in Settled.
—Let col(v) := pred(col(w)) and let wit(v) := w.
—Settled ;= Settled U {v}.

Given that G is connected, at the end of this process, col and wit are total
functionsand col isalegal coloring of G with respect to P. Infact, for each x € V,
(x, wit(x)) € E and (col(x), col(wit(x))) isan arc of P labeled &. It follows that
G € SATU(P). Note a'so that each vertex of the cycle of R appearsin col(V).

Case2. Risnotacycle(i.e, p > 0).

In this case, we could color G in the same way as in Case 1, by starting to
color the cycle S according to R, and then coloring the rest of the graph by
applying the saturation procedure as described in Case 1. Although this shows that
G e SATU(P), the coloring obtained this way does not fulfill the requirement that
endpt(R) € col(V).

A naive approach for achieving endpt(R) e col(V) would be to color & in
accordance with to R; asin Case 1, and to color S, in accordance with R,. This
ispossible, but it may then not be possible to correctly color the rest of the graph.
In fact, problems may already arise with the neighbors of endpt(S) in G. Recall
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FIG. 7. Anexample of agraph G with a(9,3)-racket.

that endpt(S) is colored DP = endpt(R). However, endpt(S) may have a neighbor
b of degree 1 (i.e., a neighbor which is otherwise isolated in G). In case DP has
no incoming edge in P, b is hot colorable. We thus need a more astute coloring
method. Figure 7 illustrates the proof.

Let G* := (G — &) U {vi}, that is, G* is the subgraph induced by v} together
with all verticesoutside S..

Leto bealongest smplepathin G* starting at vi. Notethat length(c') > p must
hold, given that already the path S, is of length p. Denote by etheend of o. Let u
be the (unique) vertex of o such that the segment [u, €] of o haslength p. Denote
by 7 the segment [vi, u] of 0. = isasimple path, possibly of length zero (in case
u=vi).

CLAIM 1. The length of any longest simple path in the subgraph [G — (S U
)] U {u} starting at u isexactly p.

To prove the claim, observe that the segment [u, €] which liesentirdly in[G —
(& U )] U {u} has precisely length p. Now assume that there exists apath y in
[G — (S U x)] U {u} having length p + k where k > 0. Then the concatena-
tion of = with y isasimple path of length length(o) + k lying in G* and starting at
vi. This contradicts the assumption that o is alongest simple path in G* starting
a vi. Theclaimis proved.

We are now ready to color G.

We define a coloring function col : V — Colors and a witness function
wit : V — V through the following five steps:

(1) Let K denote the component of [G — (& U x)] U {u} which contains u. We
color K asfollows: First, u iscolored Ct, that is, col(u) := C*. Then, for each
vertex v # uin K, let d(v) denote the distance between u and v in K and color
v with color D9V, that is, let col(v) := DYV, Note that by Claim 1, for each
v € K it holdsthat d(v) < p. Thus, the described coloring iswell defined and
coversall verticesof K. Observethat there exists at least one vertex v such that
col(v) = DP = endpt(R).

(2) We assign awitness wit(v) to each vertex v € K asfollows: First, if u # vj,
then let wit(u) = w, where w is u’s unique neighbor in 7. If u = vi, then
wit(u) := succ(vy). For each other vertex v of K, let wit(v) = v/, where v’ is
any neighbor of v suchthat d(v’) = d(v) — 1. Notethat wit istotally defined on
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K and that for each vertex v of K — {v}, the pair (v, wit(v)) islegaly colored,
that is, isan edge of R.

(3) We assign colors and witnesses to the vertices of = — {u}. Let £ := length(sr).
Wecan writer as: u = t,tp, ..., t_1, t, = v} = junct(&). We define for
all <i < £ col(t) := C'(™c Thus, for example, t, is colored C?, and
te41 is colored C?, and so on. Moreover, for al 1 < i < £, let wit(t)) = ti41.
Finally, for t, = vi we define: wit(vi) = succ(vy). Note that for each vertex v
of = — {vi}, the pair (v, wit(v)) islegally colored.

(4) We assign colors and witnesses to the vertices of & — {vi}. Recall that
v} was aready colored in Step (3). Let col(succ(vi)) = succ(col(vi)),
col (succ(succ(vy))) := succ(col(succ(vi))) = succ(succ(col(v1))), and so on.
Moreformally, for each 1 < i < c, let col(succ (v})) := succ' (col(vi)). More-
over, for eachv € S — {vi}, let wit(v) := succ(v). Thus, each vertex v in &
has a well-defined color and a well-defined witness, and the pair (v, wit(v)) is
legally colored.

(5) We assign colors and witnesses to all remaining vertices. It is crucia at this
point to observe that each till uncolored vertex v of G is connected to a
(already colored) vertex of (r U &) — {u} via a path that does not cross K.
In fact, since the connected component K of [G — (S U &)] U {u} was
completely coloredinstep 1, v must bel ong to some other connected component
K'of [G — (& U m)] U {u}. Since G is connected, K’ must be adjacent to
(& U &) — {u}. Thus, there is a path from v to somevertex v/ € (S U 7) —
{u} such that all vertices of this path except v’ belong to K’ and are so far
uncolored.

We can thus apply asimilar saturation procedure asin Case 1 and will eventually
reach all remaining vertices. In particular:

(a) Let Settled be initially the set (7 U &) — {u}. Notice that all vertices in Settled are colored by
some color from {C*, ..., C¢, that is, from R..

(b) WHILE Settled # V DO
—Choose avertex v ¢ Settled such that v isaneighbor of avertex w in Settled.
—Let col(v) := pred(col(w)) and wit(v) = w.
—Settled := Settled U {v}.

This concludes Step (5).

At the end of Step (5), col and wit are total functions and col isalegal coloring
of G with respect to P. It follows that G € SATU(P). Moreover, each vertex of
the cycle of R appearsin col(V) and aso endpt(R) € col(V). [

We are now ready for the main result of this section.
THEOREM 5.14. If P isa pure pattern graph, then SATU(P) € PTIME.

ProoF. By Corollary 5.8, for acyclic P, SATU(P) consists of the empty graph,
thus SATU(P) € PTIME. Assume P iscyclic. If P contains some useless vertices,
we can eliminate them by Lemma 5.7, that is, we can replace P by P*. We thus
assume al vertices of P are useful.

We distinguish three cases.

Casel. P hashoth positive and negative cycles.
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We consider two subcases.

() Gisconnected. Let cbethelength of anarbitrary positivecycle Rin P. Letr (c)
be as in Proposition 5.11. By Corollary 5.5, there is a linear-time procedure
satucheckp(H), which for each self-loop free undirected input graph H of
treewidth <r (c) determines whether H € SATU(P).

To check that G € SATU(P), perform the following steps:

—Check whether G has treewidth <r (c).
—If G has treewidth <r (c), THEN RETURN(satucheckp (G)).
—IF G hastreewidth r (c), THEN RETURN(true).

Thelast stepisjustified asfollows. IF G hastreewidth >r (c), then G contains
by Lemma 5.11 a cycle of length O (mod c), that is, a (c’, 0)-racket, where ¢’
is a multiple of c. Given that R is a positive (c, 0)-racket, by Lemma 5.13,
G € SATU(P).
(b) G is disconnected. Then G€ is connected and P* has a positive and a nega-
tive cycle. Proceed by checking G¢ € SATU(P*) according to (a) and using
Lemma5.3.

Case2. All cyclesof P are positive.
We consider two subcases:

(a) P ispositive. By Lemma 5.2, G € SATU(P) iff K € SATU(P) for each
connected component K of G. Thischeck isdonefor each K accordingto Case 1(a).
It should be noted that the proof of Case 1(a) only made use of the existence of one
positive cycle. o

(b) P hassomeedgeslabeledo. Lete = (D', D!) besuch an edge. Giventhat P
contains only useful vertices, D! isuseful and thereisasimple path o (of possible
length zero) from D! to apositivecycle T in P. If o does not contain any negative
edge after e, thenlet DP := DJ; otherwise, let DP bethefirst vertex of o reachable
from D! suchthat thereisno negative arc on o after DP. Let D~ bethe predecessor
of DP on o and retain that thearc (D—, DP) is negative.

Denote by w the subpath of o starting at DP and ending at the first vertex C* of
the cycle T. (Note that it may happen that  is of length zero, that is, DP = C1))
Let R be the union of w and T, let p be the length of w, and let ¢ be the length of
T. Notethat R isapositive (c, p)-racket of P.

