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Abstract. Fagin’s theorem, the first important result of descriptive complexity, asserts that a prop-
erty of graphs is in NP if and only if it is definable by an existential second-order formula. In
this article, we study the complexity of evaluating existential second-order formulas that belong to
prefix classses of existential second-order logic, where a prefix class is the collection of all exis-
tential second-order formulas in prenex normal form such that the second-order and the first-order
quantifiers obey a certain quantifier pattern. We completely characterize the computational complex-
ity of prefix classes of existential second-order logic in three different contexts: (1) over directed
graphs, (2) over undirected graphs with self-loops and (3) over undirected graphs without self-loops.
Our main result is that in each of these three contexts a dichotomy holds, that is to say, each pre-
fix class of existential second-order logic either contains sentences that can express NP-complete
problems, or each of its sentences expresses a polynomial-time solvable problem. Although the
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boundary of the dichotomy coincides for the first two cases, it changes, as one moves to undi-
rected graphs without self-loops. The key difference is that a certain prefix class, based on the
well-known Ackermann class of first-order logic, contains sentences that can express NP-complete
problems over graphs of the first two types, but becomes tractable over undirected graphs without
self-loops. Moreover, establishing the dichotomy over undirected graphs without self-loops turns
out to be a technically challenging problem that requires the use of sophisticated machinery from
graph theory and combinatorics, including results about graphs of bounded tree-width and Ramsey’s
theorem.

Categories and Subject Descriptors: F.2.3 [Analysis of Algorithms and Problem Complexity]:
Tradeoffs between Complexity Measures; F.4.1 [Mathematical Logic and Formal Languages]:
Mathematical Logic

General Terms: Theory, Algorithms, Languages

Additional Key Words and Phrases: Existential second-order logic, NP-complete problems, prefix
classes, finite model theory, graph constraints, graph coloring

1. Introduction and Summary of Results

Descriptive complexity is the study of the connections between computational com-
plexity and expressibility in logic. Over the past twenty-five years, research in this
area has established that essentially all major complexity classes have natural char-
acterizations in terms of expressibility in extensions of first-order logic on classes
of finite structures (see Immerman [1998]). The prototypical result in descriptive
complexity is the well-known Fagin’s theorem [Fagin 1974], which asserts that a
decision problem on finite graphs is in NP if and only if it is expressible in existen-
tial second-order logic ESO, that is, it is definable on all finite graphs by a sentence
of the form ∃R1 · · · ∃Rrϕ, where R1, . . . , Rr are relational variables of various
arities and ϕ is a first-order formula. This machine-independent characterization
of NP provided the impetus for the subsequent development of descriptive com-
plexity, found numerous applications to other areas, and motivated Papadimitriou
and Yannakakis [1991] to develop a complexity theory of approximability of NP-
optimization problems.

Are there tighter connections between NP-computability and expressibility in
ESO that remain to be discovered? Ideally, one would like to be able to examine a
given second-order sentence and determine whether it expresses a property that is
NP-complete or solvable in polynomial time or of intermediate complexity (recall
that Ladner [1975] showed that if P �= NP, then there are NP-problems that are nei-
ther NP-complete nor solvable in polynomial time). This goal, however, turns out
to be entirely unattainable, since, using Trahtenbrot’s theorem [Trahtenbrot 1963],
it is easy to see that if P �= NP, then it is an undecidable problem to tell whether a
given second-order sentence defines an NP-complete problem. In view of this state
of affairs, one can only hope to analyze specific syntactic fragments of ESO and de-
termine whether or not they contain sentences that express NP-complete problems.
For instance, existential second-order sentences of the form ∃P1 · · · ∃Pr∀x1∀x2ϑ ,
where each Pi is a monadic relational variable, x1 and x2 are first-order variables and
ϑ is a quantifier-free formula, can express r -COLORABILITY. In contrast, Grädel
[1991, 1992] showed that every problem expressible by a Horn existential second-
order sentence is solvable in polynomial time, where an existential second-order
sentence is Horn if it is of the form ∃R1 · · · ∃Rr∀x1 · · · ∀xkϑ , where x1, . . . , xk are
first-order variables and ϑ is a quantifier-free formula in conjunctive normal form
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such that each conjunct contains at most one positive occurrence of each relational
variable Ri , 1 ≤ i ≤ r .

Among all syntactic fragments of first-order and second-order logic, prefix
classes are undoubtedly the most well-studied ones. A prefix class is obtained
by considering formulas in prenex normal form and imposing restrictions on the
pattern of the quantifiers in the formulas (but, unlike Horn formulas, no restrictions
are imposed on the quantifier-free part of the formulas). Prefix classes of first-order
logic have been extensively investigated in the context of the classical decision
problem, which is the satisfiability problem for first-order logic: given a first-order
sentence ψ , is ψ satisfiable? Since this problem is unsolvable, researchers toiled
for several decades and eventually succeeded in delineating the boundary between
solvability and unsolvability by identifying all prefix classes of first-order logic that
have a solvable satisfiability problem (see Börger et al. [1997]).

In this article, we systematically investigate and completely characterize the
computational complexity of prefix classes of ESO in three different contexts:
(1) over directed graphs, (2) over undirected graphs with self-loops, and (3) over
undirected graphs without self-loops. Our main result is that in each of these three
contexts a dichotomy holds, that is to say, each prefix class of ESO either contains
sentences that can express NP-complete problems, or each of its sentences expresses
a polynomial-time solvable problem. Although the boundary of the dichotomy
coincides for the first two cases (to which we refer as general graphs from now
on), it changes, as one moves to undirected graphs without self-loops. The key
difference is that a certain prefix class, based on the well-known Ackermann class
of first-order logic, contains sentences that can express NP-complete problems
over general graphs, but becomes tractable over undirected graphs without self-
loops. Moreover, establishing the dichotomy over undirected graphs without self-
loops turns out to be a technically challenging problem that requires the use of
sophisticated machinery from graph theory and combinatorics, including results
about graphs of bounded tree-width and Ramsey’s theorem.

To describe the results of this article in precise terms, we use a special notation
for denoting prefix classes of ESO-sentences in prenex normal form. For exam-
ple, E∗

1 eaa denotes the prefix class of all prenex formulas of ESO of the form:
∃P1 · · · ∃Pr ∃x∀y∀zϕ, where each Pi is a monadic relational variable, x , y, and z
are first-order variables, and ϕ is a quantifier-free formula. It should be noted here,
that we represent graphs as finite structures in the standard model-theoretic way
where the universe of the structure is the set of vertices and the edges are repre-
sented by one binary relation. More generally, expressions in our special notation
are built according to the following rules:

—E (respectively, Ei ) denotes the existential quantification over a single predicate
of arbitrary arity (arity ≤ i).

—a (respectively, e) denotes the universal (existential) quantification of a single
first-order variable.

—If η is a quantification pattern, then η∗ denotes all patterns obtained by repeating
η zero or more times.

An expression E in the special notation consists of a string of existential second-
order quantification patterns (E-patterns) followed by a string of first-order quan-
tification patterns (a or e patterns); such an expression represents the class of all
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FIG. 1. (a) ESO on arbitrary structures, directed graphs and undirected graphs with self-loops; (b)
ESO on undirected graphs without self-loops. The dotted boxes highlight the difference between the
two cases.

ESO-formulas in prenex normal form whose quantifier prefix corresponds to a
not-necessarily contiguous substring of E .

We say that a prefix class Q is NP-hard on a class K of relational structures
if at least one NP-hard property on K is expressible by a formula in Q. A prefix
class Q is polynomial-time (PTIME) on K if for each formula � ∈ Q, the model-
checking problem for � is solvable in polynomial time, which means that the set
of all structures A ∈ K such that A |= � is in P. A prefix class is called first-order
(FO) if every formula in it is equivalent to a first-order formula. A prefix class is
syntactically first order if its definition involves only first-order quantifiers.

Our first result completely characterizes the computational complexity of prefix
classes of ESO on general graphs. In fact, the same characterization holds true on
the collection of all finite structures over any relational vocabulary that contains
a relation symbol of arity ≥2. This characterization is obtained by showing that
(assuming P �= NP) there are four minimal NP-hard prefix classes and three maxi-
mal PTIME prefix classes, and that these seven classes combine to give complete
information about all other prefix classes. This means that every other prefix either
contains one of the minimal NP-hard prefix classes as a substring (and, hence, it
is NP-hard) or is a substring of a maximal PTIME prefix class (and, hence, it is
PTIME). Figure 1(a) depicts the characterization of the NP-hard and PTIME prefix
classes of ESO fragments on general graphs. As seen in that figure, the four minimal
NP-hard classes are E1ae, E1aaa, E2eaa, and E1 E1aa, whereas the three maximal
PTIME classes are E∗e∗a, E1e∗aa, and Eaa. As an example, it is easy to see that
a certain encoding of SAT on general graphs can be expressed using a sentence in
E1ae. Note that the first-order prefix class ae is known as the Ackermann class and
has played a key role in the study of the classical decision problem for fragments of
first-order logic (see Börger et al. [1997]). As regards the maximal PTIME classes,
the prefix class E∗e∗a is actually FO, while the model checking problem for fixed
sentences in the prefix classes E1e∗aa and Eaa can be reduced to 2SAT and, thus,
it is in PTIME (in fact, it is in NL).
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Our second result completely characterizes the computational complexity of
prefix classes of ESO on undirected graphs without self-loops. As mentioned earlier,
we establish that a dichotomy still holds, but the boundary of the dichotomy changes.
The key difference is that the prefix class E∗ae turns out to be a PTIME class on
undirected graphs without self-loops, whereas its subclass E1ae is NP-hard on
general graphs. It should be pointed out that certain interesting properties of graphs
can be expressed using E∗ae-formulas. Specifically, for each positive integer m,
there is a E∗ae-formula expressing that a connected graph contains a cycle whose
length is divisible by m. These problems were shown to be solvable in polynomial
time by Thomassen [1988]. E∗ae constitutes a maximal PTIME class, because we
show that all four extensions of E1ae by a single first-order quantifier (universal or
existential) are NP-hard on undirected graphs without self-loops. The other minimal
NP-hard prefixes on general graphs remain NP-hard on undirected graphs without
self-loops as well. Consequently, on undirected graphs without self-loops there are
seven minimal NP-hard prefix classes and four maximal PTIME prefix classes that
determine the computational complexity of all other prefix classes of ESO, as seen
in Figure 1(b).

From the technical point of view, the most difficult result of the article is show-
ing that the prefix class E∗ae is PTIME on undirected graphs without self-loops.
First, using syntactic methods, we show that this fragment has the same expressive
power as its monadic subfragment, that is to say, each E∗ae-formula is equivalent
to some E∗

1 ae-formula. After this, we analyze the prefix class E∗
1 ae on undirected

graphs without self-loops and show that the model-checking problem for each
E∗

1 ae-formula is equivalent to a natural coloring problem, which we call the sat-
uration problem. More specifically, the saturation problem asks whether there is a
mapping with special properties from a given undirected graph without self-loops
to a fixed, directed pattern graph P that is extracted from the E∗

1 ae-formula un-
der consideration. Depending on the labelings of cycles in P , we distinguish two
cases of this coloring problem: the saturation problem for pure pattern graphs and
the saturation problem for mixed pattern graphs. We then design polynomial-time
algorithms that solve the saturation problem in each of these two cases. In sim-
plified terms and focussed on the case of connected graphs, the polynomial-time
algorithm for the saturation problem for pure pattern graphs has three main ingre-
dients. First, adapting results by Thomassen [1988] and introducing a new graph
coloring method, we show that if a E∗

1 ae-formula gives rise to a pure pattern graph,
then we can find a fixed integer k such that the formula is satisfied by every undi-
rected graph without self-loops having tree-width bigger than k. Second, we use
Courcelle’s theorem [Courcelle 1990] to the effect that the model-checking prob-
lem for formulas of monadic second-order logic on graphs of bounded tree-width is
solvable in polynomial-time. Third, we use Bodlaender’s result [Bodlaender 1996]
to the effect that, for each fixed k, there is a polynomial-time algorithm to check
if a given graph has tree width at most k. The polynomial-time algorithm for the
saturation problem for mixed pattern graphs has similar architecture overall, but
requires the development of substantial additional technical machinery, including
a generalization of the concept of graphs of bounded tree-width. The results of the
article can be summarized in the following theorem.

THEOREM 1.1. The classifications in Figure 1 determine the complexity of all
ESO prefix classes on graphs.
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The results presented here should be contrasted with those in an earlier paper
that gives a complete characterization of the ESO prefix classes over strings [Eiter
et al. 2000]. While graphs are structures with an arbitrary binary relation, strings
are structures consisting of unary relations (one for each letter of the alphabet) and
a binary successor relation. The main result of Eiter et al. [2000] is a dichotomy
theorem for ESO prefix classes over strings; this dichotomy, however, differs from
the present one in both its scope and the methods used to establish it. First of all,
the dichotomy in Eiter et al. [2000] is between NP-hard classes and classes of
regular languages, that is, languages recognized by finite automata. Second, due
to the combinatorially simpler structure of strings, some ESO prefix classes that
are NP-hard over graphs turn out to be regular over strings. Specifically, in Eiter
et al. [2000] it was shown that there are precisely two maximal polynomial ESO
prefix classes over strings: the class E∗e∗ae∗ and the class E∗e∗aa. It is perhaps
interesting to note that e∗ae∗ and e∗a∗ are the only prefix classes of first-order
logic with equality that have a solvable satisfiability problem, while for first-order
logic without equality, the prefix e∗aae∗ has a solvable satisfiability problem as
well (see Börger et al. [1997]). In contrast, here we show that the classes E∗e∗ae∗
and E∗e∗aa are NP-complete over graphs, but certain proper prefix subclasses of
them are polynomial-time. Moreover, the classification in Figure 1 holds for both
first-order logic with equality and first-order logic without equality. We also note
that, in Eiter et al. [2000], the classes E∗e∗ae∗ and E∗e∗aa were shown to be
regular over strings by first proving that they are actually contained in monadic
second order logic (MSO) and then using Büchi’s theorem to the effect that MSO
over strings expresses precisely the regular languages [Büchi 1960]. Since MSO
over graphs does express NP-complete properties (e.g., 3-COLORABILITY), we
cannot use this approach in the present article for establishing polynomial-time
upper bounds; instead, we have to use completely different methods from graph
theory.

The work presented here suggests several directions of future research. First, it
would be interesting to investigate the complexity of prefix classes of full second-
order logic over directed graphs and over undirected graphs (with and without
self-loops). It should be noted that such a study for prefix classes of full second-
order logic over strings has already been carried out in Eiter et al. [2002], and
the prefix classes describing regular languages have been determined. Second, it
would be interesting to investigate the complexity of ESO prefix classes on re-
stricted collections of graphs of algorithmic significance. Here, we focussed on
the complexity of ESO prefix classes on the collection of all directed graphs and
the collections of undirected graphs with and without self-loops, as these are the
most extensively studied classes of binary relational structures. It is well known,
however, that there are important decision problems that are NP-complete when the
inputs are arbitrary graphs (directed or undirected), but are solvable in polynomial
time on restricted collections of graphs, such as planar graphs or regular graphs.
Consequently, the boundary between tractability and intractability for ESO prefix
classes over such restricted collections of graphs may be different from the corre-
sponding boundary for ESO prefix classes over arbitrary graphs discovered in this
article, and remains to be explored and delineated. Finally, although the quantifica-
tion pattern is arguably one of the most natural ways to obtain syntactic fragments
of logical formalisms, it is not the only one. Different fragments can be obtained
by considering syntactic properties of the quantifier-free part of formulas (such as
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FIG. 2. Encoding of clauses c1 = {p1, p2, ¬p3}, c2 = {¬p1, ¬p2, ¬p3}, and c3 = {¬p1, p3}.

being Horn) or by combining quantification patterns with syntactic properties of
the quantifier-free part. Determining the complexity of such fragments of existen-
tial second-order logic on arbitrary graphs or on restricted collections of graphs
remains an open problem.

2. NP-Hardness Results

THEOREM 2.1. E1ae is NP-hard on graphs. This holds even for self-loop free
directed graphs and for undirected graphs with some self-loops.