Let f(c, p) beasinLemmab.12. By Corollary 5.5thereisalinear-timeprocedure
satucheck,, (H) which for each self-loop free undirected input graph H of treewidth
< f(c, p) determines whether H € SATU(P).

To check whether G € SATU(P), proceed as follows.

—Compute the connected components of G.

—Check, whether each connected component has treewith < f (c, p). (If so, then
the graph G itself is of treewidth < f (c, p)).

—IF al components have treewidth < f (c, p) THEN RETURN(satuckecky (G)).

—IF there exists a component K having treewidth > f(c, p) THEN RE-
TURN(true).

Thelast stepisjustified asfollows: If K hastreewidth > f (c, p), then K contains
by Lemma5.12 (a) (¢, p)-racket where ¢’ isamultiple of c. Giventhat Risapos-
itive (c, p)-racket, by Lemma5.13, K € SATU(P). Moreover, since either DP =
endpt(R) (in case length(w) # 0) or DP isavertex of T (in case length(w) = 0),
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it holds by Lemma 5.13 that there is a legal coloring col of K with respect to
P and a vertex wqy of K such that col(wg) = DP. Let wit be a witness func-
tion for col. We extend col to a coloring col* for the entire graph G by defining:
Vv € G — K, col*(v) = D~. We extend wit to afunction wit* on G by defining:
Vv € G — K, wit*(v) = wp. It isobvious that col* isalegal coloring for G with
respect to P viathe witness function wit*. Thus, G € SATU(P).

Case3. All cyclesof P are negative.

By Lemmab.3, G € SATU(P) iff G¢ € SATU(P*). Note that P* contains only
positive cycles. Checking whether G¢ € SATU(P*) can thus be donein accordance
with Case 2.

The three cases exhaustively cover al possibilities; thus the algorithm effec-
tively decides whether G € SATU(P). Moreover, whether G € SATU(P) can be
determined in quadratic time. In fact, the computationally relevant actions of the
agorithm described in this proof are:

—Computing the complement G¢ of G (this may require quadratic time).

—Determining the connected components of G or G€ (this can be done in linear
time by Tarjan’s algorithm [Tarjan 1972]).

—Checking for each component, whether its treewidth is smaller than a constant
(thisis solvablein linear time by Proposition 5.6).

—Performing a constant number of further linear time actions on single compo-
nents, such as the procedure calls satucheckp (G) or satuchecky (G).

In summary, al this requires no more than quadratic time (in the size of the input
G). O

We conclude this section with aremark.

Remark 5.1. We currently do not know whether the quadratic upper bound
stated in the proof of Theorem 5.14 can be improved. Note also that for each P,
SATU(P) isprobably not a PTIME-complete set. The set SATU(P) can be seento
be in the complexity class LOGCFL, the class of al languages that are logspace-
reducibleto acontext-freelanguage. Thisclassiscontained in NC,, and consists of
highly parallelizable problems. LOGCFL is currently the best known upper bound
for SATU(P). Thisisdueto the check for bounded treewidth, whichisin LOGCFL
(cf. Wanke [1994]) but not known to bein NL.

5.2. A SLIGHT GENERALIZATION: WHEN MIXED CYCLES DO NOT MATTER. In
this section, we dlightly generalize Theorem 5.14. We deal with the case in which
a pattern graph P may have mixed cycles, but agraph G cannot use mixed cycles
of P for saturation.

Definition 5.15. Let P = (Colors, Arcs) be apattern graphand G = (V, E) a
self-loopfreeundirected graph. Letcol : V —> Colorsbealegal coloring of G with
respect to P with associated witness function wit. Then the witness graph G[wit] is
thedirected edge-labeled graph (V, Eit, £), where E,iy = {(X, wit(x)) | X € V}and
where ¢ is an edge labeling function such that ¢(x, wit(x)) = & if {x, wit(x)} € E
and £(x, wit(x)) = © otherwise.

A mixed cycle of G[wit] isacycle having mixed edge labels. Pure, positive, and
negative cycles of G[wit] are defined in the obvious way.
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Definition 5.16. Let P = (Colors, Arcs) be a pattern graph and G = (V, E)
an undirected graph. We say that G isimpurely saturated by P if G € SATU(P)
and there exists alegal coloring col : V — Colors of G with respect to P with
associated witnessfunction wit such that G[wit] contains at |east one mixed cycle.

The set of al self-loop free undirected graphs G which are impurely saturated
by a pattern graph P is denoted by ISATU(P).

Obvioudly, if P isa pure pattern graph, then ISATU(P) = ¢. We now establish
the following result.

THEOREM 5.17. For each pattern graph P, the following problemis decidable
in polynomial time. Given a self-loop free undirected graph G such that G ¢
ISATU(P), decide whether G € SATU(P).

ProoF. Let P beafixed pattern graph. If P isacyclic, then, by analogy to the
proof of Corollary 5.8, SATU(P) istheempty graph. If P iscyclic but containsonly
mixed cycles, then, in analogy to Corollary 5.8, it is easy to see that SATU(P) —
ISATU(P) is again the empty graph. Thus, if P isacyclic or contains only mixed
cycles, our problem is trivially decidable in polynomia time. For the rest of the
proof, we thus assume that P contains at least one pure cycle.

A vertex (= color) C of P suchthat thereisnodirected path from C to any purecy-
clein P iscalled a superfluous color. Assume that for some graph G € SATU(P)
there is a legal coloring col that uses a superfluous color C, that is, there is a
vertex v of G such that col(v) = C and C is superfluous in P. Let wit be a
witness function for this coloring. Then the subgraph of G[wit] induced by the ver-
tices {v, wit(v), wit(wit(v)), ..., wit'(v), ...} must contain acycle Z, given that it
isfinite. If Z was a pure cycle, then col(Z) would induce a pure cyclein P which
isreachable by adirected path from C; contradiction. Thus Z isamixed cycleand
hence G € ISATU(P). It follows that whenever G € SATU(P) — ISATU(P), then
no legal coloring of G with respect to P uses a superfluous color. Thus, for the
purpose of our theorem we can assume without loss of generality that P does not
contain any superfluous color (otherwise, such a color could be deleted without
harm from P).

Again, we distinguish three cases.

Casel. P haspositive and negative cycles.
Thiscaseissolvedin exactly thesameway asCase 1inthe proof of Theorem5.14.

Case 2. All purecyclesof P are positive.

We consider two subcases:

(8 P ispositive. By Lemma 5.2, G € SATU(P) iff K € SATU(P) for each
connected component K of G. Again, asin the proof of Theorem 5.14, this check
is done for each K in accordance with Case 1(a) (of Theorem 5.14).

(b) P has some edgeslabeled ©. Let e = (D', D!) be such an edge. Given that
P contains no superfluous vertices, there exists asimple path o (of possible length
zero) from D! to apositivecycle T in P. Continue as in Case 2(b) in the proof of
Theorem 5.14.

Case3. All purecyclesof P are negative.
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By Lemmab.3, G € SATU(P) iff G¢ € SATU(P*). Notethat all pure cycles of
P* arepositive. Checking whether G¢ € SATU(P*) can thusbedonein accordance
with Case 2.

Thethree cases exhaustively cover all possibilities; thusthe algorithm effectively
decideswhether G € SATU(P). Moreover, determining whether G € SATU(P) is
feasiblein quadratic time (in the size of theinput G). [

6. The Saturation Problem for General Pattern Graphs

In this section, we show that SATU(P) isin PTIME, for each pattern graph P.
The proof is similar in spirit to the proof for pure pattern graphs but the details
are a bit more complicated. Similar to Section 5, cycles in the graph G will play
an important role. But in this section we have to focus on the existence of mixed
cycles, that is, closed “paths’ consisting of edges and nonedges. Again, we give an
algorithm which distinguishes between two main cases. In the first case, the input
graph G hasaspecial structurewhichisasdight generalization of constant-bounded
tree-width. We show that on such graphs the SATU(P) test can be easily reduced
to the case of graphs of constant-bounded tree-width. On the other hand, we show
that if a graph does not have this specia structure, then (1) alegal coloring of a
mixed cycle can always be extended to alegal coloring of the whole graph and (2)
a graph with alegally colorable mixed cycle always contains a legally colorable
mixed cycle of constant-bounded size that dependsonly on P. Hence, in the second
case the SATU(P) test essentially boils down to checking for the existence of a
legally colorable mixed cycle of constant-bounded size and, if no such cycleexists,
calling the procedure of Section 5.