PROOF. We give a reduction from SATISFIABILITY OF PROPOSITIONAL
FORMULAS (SAT). Let S = {c1, . . . , cm} be a set of clauses over propositional
variables p1, . . . , pn . Construct an undirected graph GS = (VS, ES) such that VS
contains a vertex ci for 1 ≤ i ≤ m, that is, each clause is identified with a vertex;
moreover, VS contains a couple of vertices pi and ¬pi 1 ≤ i ≤ n, that represent
the literals pi and ¬pi , respectively. The edge relation ES contains a self-loop
{ci , ci } for 1 ≤ i ≤ m, i.e., each vertex representing a clause has a self-loop.
Moreover, for 1 ≤ i ≤ m and 1 ≤ j ≤ n, the edge relation ES contains an edge
{ci , p j } (respectively, {ci , ¬p j }), if clause ci contains literal p j (respectively, ¬p j ).
Finally, for 1 ≤ i ≤ n, there is an edge {pi , ¬pi }.

Figure 2 depicts the encoding of a clause set S = {c1, c2, c3} with c1 =
{p1, p2, ¬p3}, c2 = {¬p1, ¬p2, ¬p3}, and c3 = {¬p1, p3}.

Let � be the following E1ae formula over the structure GS = (VS, ES):

� : ∃T ∀x∃y [(ES(x, x) ∧ ES(x, y) ∧ ¬ES(y, y) ∧ T (y)) ∨ (¬ES(x, x)
∧ ES(x, y) ∧ ¬ES(y, y) ∧ T (x) �↔ T (y))].

Intuitively, the monadic predicate T expresses a truth value assignment to the literals
of S. The first disjunct in the matrix of � says that every clause must contain at
least one true literal. The second disjunct says that opposite literals have opposite
truth values by T (and hence T is a correct truth value assignment). The clause set
S is thus satisfiable iff � evaluates to true over GS . It follows that the prefix class
E1ae is NP-hard over undirected graphs with (some) self-loops.

Note that the self-loops in GS are used to distinguish vertices that represent
clauses from vertices representing literals, i.e., they are used for typing vertices. To
see that E1ae is also NP-hard on directed self-loop free graphs, it suffices to exploit
arc directions for this typing task. In this case, the clause set S is encoded by a
directed graph G ′

S = (VS, E ′
S) where the arcs of E ′

S are as follows. For 1 ≤ i ≤ m



Existential Second-Order Logic Over Graphs 319

FIG. 3. Encoding of same set S as self-loop free directed graph.

and 1 ≤ j ≤ n, if p j occurs in clause ci , then E ′
S contains (p j , ci ) as an arc, while

if ¬p j occurs in clause ci , then E ′
S contains (¬p j , ci ) as an arc. Moreover, E ′

S
contains the arcs (p j , ¬p j ), (¬p j , p j ), for 1 ≤ j ≤ n. See Figure 3.

Instead of the formula �, we now use the following formula �′ on G ′
S:

�′ : ∃T ∀x∃y [(E ′
S(y, x) ∧ ¬E ′

S(x, y) ∧ T (y)) ∨ (E ′
S(x, y)

∧ E ′
S(y, x) ∧ T (x) �↔ T (y))].

THEOREM 2.2. E1aaa is NP-hard on self-loop free undirected graphs.

PROOF. The following problem POSITIVE ONE-IN-THREE 3SAT (which
we abbreviate to POIT3SAT) is well-known to be NP-complete (see Garey and
Johnson [1979]). Let U be a set of propositional variables and let S be a set of
positive 3-clauses over U , that is, each clause consists of a disjunction of three
distinct propositional variables from U . Is there a truth value assignment for U
such that in each clause of S exactly one propositional variable becomes true?

We reduce each instance S of POIT3SAT to a graph GS = (VG, EG) as follows.
Each occurrence of a propositional variable p in some clause c of S gives rise to
a vertex pc in the graph. Moreover, each variable p in U gives rise to a vertex p.
There are no other vertices in VG . Vertices corresponding to occurrences of variables
belonging to the same clause are linked by an edge (we thus have a triangle for each
clause). Moreover, for each vertex pc in VS , there is an edge between pc and p.

Let � be a Eaaa formula stating that there is a P (intended to simulate the truth
value assignment to the propositional variables) such that:

(1) for every three nodes x, y, z forming a triangle, exactly one is in P;
(2) for every three nodes x, y, z such that there are edges {x, y}, {x, z}, but no edge

{y, z} (i.e., x, y, z form an angle with x as pivot), at least one of the following
holds:
—both x and y are in P;
—neither x , nor y are in P;
—both x and z are in P;
—neither x , nor z are in P .
In other words, either x and y get the same P-type or x and z get the same
P-type.

Now, we need to verify that this formula indeed expresses that S is in POIT3SAT.
First, it is clear that if there is a 1-IN-3 satisfying assignment, then the formula

is satisfied by assigning a node to P if and only if the associated variable takes
value true.
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For the other direction, assuming that a graph satisfies the formula, it suffices
to show that all vertices corresponding to the same variable have the same P-type
(i.e., either all of them are in P or none is in P).

Suppose we have two clauses {x, y, z} and {x, w, v}. Let {x ′, y, z} and {x ′′, w, v}
be the associated triangles, and let x be the node that has edges to the nodes
x ′ and x ′′. If x ′ is in P then y is not in P (by condition (1) above). Hence, by
applying condition (2) to the angle y, x ′, x , we infer that x must be in P . We
now claim that x ′′ must also be in P . Otherwise, by condition (1) on the trian-
gle {x ′′, w, v}, we have that either w or v is in P . Assume that w is in P . But
now we have a violation of condition (2) for the angle w, x ′′, x as x ′′ has dif-
ferent P-type than both w and x . So, we now have that x, x ′, x ′′ are all in P .
We can continue this way and repeat the argument for the other occurrences of x
in clauses.

It follows that, for each propositional variable in S, the set P contains either all
or none of the nodes of GS that represent the occurrences of that propositional vari-
able. Hence, P correctly describes a truth value assignment τP to the propositional
variables of S. Clearly, τP satisfies S. Moreover, each clause of S contains exactly
one literal made true by τP . Consequently, S is in POIT3SAT.

THEOREM 2.3. E1 E1aa is NP-hard on self-loop free undirected graphs.

PROOF. GRAPH 3COLORABILITY (3COL) of an undirected self-loop free
graph G = (V, E) is expressed by the following E1 E1aa formula �

∃Red ∃Green ∀x∀y [(¬Red(x) ∨ ¬Green(x)) ∧ (E(x, y) → diffcol(x, y))],

where Red and Green are monadic predicates expressing the coloring of vertices,
where the third color, say blue is represented by the complement of Red ∪ Green,
and where diffcol(x, y) is a quantifier-free formula stating that x and y are of
different color.

THEOREM 2.4. E2eaa is NP-hard on self-loop free undirected graphs.

PROOF. GRAPH 3COLORABILITY of an undirected self-loop free graph G =
(V, E) can be expressed by an E2eaa formula of the form ∃R ∃z ∀x ∀y ϕ in a similar
way as in the proof of Theorem 2.3, except that the colors are now expressed
differently. Specifically, it suffices to replace Red(x) by R(z, x) and Green(x) by
R(x, z). Note that z must then be colored blue, but this can be assumed without
loss of generality.

The following NP-hardness results are of relevance to the self-loop free undi-
rected case only (Figure 1(b)). When self-loops or directed arcs are permitted, all
these results are implied by Theorem 2.1.

THEOREM 2.5. E1eae is NP-complete over self-loop free undirected graphs.

PROOF. We show that E1eae expresses NP-complete problems on undirected
graphs with some self-loops by modifying the encoding of SAT used in the proof of
Theorem 2.1 (see Figure 2). Specifically, we delete all self-loops and add a special
node a with edges to each node representing a literal (variable or negated variable).
This way, each literal is part of some triangle, but no clause is part of any triangle.
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FIG. 4. New encoding of clauses c1 = {p1, p2, ¬p3}, c2 = {¬p1, ¬p2, ¬p3}, and c3 = {¬p1, p3}.

Figure 4 depicts this for the clause set S = {c1, c2, c3} with c1 = {p1, p2, ¬p3},
c2 = {¬p1, ¬p2, ¬p3}, and c3 = {¬p1, p3}.

The sentence that defines SAT over these graphs is:

� : ∃P ∃w∀x ∃y [(¬E(w, x) → (E(x, y) ∧ E(w, y) ∧ P(y))) ∧ (E(w, x)
→ (E(w, y) ∧ E(x, y) ∧ (P(x) �↔ P(y))))].

If the formula is satisfiable, then the graph satisfies the above sentence. To see this,
let τ be a satisfying truth value assignment for S and let P be interpreted by the set
containing all vertices that correspond to literals made true by τ , and interpret w
by a. The graph then clearly satisfies �.

Conversely, assume that the graph satisfies �. Then the special node a is the only
node that can witness the existential quantifier ∃w . The reason is that the second
conjunct of � rules out the possibility that w represents a clause or a literal. For
example, suppose that w represents a clause ci . Then choose a literal x in ci . By
the second conjunct of �, there is a y so that {w, x, y} form a triangle, which is
impossible. Similarly, if w represents a literal, then choose a clause x in which it
occurs, so by the second conjunct of �, there is a y so that {w, x, y} is a triangle,
which is again impossible.

Given that w must be interpreted by a, each pair x, y of vertices representing
opposite literals p j , ¬p j must be P-inequivalent, that is, P(x) �↔ P(y). Thus, any
witness set P for � correctly represents a truth value assignment to the variables
occurring in S. By the first conjunct of �, each vertex x representing a clause must
be linked to some literal y made true by this assignment. Thus, P represents a
satisfying truth value assignment for S and hence S is satisfiable.

THEOREM 2.6. E1aee is NP-complete over self-loop free undirected graphs.

PROOF. We use the NP complete problem NOT-ALL-EQUAL-3SAT, the ver-
sion of 3SAT in which a truth value assignment is sought such that each clause has
at least one true and one false literal. Without loss of generality, we assume that
for each instance I of NOT-ALL-EQUAL-3SAT, every literal occurs in at least one
clause (if some literal α does not appear in any clause, then we can redress this by
adding two clauses {α, r, s} and {α, ¬r, ¬s} to I ; clearly, the modified instance is
in NOT-ALL-EQUAL-3SAT iff I is). Further, we require that no clause contains a
literal as well as its negation.
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An instance I of this problem is encoded as follows by a graph G(I ) = (VI , EI ).
For each propositional variable p, create three vertices p, p′, and p∗, and make a
triangle out of them, i.e., add edges (p, p′), (p, p∗), and (p∗, p′) to EI . Intuitively,
vertex p stands for the variable p, vertex p′ for its negation ¬p, and p∗ is a dummy
vertex whose role will become clear soon. For each clause ci , create a vertex ci
and link it by an edge to the vertex representing each literal occurring in it. This
completes the encoding.

Let � be the following E1aee-formula:

∃P ∀x ∃y ∃z [(triangle(x, y, z) ∧ (P(y) �↔ P(z)) ∧ P(x)) ∨
(E(x, y) ∧ E(x, z) ∧ ¬E(y, z) ∧ P(y) ∧ ¬P(z))],

where triangle(x, y, z) states that x, y, z form a triangle in G(I ).
We claim that I is a yes instance of NOT-ALL-EQUAL-3SAT iff G(I ) |= �.
First, assume I is a yes instance of NOT-ALL-EQUAL-3SAT. Let τ be a truth

value assignment witnessing this. Define P as follows: P(p) iff τ (p) = true; P(p′)
iff τ (p) = false; and for all propositional variables p, P(p∗), while for all clauses
c, ¬P(c). It is clear that such a P witnesses that G(I ) satisfies �. Conversely, if
G(I ) |= �, then the first disjunct of the formula (with x = p∗) enforces P(p∗),
for each p; moreover, it enforces that for all vertices p and p′ it must hold that
P(p) �↔ P(p′). By the second disjunct, every clause c must have at least one true
and one false literal. Thus, I is a yes instance of NOT-ALL-EQUAL-3SAT.

THEOREM 2.7. E1aea is NP-complete over self-loop free undirected graphs.

PROOF. Consider POSITIVE 1-IN-3-SAT (POIT3SAT) again and use the same
encoding of an instance S into a graph GS = (VS, ES) as in the proof of Theorem 2.2.
This means that there is a node for each occurrence of each variable; the nodes that
correspond to a clause are linked to form a triangle; for each variable x , there is a
special node x∗ with edges to each node corresponding to an occurrence of x .

Let � be a E1aea-formula asserting the following:
∃P ∀x ∃y ∀z such that

(1) There is an edge from x to y and
(2) x and y have different P-type (i.e., P(x) �↔ P(y)); and
(3) if x , y, and z form a triangle, then exactly one of x , y, and z is in P;
(4) if z is connected to x , but is not connected to y, then y and z have the same

P-type (i.e., P(y) ↔ P(z)).

We claim that GS |= � iff S is in POIT3SAT.

If direction. If S has a 1-IN-3 satisfying assignment, then put in P the occur-
rences of variables that are true under this assignment; also, for each variable x ,
put the special node x∗ in P if and only if x is false. To see that this P satisfies the
first-order part of the formula, observe that

—for each occurrence x of a variable, take the occurrence of a variable of different
P-type occurring in the same clause as the witness for ∃y.

—for each special node x∗, take one of the occurrences of the variable x as the
witness for ∃y.
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Only if direction. Assume that we have a graph that satisfies the above formula.
We want to show that the original Boolean formula that generated the graph has a
1-IN-3 satisfying assignment.

First, consider a special node x∗. Since it has edges only to occurrences of
the variable x , the node that witnesses y must be one of these occurrences. From
condition (4), it follows that all occurrences of the variable x have the same P-type.

So, it suffices to show that for every triangle it is the case that exactly one of its
nodes is in P .

Let {A, B, C} be a triangle. We consider two cases. In the first case we assume
that at least one node, say A, is in P . Let w be the variable corresponding to A.
We consider the node that witnesses the existential quantifier ∃y in the formula
above if x is instantiated by A. If this witness y happens to be another node in the
same triangle, then by condition (3) exactly one of the nodes of that triangle is in
P . If not, then w∗ must be the witness for y (since, by condition (1), there is an
edge between x and y). By condition (2), as A is in P , w∗ is not in P . Hence, by
condition (4), as B and C are connected to A but not to w∗, we have that B and C
are not in P (they must have the same P-type as w∗). Consequently, exactly one of
A, B, C is in P , as required.

In the remaining case, we assume that neither of A, B, C is in P . As the first case
shows, this implies that we get w∗ as witness for y, if we instantiate x by A. By
condition (2), it follows that w∗ is in P , hence again by condition (4), the remaining
two nodes B and C of the triangle are also in P , a contradiction. This completes
the proof.

THEOREM 2.8. E1aae is NP-complete over self-loop free undirected graphs.

PROOF. Once again, we use POIT3SAT, but the encoding is different. For each
instance S of POIT3SAT, we construct the graph GS = (VS, ES) as follows. Create
a node for each occurrence of each variable; the nodes that correspond to a clause
are linked to form a triangle; for each variable, we pick one of its occurrences (say,
the one that occurs in the clause ci with the smallest index i) and connect this
occurrence to all other occurrences of the same variable. Note that, without loss of
generality, we may assume that each variable has at least two occurrences (else, we
eliminate it).

Let � be a E1aae-formula asserting the following:
∃P ∀x ∀y ∃z such that if x and y are connected via an edge, then one of the

following two properties holds:

(1) x, y, z form a triangle and exactly one of x, y, z is in P; or
(2) x and y have the same P-type (i.e., P(x) ↔ P(y)); and z is connected to x , but

not to y; and z has different P-type than x (and than y) (i.e., P(x) �↔ P(y)).

We claim that GS |= � iff S is in POIT3SAT.

If. If the Boolean formula has a 1-IN-3 satisfying assignment, then put into P
the occurrences of the variables that are true under that assignment. One has to
verify then that for every pair (x, y) connected via an edge we can find a suitable
witness z. If (x, y) are part of a triangle, then z is the third node of that triangle.
If (x, y) is an edge that results from two occurrences of the same variable, then as
z take a node in the same triangle as x that has different P-type than x (which is
possible by the 1-IN-3 satisfiability condition).
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Only if. For the more interesting direction, assume that the graph satisfies the
above formula. First, consider edges that result from different occurrences of the
same variable x . Since they do not extend to a triangle, they must satisfy condition 2.
In particular, the endpoints of each such edge must have the same P-type. But since
all such edges have a node in common, we conclude that all occurrences of the same
variable have the same P-type (all are in P or none is in P). So, it remains to show
that for each triangle exactly one of its three nodes is in P . Towards a contradiction,
assume that we have a triangle with nodes A, B, C such that it is not the case that
exactly one of A, B, C is in P . We distinguish two cases (in what follows, we will
write A′, A′′, . . . , for other occurrences of the same variable as the one for the
node A):

Case 1. at least two of the nodes A, B, and C are in P . Let us assume that A
and B are in P .

As seen in the preceding paragraph, the nodes A′, A′′, . . . must also be in P .
Consider now the edge (A, B) and the witness for ∃z. This witness can not be the
node C , so it must be one of A′, A′′, . . . and also it must have different P-type than
A, which is impossible. So, this case cannot occur.

Case 2. none of the nodes A, B, C is in P .

As before, the nodes A′, A′′, . . . are not in P . Again, consider the edge (A, B)
and the witness for ∃z. It cannot be C , so it must be one of A′, A′′, . . . and must
have different P-type than A, which is impossible. So, this case cannot occur as
well. This completes the proof.

3. Tractability Results over General Graphs

THEOREM 3.1. E∗ea is in PTIME and actually in FO over general graphs.

PROOF. Lemma 12.2 of Eiter et al. [2000] shows that E∗e∗a is FO over strings
(i.e., the inputs are monadic structures with a successor relation). An inspec-
tion of that proof reveals that it actually holds for arbitrary relational structures
as inputs.

THEOREM 3.2. E1e∗aa is in NL over general graphs and, hence, it is in PTIME.

PROOF. Let ψ be a fixed E1e∗aa-sentence. Without loss of generality, we
may assume that ψ is of the form ∃P∃x1 · · · ∃xm∀y∀z

∧k
i=1 ϑi (x1, . . . , xm, y, z),

where P is a unary predicate and each ϑi (x1, . . . , xm, y, z), 1 ≤ i ≤ k, is a
disjunction of atomic or negated atomic formulas. In what follows, we describe
a logspace algorithm with oracle in NL (short, an LNL algorithm) that solves the
model-checking problem for ψ over general graphs.

Denote the input graph by G = (V, E). Let accept be a global variable which is
initially set to false. The algorithm cycles over all m-tuples (a1, . . . , am) of vertices
from V and over m-tuples of truth values to the atomic statements P(a1), . . . , P(am)
until either accept = true or all pairs of m-tuples are considered. The algorithm
returns the value of the variable accept before stopping.

For each m-tuple (a1, . . . , am) of vertices from V and for each m-tuple of
truth-values to the atomic statements P(a1), . . . , P(am), the algorithm gener-
ates in logarithmic-space a 2CNF-formula ϕ(a1,...,am ) whose clauses are formed as



Existential Second-Order Logic Over Graphs 325

follows: for each pair (b, c) of nodes from V and each formula ϑi , 1 ≤ i ≤ k,
let ϑ

(b,c)
i be the propositional clause obtained from ϑi (x1, . . . , xm, y, z) by making

the substitutions x1/a1, . . . , xm/am, y/b, z/c, evaluating all atomic and negated
formulas involving the edge relation E and the equality symbol =, evaluating all
atomic and negated atomic formulas of the form P(ai ), 1 ≤ i ≤ m, and replacing
all occurrences of the atomic formulas P(b) and P(c) by propositional variables
Pb and Pc respectively. Note that this process gives rise to a propositional clause
with at most two literals, since either it is logically equivalent to one of the logical
constants True and False, or it is one of the clauses P(b), ¬P(b), P(c), ¬P(c),
(P(b) ∨ P(c)), (¬P(b) ∨ P(c)), (¬P(c) ∨ P(b)), (¬P(b) ∨ ¬P(c)). Let ϕ(a1,...,am )
be the 2NCF-formula

k∧
i=1

∧
(b,c)∈V 2

ϑ
(b,c)
i .

The algorithm then queries a 2SAT oracle asking whether ϕ(a1,...,am ) is satisfiable
and if so makes the assignment accept := true.

It is quite clear that G |= ψ if and only if there is an m-tuple (a1, . . . , am) of
nodes and an m-tuple of truth values to the atomic formulas P(a1), . . . , P(am) such
that the 2CNF-formula ϕ(a1,...,am ) is satisfiable. Thus, the algorithm is correct. Note
that all actions of the algorithm, except its oracle queries are computable in loga-
rithmic space. Note that 2SAT is in NL (see Papadimitriou [1994, page 185]). The
algorithm is thus effectively an LNL procedure. By well-known results [Immerman
1988; Szelepcsènyi 1988], LNL collapses to NL. It follows that the model-checking
problem for ψ over general graphs is in NL.

Remark 3.1. It should be pointed out that E1e∗aa-formulas can express nat-
ural NL-complete problems over graphs. For example, DISCONNECTIVITY on
directed graphs is expressible by the E1eeaa-formula

∃P∃x1∃x2∀y∀z(P(x1) ∧ ¬P(x2) ∧ ((P(y) ∧ ¬P(z)) → (¬E(y, z) ∧ ¬E(z, y)))).

Moreover, it is not hard to see that even E1eaa-formulas can express NL-
complete problems. Indeed, UNREACHABILITY on directed graphs has a
logarithmic-space reduction to instances of 2SAT in which every clause is a unit
clause p, or a negated unit clause ¬p, or an implication (p → q) (see Papadimitriou
[1994, Theorem 16.3, page 398]). Consequently, the restriction of 2SAT to such
2CNF-formulas is NL-complete. Note that each such 2CNF-formula χ can be en-
coded by a directed graph Gχ with a single self-loop as follows: the nodes of Gχ

are the variables of χ and a distinguished node a that is not a variable of χ ; for
every unit clause p of χ , there is an edge E(a, p); for every negated unit clause
¬p of χ , there is an edge E(p, a); for every clause (p → q) of χ , there is an edge
(p, q); finally, there is a self-loop E(a, a) that enables us to distinguish a from all
other nodes of Gχ . It is now clear that χ is satisfiable if and only if Gχ satisfies
the E1eaa-sentence

∃P∃x∀y∀z(E(x, x) ∧ (E(x, y) → P(y)) ∧ (E(y, x) → ¬P(y))
∧ ((E(y, z) ∧ (x �= y) ∧ (x �= z)) → (¬P(y) ∨ P(z)))).

Observe that if we consider structures over a vocabulary consisting of a binary
predicate E and a unary predicate T , then the satisfiability of χ is expressible by
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the E1aa-sentence

∃P∀y∀z((T (y) ∧ E(y, z)) → P(z)) ∧ ((T (y) ∧ E(z, y)) → ¬P(z))
∧ ((¬T (y) ∧ ¬T (z) ∧ E(y, z)) → (¬P(y) ∨ P(z))).

Here, T is used to mark the node a, that is, only a is in T . We also note that 2-
COLORABILITY on undirected self-loop free graphs is expressible by the E1aa-
sentence

∃P∀y∀z(E(y, z) → (P(y) ↔ ¬P(z)).

This problem, however, is not known to be NL-complete. In fact, there is strong
evidence that it is not, since Jones et al. [1976] showed that 2-COLORABILITY
is logarithmic-space equivalent to UNDIRECTED REACHABILITY, a problem
which is generally believed to be of complexity strictly between L and NL.

LEMMA 3.3. Every Eaa-sentence over graphs is equivalent to some E1aa-
sentence.

PROOF. Let m be a positive integer greater than 1 and let ∃R∀x∀yϕ(x, y) be a
Emaa-sentence, where R is an m-ary predicate symbol and ϕ(x, y) is a quantifier-
free formula. Without loss of generality, we may assume that for every graph
G = (V, E) and every m-ary relation RG on G it is the case that

(V, E, RG) |= ∀x∀y(ϕ(x, y) → ϕ(y, x)),

where ϕ(y, x) is the formula obtained from ϕ(x, y) by switching the occurrences
of x and y. This is because the formula ∀x∀yϕ(x, y) is clearly equivalent to the
formula ∀x∀y(ϕ(x, y) ∧ ϕ(y, x)), whose quantifier-free part possesses this sym-
metric property. Also, without loss of generality, we may assume that ϕ(x, y) is
the disjunction of complete consistent types, that is to say, ϕ(x, y) is of the form∨k

i=1 ϑi (x, y), where each ϑi (x, y) is a conjunction of atomic or negated atomic
formulas such that for every atomic formula either the atomic formula itself or its
negation (but not both) occur as a conjunct of ϑi (x, y). In particular, each ϑi (x, y)
has exactly one of the two formulas x = y and x �= y as one of its conjuncts. Let
P be a unary predicate and let

∃P∀x∀y

( k∨
i=1

ϑ ′
i (x, y)

)

be the E1aa-sentence constructed as follows:

—If ϑi (x, y) has x = y as one of its conjuncts, then ϑ ′
i (x, y) is obtained from

ϑi (x, y) by replacing every atomic formula (possibly in a negated atomic for-
mula) involving the predicate symbol R by the atomic formula P(x).

—If ϑi (x, y) has x �= y as one of its conjuncts, then ϑ ′
i (x, y) is obtained from

ϑi (x, y) by making the following changes: every occurrence of R(x, . . . , x) is
replaced by P(x); every occurrence of R(y, . . . , y) is replaced by P(y); every
occurrence of R(· · · ) that involves both x and y is deleted.

We now claim that the Emaa-sentence

∃R∀x∀y

(
k∨

i=1

ϑi (x, y)

)
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is equivalent to the E1aa-sentence

∃P∀x∀y

(
k∨

i=1

ϑ ′
i (x, y)

)
.

To establish this claim, assume first that G = (V, E) is a graph and RG is an
m-ary relation on V witnessing that G |= ∃R∀x∀y(

∨k
i=1 ϑi (x, y)). Let PG be

the diagonal of RG , that is, PG = {a ∈ V : RG(a, . . . , a)}. Then PG witnesses
that G |= ∃P∀x∀y(

∨k
i=1 ϑ ′

i (x, y)). In the other direction, assume that PG is a
unary relation on V witnessing that G |= ∃P∀x∀y(

∨k
i=1 ϑ ′

i (x, y)). We define the
following m-ary relation RG on V :

—For every node a of G such that a ∈ PG , we put the m-tuple (a, . . . , a) in RG .
Since (V, E, PG) |= ∨k

i=1 ϑ ′
i (x/a, y/a), this guarantees that (V, E, RG) |=∨k

i=1 ϑi (x/a, y/a).
—Let a1, . . . , an be an exhaustive list of all nodes of G without repetitions. For

every pair (ar , as) of nodes with r < s, let i0 ≤ k be such that (V, E, PG) |=
ϑ ′

i0
(x/ar , y/as). For every positive occurrence R(· · · ) of R in ϑi0 (x, y) that in-

volves both x and y, we put in RG the m-tuple that has ar or as in each coordinate,
depending on whether the variable in the corresponding coordinate of R(· · · ) is
x or y. For instance, if R is ternary and the atomic formula R(y, x, y) is one of
the conjuncts of ϑi0 , then we put the triple (as, ar , as) in RG . This guarantees
that (V, E, RG) |= ϑi0 (x/ar , y/as) and, hence, (V, E, RG) |= ϕ(x/ar , y/as).
By the aforementioned symmetric property of ϕ(x, y), it follows that also
(V, E, RG) |= ϕ(x/as, y/ar )

Consequently, the relation RG witnesses that G |= ∃R∀x∀y(
∨k

i=1 ϑi (x, y)).

By combining Theorem 3.2 and Lemma 3.3, we obtain the following result.

THEOREM 3.4. Eaa is in NL over general graphs and, hence, it is in PTIME.

4. E∗∀∃ over Self-Loop Free Undirected Graphs

In order to deal with E∗ae over self-loop free undirected graphs, we first show (in
Section 4.1) that this fragment is semantically contained in the monadic fragment
E∗

1 ae, that is, that for every E∗ae formula � there exists an equivalent formula
�′ in E∗

1 ae; as a matter of fact, this equivalence holds over arbitrary graphs, that
is, the graphs may be infinite and may also contain directed edges and self-loops.
Then in Section 4.2 we further analyze E∗

1 ae and show that on finite self-loop free
undirected graphs the model checking problem for each formula of this fragment is
equivalent to a specific graph coloring problem referred to as the graph saturation
problem. The graph saturation problem is then proven to be in PTIME in Sections 5
and 6.

4.1. E∗
1 ae EXPRESSES ALL OF E∗ae.

THEOREM 4.1. For each E∗ae formula �, there exists an E∗
1 ae formula � that

is equivalent to � over all graphs.
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PROOF. Let � be a formula of the form

∃P1, . . . , Pk∀x∃yϕ,

where, without loss of generality, all relation symbols Pi have the same arity l.
Without loss of generality, we may assume that ∀x∀y(ϕ(x, y) → x �= y) holds,
since on graphs with at least two nodes

∀x∃yϕ(x, y) ⇐⇒ ∀x∃y[(x �= y) ∧ (ϕ(x, y) ∨ ϕ(x, x))].

We call a tuple p of length l with entries from {x, y} an xy-tuple. For each xy-
tuple p, we define the opposite xy-tuple p̃ by interchanging x and y in p. As an
example, (x, y, x, x, y) is an xy-tuple of length 5 and (y, x, y, y, x) is its opposite
tuple. We call an xy-tuple proper if it contains both x and y.

We are going to construct a formula � which is equivalent to � and has the
following form:

∃ �R1, . . . , �Rk, Q1, . . . , Q6 ∀x ∃y (ψ ∧ ϕ′).

Here, each �Ri is a vector of unary relation symbols R p
i , one for each possible

xy-tuple p of length l. The formulas ψ and ϕ′ are quantifier-free.
If � holds in a graph G, then there exist relations P̄1, . . . , P̄k and a function

f : V →V such that, for each vertex v , it holds (G, P̄1, . . . , P̄k) |= ϕ[x/v, y/ f (v)].
The principal idea of the proof is to make � true by choosing relations R̄ p

i , for
each i and p, defined as

R̄ p
i = {v | p[x/v, y/ f (v)] ∈ P̄i }.

To this end, let ϕ′ be the formula which results from ϕ by replacing

—each atomic formula Pi (p), for i ≤ k and proper xy-tuples p by R p
i (x),

—each atomic formula Pi (x, . . . , x) by R(x,...,x)
i (x), and

—each atomic formula Pi (y, . . . , y) by R(x,...,x)
i (y).

It is easy to see that if � holds in G and f and the R̄ p
i are defined as above then,

for each v , we get G ′ |= ϕ′[x/v, y/ f (v)], where G ′ denotes the extension of G by
all the sets R̄ p

i .
Our goal is now to assure that � holds in G only if � holds in G. It might

be possible to make ∃ �R1, . . . , �Rk ∀x ∃y ϕ′ true by chosing sets R̄ p
i that do not

correspond to any choice of l-ary relations P̄i . This can happen, if, for some vertices
v , w , it holds f (v) = w and f (w) = v , but there is an i and a proper xy-tuple p
such that v ∈ P p

i but w �∈ P p̃
i .

To deal with this problem we make use of the following observation, which will
be verified below. The vertices of G can be colored by 6 colors 1, . . . , 6 in such
a way that, for each vertex v , the colors of v and f (v) are related as indicated in
Table I, for example, if v is colored by 3, then f (v) has to be colored by 4 or 1.
Note that v and f ( f (v)) have different colors, unless the color of v is 6.

The six colors are represented by the set variables Q1, . . . , Q6. Let ϑ be a
formula stating that Qi (x) holds for exactly one i ∈ {1, . . . , 6} and let χ be a
formula expressing the conditions of Table I. Finally, let ψ be the formula

ϑ ∧ χ ∧
(

Q6(x)→
∧

i,p proper

(
R p

i (x)←→R p̃
i (y)

))
.
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TABLE I. HOW THE COLORS

OF v AND f (v) ARE RELATED

v f (v)
1 2
2 3
3 4 or 1
4 5 or 1
5 6 or 1
6 6

and � be

∃ �R1, . . . , �Rk, Q1, . . . , Q6∀x ∃y ψ ∧ ϕ′.