Notation. Before we define the notion of special graphs that is needed for our
purposes, we introduce some more notation. Let P be a pattern graph. Edges of P
that are labelled with © are called ©-edges and edges labelled with & are called
@-edges. It will be convenient to view an input graph G = (V, E) as a complete,
undirected, self-loop freegraph wheretheedgescarry labelso or . The ®-labelled
edges are those from E and the ©-labelled edges are those that are not in E. In
thisview, we call G ©-@-labelled and refer to the set of ©-labelled edges and the
set of @-labelled edges as E® and E®, respectively. To emphasize the symmetry
of the two kinds of labels and to support intuition, we will often call ©-labelled
edges negative edges and §-labelled edges positive edges. In figures, @-edges will
be depicted by solid lines, ©-edges by dashed lines. To summarize, we use the
following eguivalent notations.

edgein E
edgenotin E

label &
label ©

We write lab(v, w) to refer to the label of the edge between v and w. Hence
lab(v, w) € {6, &}, for each pair of verticesv # w. Toindicatethat lab(v, w) = &
we sometimes al so write positive(v, w). If positive(v, w) for al verticesw of some
set A, we also write positive(v, A). If all vertices from a set A are connected by a
positive edgewith all verticesfrom B, then wewrite positive(A, B). If all edges be-
tween vertices of A are positive, wecall A apositive clique. For aset A of vertices,
we call the graph (in the standard sense) which consists of al vertices of A and the
edges of E® between vertices of A the positive graph of A. Anaogous notations

positive
negative
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are used with negative in place of positive. We write uni( A, B) to indicate that all
edges between aset A and a set B have the same label, no matter which.

A sequencevs, ..., V| of (pairwisedifferent) verticesof G determinesapath p of
G which consists of all edges{v;, vi11},i < |. Wewrite pat(p) for the ©-®-string
lab(vo, v1) - - - lab(vi_1, v;). By adding the edge {v;, v1}, the path p aso determines
acycleC of G. Tosimplify notation werefer to pathsand cyclesby only listing their
constituting vertices. Wewritefirst(p) and last(p) to refer to v, and v, respectively.
We call acycleC = vy, ..., Vv, sdf-saturating with respect to a pattern graph P,
if there is a coloring col of the vertices of C, that has the function f, defined by
f(vi) = vi,1 asawitnessfunction. Here, asin the following, arithmetic on indices
ismodulo I, hence vi;; = v;. A cycleis called mixed if it contains positive and
negative edges.

Now we turn to the definition of the generalization of constant-bounded tree-
width. For integersk andt, wecall ac-®-graph G (k, t)-special if itsset of vertices
can be partitioned into sets A and A4, ..., A such that the following conditions
hold.

—The positive graph of A or the negative graph of A hastree-width at most t.

—For eachi < k, A iseither a negative cligue or a positive clique (or might be
empty).

—For eachi and each vertex v, uni(v, A)).

The Algorithm.  Next, we give a high-level description of the algorithm for the
general SATU(P) problem. Its input consists of a pattern graph P, a ©-®-graph
G and constants ¢, k and t. The algorithm only decides SATU(P) correctly, if ¢, k
and t are chosen appropriately with respect to P. For the complexity analysis, P,
¢, k and t will be considered as fixed.

Algorithm 6.1
(1) Test whether G is (k, t)-specia using the algorithm of Lemma 6.3 below.
(2) If Gis(k, t)-specia, then test whether G € SATU(P) using the algorithm of Lemma 6.4 below.
(3) If Gisnot (k, t)-special
(@) Test whether G hasamixed cycle C of size <c that hasalegal coloring with respect to P.
(b) If thisisthe case, accept.
(c) Otherwise, call the algorithm that was given in the proof of Theorem 5.17 above.

Now we can state the main result of this section which immediately implies
Theorem 4.8.

THEOREM 6.2. For each pattern graph P, there are constants k, c and t such
that Algorithm 6.1 decides SATU(P) correctly. Furthermore, for each choice of P,
k,candt, Algorithm 6.1 runsin polynomial time.

Theorem 6.2 will be proven in the remainder of the section. The proof consists
of aseries of lemmas and is spread over three subsections.

—In Section 6.1, we show that, for fixed k and t, whether agraph G is(k, t)-special
can be checked in polynomial time, and, for fixed k, t and P, whether a (k, t)-
special graph isin SATU(P) is also decidable in polynomial time. Therefore,
for each fixed choice of P, k and t, the first two steps of the algorithm can be
performed in polynomial time.
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—In Section 6.2, it isshown that for each pattern graph P thereisaconstant ¢ such
that whenever a graph G has a self-saturating mixed cycle with respect to P it
already hasoneof sizeat most c. Therefore, if Step 3(a) of the algorithm does not
find a self-saturating cycle (for suitable choice of ¢) there is no self-saturating
cycleatal in G.

—Findly, in Section 6.3, we show that if a graph that is not (k, t)-special has a
self-saturating mixed cyclewith respect to P thenitisalready in SATU(P). This
justifies acceptance in Step 3(b) of the algorithm. On the other hand, if 3(a) fails
then G can not be saturated impurely, hence the correctness of Step 3(c) follows
from Theorem 5.17.

6.1. THE SATURATION PROBLEM FOR SPECIAL GRAPHS. We show firgt, that,
for each fixed choice of P, ¢, k and t, the first two steps of Algorithm 6.1 can be
performed in polynomial time. We call two verticesv and v’ of a ©-®-graph G =
(V, E®, E®) equivalent if, for all verticesw inV — {v, v'}, lab(v, w) = lab(V’, w).

LEMMA 6.3. For each k and t it can be checked in polynomial time whether
a ©-@-graph G is (k, t)-special. Furthermore, a corresponding partition can be
constructed in polynomial time.

PrROOF. The algorithm works as follows.

for each k' < k, each tuple (vy, ..., Vi) of pairwise distinct vertices of G
andeach j € {0,..., k'}
B:=V —{vy,..., Vi }
fori =1toj do
A = {v;}U al vertices from B that are equivalent to v; and
connected to v; viaa positive edge
B:=B—-A
end
fori =j+1tok'do
A = {v;}U al vertices from B that are equivalent to v; and
connected to v; viaanegative edge
B:=B—-A
end
if the negative graph on B or the positive graph on B has tree-width < t,
then accept
end
Reject
For fixed k, this algorithm runs in polynomial time. It is straightforward to verify
that it recognizes (k, t)-specia graphs correctly. In particular, if u # U arein
A, distinct from v; then the edge between u and u’ has the same polarity as the
edges between u and v; and between u’ and v;, respectively. Therefore, each A is
a(positive or negative) clique. [

LEMMA 6.4. Thereisanalgorithmwhichtests, for each fixed choice of k, t and
a pattern graph P, in polynomial time whether a (k, t)-special input graph G isin
SATU(P).

PrROOF. We describe how a (k, t)-special graph G can be transformed in poly-
nomial time into a graph G’ of tree-width t’ (only depending on k, t and P but
not on G) that is equivalent to G with respect to SATU(P). As G’ € SATU(P)
can be tested in polynomial time in accordance with Corollary 5.5, this implies
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the statement of theLemma. Let A, A4, ..., Ax bethe partition of G as computed
by the algorithm of Lemma 6.3. Let | be the number of verticesin P. For each
Pe{l, ...k}, let A=A, if |[A| <2, o0rlet A consist of arbitrarily chosen 2|
verticesfrom A, otherwise. The computation of the Aj clearly worksin polynomial
time. Let G’ be the subgraph of G whichisinducedby Aand A7, ..., A,. Aseach
set A has at most 2| elements, the tree-width of the positive graph of G’ or the
negative graph of G’ isat most t’ =t + 2K/l

It remainsto show that G’ € SATU(P) if and only if G € SATU(P).

Assume G’ € SATU(P). Then, by definition, thereisalegal coloring of G’ with
respectto P. Leti > 1, let v; besomenodein A and let p bethe color of v; inthe
coloring of G'. Then al verticesv from A; — A can be colored by p asthey are
related to all vertices of G’ exactly asv;. In particular, we can set wit(v) = wit(V;).