We show that � and � are equivalent on all graphs G.
Assume first that � holds for G. Let P̄1, . . . , P̄k and f be such that, for each vertex

v , (G, P̄1, . . . , P̄k) |= ϕ[x/v, y/ f (v)]. We define the sets R̄ p
i as before. This implies

that, for each v , ϕ′[x/v, y/ f (v)] holds in G ′, the extension of G by the sets R p
i . We

show next that sets Q̄1, . . . , Q̄6 can be found such that, for each v , ψ[x/v, y/ f (v)]
holds in G ′′, the extension of G ′ by the sets Q̄ j . We define the sets Q̄ j , by inspecting
the (weakly) connected components of the graph of f . If the set of vertices is finite,
then each such component consists of a directed cycle C of length at least two
(recall that always f (v) �= v), and zero or more directed trees that are rooted at
vertices of C . In these trees, the edges are directed from the leaves to the root. If
the set of vertices is infinite, then the components of f may also include infinite
chains. Components with a cycle C with more than two vertices can be colored
with Q1, . . . , Q5 such that each vertex fulfils χ . If C contains 3m vertices, for
some m, they can be colored by Q1, Q2, Q3 in a round robin manner. If it contains
3m +1 vertices, then color Q4 is used for the last vertex. Analogously, if it contains
3m + 2 vertices, the colors Q4 and Q5 are used for the last two vertices. Finally, if
the component is an infinite chain, then it can be colored with just three colors.

The components with a cycle of size two can be colored such that the vertices of
the cycle are colored with Q6 and the remaining vertices with Q1, . . . , Q5 in a way
that assures that χ holds for all vertices. If a vertex v gets the color Q6, then f (v) �= v
but f ( f (v)) = v and therefore p[x/v, y/ f (v)] ∈ P̄ i⇐⇒ p̃[x/ f (v), y/v] ∈ P̄ i ,
for all i and p. Hence, G ′′ |= ((ψ ∧ ϕ′) ∨ (x = y ∧ ϕ′′))[x/v, y/ f (v)] for all v and
therefore G |= �.

For the converse direction, assume that G |= �. Let f be a corresponding
function, and let Q̄1, . . . , Q̄6 and, for each i and p, R̄ p

i be corresponding sets. We
define relations P̄1, . . . , P̄k as follows:

P̄ i = {
p[x/v, y/ f (v)] | v ∈ R̄ p

i for some p
} ∪ {

(v, . . . , v) | v ∈ R̄(x,...,x)
i

}
.

This definition ensures that, for each i and p,

R̄ p
i = {v | p[x/v, y/ f (v)] ∈ P̄i },

as, for every vertex v ,

—either v ∈ Q̄6 and therefore v ∈ R̄ p
i if and only if f (v) ∈ R̄ p̃

i ,
—or f ( f (v)) has a different color than v and therefore v �= f ( f (v)).

It is straightforward to see that G |= �.
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4.2. E∗
1 ae MODEL-CHECKING AND GRAPH COLORING. In this section, we con-

sider E∗
1 ae-formulas over self-loop free undirected graphs G = (V, E). We show

that in this case the model-checking problem for such formulas is equivalent to a
certain graph coloring problem, which we call the graph saturation problem.

Let � be an E∗
1 ae-formula of the form ∃P1, . . . , Pk∀x∃yϕ, where ϕ is a

quantifier-free formula. As in the proof of Theorem 4.1, we may assume, with-
out loss of generality, that ∀x∀y(ϕ(x, y) → x �= y) holds. Every satisfiable
quantifier-free formula is logically equivalent to a disjunction of complete con-
sistent types, that is to say, conjunctions of atomic or negated atomic formulas
involving the variables x , y and the symbols E , =, P1, . . . , Pk and such that for
each atomic formula in these symbols and variables either the atomic formula
itself or its negation occurs as a conjunct. In particular, this holds true for the
quantifier-free formula ϕ(x, y). Moreover, since ∀x∀y(ϕ(x, y) → x �= y) holds
and since we are focusing on self-loop free undirected graphs, we may assume
that no disjunct contains one of the atomic formulas x = y, E(x, x), E(y, y) as
a conjunct. We may also simplify each disjunct by eliminating occurrences of the
atomic formula E(y, x) or of the atomic formula ¬E(y, x) (depending on which
of the two occurs), while keeping occurrences of the atomic formula E(x, y) and
the negated atomic formula ¬E(x, y). These considerations motivate the follow-
ing definition.

Definition 4.2. An E∗
1 ae-formula � is in normal form if it is of the form

∃P1, . . . , Pk∀x∃yϕ(x, y),

where ϕ is a disjunction of conjunctions of atomic and negated atomic formulas
such that each disjunct δ of ϕ has the following conjuncts:

—For each relation symbol Pi , 1 ≤ i ≤ k, and each variable ξ ∈ {x, y}, either the
atomic formula Pi (ξ ) or the negated atomic formula ¬Pi (ξ ) is a conjunct of δ.

—Either the atomic formula E(x, y) or the negated atomic formula ¬E(x, y) is a
conjunct of δ.

—The negated atomic formula x �= y is a conjunct of δ.

The remarks preceding Definition 4.2 show that over self-loop free undirected
graphs every E∗

1 ae-formula is logically equivalent to one in normal form. For this
reason, from now on, we will work with E∗

1 ae-formulas in normal form.
If ξ is a variable, then there are 2k different complete specifications (¬)P1(ξ ) ∧

(¬)P2(ξ ) ∧ · · · ∧ (¬)Pk(ξ ) that may occur in a disjunct δ of an E∗
1 ae-formula in

normal form. Each such specification can be identified with a “coloring” by a color
C1, . . . , Cr from a set of colors Colors = {C1, . . . , Cr }, where r = 2k . We write
Ci (ξ ) to indicate the “coloring” of the variable ξ by the complete specification
corresponding to color Ci . Thus, each disjunct δ of an E∗

1 ae-formula in normal
form consists of a coloring Ci (x), a coloring C j (y), the atomic formula E(x, y) or
the negated atomic formula ¬E(x, y), and the inequality x �= y.

Definition 4.3. A pattern graph is a directed graph with no isolated nodes and
such that each arc is labeled ⊕ or � (note that a pattern graph may have two arcs
with different labels from a vertex C to a vertex D).

With each E∗
1 ae-formula � in normal form, we associate a pattern graph P(�)

as follows. The vertices of P(�) consist of the colors (complete types for the set
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variables) occurring in the disjuncts of �. There is an edge (Ci , C j ) labeled ⊕ in
P(�) iff there exists a disjunct δ in � such that δ contains as conjuncts Ci (x) and
C j (y) and E(x, y). There is an edge (Ci , C j ) labeled � in P(�) iff there exists a
disjunct δ in � such that δ contains as conjuncts Ci (x) and C j (y) and ¬E(x, y).

Definition 4.4. If P = (Colors, Arcs) is a pattern graph and G = (V, E) is an
undirected graph, then a coloring of G with respect to P is a function col : V −→
Colors. A witness function for a given coloring col is a function wit : V −→ V
such that the following hold for each x ∈ V :

—x �= w(x);
—if (x, wit(x)) ∈ E , then (col(x), col(wit(x))) is an arc labeled ⊕ in P; and
—if (x, wit(x)) �∈ E , then (col(x), col(wit(x))) is an arc labeled � in P .

A coloring is legal if there exists a witness function for it.

Definition 4.5. Given a pattern graph P = (Colors, Arcs), the pattern graph
saturation problem SATUP for P is defined as follows:

Instance: A self-loop free undirected graph G.
Question: Is there a legal coloring of G with respect to P?

We denote by SATU(P) the set of all self-loop free undirected graphs that are
yes-instances of SATUP .

Figure 5 shows two pattern graphs P1 and P2 and a graph G which is a yes
instance of SATUP1 via the exhibited coloring and via a witness function w defined
as follows: w maps each of the five green-colored nodes to the unique yellow node,
the unique red node to the blue one, the yellow node to the blue one as well, and
the blue node to one of its green neighbours. On the other hand, G is a negative
instance of SATUP2 ; in other terms, G ∈ SATU(P1) and G �∈ SATU(P2).

THEOREM 4.6. For each E∗
1 ae-formula � in normal form and each self-loop

free undirected graph G, we have that G |= � iff G ∈ SATU(P(�)).

PROOF. Although the proof is quite straightforward, we include it here for mere
completeness reasons.

Let G = (V, E). If G |= �, then there exists an interpretation I : P̄1, . . . , P̄k of
the set variables, such that for each v ∈ V , there exists a disjunct δ(v) of � and a
vertex f (v) ∈ V such that (G, P̄1, . . . , P̄k) |= δ(v)[x/v, y/ f (v)]. If ξ ∈ {x, y} and
if δ is a disjunct of �, then let qual(ξ, δ) denote the color qualification of ξ in δ. We
define the coloring col as follows: ∀v ∈ V col(v) = qual(x, δ(v)). If (v, f (v)) ∈ E ,
then, given that the disjunct δ(v)[x/v, y/ f (v)] is satisfied, it must contain the literal
E(x, y), hence, by definition of P(�), (col(v), col( f (v))) is an arc labeled ⊕ in
P(�). Similarly, if (v, f (v)) �∈ E , then, given that the disjunct δ(v)[x/v, y/ f (v)]
is satisfied, it must contain the literal ¬E(x, y), hence (col(v), col( f (v))) is an
arc labeled � in P(�). It follows that f is a witness function for col and thus
G ∈ SATU(P).

Conversely, assume that G ∈ SATU(P). Let col be a legal coloring of G with
respect to P(�) and let wit be a witness function for col. Let I : P̄1, . . . , P̄k be the
interpretation of the set variables P1, . . . , Pk corresponding to col. Let v ∈ V be a
vertex of G. We distinguish between two cases.
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FIG. 5. A yes and a no instance of SATU.

(1) (v, wit(v)) ∈ E . Then (col(v), col(wit(v))) is an arc labeled ⊕ in P(�). There-
fore, by definition of P(�), there exists a disjunct δ(v) of � such that δ(v)
contains as conjuncts the qualifications col(v)(x) and col(wit(v))(y) and the
edge literal E(x, y). It then holds that (G, P̄1, . . . , P̄k) |= δ(v)[x/v, y/wit(v)].
Note that col(v) represents a unary relation symbol Ci .

(2) (v, wit(v)) �∈ E . Then (col(v), col(wit(v))) is an arc labeled � in P(�). There-
fore, by definition of P(�), there exists a disjunct δ(v) of � such that δ(v) con-
tains as conjuncts the qualifications col(v)(x) and col(wit(v))(y) and the edge
literal ¬E(x, y). It then holds that (G, P̄1, . . . , P̄k) |= δ(v)[x/v, y/wit(v)].

In summary, for every v ∈ V there exists a w = wit(v) ∈ V and a disjunct δ(v) of
� such that (G, P̄1, . . . , P̄k) |= δ(v)[x/v, y/w]. This just means that G |= �.

Conversely, each saturation problem SATU(P) can be expressed by an E∗
1 ae-

formula in normal form.

THEOREM 4.7. For each pattern graph P, there exists an E∗
1 ae formula �P

in normal form such that for each undirected self-loop free graph G we have that
G ∈ SATU(P) iff G |= �P .
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PROOF. Let Colors = {Q1, . . . , Qn} and let P = (Colors, Arcs) be a pattern
graph. For 1 ≤ i ≤ n and ξ ∈ {x, y}, identify Qi with a monadic predicate symbol
and define

Ci (ξ ) = Qi (ξ ) ∧
∧

j �=i,1≤ j≤n

¬Q j (ξ ).

For each edge e = (Qi , Q j ) of P , define δ(e) as:

δ(e) =
{

Ci (x) ∧ C j (y) ∧ E(x, y) ∧ x �= y if e is labeled ⊕
Ci (x) ∧ C j (y) ∧ ¬E(x, y) ∧ x �= y if e is labeled �

Define the formula �P by:

�P = ∃Q1, . . . , Qn ∀x ∃y
∨

e∈EP

δ(e).

Observe that (up to renaming of vertices) it holds that P(�P ) = P . Thus, by
Theorem 4.6, G ∈ SATU(P) iff G |= �P .

Consequently, the model checking problem for E∗ae-formulas over self-loop free
undirected graphs coincides with the pattern graph saturation problem. In Sections
5 and 6, we will show the following result.

THEOREM 4.8. The pattern graph saturation problem is solvable in polynomial
time.

Combining Theorems 4.1, 4.6 and 4.8, we get the following result which com-
pletes the proof of Theorem 1.1.

THEOREM 4.9. Eae is in PTIME over self-loop free undirected graphs.

5. Saturation using Pure Cycles

This section and the following one are devoted to the proof of Theorem 4.8. This
section treats the case of so-called pure pattern graphs, a notion that will be defined
shortly. The case of general pattern graphs is investigated in Section 6.

Proviso 5.1. In this section, the term, graph, always refers to self-loop free
undirected graphs whereas pattern graph refers to a directed graph with edge-labels
from {�, ⊕}.

The following structural properties of pattern graphs are relevant for our study. A
positive (negative) cycle of the pattern graph is a directed cycle all of whose edges
are labeled ⊕ (�). A mixed cycle of the pattern graph is a directed cycle containing
at least one edge labeled � and at least one edge labeled ⊕.

A pattern graph is:

—positive if all its edges are labeled ⊕.
—negative if all its edges are labeled �.
—monotone if it is positive or negative;
—acyclic if P does not contain a directed cycle (loops do count as cycles).
—mixed if P contains a mixed cycle;
—pure if it is not mixed.
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Note that the class of monotone pattern graphs and the class of acyclic pattern
graphs are both properly contained in the class of pure pattern graphs.

The following two simple lemmas follow easily from Definitions 4.4 and 4.5.

LEMMA 5.2. If P is a positive pattern graph, and G is a loop free undi-
rected graph, then G ∈ SATU(P) iff for each connected component K of G,
K ∈ SATU(P).

If G = (V, E) is a graph, then Gc denotes its complement, that is, Gc = (V, V 2−
(E ∪ {(v, v) : v ∈ V })) is the self-loop free undirected graph obtained from G by
turning edges to nonedges, and vice-versa, between pairs of distinct nodes. If P is
a pattern graph, we write P• for the pattern graph obtained from P by replacing
every �-labeled edge by a ⊕-labeled edge and vice-versa.

LEMMA 5.3. G ∈ SATU(P) iff Gc ∈ SATU(P•).

As already mentioned, we consider in this section cases of the saturation problem
in which only pure cycles of the pattern graphs matter. In Section 5.1, we prove
that the saturation problem for pure pattern graphs is in PTIME. In Section 5.2, we
generalize this result to a setting where the pattern graph may contain some mixed
cycles, but these mixed cycles cannot be used for saturation.

5.1. THE SATURATION PROBLEM FOR PURE PATTERN GRAPHS. We prove that
the saturation problem SATU(P) for a pure pattern graph P is tractable.

First of all, we will see that SATU(P) can be efficiently decided for input graphs of
bounded tree-width. We assume the reader to be familiar with the notion of treewidth
of undirected graphs [Robertson and Seymour 1986; Downey and Fellows 1999].

We denote by LINTIME the class of all problems solvable in linear time on a
random access machine. As usual, MSO denotes monadic second-order logic. The
next proposition is a restricted version of a well-known theorem of Courcelle.

THEOREM 5.4 (COURCELLE 1990). Model checking for MSO-formulas over
graphs of constant-bounded treewidth is in LINTIME.

Since SATU(P) is definable by a MSO-formula, by Theorem 4.7, we derive the
following corollary.

COROLLARY 5.5. For each fixed constant k and pattern graph P, the problem
of deciding whether a graph of treewidth ≤k belongs to SATU(P) is in LINTIME.

Recognizing whether a graph has bounded treewidth is an easy problem.

THEOREM 5.6 (BODLAENDER 1996). For each fixed constant k, the problem of
checking whether a graph has treewidth ≤k is in LINTIME.

Hence, for fixed k, an algorithm can check whether the input graph has tree-
width ≤k and if this the case decide whether it is in SATU(P) in linear time. It only
remains to show that the graph saturation problem can be solved efficiently also for
input graphs of large tree-width. Before we start with this case, we state some easy
observations.

A vertex v of a pattern graph P is useful if it lies on a directed cycle or there is a
directed path from that node to a node lying on a cycle. A vertex that is not useful is
termed useless. The following lemma shows that it is sufficient to consider pattern



Existential Second-Order Logic Over Graphs 335

FIG. 6. The grid H7.

graphs all of whose vertices are useful. If P is a pattern graph, then P∗ denotes the
pattern graph obtained from P by dropping all useless vertices.

LEMMA 5.7. For each pattern graph P, it holds that SATU(P) = SATU(P∗).

PROOF. The inclusion SATU(P∗) ⊆ SATU(P) follows trivially from the def-
inition of the saturation problem. Let us prove SATU(P) ⊆ SATU(P∗). Let
G = (V, E) ∈ SATU(P), where P = (Colors, Arcs). Let P∗ = (Colors∗, Arcs∗).
Then there exists a legal coloring col of G with respect to P and an associated
witness function w . Assume for some vertex v ∈ V , col(v) is a useless color. Then
wit(v), wit(wit(v)), etc. must all be colored by useless colors, and at some point
we arrive at a vertex w = witi (v) such that col(w) is a vertex having out-degree
zero in the pattern graph P . Clearly, wit(w) cannot be colored correctly. Contradic-
tion. Thus, col(V ) ⊆ Colors∗ and thus the function col∗ : V −→ Colors∗ where
∀x ∈ V, col∗(x) = col(x) is a legal coloring of G with respect to P∗, whence
G ∈ SATU(P∗).

COROLLARY 5.8. If P is acyclic, then the only element of SATU(P) is the empty
graph.

To deal with cyclic pattern graphs and input graphs of large tree-width, we need
a number of auxiliary results. We start with some known results on grids and
treewidth.

As in Thomassen [1988], we define the grid Hk (where k is a natural number)
as follows: Take k disjoint paths π1, . . . , πk where πi : x1,i , x2,i , . . . , xk,i and
add all edges {xi, j , xi, j+1} where i + j is even. Also add the edges of the paths
π ′

1 = x1,1, x1,2, . . . , x1,k and π ′
2 = xk,1, xk,2, . . . , xk,k . The grid H7 is depicted

in Figure 6.
A subdivision of an undirected graph G is a graph obtained from G by replac-

ing some edges of G with simple paths (i.e., by “subdividing” edges of G). The
following fundamental result is well known.

THEOREM 5.9 (ROBERTSON AND SEYMOUR 1984). For every natural number
k, there exists a natural number g(k) such that every graph of treewidth at least
g(k) contains a subdivision of Hk.

The next result is due to Carsten Thomassen [1988].
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THEOREM 5.10 (THOMASSEN 1988). For all natural numbers k and m, there
exists a natural number h(k, m) such that every subdivision of Hh(k,m) contains as
subgraph a subdivision H∗

k of Hk, where H∗
k is obtained from Hk by replacing each

edge of Hk by a path of length 0(mod m).

A (directed or undirected) graph consisting of a single (directed or undirected)
cycle and a (directed or undirected) path such that one of the endpoints of the path
is also a vertex of the cycle and the path and the cycle have no other vertices in
common is called a racket (the form is akin to a tennis racket). A racket whose
cycle has length c and whose path has length p is called a (c, p)-racket. Cycles are
special cases of rackets with path length 0.

If a racket R is not a cycle, then it has a unique vertex of (total) degree 1 (i.e.,
the outdegree and the indegree add up to 1). This vertex is called the endpoint of
R and is denoted by endpt(R). Moreover, the unique vertex belonging both to the
path and to the cycle is called the junction of R and is denoted by junct(R).

The following proposition was shown (in more general form) by
Thomassen [1988]:

THEOREM 5.11 (THOMASSEN 1988). For every integer m there exists an inte-
ger r (m) such that every self-loop free undirected graph having treewidth ≥r(m)
contains a cycle whose length is a positive multiple of m.

The following lemma slightly generalizes Proposition 5.11.

LEMMA 5.12. For every pair (c, p) of integers there exists an integer f (c, p)
such that every self-loop free undirected graph having treewidth ≥ f (c, p) has a
(c′, p)-racket such that c′ is a multiple of c.

PROOF. If c is odd, let c1 = 2c, otherwise, let c1 := c. Let k = max(c1, p) + 1.
Observe that Hk contains a (c1, p)-racket R as subgraph and that c1 is a multiple of
c. By Proposition 5.10 (by taking m = c), there exists a natural number h(k, c) such
that every subdivision of Hh(k,c) contains as subgraph a subdivision H∗

k of Hk where
H∗

k is obtained from Hk by replacing each edge e of Hk by a path ρ(e) of length
0(mod c). Let f (c, p) = g(h(k, c)), where g is as specified by Proposition 5.9.
By Proposition 5.9, every self-loop free undirected graph G of treewidth ≥ f (c, p)
contains a subdivision of Hh(k,c). Thus G contains a subgraph H∗ as specified above.
This H∗ contains the image of R by the edge-replacement ρ where every edge e of
R is replaced by a path ρ(e) of length 0(mod c). Observe that ρ(R) is a racket. Let
c′ be the length of the cycle of ρ(R) and let p′ be the length of the path of ρ(R).
Clearly, c′ is a multiple of c and p′ ≥ p. By shortening the path of ρ(R) to length
p, we obtain the desired racket.

A subgraph Q of a pattern graph P is positive (negative) if all edges in Q are
labeled ⊕ (�).

LEMMA 5.13. Let P = (Colors, Arcs) be a pattern graph having as subgraph
a positive (c, p)-racket R. Let G = (V, E) be a connected self-loop free undirected
graph having as subgraph a (c′, p)-racket S, where c′ is a multiple of c. Then
G ∈ SATU(P). Moreover, there exists a legal coloring col of G with respect to P
such that each vertex of the cycle of R is an element of col(V ) and, if p �= 0, then
also endpt(R) ∈ col(V ).
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PROOF. Let r = c′/c.
Let Rc be the cycle of R. Rc can be written as: C1, C2, . . . , Cc, C1. Denote by

Rp the path of R. If p �= 0, assume without loss of generality that junct(R) = C1.
In case Rp is nonempty, it can be written

Rp : D p, D p−1, D p−2, . . . , D2, D1, C1.

Here, in case p > 0, we have endpt(R) = D p.
Let Sc be the cycle of racket S. Impose an arbitrary orientation S′ on the cycle

Sc. S′ can then be written as:

S′ : v1
1, v1

2, . . . , v1
c , v2

1, v2
2, . . . , v2

c , . . . , vr
1, vr

2, . . . , vr
c , v1

1 .

Denote by Sp the path of S. If p �= 0, assume without loss of generality that
junct(S) = v1

1. In case Sp is nonempty, it can be written

Sp : w p, w p−1, w p−2, . . . , w2, w1, v1
1 .

Here, in case p > 0, we have endpt(S) = w p.
The successor of a vertex α in a cycle (Rc or Sc) is denoted by succ(α); the

predecessor of α by pred(α).
We distinguish two cases according to the structure of R.

Case 1. R is a cycle (i.e., p = 0).

We define a coloring function col : V −→ Colors and a witness function
V −→ V by the following “saturation” procedure.

(1) For 1 ≤ i ≤ c and 1 ≤ j ≤ r , let col(v j
i ) := Ci .

(2) For all vertices v of Sc, let wit(v) = succ(v).
(3) Let Settled be initially the set of all vertices of the cycle S = Sc.
(4) WHILE Settled �= V DO

—Choose a vertex v �∈ Settled such that v is a neighbor of a vertex w in Settled.
—Let col(v) := pred(col(w)) and let wit(v) := w .
—Settled := Settled ∪ {v}.

Given that G is connected, at the end of this process, col and wit are total
functions and col is a legal coloring of G with respect to P . In fact, for each x ∈ V ,
(x, wit(x)) ∈ E and (col(x), col(wit(x))) is an arc of P labeled ⊕. It follows that
G ∈ SATU(P). Note also that each vertex of the cycle of R appears in col(V ).

Case 2. R is not a cycle (i.e., p > 0).

In this case, we could color G in the same way as in Case 1, by starting to
color the cycle Sc according to Rc, and then coloring the rest of the graph by
applying the saturation procedure as described in Case 1. Although this shows that
G ∈ SATU(P), the coloring obtained this way does not fulfill the requirement that
endpt(R) ∈ col(V ).

A naive approach for achieving endpt(R) ∈ col(V ) would be to color Sc in
accordance with to Rc as in Case 1, and to color Sp in accordance with Rp. This
is possible, but it may then not be possible to correctly color the rest of the graph.
In fact, problems may already arise with the neighbors of endpt(S) in G. Recall
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FIG. 7. An example of a graph G with a (9,3)-racket.

that endpt(S) is colored D p = endpt(R). However, endpt(S) may have a neighbor
b of degree 1 (i.e., a neighbor which is otherwise isolated in G). In case D p has
no incoming edge in P , b is not colorable. We thus need a more astute coloring
method. Figure 7 illustrates the proof.

Let G∗ := (G − Sc) ∪ {v1
1}, that is, G∗ is the subgraph induced by v1

1 together
with all vertices outside Sc.

Let σ be a longest simple path in G∗ starting at v1
1. Note that length(σ ) ≥ p must

hold, given that already the path Sp is of length p. Denote by e the end of σ . Let u
be the (unique) vertex of σ such that the segment [u, e] of σ has length p. Denote
by π the segment [v1

1, u] of σ . π is a simple path, possibly of length zero (in case
u = v1

1).

CLAIM 1. The length of any longest simple path in the subgraph [G − (Sc ∪
π )] ∪ {u} starting at u is exactly p.

To prove the claim, observe that the segment [u, e] which lies entirely in [G −
(Sc ∪ π )] ∪ {u} has precisely length p. Now assume that there exists a path γ in
[G − (Sc ∪ π )] ∪ {u} having length p + k where k > 0. Then the concatena-
tion of π with γ is a simple path of length length(σ ) + k lying in G∗ and starting at
v1

1. This contradicts the assumption that σ is a longest simple path in G∗ starting
at v1

1. The claim is proved.
We are now ready to color G.
We define a coloring function col : V −→ Colors and a witness function

wit : V −→ V through the following five steps:

(1) Let K denote the component of [G − (Sc ∪ π )] ∪ {u} which contains u. We
color K as follows: First, u is colored C1, that is, col(u) := C1. Then, for each
vertex v �= u in K , let d(v) denote the distance between u and v in K and color
v with color Dd(v), that is, let col(v) := Dd(v). Note that by Claim 1, for each
v ∈ K it holds that d(v) ≤ p. Thus, the described coloring is well defined and
covers all vertices of K . Observe that there exists at least one vertex v such that
col(v) = D p = endpt(R).

(2) We assign a witness wit(v) to each vertex v ∈ K as follows: First, if u �= v1
1,

then let wit(u) = w , where w is u’s unique neighbor in π . If u = v1
1, then

wit(u) := succ(v1
1). For each other vertex v of K , let wit(v) = v ′, where v ′ is

any neighbor of v such that d(v ′) = d(v)−1. Note that wit is totally defined on
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K and that for each vertex v of K − {v}, the pair (v, wit(v)) is legally colored,
that is, is an edge of R.

(3) We assign colors and witnesses to the vertices of π − {u}. Let � := length(π ).
We can write π as: u = t1, t2, . . . , t�−1, t� = v1

1 = junct(Sc). We define for
all 1 < i ≤ �: col(ti ) := Ci (mod c. Thus, for example, t2 is colored C2, and
tc+1 is colored C1, and so on. Moreover, for all 1 < i < �, let wit(ti ) = ti+1.
Finally, for t� = v1

1 we define: wit(v1
1) = succ(v1

1). Note that for each vertex v
of π − {v1

1}, the pair (v, wit(v)) is legally colored.

(4) We assign colors and witnesses to the vertices of Sc − {v1
1}. Recall that

v1
1 was already colored in Step (3). Let col(succ(v1

1)) := succ(col(v1
1)),

col(succ(succ(v1
1))) := succ(col(succ(v1

1))) = succ(succ(col(v1
1))), and so on.

More formally, for each 1 ≤ i < c, let col(succi (v1
1)) := succi (col(v1

1)). More-
over, for each v ∈ Sc − {v1

1}, let wit(v) := succ(v). Thus, each vertex v in Sc
has a well-defined color and a well-defined witness, and the pair (v, wit(v)) is
legally colored.

(5) We assign colors and witnesses to all remaining vertices. It is crucial at this
point to observe that each still uncolored vertex v of G is connected to a
(already colored) vertex of (π ∪ Sc) − {u} via a path that does not cross K .
In fact, since the connected component K of [G − (Sc ∪ π )] ∪ {u} was
completely colored in step 1, v must belong to some other connected component
K ′ of [G − (Sc ∪ π )] ∪ {u}. Since G is connected, K ′ must be adjacent to
(Sc ∪ π ) − {u}. Thus, there is a path from v to some vertex v ′ ∈ (Sc ∪ π ) −
{u} such that all vertices of this path except v ′ belong to K ′ and are so far
uncolored.

We can thus apply a similar saturation procedure as in Case 1 and will eventually
reach all remaining vertices. In particular:

(a) Let Settled be initially the set (π ∪ Sc) − {u}. Notice that all vertices in Settled are colored by
some color from {C1, . . . , Cc}, that is, from Rc.

(b) WHILE Settled �= V DO
—Choose a vertex v �∈ Settled such that v is a neighbor of a vertex w in Settled.
—Let col(v) := pred(col(w)) and wit(v) = w .
—Settled := Settled ∪ {v}.

This concludes Step (5).
At the end of Step (5), col and wit are total functions and col is a legal coloring

of G with respect to P . It follows that G ∈ SATU(P). Moreover, each vertex of
the cycle of R appears in col(V ) and also endpt(R) ∈ col(V ).

We are now ready for the main result of this section.

THEOREM 5.14. If P is a pure pattern graph, then SATU(P) ∈ PTIME.

PROOF. By Corollary 5.8, for acyclic P , SATU(P) consists of the empty graph,
thus SATU(P) ∈ PTIME. Assume P is cyclic. If P contains some useless vertices,
we can eliminate them by Lemma 5.7, that is, we can replace P by P∗. We thus
assume all vertices of P are useful.

We distinguish three cases.

Case 1. P has both positive and negative cycles.
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We consider two subcases.

(a) G is connected. Let c be the length of an arbitrary positive cycle R in P . Let r (c)
be as in Proposition 5.11. By Corollary 5.5, there is a linear-time procedure
satucheckP (H ), which for each self-loop free undirected input graph H of
treewidth ≤r (c) determines whether H ∈ SATU(P).

To check that G ∈ SATU(P), perform the following steps:

—Check whether G has treewidth ≤r (c).
—If G has treewidth ≤r (c), THEN RETURN(satucheckP (G)).
—IF G has treewidth r (c), THEN RETURN(true).

The last step is justified as follows. IF G has treewidth >r (c), then G contains
by Lemma 5.11 a cycle of length 0 (mod c), that is, a (c′, 0)-racket, where c′
is a multiple of c. Given that R is a positive (c, 0)-racket, by Lemma 5.13,
G ∈ SATU(P).

(b) G is disconnected. Then Gc is connected and P• has a positive and a nega-
tive cycle. Proceed by checking Gc ∈ SATU(P•) according to (a) and using
Lemma 5.3.

Case 2. All cycles of P are positive.

We consider two subcases:

(a) P is positive. By Lemma 5.2, G ∈ SATU(P) iff K ∈ SATU(P) for each
connected component K of G. This check is done for each K according to Case 1(a).
It should be noted that the proof of Case 1(a) only made use of the existence of one
positive cycle.