For the opposite direction, assume that G € SATU(P). Then there is a lega
coloring of G with respect to P. Let, for eachi > 1, F; be the set of colors which
occur in A;. The vertices of A are colored asin G, if A/ = A; or such that each
color from F; isused at least twice. Assumev € G’ and v is saturated in G by a
vertex u € A, forsomei. If v ¢ A, thenv can be saturated in G’ by avertex of A/
with the same color asu. Now assumev € A;. If A/ = A; then v can be saturated
in G’ by u. Otherwise, there exists at |east one vertex different fromv in Aj that has
the same color as u and saturates v. This completes the proof of thelemma. [

Remark 6.1. By asimilar proof it can be shown that, for each k and t, model-
checking of MSO-formulas for (K, t)-special graphsisin PTIME.

6.2. EXISTENCE OF SMALL SELF-SATURATING CYCLES. Thenextlemmashows
that whenever agraph G has a self-saturating mixed cycle with respect to a pattern
graph P then it also has a constant-bounded self-saturating mixed cycle.

LEMMA 6.5. Let P beapatterngraph. Thereisaconstant d such that whenever
ao-@-graph G has a self-saturating mixed cycle with respect to P then it hassuch
a cycle with at most d vertices.

PrROOF. Let | be the number of vertices of P. Let m = |* and d =
(Im)2(2)'™+* 4+ 2. Let C = vy, ..., Vy_1 be a self-saturating mixed cycle of G
with respect to P of length n > d and let col be a corresponding coloring function.
Without loss of generality, we can assume that the edges between v, _, and v,_1 on
one hand and between v,,_1 and vy on the other hand have different labels.

Wewill show that thereisasmaller self-saturating mixed cycle C’ which actually
only consists of vertices of C. We construct C’ either by skipping one subpath of
V1, ...,Vnh_1 in C or by combining some vertices of C in an entirely new way,
resulting in a small mixed cycle. In the former case, the edges between v,,_, and
V1 and between v,,_; and vy, respectively, guarantee that C’ is mixed.

We distinguish two cases.

Casel. C hasasubpathvy, ..., vkim Of length min which all edges have the
same |abel.

Without loss of generality, we may assume thislabel is &. For notational conve-
nience, we also assume k = 0. The general case is completely analogous.

We consider thel® paths P, = viy, ..., V4, forali € {0, ..., 13—1}. Asthere
areonly | colorsfor each P, thereare j < j’ < | suchthat vj1; and v; ;- havethe
same color. For each i, we choosesuch j and j’ and let J; = {Vii4j+1, ..., Vil4j'}
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and§; := j' — j. There are at least |2 subpaths P, with the same value of §;. Let §
denote this value.
If there exists apath Q from v to vy, such that

(1) thelength of Q ism — j§, for some j < 12,
(2) dl intermediate verticesof Q arefrom {vy, ..., Vvmn_1}, and
(3) al edgesof Q carry the label &

then we can construct a self-saturating mixed cycle of length n — j§ by simply
replacing the path vy, . . ., vim in C by Q and coloring the vertices of Q according
tovo, ..., Vm but skipping all verticesof sets J;,i < j.

A first immediate consequence is that we are done if there exists an edge with
label & between verticesv; and vi 5.1, for somei < m—§ — 1. Hence, we assume
in the following that al such edges have label ©.

AsC isamixed cyclethereisaclosed mixed (directed) pathin P. A straightfor-
ward argument shows that there must be such a path wo, .. ., w;_; of some length
t < |+ 1. Let c; be the number of ©-edges on this path and ¢, the number of
@-edges. Of course, c; + ¢, = t. Without loss of generality, we may assume that
the w; are numbered such that the edge in P from w;_; and wq has label ©. Let
¢ := (c1 — 1)(8 — 1) + c,. Note that ¢’ < 12. Consider the edges between v;¢ and
Vigso, fori =0,...,8 — 1. If al these edges have label @, thereis a path Q of
length m — (¢’ — 1)8 from v to v, with the above properties (1)—3).

Hence, we may assume that thereisai < § — 1 such that the label between
Vie and Vi1 1S©. We can construct amixed self-saturating cyclevy, ..., v,,_; as
follows.

Let vy := Vic. Now let v] be already chosen, foraj <t — 1, assomev;.. We
Set V41 i= Viryq if the label between w; and wj,, has label @, V]H = Virysi1,
otherwise. By the definition of ¢y, ¢, and ¢/, we get v{_; = Vic4c. As the label
betweenv;c andvic¢ is©,thecycleC’ = vy, ..., v{_, isself-saturating according
towg, ..., Wi_1.

This completes the proof of Case 1.

Case2. Every subpath of C of length m contains ©-edges and @-edges.

Claim. Thereexistk < | and Im edge-digoint subpaths p; = vi;, ..., Vi, +km,
j €{1,...,Im}, such that

—all subpaths are colored identicaly, that is, for adl j, j’ < Imand s < km,
col(vi, +s) = col(v; j/+s),

—all subpaths have the same pattern, that is, for al j, j’ < Im, pat(vi, ...,
Vij+km) = pat(vij,, e, Vijr+km)’ and
—foreach j <Im, col(vj;) = col(Vi;+km)-
To provethisclaim, consider the p := Im(21)'™+1 pathsdj = Vjim, - - ., Vjim+im,
j =0,...,p— 1of lengthIm of C. As each vertex v; carries one of | colors

and each edge is positive or negative, there are only (21)'™** different possibilities
of vertex colorings or patterns of a path of length Im. Hence, there exist Im paths
Qj,» - - - » Qj,, Withthe same coloring and pattern. Again, asthereareonly | colors, at
least two of thel 4- 1 verticesvj,im, Vjim+m, - - - » Vjim+im must have the same color,
for eachi < Im. Asthe paths are colored identically, we can select in each path
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(a) Vi;  Vij41 Vij42 Vij+3 Vij+4 Vij+b Vij  Vig4l Vij42 Vig+3 Vij+4 Vij+b

FIG.8. Construction of C’ (right hand side) from C (left hand side). km = 5. Colorsare, 2, 3, 4, 5.
Thick linesindicatethe self-saturating cycle. Solid linescarry &, dashed lines, dotted linesrepresent
subpaths. Some vertex names are omitted to improve readability.

two such vertices at the same relative positions. By taking the subpaths between
(and including) these two vertices, we get paths p; with the properties stated in the
claim. Recall that each p; contains ©-edges and ®-edges.

Without loss of generadlity,i; < iz < -+ < ijm.

If for some j < Imand somes < kmit holdslab(V, s, Vi ., +sy1) = lab(Vi, 1s,
Vi, +s+1), then we get a smaller self-saturating cycle C’ by eliminating the vertices

Vi, 4st1s - -+ Vi, +s from C (cf. Figure 8(a)).
On the other hand, if for some j < j’ < | it holds Iab(vij,vij/+km_1) =
lab(Vi , 1km—1, vij/+km),thenvij R definesasmaller self-saturating cycle

J

(cf. Figure 8(by)).
Hence, we can assume that

(@ foreach j <Imandforali < km,
lab (Vi 1is Vi i riv1) 7 1@0(Vi 45 Vij4ita)s
and
(b) foreach j < j’ <Im,
lab(Vi; , Vi, +km-1) # 18D(Vi,+km—1, Vi, +km)-

We show next how this can be used to construct a self-saturating mixed cycle
C' =V, ..., Vg1 cOnsisting only of vertices from {v;,, ..., Vi, +km}-



Existential Second-Order Logic Over Graphs 349

To thisend, let s € {1,...,km} be chosen such that lab(vi,+s_1, Vi,1+s) #
lab(Vi,+km—1, Vi,+km). Such an s exists because, by the assumption of Case 2,
no m consecutive edges in C carry the same label. As lab(Vi, tkm—1, Vi;+km) =
1ab(Vi,, +km-1, Vi, +km), for each j* < Im, we can conclude from (b) that, for each
j/ <Im, Iab(Vi1+S_1, Vi1+S) = Iab(vip Vij/+km—1)-

To simplify notation, we set w; := v; i, for eachi € {0, ..., km}. Our godl is
to construct C' = vy, . . ., Vy,,,_; such that the following holds.