(b) P has some edges labeled �. Let e = (Di , D j ) be such an edge. Given that P
contains only useful vertices, D j is useful and there is a simple path σ (of possible
length zero) from D j to a positive cycle T in P . If σ does not contain any negative
edge after e, then let D p := D j ; otherwise, let D p be the first vertex of σ reachable
from D j such that there is no negative arc on σ after D p. Let D− be the predecessor
of D p on σ and retain that the arc (D−, D p) is negative.

Denote by ω the subpath of σ starting at D p and ending at the first vertex C1 of
the cycle T . (Note that it may happen that ω is of length zero, that is, D p = C1.)
Let R be the union of ω and T , let p be the length of ω, and let c be the length of
T . Note that R is a positive (c, p)-racket of P .

Let f (c, p) be as in Lemma 5.12. By Corollary 5.5 there is a linear-time procedure
satucheck′

P (H ) which for each self-loop free undirected input graph H of treewidth
≤ f (c, p) determines whether H ∈ SATU(P).

To check whether G ∈ SATU(P), proceed as follows.

—Compute the connected components of G.
—Check, whether each connected component has treewith ≤ f (c, p). (If so, then

the graph G itself is of treewidth ≤ f (c, p)).
—IF all components have treewidth ≤ f (c, p) THEN RETURN(satuckeck′

P (G)).
—IF there exists a component K having treewidth > f (c, p) THEN RE-

TURN(true).

The last step is justified as follows: If K has treewidth > f (c, p), then K contains
by Lemma 5.12 (a) (c′, p)-racket where c′ is a multiple of c. Given that R is a pos-
itive (c, p)-racket, by Lemma 5.13, K ∈ SATU(P). Moreover, since either D p =
endpt(R) (in case length(ω) �= 0) or D p is a vertex of T (in case length(ω) = 0),
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it holds by Lemma 5.13 that there is a legal coloring col of K with respect to
P and a vertex w0 of K such that col(w0) = D p. Let wit be a witness func-
tion for col. We extend col to a coloring col∗ for the entire graph G by defining:
∀v ∈ G − K , col∗(v) = D−. We extend wit to a function wit∗ on G by defining:
∀v ∈ G − K , wit∗(v) = w0. It is obvious that col∗ is a legal coloring for G with
respect to P via the witness function wit∗. Thus, G ∈ SATU(P).

Case 3. All cycles of P are negative.

By Lemma 5.3, G ∈ SATU(P) iff Gc ∈ SATU(P•). Note that P• contains only
positive cycles. Checking whether Gc ∈ SATU(P•) can thus be done in accordance
with Case 2.

The three cases exhaustively cover all possibilities; thus the algorithm effec-
tively decides whether G ∈ SATU(P). Moreover, whether G ∈ SATU(P) can be
determined in quadratic time. In fact, the computationally relevant actions of the
algorithm described in this proof are:

—Computing the complement Gc of G (this may require quadratic time).
—Determining the connected components of G or Gc (this can be done in linear

time by Tarjan’s algorithm [Tarjan 1972]).
—Checking for each component, whether its treewidth is smaller than a constant

(this is solvable in linear time by Proposition 5.6).
—Performing a constant number of further linear time actions on single compo-

nents, such as the procedure calls satucheckP (G) or satucheck′
P (G).

In summary, all this requires no more than quadratic time (in the size of the input
G).

We conclude this section with a remark.

Remark 5.1. We currently do not know whether the quadratic upper bound
stated in the proof of Theorem 5.14 can be improved. Note also that for each P ,
SATU(P) is probably not a PTIME-complete set. The set SATU(P) can be seen to
be in the complexity class LOGCFL, the class of all languages that are logspace-
reducible to a context-free language. This class is contained in NC2, and consists of
highly parallelizable problems. LOGCFL is currently the best known upper bound
for SATU(P). This is due to the check for bounded treewidth, which is in LOGCFL
(cf. Wanke [1994]) but not known to be in NL.

5.2. A SLIGHT GENERALIZATION: WHEN MIXED CYCLES DO NOT MATTER. In
this section, we slightly generalize Theorem 5.14. We deal with the case in which
a pattern graph P may have mixed cycles, but a graph G cannot use mixed cycles
of P for saturation.

Definition 5.15. Let P = (Colors, Arcs) be a pattern graph and G = (V, E) a
self-loop free undirected graph. Let col : V −→ Colors be a legal coloring of G with
respect to P with associated witness function wit. Then the witness graph G[wit] is
the directed edge-labeled graph (V, Ewit, �), where Ewit = {(x, wit(x)) | x ∈ V } and
where � is an edge labeling function such that �(x, wit(x)) = ⊕ if {x, wit(x)} ∈ E
and �(x, wit(x)) = � otherwise.

A mixed cycle of G[wit] is a cycle having mixed edge labels. Pure, positive, and
negative cycles of G[wit] are defined in the obvious way.
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Definition 5.16. Let P = (Colors, Arcs) be a pattern graph and G = (V, E)
an undirected graph. We say that G is impurely saturated by P if G ∈ SATU(P)
and there exists a legal coloring col : V −→ Colors of G with respect to P with
associated witness function wit such that G[wit] contains at least one mixed cycle.

The set of all self-loop free undirected graphs G which are impurely saturated
by a pattern graph P is denoted by ISATU(P).

Obviously, if P is a pure pattern graph, then ISATU(P) = ∅. We now establish
the following result.

THEOREM 5.17. For each pattern graph P, the following problem is decidable
in polynomial time. Given a self-loop free undirected graph G such that G �∈
ISATU(P), decide whether G ∈ SATU(P).

PROOF. Let P be a fixed pattern graph. If P is acyclic, then, by analogy to the
proof of Corollary 5.8, SATU(P) is the empty graph. If P is cyclic but contains only
mixed cycles, then, in analogy to Corollary 5.8, it is easy to see that SATU(P) −
ISATU(P) is again the empty graph. Thus, if P is acyclic or contains only mixed
cycles, our problem is trivially decidable in polynomial time. For the rest of the
proof, we thus assume that P contains at least one pure cycle.

A vertex (= color) C of P such that there is no directed path from C to any pure cy-
cle in P is called a superfluous color. Assume that for some graph G ∈ SATU(P)
there is a legal coloring col that uses a superfluous color C , that is, there is a
vertex v of G such that col(v) = C and C is superfluous in P . Let wit be a
witness function for this coloring. Then the subgraph of G[wit] induced by the ver-
tices {v, wit(v), wit(wit(v)), . . . , witi (v), . . . } must contain a cycle Z , given that it
is finite. If Z was a pure cycle, then col(Z ) would induce a pure cycle in P which
is reachable by a directed path from C ; contradiction. Thus Z is a mixed cycle and
hence G ∈ ISATU(P). It follows that whenever G ∈ SATU(P) − ISATU(P), then
no legal coloring of G with respect to P uses a superfluous color. Thus, for the
purpose of our theorem we can assume without loss of generality that P does not
contain any superfluous color (otherwise, such a color could be deleted without
harm from P).

Again, we distinguish three cases.

Case 1. P has positive and negative cycles.

This case is solved in exactly the same way as Case 1 in the proof of Theorem 5.14.

Case 2. All pure cycles of P are positive.

We consider two subcases:

(a) P is positive. By Lemma 5.2, G ∈ SATU(P) iff K ∈ SATU(P) for each
connected component K of G. Again, as in the proof of Theorem 5.14, this check
is done for each K in accordance with Case 1(a) (of Theorem 5.14).

(b) P has some edges labeled �. Let e = (Di , D j ) be such an edge. Given that
P contains no superfluous vertices, there exists a simple path σ (of possible length
zero) from D j to a positive cycle T in P . Continue as in Case 2(b) in the proof of
Theorem 5.14.

Case 3. All pure cycles of P are negative.



Existential Second-Order Logic Over Graphs 343

By Lemma 5.3, G ∈ SATU(P) iff Gc ∈ SATU(P•). Note that all pure cycles of
P• are positive. Checking whether Gc ∈ SATU(P•) can thus be done in accordance
with Case 2.

The three cases exhaustively cover all possibilities; thus the algorithm effectively
decides whether G ∈ SATU(P). Moreover, determining whether G ∈ SATU(P) is
feasible in quadratic time (in the size of the input G).

6. The Saturation Problem for General Pattern Graphs

In this section, we show that SATU(P) is in PTIME, for each pattern graph P .
The proof is similar in spirit to the proof for pure pattern graphs but the details
are a bit more complicated. Similar to Section 5, cycles in the graph G will play
an important role. But in this section we have to focus on the existence of mixed
cycles, that is, closed “paths” consisting of edges and nonedges. Again, we give an
algorithm which distinguishes between two main cases. In the first case, the input
graph G has a special structure which is a slight generalization of constant-bounded
tree-width. We show that on such graphs the SATU(P) test can be easily reduced
to the case of graphs of constant-bounded tree-width. On the other hand, we show
that if a graph does not have this special structure, then (1) a legal coloring of a
mixed cycle can always be extended to a legal coloring of the whole graph and (2)
a graph with a legally colorable mixed cycle always contains a legally colorable
mixed cycle of constant-bounded size that depends only on P . Hence, in the second
case the SATU(P) test essentially boils down to checking for the existence of a
legally colorable mixed cycle of constant-bounded size and, if no such cycle exists,
calling the procedure of Section 5.

Notation. Before we define the notion of special graphs that is needed for our
purposes, we introduce some more notation. Let P be a pattern graph. Edges of P
that are labelled with � are called �-edges and edges labelled with ⊕ are called
⊕-edges. It will be convenient to view an input graph G = (V, E) as a complete,
undirected, self-loop free graph where the edges carry labels � or ⊕. The ⊕-labelled
edges are those from E and the �-labelled edges are those that are not in E . In
this view, we call G �-⊕-labelled and refer to the set of �-labelled edges and the
set of ⊕-labelled edges as E� and E⊕, respectively. To emphasize the symmetry
of the two kinds of labels and to support intuition, we will often call �-labelled
edges negative edges and ⊕-labelled edges positive edges. In figures, ⊕-edges will
be depicted by solid lines, �-edges by dashed lines. To summarize, we use the
following equivalent notations.

edge in E ≡ label ⊕ ≡ —— ≡ positive
edge not in E ≡ label � ≡ – – – ≡ negative

We write lab(v, w) to refer to the label of the edge between v and w . Hence
lab(v, w) ∈ {�, ⊕}, for each pair of vertices v �= w . To indicate that lab(v, w) = ⊕
we sometimes also write positive(v, w). If positive(v, w) for all vertices w of some
set A, we also write positive(v, A). If all vertices from a set A are connected by a
positive edge with all vertices from B, then we write positive(A, B). If all edges be-
tween vertices of A are positive, we call A a positive clique. For a set A of vertices,
we call the graph (in the standard sense) which consists of all vertices of A and the
edges of E⊕ between vertices of A the positive graph of A. Analogous notations
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are used with negative in place of positive. We write uni(A, B) to indicate that all
edges between a set A and a set B have the same label, no matter which.

A sequence v1, . . . , vl of (pairwise different) vertices of G determines a path p of
G which consists of all edges {vi , vi+1}, i < l. We write pat(p) for the �-⊕-string
lab(v0, v1) · · · lab(vl−1, vl). By adding the edge {vl, v1}, the path p also determines
a cycle C of G. To simplify notation we refer to paths and cycles by only listing their
constituting vertices. We write first(p) and last(p) to refer to v1 and vl , respectively.
We call a cycle C = v1, . . . , vl self-saturating with respect to a pattern graph P ,
if there is a coloring col of the vertices of C , that has the function f , defined by
f (vi ) = vi+1 as a witness function. Here, as in the following, arithmetic on indices
is modulo l, hence vl+1 = v1. A cycle is called mixed if it contains positive and
negative edges.

Now we turn to the definition of the generalization of constant-bounded tree-
width. For integers k and t , we call a �-⊕-graph G (k, t)-special if its set of vertices
can be partitioned into sets A and A1, . . . , Ak such that the following conditions
hold.

—The positive graph of A or the negative graph of A has tree-width at most t .
—For each i ≤ k, Ai is either a negative clique or a positive clique (or might be

empty).
—For each i and each vertex v , uni(v, Ai ).

The Algorithm. Next, we give a high-level description of the algorithm for the
general SATU(P) problem. Its input consists of a pattern graph P , a �-⊕-graph
G and constants c, k and t . The algorithm only decides SATU(P) correctly, if c, k
and t are chosen appropriately with respect to P . For the complexity analysis, P ,
c, k and t will be considered as fixed.

Algorithm 6.1

(1) Test whether G is (k, t)-special using the algorithm of Lemma 6.3 below.

(2) If G is (k, t)-special, then test whether G ∈ SATU(P) using the algorithm of Lemma 6.4 below.

(3) If G is not (k, t)-special
(a) Test whether G has a mixed cycle C of size ≤c that has a legal coloring with respect to P .
(b) If this is the case, accept.
(c) Otherwise, call the algorithm that was given in the proof of Theorem 5.17 above.

Now we can state the main result of this section which immediately implies
Theorem 4.8.

THEOREM 6.2. For each pattern graph P, there are constants k, c and t such
that Algorithm 6.1 decides SATU(P) correctly. Furthermore, for each choice of P,
k, c and t, Algorithm 6.1 runs in polynomial time.

Theorem 6.2 will be proven in the remainder of the section. The proof consists
of a series of lemmas and is spread over three subsections.

—In Section 6.1, we show that, for fixed k and t , whether a graph G is (k, t)-special
can be checked in polynomial time, and, for fixed k, t and P , whether a (k, t)-
special graph is in SATU(P) is also decidable in polynomial time. Therefore,
for each fixed choice of P , k and t , the first two steps of the algorithm can be
performed in polynomial time.
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—In Section 6.2, it is shown that for each pattern graph P there is a constant c such
that whenever a graph G has a self-saturating mixed cycle with respect to P it
already has one of size at most c. Therefore, if Step 3(a) of the algorithm does not
find a self-saturating cycle (for suitable choice of c) there is no self-saturating
cycle at all in G.

—Finally, in Section 6.3, we show that if a graph that is not (k, t)-special has a
self-saturating mixed cycle with respect to P then it is already in SATU(P). This
justifies acceptance in Step 3(b) of the algorithm. On the other hand, if 3(a) fails
then G can not be saturated impurely, hence the correctness of Step 3(c) follows
from Theorem 5.17.

6.1. THE SATURATION PROBLEM FOR SPECIAL GRAPHS. We show first, that,
for each fixed choice of P , c, k and t , the first two steps of Algorithm 6.1 can be
performed in polynomial time. We call two vertices v and v ′ of a �-⊕-graph G =
(V, E�, E⊕) equivalent if, for all vertices w in V −{v, v ′}, lab(v, w) = lab(v ′, w).

LEMMA 6.3. For each k and t it can be checked in polynomial time whether
a �-⊕-graph G is (k, t)-special. Furthermore, a corresponding partition can be
constructed in polynomial time.

PROOF. The algorithm works as follows.

for each k ′ ≤ k, each tuple (v1, . . . , vk′ ) of pairwise distinct vertices of G
and each j ∈ {0, . . . , k ′}

B := V − {v1, . . . , vk′ }
for i = 1 to j do

Ai := {vi }∪ all vertices from B that are equivalent to vi and
connected to vi via a positive edge

B := B − Ai

end
for i = j + 1 to k ′ do

Ai := {vi }∪ all vertices from B that are equivalent to vi and
connected to vi via a negative edge

B := B − Ai

end
if the negative graph on B or the positive graph on B has tree-width ≤ t ,

then accept
end
Reject

For fixed k, this algorithm runs in polynomial time. It is straightforward to verify
that it recognizes (k, t)-special graphs correctly. In particular, if u �= u′ are in
Ai , distinct from vi then the edge between u and u′ has the same polarity as the
edges between u and vi and between u′ and vi , respectively. Therefore, each Ai is
a (positive or negative) clique.

LEMMA 6.4. There is an algorithm which tests, for each fixed choice of k, t and
a pattern graph P, in polynomial time whether a (k, t)-special input graph G is in
SATU(P).