(i) pat(vg, - .-\ Vino1—s) = Pa(Ws, . .., Wikm-1);
(i) 1ab(Vin—1-s» Vim—s) = 180(Wkm_1, Wkm);
(iii) pat(Vim_gs - - - » Vim—1) = Pat(Wo, ..., Ws_1);
(iv) lab(Viy 3. Vo) = lab(Ws 1, Ws)

If we color the nodes v; in accordance with this correspondence, we get a self-
saturating coloring of the cycle C’, as, for each j < km, w; is saturated by wj 1.
Note that the coloring of v, ,, . iS unambigous as we have col(wg) = col(Wim).

The vertices v/, i = 0,...,km — 1 —'s, are inductively chosen as follows:
Each vi will be a vertex vi; + i, for some j. Let vy = v;,. Now assume that
Vi = Vi, isdready selected and i < km — 1. Recall that lab(vi, i, Vi, +i+1) #
lab(Vi, 1i, Vi, +i+1)- Hence, we can ensure lab(v{, vi ;) = lab(Wsyi, Wsiiy1) by
either choosing v | ; @S Vi 141 OF aSVi i1

In an analogous fashion, we choose the vertices v, . ..., Vi1, Such that
(i)—(iii) hold. As stated above, the choice of s guarantees lab(Vi,s—1, Vi,+s) =
lab(vi,, Vi, rkm-1), for each j, hence we can also conclude (iv).

The construction is exemplified in Figure 8(c). This concludes the proof of the
second case. [

6.3. EXTENDING A LEGAL COLORING OF A CYCLE. This section is devoted to
the proof that, for each pattern graph P there exist k and t, such that, for each
©-@-graph G which is not (k, t)-specia but has a self-saturating cycle it holds
that G € SATU(P). This is actually the most complicated part of the proof of
Theorem 6.2.

If C =wy, ..., w isaself-saturating mixed cycle of agraph G with afixed col-
oring, wesay that C saturatesavertexv ¢ C directly, if lab(v, w;) = lab(w;_1, w;),
for somei, that is, v is saturated by some w;. Here, as always in the following,
arithmetic within the subscript of the verticesw; ismodulo|; hence, al indicesare
from{O, ..., | —1}.

In principle, a graph might be saturated by using several self-saturating (mixed
and pure) cyclesand extending their coloringsviapathsof variouslengths. However,
we show in the following that if there is a saturating coloring involving a mixed
cycle at al then there exists a coloring with one self-saturating cycle C which
saturates almost all other vertices directly. Only for a constant number of vertices,
depending on the pattern graph, there might be the need for a saturating path. But
the lengths of these paths are bounded by a constant, too.

We call avertex v ¢ C bad with respect to C if it is not directly saturated by C.
The set of all such verticesis denoted Bad(C).

We proceed in two main steps.

First, we show that there is a constant ¢ depending on P, k and t such that for
each self-saturating mixed cycle C that has more than ¢ bad vertices there exists



350 G. GOTTLOB ET AL.

_——

FIG. 9. Vertex u; is bad with respect to the cycle C = wg, Wy, W, W3, Wy. Vertex u, is neutral as
it can only be saturated by ws. Vertex us is good as it is saturated by the é@-assistant w; and the
©-assistent wyp. Only the relevant edges are shown.

a self-saturating mixed cycle C’ such that all vertices from Bad(C) are directly
saturated by C’ or the coloring of C can be extended to a saturating coloring of
G. By dightly modifying this construction, we can get a self-saturating cycle D
such that actually |Bad(D)| < |Bad(C)| (Lemma 6.8). By repeatedly applying
Lemma 6.8, we arrive at a self-saturating cycle C for which |Bad(C)| < c.

Second, Lemma 6.10 shows that this constant number of remaining vertices can
be saturated along suitable pathsin G.

Let, in the following, P be a fixed pattern graph, let k and t be chosen large
enough, let G be ao-®-graph that is not (k, t)-special and let C = w, ..., w; be
amixed cycle that is self-saturated with respect to P for some coloring col.

We continue by defining afew additional notions and establishing some notation
that will be used in the sequel. If, for somei < I, lab(w;_1, w;j) = @ (respectively,
©), we say that w; saturates positively (respectively, negatively). We say that w; is
ad-assistant (©-assistant) if lab(w; _1, wi_) is® (respectively, ©).

For avertex v that isnot bad with respect to C, theremight exist several verticesw;
that can saturate v. If v can be saturated directly by a 0-assistant and a 1-assistant,
then we can choose whether v itself can saturate other vertices via positive or
negative edges. As this gives us some additional flexibility, we call such vertices
good with respect to C.

Vertices that are neither good nor bad are called neutral with respect to C.
We write Good(C) and Neu(C) for the sets of vertices that are good and neutral,
respectively. Figure 9 exemplifies the definition of Good(C), Bad(C), and Neu(C).

As stated above, good vertices give us an additional flexibility in extending
colorings. On the other hand, if we know that a vertex v is not good and can
saturate only via, say, positive edges, we know it is not directly saturated by
any o©-assistant. Hence, for each ©-assistant w;, we can infer the polarity of the
edge between v and w;. This knowledge will be useful in the construction of a
better cycle.
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Thefollowing lemma guarantees that the number of good verticesis small com-
pared to the number of bad vertices unless the coloring of C can be extended to a
saturating coloring.

LEMMA 6.6. If |Good(C)| > log(|Bad(C)|), then the coloring of C can be
extended to a legal coloring of G.

ProOOF. We color the vertices of Neu(C) such that they are saturated directly
by C. Then, we ensure that al vertices from Bad(C) are saturated by vertices
from Good(C). We proceed inductively as follows: Initialize A := Good(C) and
B := Bad(C). We repeat the following until A is empty. We pick a vertex v from
A. If at least half of the vertices of B are connected to v by apositive edge, then we
color v such that it saturates positively. Otherwise, we color v such that it saturates
negatively. In either case, v saturates at least half of the verticesin B. We delete v
from A and delete the vertices saturated by v from B. Clearly, the size of B after
each step isat most half the size asbefore. Hence, after log(|Bad(C)|) < |Good(C)|
steps al vertices are saturated. [

In a similar fashion, we can deal with the particular case where ©-edges
and @-edges occur aternatingly in C. Before we formally prove this state-
ment, we introduce some more notation that will be used in the subsequent
proofs. Recall that if p = v, ...,V is a path, pat(p) denotes the ©-@-string
lab(vo, v1) - - - lab(vVm_1, Vim). For aregular expression e over {©, @}, we say that p
matches eif the string pat(p) matches ein the usual sense. Analogously, if weview
C =vg,...,Vnm asacycle, we define pat(C) as pat(vo, . . . , Vm, Vo).

LEMMA 6.7. If pat(C) matches (6®)* or (®6)*, then G € SATU(P).

ProOF. If |Good(C)| > |Bad(C)|, thenthe statement followsfrom Lemma6.6.
Otherwise, we take the reversal of C as C’. It is easy to see that Neu(C) C
Neu(C’) U Good(C") and Bad(C) < Good(C"), hence |Good(C’)| > |Bad(C)|
and the statement follows, again by Lemma 6.6. [

6.3.1. Reducing the Number of Bad Vertices

LEMMA 6.8. For each| > 0, therearec, k, t such that the following holds. If
Gisnot (k, t)-special, C isa self-saturating mixed cycle of G of sizeat most | with
acoloringcol and [Bad(C)| > c, then either col can be extended to alegal coloring
of G or there is a mixed self-saturating cycle D in G with pat(D) = pat(C) and
|Bad(D)| < |Bad(C)|.

ProOF. Letcbelargeenough suchthat each ©-@-graphwith c verticescontains
anegative or apositive clique of sizel; such acisguaranteed to exist by Ramsey’s
classical theorem. Let t be large enough such that each graph of tree-width larger
thant containsacycle of length at least 21 and let k = 3.

Let G be agraph which isnot (k, t)-special and let C = w;, ..., w; beacycle
self-saturated by a coloring col and witness function f (w;) = wj .

Although the vertices in Bad(C) are the troublesome vertices, they will play
an important role in the construction of D. The reason for this is that a lot of
information can be deduced from knowing that a vertex is bad; specificaly, if
a vertex v is in Bad(C), then we can derive the labels of al edges between v
and C.
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If pat(C) matches (©6®)* or (®S)*, then we are done by Lemma6.7. Therefore,
we assume in the following that thisis not the case. Because of Lemma 6.6, we can
also assume |Good(C)| < log(|Bad(C))).

The proof consists basically of two parts. We first describe the construction of
acycle C’ which almost has the desired properties. In the second part, it might be
necessary to modify C’ dlightly to obtain D. The construction maintains pat(C) =
pat(C’) = pat(D).

To be more precise, the cycle C’ will saturate all vertices in Bad(C) directly,
that is, we get Bad(C) € Good(C’) U Neu(C’). It might happen that some vertices
in Good(C) are no longer saturated by C’ but this does not hurt too much as
|Good(C)| < log(|Bad(C)|). Nevertheless, there are some cases, depending on
pat(C), in which it can not be guaranteed that the vertices of Neu(C) are saturated
by C’. These are the cases where we need to modify C’ to get the desired cycle D.
Otherwisewe can simply set D ;= C’. The modification will be conservativeinthe
sense that the vertices from Bad(C) are guaranteed to be in Good(D) U Neu(D).

6.3.1.1. CONSTRUCTION OF C’. By the choice of ¢, Bad(C) contains a positive
or negativeclique K of sizel. Aspat(C) isneither of theform (©@®)* nor of theform
(@o)*, asimpleinduction shows that we can partition C into subpaths py, .. ., pn
such that each subpath conforms to exactly one of the regular expressions

(1) eota™,
(2 (e®)to*, or
(3) (ed)teatat.

Here, as usua r* stands for rr*. Besides the choice of the first subpath, this
partitioning is unique. Note that each subpath starts with © and ends with @. In
particular, al verticesfirst(p;) saturate positively.

For each subpath p;, we construct a path p; such that the following statements
hold.

(@ ¥#p NCCp —{last(pi)};

(b) last(py) = first(p;,,)

(c) pat(p;) = pat(pi);

(d) Thereisavertex vin p; N p; which hasreversed polarity in p/ compared to p
(i.e., the label between v and its successor is different in pf and in p;);

Conditions (a) and (b) guarantee that the p/ can again be concatenated to a
cycle C’. Condition (c) ensures that this cycle has the same pattern as C. Let p;
consist of vo, ..., vmand p; of v, ..., vy,. We color each vertex v by col(v;). The
last condition ensures that the vertices of Bad(C) can be directly saturated by this
coloring of C’. Note, that the latter condition is already guaranteed by each single
subpath pf.

We construct the paths p; inductively. It should be noted first, that in the con-
strucion of p/ the first vertex of p/ can always be chosen arbitrarily from K. In
particular, it can always be chosen in away that ensures condition (b). Hence, we
only need to care about conditions (a), (c) and (d).

Leti > 0. Let Q; denote the set U'J;ll P, let Ki := K — Q and let pi =
Vo, ..., Vm. Wewill describethe construction of p/ = v, ..., vp,. Inmost cases, p
will consist of verticesof p; and of verticesfrom K;. Asit doesnot make adifference
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(a) vo = vy U1 = vh v2 v3 2

FiG.10. Construction of p/ from p;. (8) displays case (1) with j = 2, (b) showscase (2) with j =2
and (c) shows case (3) with j = 1and j’ = 2. The path p/ isindicated by thick lines.

which verticesfrom K; areactually chosen wesimply writex for an arbitrary vertex
from K;. Hence, for example, %, Vo, ..., vj_1, *™! refersto apath which consists
of avertex from K;, followed by the subpath vo, . .., v;_1 of p; and completed by
m — j verticesfrom K;. In al cases, the path ends with an appropriate number of
vertices from K;. We simply write +* to denote this terminal part of the path.

We distinguish between three main cases, depending on whether the pattern
of pi conformsto (1), (2) or (3). Case (3) splitsinto two subcases depending on
whether the second block of (negative) edges haslength 2 or more. Inthe latter case
of more than two negative edges, there will be some further local case distinctions.
In al cases the verification of conditions (a), (c) and (d) is straightforward given
the respective constructions. . .

If pi conformsto (1) and pat(p;) = ©'@™ !, then we choose p/ = %, vo, ...,
Vj_1, ** (cf. Figure 10(a)).

If pi conforms to (2) and pat(pi) = (©®)'@™ 2, then we choose p| = *,
Vaj, ..., Vv, x* (cf. Figure 10(b)).

If pi conforms to (3), let j, j’, j” be such that pat(p) = (6@)iel'®!”
(Where j” > 1and j, j” > 1). If |’ = 2, wechoose p| = *, Vyj, ..., Vg, ** (cf.
Figure 10(c)).

The remaining case iswhen |’ > 2. Thisis the only case where we have to
consider other parts of the graph, besides C and K;. As we assume that G is not
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(@) vo=vy vI=vh v2=7) v3 V4 vs Ve vy
,,,,, - —————— - —— & —— & — ...
7.<\ _._\_
- ~

(b) vo = vy v1 v2 v3 Vg vs Ve vr

FiG. 11. Construction of p/ from p; in case of pattern (3) (with j = 1, j’ = 4), subcase (i). The
crucial point is here, that p/ can be found, no matter the value of lab(vo, z).

(k, t)-special, by the choice of t and k, the negative graph G — (C U K; U Q;) has
tree-width more than t and therefore it contains a negative cycle R with at least
2l vertices. The path p/ will start in K;, traverse an initia part of p; in reverse
direction until vg, passto avertex z of R, follow R for awhile and finally go back
to K;. A difficulty liesin the fact that we neither know lab(vg, z) nor the labels of
edges between R and K; in advance. If lab(vo, zZ) = @ this edge can match the last
@ of the (©®)! part of pat(p;). Otherwise, it can match the second © of the &/
part. To deal with this difficulty, we show that we can alwaysfind zin R such that

—there exist X,y in Rand u,u" in K; withd(z,x) = | =2, d(z,y) = j’
(distances counted on R) and lab(x, u) = lab(y, u’) = @, or

—there exist X, y in Rand u in K; withd(z,x) = j'—3,d(z,y) = ]’ — 1 and
lab(x, u) = lab(y, u) = &.

Thenwe choose p/ = %, Vaj, ..., Vo, Z, ..., X, U, " if lab(vp, 2) = ©
or pf =*,Voj_2,...,V0,2,...,Y, U, x* otherwise. See Figure 11 for an example
of the second case.

In order to prove the existence of z, we consider three subcases.

(i) If there exist vertices x and y on R with distance 2 on R and neither
positive(x, K;) nor positive(y, K;) holds, then we choose z on R that has
distance j’ — 3 from x and distance j’ — 1 from y.

(ii) If there exist vertices x and y on R with distance 2 on R and neither
negative(x, K;) nor negative(y, K;) holds, then we choose a vertex z on R
that has distance j’ — 2 from x and distance j’ fromy.
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(iii) Finally, assume that neither of the above two cases holds. This implies that,
for each pair of vertices x,y of distance 2 on R, either negative(x, K;)
and positive(y, K;) or positive(x, K;) and negative(y, K;). We conclude
that R can be written as a sequence ap, a;, &, ..., a8y such that, for
each h! negative(a4hv Ki)1 negative(a4h+lv Ki)v pos.tive(a4h+29 Ki)1 and
positive(asn, 3, Kj). In particular, if the distance of two vertices x, y is a
multiple of 4, then they are connected to K; in the same way.

In this case, we will choose z between x and y on R (in the natural sense).
The choice of x, y, z depends on the modulus of j’ with respect to 4. If

(@ j’ = 4s+ 3, we choose x and y of distance 8s + 4 with positive(x, K;)
and positive(y, K;) and z of distance 4s + 3 from x and 4s + 1 from y;

(b) j" = 4s+ 1, we choose x and y of distance 8s with positive(x, K;) and
positive(y, K;) and z of distance 4s + 1 from x and 4s — 1 from y;

(©) j’ = 4s+ 2, we choose x and y of distance 8s with negative(x, K;) and
negative(y, K;) and z of distance 4s + 1 from x and 4s — 1 from y;

(d) j’ = 4s, we choose x and y of distance 8s — 4 with negative(x, K;) and

negative(y, K;) and z of distance 4s — 1 from x and 4s — 3 from y.

Inanalogy with the cases (i) and (ii) aboveit can be seen that p can be constructed
in each of the four cases.
This completes the description of the construction of C'.

6.3.1.2. FRom C' TO D. To summarize, C’ has the following properties.

—Bad(C) < Good(C’) U Neu(C’), that is, all bad vertices with respect to C are
no longer bad with respect to C’.