PROOF. We describe how a (k, t)-special graph G can be transformed in poly-
nomial time into a graph G ′ of tree-width t ′ (only depending on k, t and P but
not on G) that is equivalent to G with respect to SATU(P). As G ′ ∈ SATU(P)
can be tested in polynomial time in accordance with Corollary 5.5, this implies
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the statement of the Lemma. Let A, A1, . . . , Ak ′ be the partition of G as computed
by the algorithm of Lemma 6.3. Let l be the number of vertices in P . For each
i ∈ {1, . . . , k ′}, let A′

i := Ai , if |Ai | ≤ 2l, or let A′
i consist of arbitrarily chosen 2l

vertices from Ai , otherwise. The computation of the A′
i clearly works in polynomial

time. Let G ′ be the subgraph of G which is induced by A and A′
1, . . . , A′

k ′ . As each
set A′

i has at most 2l elements, the tree-width of the positive graph of G ′ or the
negative graph of G ′ is at most t ′ = t + 2k ′l.

It remains to show that G ′ ∈ SATU(P) if and only if G ∈ SATU(P).
Assume G ′ ∈ SATU(P). Then, by definition, there is a legal coloring of G ′ with

respect to P . Let i ≥ 1, let vi be some node in A′
i and let p be the color of vi in the

coloring of G ′. Then all vertices v from Ai − A′
i can be colored by p as they are

related to all vertices of G ′ exactly as vi . In particular, we can set wit(v) = wit(vi ).
For the opposite direction, assume that G ∈ SATU(P). Then there is a legal

coloring of G with respect to P . Let, for each i ≥ 1, Fi be the set of colors which
occur in Ai . The vertices of A′

i are colored as in G, if A′
i = Ai or such that each

color from Fi is used at least twice. Assume v ∈ G ′ and v is saturated in G by a
vertex u ∈ Ai , for some i . If v �∈ Ai , then v can be saturated in G ′ by a vertex of A′

i
with the same color as u. Now assume v ∈ Ai . If A′

i = Ai then v can be saturated
in G ′ by u. Otherwise, there exists at least one vertex different from v in A′

i that has
the same color as u and saturates v . This completes the proof of the lemma.

Remark 6.1. By a similar proof it can be shown that, for each k and t , model-
checking of MSO-formulas for (k, t)-special graphs is in PTIME.

6.2. EXISTENCE OF SMALL SELF-SATURATING CYCLES. The next lemma shows
that whenever a graph G has a self-saturating mixed cycle with respect to a pattern
graph P then it also has a constant-bounded self-saturating mixed cycle.

LEMMA 6.5. Let P be a pattern graph. There is a constant d such that whenever
a �-⊕-graph G has a self-saturating mixed cycle with respect to P then it has such
a cycle with at most d vertices.

PROOF. Let l be the number of vertices of P . Let m := l4 and d :=
(lm)2(2l)lm+1 + 2. Let C = v0, . . . , vn−1 be a self-saturating mixed cycle of G
with respect to P of length n > d and let col be a corresponding coloring function.
Without loss of generality, we can assume that the edges between vn−2 and vn−1 on
one hand and between vn−1 and v0 on the other hand have different labels.

We will show that there is a smaller self-saturating mixed cycle C ′ which actually
only consists of vertices of C . We construct C ′ either by skipping one subpath of
v1, . . . , vn−1 in C or by combining some vertices of C in an entirely new way,
resulting in a small mixed cycle. In the former case, the edges between vn−2 and
vn−1 and between vn−1 and v0, respectively, guarantee that C ′ is mixed.

We distinguish two cases.

Case 1. C has a subpath vk, . . . , vk+m of length m in which all edges have the
same label.

Without loss of generality, we may assume this label is ⊕. For notational conve-
nience, we also assume k = 0. The general case is completely analogous.

We consider the l3 paths Pi = vil, . . . , v(i+1)l , for all i ∈ {0, . . . , l3 −1}. As there
are only l colors for each Pi , there are j < j ′ ≤ l such that vil+ j and vil+ j ′ have the
same color. For each i , we choose such j and j ′ and let Ji := {vil+ j+1, . . . , vil+ j ′ }
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and δi := j ′ − j . There are at least l2 subpaths Pi with the same value of δi . Let δ
denote this value.

If there exists a path Q from v0 to vm such that

(1) the length of Q is m − jδ, for some j ≤ l2,
(2) all intermediate vertices of Q are from {v1, . . . , vm−1}, and
(3) all edges of Q carry the label ⊕
then we can construct a self-saturating mixed cycle of length n − jδ by simply
replacing the path v0, . . . , vm in C by Q and coloring the vertices of Q according
to v0, . . . , vm but skipping all vertices of sets Ji , i < j .

A first immediate consequence is that we are done if there exists an edge with
label ⊕ between vertices vi and vi+δ+1, for some i < m − δ −1. Hence, we assume
in the following that all such edges have label �.

As C is a mixed cycle there is a closed mixed (directed) path in P . A straightfor-
ward argument shows that there must be such a path w0, . . . , wt−1 of some length
t ≤ l + 1. Let c1 be the number of �-edges on this path and c2 the number of
⊕-edges. Of course, c1 + c2 = t . Without loss of generality, we may assume that
the wi are numbered such that the edge in P from wt−1 and w0 has label �. Let
c′ := (c1 − 1)(δ − 1) + c2. Note that c′ ≤ l2. Consider the edges between vic′ and
vic′+c′ , for i = 0, . . . , δ − 1. If all these edges have label ⊕, there is a path Q of
length m − (c′ − 1)δ from v0 to vm with the above properties (1)–(3).

Hence, we may assume that there is a i ≤ δ − 1 such that the label between
vic′ and vic′+c′ is �. We can construct a mixed self-saturating cycle v ′

0, . . . , v ′
m−1 as

follows.
Let v ′

0 := vic′ . Now let v ′
j be already chosen, for a j < t − 1, as some vi ′ . We

set v j+1 := vi ′+1 if the label between w j and w j+1 has label ⊕, v ′
j+1 := vi ′+δ+1,

otherwise. By the definition of c1, c2 and c′, we get v ′
t−1 = vic′+c′ . As the label

between vic′ and vic′+c′ is �, the cycle C ′ = v ′
0, . . . , v ′

t−1 is self-saturating according
to w0, . . . , wt−1.

This completes the proof of Case 1.

Case 2. Every subpath of C of length m contains �-edges and ⊕-edges.

Claim. There exist k ≤ l and lm edge-disjoint subpaths p j = vi j , . . . , vi j +km ,
j ∈ {1, . . . , lm}, such that

—all subpaths are colored identically, that is, for all j, j ′ ≤ lm and s ≤ km,
col(vi j +s) = col(vi j ′+s),

—all subpaths have the same pattern, that is, for all j, j ′ ≤ lm, pat(vi j , . . . ,
vi j +km) = pat(vi j ′ , . . . , vi j ′+km), and

—for each j ≤ lm, col(vi j ) = col(vi j +km).

To prove this claim, consider the p := lm(2l)lm+1 paths q j = v jlm, . . . , v jlm+lm ,
j = 0, . . . , p − 1 of length lm of C . As each vertex vi carries one of l colors
and each edge is positive or negative, there are only (2l)lm+1 different possibilities
of vertex colorings or patterns of a path of length lm. Hence, there exist lm paths
q j1, . . . , q jlm with the same coloring and pattern. Again, as there are only l colors, at
least two of the l +1 vertices v ji lm, v ji lm+m, . . . , v ji lm+lm must have the same color,
for each i ≤ lm. As the paths are colored identically, we can select in each path
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FIG. 8. Construction of C ′ (right hand side) from C (left hand side). km = 5. Colors are 1, 2, 3, 4, 5.
Thick lines indicate the self-saturating cycle. Solid lines carry ⊕, dashed lines �, dotted lines represent
subpaths. Some vertex names are omitted to improve readability.

two such vertices at the same relative positions. By taking the subpaths between
(and including) these two vertices, we get paths pi with the properties stated in the
claim. Recall that each pi contains �-edges and ⊕-edges.

Without loss of generality, i1 < i2 < · · · < ilm .
If for some j < lm and some s < km it holds lab(vi j +s, vi j+1+s+1) = lab(vi j +s,

vi j +s+1), then we get a smaller self-saturating cycle C ′ by eliminating the vertices
vi j +s+1, . . . , vi j+1+s from C (cf. Figure 8(a)).

On the other hand, if for some j ≤ j ′ ≤ l it holds lab(vi j , vi j ′+km−1) =
lab(vi j ′+km−1, vi j ′+km), then vi j , . . . , vi j ′+km−1 defines a smaller self-saturating cycle
(cf. Figure 8(b)).

Hence, we can assume that

(a) for each j < lm and for all i < km,

lab(vi j +i , vi j+1+i+1) �= lab(vi j +i , vi j +i+1),

and
(b) for each j ≤ j ′ ≤ lm,

lab(vi j , vi j ′+km−1) �= lab(vi j ′+km−1, vi j ′+km).

We show next how this can be used to construct a self-saturating mixed cycle
C ′ = v ′

0, . . . , v ′
km−1 consisting only of vertices from {vi1, . . . , vitm+km}.
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To this end, let s ∈ {1, . . . , km} be chosen such that lab(vi1+s−1, vi1+s) �=
lab(vi1+km−1, vi1+km). Such an s exists because, by the assumption of Case 2,
no m consecutive edges in C carry the same label. As lab(vi1+km−1, vi1+km) =
lab(vi j ′+km−1, vi j ′+km), for each j ′ ≤ lm, we can conclude from (b) that, for each
j ′ < lm, lab(vi1+s−1, vi1+s) = lab(vi1, vi j ′+km−1).

To simplify notation, we set wi := vi1+i , for each i ∈ {0, . . . , km}. Our goal is
to construct C ′ = v ′

0, . . . , v ′
km−1 such that the following holds.

(i) pat(v ′
0, . . . , v ′

km−1−s) = pat(ws, . . . , wkm−1);
(ii) lab(v ′

km−1−s, v ′
km−s) = lab(wkm−1, wkm);

(iii) pat(v ′
km−s, . . . , v ′

km−1) = pat(w0, . . . , ws−1);
(iv) lab(v ′

km−1, v ′
0) = lab(ws−1, ws)

If we color the nodes v ′
i in accordance with this correspondence, we get a self-

saturating coloring of the cycle C ′, as, for each j < km, w j is saturated by w j+1.
Note that the coloring of v ′

km−s is unambigous as we have col(w0) = col(wkm).
The vertices v ′

i , i = 0, . . . , km − 1 − s, are inductively chosen as follows:
Each v ′

i will be a vertex vi j + i , for some j . Let v ′
0 = vi1 . Now assume that

v ′
i = vi j +i is already selected and i < km − 1. Recall that lab(vi j +i , vi j +i+1) �=

lab(vi j +i , vi j+1+i+1). Hence, we can ensure lab(v ′
i , v ′

i+1) = lab(ws+i , ws+i+1) by
either choosing v ′

i+1 as vi j +i+1 or as vi j+1+i+1.
In an analogous fashion, we choose the vertices v ′

km−s, . . . , v ′
km−1, such that

(i)–(iii) hold. As stated above, the choice of s guarantees lab(vi1+s−1, vi1+s) =
lab(vi1, vi j +km−1), for each j , hence we can also conclude (iv).

The construction is exemplified in Figure 8(c). This concludes the proof of the
second case.

6.3. EXTENDING A LEGAL COLORING OF A CYCLE. This section is devoted to
the proof that, for each pattern graph P there exist k and t , such that, for each
�-⊕-graph G which is not (k, t)-special but has a self-saturating cycle it holds
that G ∈ SATU(P). This is actually the most complicated part of the proof of
Theorem 6.2.

If C = w1, . . . , wl is a self-saturating mixed cycle of a graph G with a fixed col-
oring, we say that C saturates a vertex v �∈ C directly, if lab(v, wi ) = lab(wi−1, wi ),
for some i , that is, v is saturated by some wi . Here, as always in the following,
arithmetic within the subscript of the vertices wi is modulo l; hence, all indices are
from {0, . . . , l − 1}.

In principle, a graph might be saturated by using several self-saturating (mixed
and pure) cycles and extending their colorings via paths of various lengths. However,
we show in the following that if there is a saturating coloring involving a mixed
cycle at all then there exists a coloring with one self-saturating cycle C which
saturates almost all other vertices directly. Only for a constant number of vertices,
depending on the pattern graph, there might be the need for a saturating path. But
the lengths of these paths are bounded by a constant, too.

We call a vertex v �∈ C bad with respect to C if it is not directly saturated by C .
The set of all such vertices is denoted Bad(C).

We proceed in two main steps.
First, we show that there is a constant c depending on P , k and t such that for

each self-saturating mixed cycle C that has more than c bad vertices there exists
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FIG. 9. Vertex u1 is bad with respect to the cycle C = w0, w1, w2, w3, w4. Vertex u2 is neutral as
it can only be saturated by w3. Vertex u3 is good as it is saturated by the ⊕-assistant w1 and the
�-assistent w0. Only the relevant edges are shown.

a self-saturating mixed cycle C ′ such that all vertices from Bad(C) are directly
saturated by C ′ or the coloring of C can be extended to a saturating coloring of
G. By slightly modifying this construction, we can get a self-saturating cycle D
such that actually |Bad(D)| < |Bad(C)| (Lemma 6.8). By repeatedly applying
Lemma 6.8, we arrive at a self-saturating cycle C for which |Bad(C)| < c.

Second, Lemma 6.10 shows that this constant number of remaining vertices can
be saturated along suitable paths in G.

Let, in the following, P be a fixed pattern graph, let k and t be chosen large
enough, let G be a �-⊕-graph that is not (k, t)-special and let C = w1, . . . , wl be
a mixed cycle that is self-saturated with respect to P for some coloring col.

We continue by defining a few additional notions and establishing some notation
that will be used in the sequel. If, for some i ≤ l, lab(wi−1, wi ) = ⊕ (respectively,
�), we say that wi saturates positively (respectively, negatively). We say that wi is
a ⊕-assistant (�-assistant) if lab(wi−1, wi−2) is ⊕ (respectively, �).

For a vertex v that is not bad with respect to C , there might exist several vertices wi
that can saturate v . If v can be saturated directly by a 0-assistant and a 1-assistant,
then we can choose whether v itself can saturate other vertices via positive or
negative edges. As this gives us some additional flexibility, we call such vertices
good with respect to C .

Vertices that are neither good nor bad are called neutral with respect to C .
We write Good(C) and Neu(C) for the sets of vertices that are good and neutral,
respectively. Figure 9 exemplifies the definition of Good(C), Bad(C), and Neu(C).

As stated above, good vertices give us an additional flexibility in extending
colorings. On the other hand, if we know that a vertex v is not good and can
saturate only via, say, positive edges, we know it is not directly saturated by
any �-assistant. Hence, for each �-assistant wi , we can infer the polarity of the
edge between v and wi . This knowledge will be useful in the construction of a
better cycle.
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The following lemma guarantees that the number of good vertices is small com-
pared to the number of bad vertices unless the coloring of C can be extended to a
saturating coloring.

LEMMA 6.6. If |Good(C)| > log(|Bad(C)|), then the coloring of C can be
extended to a legal coloring of G.

PROOF. We color the vertices of Neu(C) such that they are saturated directly
by C . Then, we ensure that all vertices from Bad(C) are saturated by vertices
from Good(C). We proceed inductively as follows: Initialize A := Good(C) and
B := Bad(C). We repeat the following until A is empty. We pick a vertex v from
A. If at least half of the vertices of B are connected to v by a positive edge, then we
color v such that it saturates positively. Otherwise, we color v such that it saturates
negatively. In either case, v saturates at least half of the vertices in B. We delete v
from A and delete the vertices saturated by v from B. Clearly, the size of B after
each step is at most half the size as before. Hence, after log(|Bad(C)|) < |Good(C)|
steps all vertices are saturated.

In a similar fashion, we can deal with the particular case where �-edges
and ⊕-edges occur alternatingly in C . Before we formally prove this state-
ment, we introduce some more notation that will be used in the subsequent
proofs. Recall that if p = v0, . . . , vm is a path, pat(p) denotes the �-⊕-string
lab(v0, v1) · · · lab(vm−1, vm). For a regular expression e over {�, ⊕}, we say that p
matches e if the string pat(p) matches e in the usual sense. Analogously, if we view
C = v0, . . . , vm as a cycle, we define pat(C) as pat(v0, . . . , vm, v0).