—On the other hand, it might be the case that some vertices from Good(C) and
Neu(C) are in Bad(C’). We know that there are not many good vertices with
respect to C, as by assumption |Good(C)| < log(|Bad(C)|). We only have to
worry about the vertices from Neu(C). Many of them may be bad with respect
to C’, in fact it might even be the case that |Bad(C’)| > |Bad(C)|. It will turn
out in the following that the existence of certain patterns in C guarantees that
no vertices from Neu(C) are in Bad(C"). If none of these patterns occursin C,
we have to modify one or at most two subpaths of C’.

Below, we show that at least one of the following statements holds.

—The coloring col of C can be extended to alegal coloring of G.

—|Bad(C’)| < |Bad(C)|.

—There is a self-saturating cycle D with pat(D) = pat(C’) = pat(C) such that
|Bad(D)| < [Bad(C)|.

We note again that, in the latter case, D will differ from C’ only in at most two
subpaths.

The main idea to ensure the saturation of the vertices in Neu(C) is as follows.
Assume there are vertices xo and x; in C N D, such that xg is a &-assistant and
X1 is a@-assistant with respect to C and both saturate in D via edges of opposite
polarity than in C (we say, that their polarity is reversed). As each vertex in
Neu(C) is saturated with respect to C by at most one of Xg and X4, it followsthat all
verticesin Neu(C) are saturated by at least one of Xy and x; with respect to D, that
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is, Neu(C) € Neu(D) U Good(D). Therefore, it is sufficient to find a ©-assistant
Xp of C and a@-assistant x; of C that have reversed polarity in D.

There are some easy cases in which such Xy and x; can be found in C’. In these
cases, wecansimply set D .= C'.

—If in the construction of C’ case (2) occurs at |east once or case (3) occurs with
apattern (6®)' 6! ! and j > 1, we can choose xg = Vv, and X1 = V.

—If case (3) occurswith j = 1and j’ = 2, then we can also choose xg = v, and
X1 = V1.

—If case (3) occurs with j” = 1, j’ > 2 and vq is connected by a negative edge
to z, then we can again choose Xy = v, and X; = Vi.

Otherwise, we have to modify C’ to obtain D. Hence, in the following, we
can assume that only case (1) and case (3) with j = 1, |/ > 2 and a positive
edge between vp and z occur in the construction of C’. An inspection of the
construction shows that in all these cases the vertex vy saturates positively with
respect to C but negatively with respect to C’. Hence, if the set of verticesfirst(p;)
contains ©-assistants as well as @-assistants with respect to C, then we are
done again.

Otherwise, we distinguish thetwo casesthat all verticesfirst(p;) are ©-assistants
or that all of them are @-assistants.

Wewrite, inthefollowing, Neug (C) for the vertices of Neu(C) that are saturated
by some ©-assistants of C and Neug(C) for those that are saturated by some
@-assistants of C.

—First, assume all verticesfirst(p;) are ©-assistants.
Hence, al vertices in Neug(C) are saturated by each single of these vertices
with respect to C'.

If, for each vertex v € Bad(C), there is a vertex in Neug(C) that is connected
negatively to v, then C can be extended to alegal coloring of G. If thisis not the
case, then thereisavertex v € Bad(C) such that positive(v, Neug(C)). Note that
v does not need to be a member of the clique K.

If asubpath of pattern (1) was used in the construction of C’, then, asall first(p;)
are ©-assistants, we can concludethat the patternisof theform ! &. Hence, wecan
construct D by replacing vy, of p/ by v. AsvisinBad(C), wecan besurethat wecan
useit also asthefirst vertex of p/, ;. All vertices from Neus (C) are saturated by v.

Hence, we can assumethat all subpathsareof theform (3)withj = 1and j” = 1.

If thereisasubpath p; of thiskindwith j* = 2 (hence, pi = vo, ..., Vs), thenwe
can replace p’ by *, vy, V1, Vo, * and we can choose Xg = V2 and X1 = V1 (= Wy).

It remains the case where al p; are of type (3) with j’ > 3.

If al of them have |’ = 3, then C is symmetric and we can simply choose D
asthereversal of C. Inanalogy to Lemma6.7, it followsthat G isin SATU(P).

The same can be done if C consists of only one subpath p; at all and thisis of
the form (3).

The only remaining case is when there are at least two subpaths of type (3) and
at least one of them has j’ > 4.

Let, without loss of generality, p; = Vo, . .., Vm beasubpath of C with maximal
j"and let p, = U, ..., Uy. Let z; and z, denote the vertices that played the role
of zin the construction of p] and pj, respectively.
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Fic.12. Modificationof twosubpathsp; = v, Vo, 74, . . ., Y1, Vg, Vo and p, = ug, Ug, 2o, . . ., Yo, Ug.
The new pathsare p; = Uy, Uy, Uy, Ug, *, V2, V3, x and p; = Vg, Vo, Z, . . ., Y2, Ug.

—If negative(first(p,), zo) or negative(first(p,), z1), then we can construct paths
p7 and p; in accordance with our general strategy but by using the prefix of p;
in the construction of p; and the prefix of p, in the construction of p;. Hence,
we can replace p; and p, by p; and p;, respectively. Then, at least one of
first(py) and first(p5) is connected negatively with its corresponding z. Hence,
one of these paths gives us suitable xp and x;.

—Otherwise, we can replace the second vertex of p;, (that is, first(pz)) by first(py)
and we can replace p; by , Uy, Uy, Ug, %, Vo, ..., Vm_a, *. We can choose
Xo = Uy and X; = u;. See Figure 12 for an illustrating example.

This finishes the description of the case where all wg are ©-assistants.

—Now assume that all vertices first(p;) are @-assistants. This case is less
complicated than the one before. We may have subpaths of type (1) with
m— j > 2andof type3with j =1and j” > 2.

We distinguish five subcases.
—If thereisasubpath pj = vo, ..., vy, Of type (1) with j = 2, then we replace
pi by *, Vo, *, Vo, +* and we can set Xg = Vo and X; = Vp.

—If thereisasubpath of type (1) with j = 3, we proceed asfollows. First it should
be observed that none of the paths p; makes use of the ™! part (including the
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first vertex of this part). Let the first vertex of the @-part of p;_; be denoted z,
(this oneis connected negatively with its predecessor in p;_1), the second z; and
the third z, (recall that there are at |east two positive edges). We replace p by
%, Zo, %, Z1, Zo, **. We can set Xg = z; and X1 = 2.

—If there is a subpath of type (1) with j > 4, then we replace p/ by
%, Vi1, %, Vo, ..., Vj_3, " and set Xg = Vj41 and X1 = Vo.

—If there are no subpaths of type (1) and thereisasubpath of type (3) with j’ = 2,
we replace pf by *, Vo, V1, Vo, ** and set X = vp and X1 = vi.

—Otherwise, there must be a subpath of type (3) with j* > 3. In this case, we
replace pf by ,V_1, Vo, *, Vo, ¥, if | = 3and by %, v_1, Vg, %, Vo, ..., Vj/, ¥,
if |/ > 3. Ineither case, we can set Xg = Vv, and X; = Vo.

This completes the proof of Lemma6.8. [

6.3.2. Dealing with a Constant Number of Bad \Vertices. From Lemma6.8, we
can concludethat, whenever anonspecia graph G hasaself-saturating mixed cycle
of somesizel thenit hassuch acycle C with |[Bad(C)| < ¢ for some constant c that
only dependson . In this section, we show that we can always extend the coloring
of C to alegal coloring of G.

We start with a combinatorial lemma that states a relationship between being
nonspecial and the existence of long paths of pattern (©@)* or (d6)* for complete
bipartite ©-®-graphs. Let G be a complete bipartite graph with vertex partition
(V1, V») and edge labels from {©, ®}. We call two verticesu, U’ € V; equivalent
with respect toasubset T C V,, if for eachw e T lab(u, w) = lab(u’, w).

LEMMA 6.9. Letl > 0 andlet G be a complete bipartite graph with vertex
partition (V1, V,) and edge labels from {©, ®}. Then at least one of the following
two conditions holds.

(a) Thereis a path of pattern (@©)' starting from (and ending in) a vertex from
V.

(b) The verticesin V; can be partitioned into sets Wy, ..., Wy and thereis a set
T C V, of sizeat most 22 such that for all i < | the vertices in the set W, are
equivalent with respectto V, — T.

ProOOF. Consider the execution of the following algorithm on input G.

(1) T :=9, choosev; € V; arbitrarily
(2) FORi :=2TO2 DO
—IF there existsw € V; not equivalent to any v;, j < i, withrespecttoV, — T
—Vi =W
—Pick for each j < i avertex x;j € Vo — T such that lab(vi, xi;) # lab(vj, xij)
—T :=TU({Xj | j <i}
—OTHERWISE Stop

Therearetwo possibilities how thisalgorithm might terminate. Thefirst isthat no
furher vertex w isfound. Then every vertex in V; is equivalent to one of thev; with
respectto Vi, — T. As|T| < i? after the execution of i steps, condition (b) follows.
Inthe other case, we get 2' verticesvy, . .., Va that are pairwise not equivalent with
respect to V,. Let H be the directed graph with vertex set {v4, ..., va} and edges
defined asfollows. For j < i thereisan edge (vj, vi) in H if [ab(vj, xi;) = &. If
lab(vj, xij) = ©, thenthereisan edge (v;, vi) in H. A directed path v;,, ..., vi,, in
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H correspondsto apath i, Xii,, Vi, Xisi,s - - - » Vi,, With pattern ()™ in G (where
Xij = Xji, fori < j). Notethat, by construction, all the vertices x;,,,, are distinct.
It is easy to show that, as H is complete and has 2' vertices, it has a directed path
of length I. Hence, condition (a) holdsin G. [

Now we come back to the saturation problem.

LEMMA 6.10. Let P be a pattern graph and let c,| be integers. Then there
are constants k and t such that the following holds. If G isa ©-@graph that is not
(k, t)-special and hasa mixed self-saturating cycle C of length| of pattern different
from (6®)* and (6®)* with |Bad(C)| < c and |Good(C)| < log(|Bad(C)|), then
G e SATU(P) via a coloring that extends the coloring of C.

PrOOF. Let ¢; be large enough such that a graph of tree-width >c; aways
contains a path of length | (cf. Proposition 5.11). Let ¢, = | + log(c) + ¢ 4 22+1
and ¢z = 2+12%, We prove by induction on ¢ that a mixed self-saturating coloring
of acycle C of length | can be extended to a legal coloring of G. If ¢ = 0, then
Bad(C) isempty and there is nothing to prove. Let thereforec > 0. Let k" andt’ be
the constants obtained from the statement of the Lemmafor ¢ =c—1andl’ =1.
We set k = max(cs, 2'K’) and t = max(cy + ¢z, t' +17).

Let now G be a graph which is not (k, t)-special and let C = wq, ..., w, bea
cycle with self-saturating coloring coal. If |Bad(C)| < ¢, we are done by induction.
Hence, we can assume |Bad(C)| = c¢. We show that col can be extended to a legal
coloring of G. Let thereforev € Bad(C).

By pm(w;) wedenotethepathwi_m, Wj_m41, . . ., Wj, Whereindicesaremodulo
|. We construct a saturating path p = vg, ..., v for v, for somem < |, that is, a
path such that, for some j,

—Vo =V,

—Vm =W; € C,
—{Vvo,...,Vm-1}NC =0, and
—pat(p) = pat(pm(W;)).

Given such apath, we can color the verticesv; viacol(v;) = col(wj_mi). Hence,
each vertex v; becomes saturated by vi 1. Let G' = G — {vg, ..., Vm_1}. Toward a
contradiction, assumethat G’ is (k’, t’)-special with partition A, A; ..., Ax. Then
it follows that G is (2'K/, t + 1)-special by adding the vertices vy, . .., Vm_1 to A
and partitioning each set Aj,i > 0, into at most 2™ < 2 subsetswith respect to the
polarity of their edgesto vy, ..., vm_1. By thechoice of k andt, G would be (k, t)-
special, a contradiction. Therefore, G’ isnot (k/, t')-special. As |[Bad(C)| <c—1
in G’, G’ can be legally colored with a coloring which extends col, by induction.
By adding back {vi, ..., v} with their chosen colors, we get alegal coloring of G.

It remains to describe the construction of p. First, we choose a fixed extension
of col to the vertices of Neu(C) such that all of them are saturated and all of them
are colored with colors that aso appear in col(C). For each u € Neu(C), let j(u)
be such that u is saturated by wj )41, in particular, col(u) = col(wj ).

For ae-@-string s let Bs be the set of vertices from Neu(C) which saturate via
paths of pattern s. More formally, Bs is the set of vertices u € Neu(C) such that
pat(pi (Wjw)) = S, wherei isthelength of s. Notethat, by definition, B; N Bg = ¢
and that Bs € By if s’ isasuffix of s.
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If, for some ©-®-string s, thereis apath p’ of pattern s from v to avertex u in
Bs, consisting only of verticesin Neu(C), then one can obtain p by adding wj)+1
to p’. Wecall such apath p’ useful for v. Our goal isto show that a useful path for
V exists.

In any of the following situations, the existence of a useful path p’ follows.

—If v has a negative edge to a vertex u from B or a positive edge to a vertex u
from Bg, then p’ := v, u.

—If there is a positive edge between vertices u; € Bgg and u; € Bgg and v
is connected by positive edges to the vertices in Bgg, then p’ can be chosen
as v, U, Uz. Analogoudly, if there is a negative edge between By and Bgg.
Hence, in the following we can assume that there is no edge between Bgg and
Bae Which impliesthat Bgg = ¢ or Bgg = 0.

—If thereisapath q = 2, ...,z of pattern @' in Bg and v is connected by
negative edges to the vertices in By, then we can construct p as follows. Let
j = j(z). AsC isamixed cycle, thereisa j’ such that pat(pj (w;)) = 0@’
Hence, we can choose p’ asv, z_j, ..., z. An analogous construction can be
doneif thereisapath q of length | of pattern &' in Bg.

—If thereisapositive edge between two vertices, u;, u, € Bgg and v isconnected
by negative edgesto the verticesin Bgg, then we can choose p’ = v, Uy, Us.

—Analogoudly, if there is a negative edge between two verticesin By and v is
connected by positive edges to the vertices in Bgg, then we can choose p’ =
V, Up, Uo.

L et us therefore assume that none of these situations occur, that is,

—positive(v, Bs), negative(v, Bg),
—without loss of generality Bgg = @,
—thereis neither apositive path of length | in Bg, nor anegative path of length | in

B, in particular, the positive graph induced by Bgg has tree-width at most ¢,
and

—Bgg isanegative clique and Bgg isapositive clique.

Now we apply Lemma 6.9 to the bipartite graph G’ with V; := Bgg and V, 1=
Bog and the ed%;es between these two sets induced from G. Hence, there is a path
of pattern (p6)' starting from and ending in avertex from Bgg or condition (b) of
Lemma 6.9 holds.

Assume first the existence of such apathq = zy,...,2zy and let j = j(za).
Recdl that z isin = Bgg, for eveni, and in Bgg, for odd i. Asthe pattern of C
neither is of the form (©@)* nor of the form (©)* we can assume that there is a
i’y with 2j’ < |, such that pat(pzj+1(Wj-1)) = ®(®8)' or pat(pzj+2(Wj-1)) =
06(@®o)!. Inthe first case, we can choose p’ = v, Zy-2j-1, ..., 2y asauseful
path, inthe second case p' =V, Zy_2j/—2, ..., Z2.

By switching V; and V, aswell as© and @, we get, again from Lemma 6.9, that
thereisapath of pattern (6®)' starting from and ending in avertex from Bgg, or the
analogue of condition (b) holds for Bog. If there is such a path, we can construct
p’, analogously.

Hence, it remainsto consider the situation wherein both casescondition (b) holds.
Let T, Wy, ..., Wu be the sets obtained from the first application of Lemma 6.9
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andletT', Wy, ..., W,, betherespective sets obtained from the second application.
Let

S:=CUGood(C)UBad(C)UT UT".

Note that |S| < | + log(c) + ¢ + 22+ = ¢,. For each subset U < S and each
i < 2, let W (U) be the set of vertices of W, that are connected positively with
the verticesin U and negatively with the verticesin S— U. Let W/ (U) be defined
analogously. Then, for eachi and U C S, the verticesin W, (U) (as well as those
in W/(U)) are equivalent with respect to V. Therefore, the set A := Bgg U Sand
the (< 2'12% = ¢3) sets W (U) and W/ (U) partition V and actually witness that
G is(cs, €1 + Cp)-specia, the desired contradiction.
This completes the proof of thelemma. [
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