LEMMA 6.7. If pat(C) matches (�⊕)∗ or (⊕�)∗, then G ∈ SATU(P).

PROOF. If |Good(C)| ≥ |Bad(C)|, then the statement follows from Lemma 6.6.
Otherwise, we take the reversal of C as C ′. It is easy to see that Neu(C) ⊆
Neu(C ′) ∪ Good(C ′) and Bad(C) ⊆ Good(C ′), hence |Good(C ′)| ≥ |Bad(C ′)|
and the statement follows, again by Lemma 6.6.

6.3.1. Reducing the Number of Bad Vertices

LEMMA 6.8. For each l > 0, there are c, k, t such that the following holds. If
G is not (k, t)-special, C is a self-saturating mixed cycle of G of size at most l with
a coloring col and |Bad(C)| > c, then either col can be extended to a legal coloring
of G or there is a mixed self-saturating cycle D in G with pat(D) = pat(C) and
|Bad(D)| < |Bad(C)|.

PROOF. Let c be large enough such that each�-⊕-graph with c vertices contains
a negative or a positive clique of size l; such a c is guaranteed to exist by Ramsey’s
classical theorem. Let t be large enough such that each graph of tree-width larger
than t contains a cycle of length at least 2l and let k = 3l.

Let G be a graph which is not (k, t)-special and let C = w1, . . . , wl be a cycle
self-saturated by a coloring col and witness function f (wi ) = wi+1.

Although the vertices in Bad(C) are the troublesome vertices, they will play
an important role in the construction of D. The reason for this is that a lot of
information can be deduced from knowing that a vertex is bad; specifically, if
a vertex v is in Bad(C), then we can derive the labels of all edges between v
and C .
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If pat(C) matches (�⊕)∗ or (⊕�)∗, then we are done by Lemma 6.7. Therefore,
we assume in the following that this is not the case. Because of Lemma 6.6, we can
also assume |Good(C)| ≤ log(|Bad(C)|).

The proof consists basically of two parts. We first describe the construction of
a cycle C ′ which almost has the desired properties. In the second part, it might be
necessary to modify C ′ slightly to obtain D. The construction maintains pat(C) =
pat(C ′) = pat(D).

To be more precise, the cycle C ′ will saturate all vertices in Bad(C) directly,
that is, we get Bad(C) ⊆ Good(C ′) ∪ Neu(C ′). It might happen that some vertices
in Good(C) are no longer saturated by C ′ but this does not hurt too much as
|Good(C)| ≤ log(|Bad(C)|). Nevertheless, there are some cases, depending on
pat(C), in which it can not be guaranteed that the vertices of Neu(C) are saturated
by C ′. These are the cases where we need to modify C ′ to get the desired cycle D.
Otherwise we can simply set D := C ′. The modification will be conservative in the
sense that the vertices from Bad(C) are guaranteed to be in Good(D) ∪ Neu(D).

6.3.1.1. CONSTRUCTION OF C ′. By the choice of c, Bad(C) contains a positive
or negative clique K of size l. As pat(C) is neither of the form (�⊕)∗ nor of the form
(⊕�)∗, a simple induction shows that we can partition C into subpaths p1, . . . , pn
such that each subpath conforms to exactly one of the regular expressions

(1) ��+⊕+,
(2) (�⊕)+⊕+, or
(3) (�⊕)+��+⊕+.

Here, as usual r+ stands for rr∗. Besides the choice of the first subpath, this
partitioning is unique. Note that each subpath starts with � and ends with ⊕. In
particular, all vertices first(pi ) saturate positively.

For each subpath pi , we construct a path p′
i such that the following statements

hold.

(a) ∅ �= p′
i ∩ C ⊆ pi − {last(pi )};

(b) last(p′
i ) = first(p′

i+1)
(c) pat(p′

i ) = pat(pi );
(d) There is a vertex v in pi ∩ p′

i which has reversed polarity in p′
i compared to pi

(i.e., the label between v and its successor is different in p′
i and in pi );

Conditions (a) and (b) guarantee that the p′
i can again be concatenated to a

cycle C ′. Condition (c) ensures that this cycle has the same pattern as C . Let pi
consist of v0, . . . , vm and p′

i of v ′
0, . . . , v ′

m . We color each vertex v ′
i by col(vi ). The

last condition ensures that the vertices of Bad(C) can be directly saturated by this
coloring of C ′. Note, that the latter condition is already guaranteed by each single
subpath p′

i .
We construct the paths p′

i inductively. It should be noted first, that in the con-
strucion of p′

i the first vertex of p′
i can always be chosen arbitrarily from K . In

particular, it can always be chosen in a way that ensures condition (b). Hence, we
only need to care about conditions (a), (c) and (d).

Let i > 0. Let Qi denote the set
⋃i−1

j=1 p′
j , let Ki := K − Qi and let pi =

v0, . . . , vm . We will describe the construction of p′
i = v ′

0, . . . , v ′
m . In most cases, p′

i
will consist of vertices of pi and of vertices from Ki . As it does not make a difference
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FIG. 10. Construction of p′
i from pi . (a) displays case (1) with j = 2, (b) shows case (2) with j = 2

and (c) shows case (3) with j = 1 and j ′ = 2. The path p′
i is indicated by thick lines.

which vertices from Ki are actually chosen we simply write ∗ for an arbitrary vertex
from Ki . Hence, for example, ∗, v0, . . . , v j−1, ∗m− j refers to a path which consists
of a vertex from Ki , followed by the subpath v0, . . . , v j−1 of pi and completed by
m − j vertices from Ki . In all cases, the path ends with an appropriate number of
vertices from Ki . We simply write ∗∗ to denote this terminal part of the path.

We distinguish between three main cases, depending on whether the pattern
of pi conforms to (1), (2) or (3). Case (3) splits into two subcases depending on
whether the second block of (negative) edges has length 2 or more. In the latter case
of more than two negative edges, there will be some further local case distinctions.
In all cases the verification of conditions (a), (c) and (d) is straightforward given
the respective constructions.

If pi conforms to (1) and pat(pi ) = � j⊕m− j , then we choose p′
i = ∗, v0, . . . ,

v j−1, ∗∗ (cf. Figure 10(a)).
If pi conforms to (2) and pat(pi ) = (�⊕) j⊕m−2 j , then we choose p′

i = ∗,
v2 j , . . . , v1, ∗∗ (cf. Figure 10(b)).

If pi conforms to (3), let j, j ′, j ′′ be such that pat(pi ) = (�⊕) j� j ′⊕ j ′′

(where j ′ > 1 and j, j ′′ ≥ 1). If j ′ = 2, we choose p′
i = ∗, v2 j , . . . , v0, ∗∗ (cf.

Figure 10(c)).
The remaining case is when j ′ > 2. This is the only case where we have to

consider other parts of the graph, besides C and Ki . As we assume that G is not
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FIG. 11. Construction of p′
i from pi in case of pattern (3) (with j = 1, j ′ = 4), subcase (i). The

crucial point is here, that p′
i can be found, no matter the value of lab(v0, z).

(k, t)-special, by the choice of t and k, the negative graph G − (C ∪ Ki ∪ Qi ) has
tree-width more than t and therefore it contains a negative cycle R with at least
2l vertices. The path p′

i will start in Ki , traverse an initial part of pi in reverse
direction until v0, pass to a vertex z of R, follow R for a while and finally go back
to Ki . A difficulty lies in the fact that we neither know lab(v0, z) nor the labels of
edges between R and Ki in advance. If lab(v0, z) = ⊕ this edge can match the last
⊕ of the (�⊕) j part of pat(pi ). Otherwise, it can match the second � of the � j ′

part. To deal with this difficulty, we show that we can always find z in R such that

—there exist x, y in R and u, u′ in Ki with d(z, x) = j ′ − 2, d(z, y) = j ′
(distances counted on R) and lab(x, u) = lab(y, u′) = ⊕, or

—there exist x, y in R and u in Ki with d(z, x) = j ′ − 3, d(z, y) = j ′ − 1 and
lab(x, u) = lab(y, u′) = �.

Then we choose p′
i = ∗, v2 j , . . . , v0, z, . . . , x, u, ∗∗ if lab(v0, z) = �

or p′
i = ∗, v2 j−2, . . . , v0, z, . . . , y, u′, ∗∗, otherwise. See Figure 11 for an example

of the second case.
In order to prove the existence of z, we consider three subcases.

(i) If there exist vertices x and y on R with distance 2 on R and neither
positive(x, Ki ) nor positive(y, Ki ) holds, then we choose z on R that has
distance j ′ − 3 from x and distance j ′ − 1 from y.

(ii) If there exist vertices x and y on R with distance 2 on R and neither
negative(x, Ki ) nor negative(y, Ki ) holds, then we choose a vertex z on R
that has distance j ′ − 2 from x and distance j ′ from y.
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(iii) Finally, assume that neither of the above two cases holds. This implies that,
for each pair of vertices x, y of distance 2 on R, either negative(x, Ki )
and positive(y, Ki ) or positive(x, Ki ) and negative(y, Ki ). We conclude
that R can be written as a sequence a0, a1, a2, . . . , ag such that, for
each h, negative(a4h, Ki ), negative(a4h+1, Ki ), positive(a4h+2, Ki ), and
positive(a4h+3, Ki ). In particular, if the distance of two vertices x , y is a
multiple of 4, then they are connected to Ki in the same way.

In this case, we will choose z between x and y on R (in the natural sense).
The choice of x, y, z depends on the modulus of j ′ with respect to 4. If
(a) j ′ = 4s + 3, we choose x and y of distance 8s + 4 with positive(x, Ki )

and positive(y, Ki ) and z of distance 4s + 3 from x and 4s + 1 from y;
(b) j ′ = 4s + 1, we choose x and y of distance 8s with positive(x, Ki ) and

positive(y, Ki ) and z of distance 4s + 1 from x and 4s − 1 from y;
(c) j ′ = 4s + 2, we choose x and y of distance 8s with negative(x, Ki ) and

negative(y, Ki ) and z of distance 4s + 1 from x and 4s − 1 from y;
(d) j ′ = 4s, we choose x and y of distance 8s − 4 with negative(x, Ki ) and

negative(y, Ki ) and z of distance 4s − 1 from x and 4s − 3 from y.

In analogy with the cases (i) and (ii) above it can be seen that p′
i can be constructed

in each of the four cases.
This completes the description of the construction of C ′.

6.3.1.2. FROM C ′ TO D. To summarize, C ′ has the following properties.

—Bad(C) ⊆ Good(C ′) ∪ Neu(C ′), that is, all bad vertices with respect to C are
no longer bad with respect to C ′.

—On the other hand, it might be the case that some vertices from Good(C) and
Neu(C) are in Bad(C ′). We know that there are not many good vertices with
respect to C , as by assumption |Good(C)| ≤ log(|Bad(C)|). We only have to
worry about the vertices from Neu(C). Many of them may be bad with respect
to C ′, in fact it might even be the case that |Bad(C ′)| > |Bad(C)|. It will turn
out in the following that the existence of certain patterns in C guarantees that
no vertices from Neu(C) are in Bad(C ′). If none of these patterns occurs in C ,
we have to modify one or at most two subpaths of C ′.

Below, we show that at least one of the following statements holds.

—The coloring col of C can be extended to a legal coloring of G.
—|Bad(C ′)| < |Bad(C)|.
—There is a self-saturating cycle D with pat(D) = pat(C ′) = pat(C) such that

|Bad(D)| < |Bad(C)|.
We note again that, in the latter case, D will differ from C ′ only in at most two
subpaths.

The main idea to ensure the saturation of the vertices in Neu(C) is as follows.
Assume there are vertices x0 and x1 in C ∩ D, such that x0 is a �-assistant and
x1 is a ⊕-assistant with respect to C and both saturate in D via edges of opposite
polarity than in C (we say, that their polarity is reversed). As each vertex in
Neu(C) is saturated with respect to C by at most one of x0 and x1, it follows that all
vertices in Neu(C) are saturated by at least one of x0 and x1 with respect to D, that
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is, Neu(C) ⊆ Neu(D) ∪ Good(D). Therefore, it is sufficient to find a �-assistant
x0 of C and a ⊕-assistant x1 of C that have reversed polarity in D.

There are some easy cases in which such x0 and x1 can be found in C ′. In these
cases, we can simply set D := C ′.

—If in the construction of C ′ case (2) occurs at least once or case (3) occurs with
a pattern (�⊕) j� j ′⊕ j ′′

and j > 1, we can choose x0 = v2 and x1 = v1.
—If case (3) occurs with j = 1 and j ′ = 2, then we can also choose x0 = v2 and

x1 = v1.
—If case (3) occurs with j ′ = 1, j ′ > 2 and v0 is connected by a negative edge

to z, then we can again choose x0 = v2 and x1 = v1.

Otherwise, we have to modify C ′ to obtain D. Hence, in the following, we
can assume that only case (1) and case (3) with j = 1, j ′ > 2 and a positive
edge between v0 and z occur in the construction of C ′. An inspection of the
construction shows that in all these cases the vertex v0 saturates positively with
respect to C but negatively with respect to C ′. Hence, if the set of vertices first(pi )
contains �-assistants as well as ⊕-assistants with respect to C , then we are
done again.

Otherwise, we distinguish the two cases that all vertices first(pi ) are �-assistants
or that all of them are ⊕-assistants.

We write, in the following, Neu�(C) for the vertices of Neu(C) that are saturated
by some �-assistants of C and Neu⊕(C) for those that are saturated by some
⊕-assistants of C .

—First, assume all vertices first(pi ) are �-assistants.
Hence, all vertices in Neu⊕(C) are saturated by each single of these vertices
with respect to C ′.

If, for each vertex v ∈ Bad(C), there is a vertex in Neu�(C) that is connected
negatively to v , then C can be extended to a legal coloring of G. If this is not the
case, then there is a vertex v ∈ Bad(C) such that positive(v, Neu�(C)). Note that
v does not need to be a member of the clique K .

If a subpath of pattern (1) was used in the construction of C ′, then, as all first(pi )
are �-assistants, we can conclude that the pattern is of the form � j⊕. Hence, we can
construct D by replacing v ′

m of p′
i by v . As v is in Bad(C), we can be sure that we can

use it also as the first vertex of p′
i+1. All vertices from Neu�(C) are saturated by v .

Hence, we can assume that all subpaths are of the form (3) with j = 1 and j ′′ = 1.
If there is a subpath pi of this kind with j ′ = 2 (hence, pi = v0, . . . , v5), then we

can replace p′
i by ∗, v2, v1, v0, ∗ and we can choose x0 = v2 and x1 = v1 (= w1).

It remains the case where all pi are of type (3) with j ′ ≥ 3.
If all of them have j ′ = 3, then C is symmetric and we can simply choose D

as the reversal of C . In analogy to Lemma 6.7, it follows that G is in SATU(P).
The same can be done if C consists of only one subpath pi at all and this is of

the form (3).
The only remaining case is when there are at least two subpaths of type (3) and

at least one of them has j ′ ≥ 4.
Let, without loss of generality, p1 = v0, . . . , vm be a subpath of C with maximal

j ′ and let p2 = u0, . . . , um ′ . Let z1 and z2 denote the vertices that played the role
of z in the construction of p′

1 and p′
2, respectively.
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FIG. 12. Modification of two subpathsp′
1 = v ′

0, v0, z1, . . . , y1, v ′
6, v ′

7 and p′
2 = u′

0, u0, z2, . . . , y2, u′
6.

The new paths are p′′
1 = u′

0, u2, u1, u0, ∗, v2, v3, ∗ and p′′
2 = v ′

0, v0, z2, . . . , y2, u′
6.

—If negative(first(p1), z2) or negative(first(p2), z1), then we can construct paths
p′′

1 and p′′
2 in accordance with our general strategy but by using the prefix of p1

in the construction of p′′
2 and the prefix of p2 in the construction of p′′

1 . Hence,
we can replace p′

1 and p′
2 by p′′

1 and p′′
2 , respectively. Then, at least one of

first(p′′
1 ) and first(p′′

2 ) is connected negatively with its corresponding z. Hence,
one of these paths gives us suitable x0 and x1.

—Otherwise, we can replace the second vertex of p′
2 (that is, first(p2)) by first(p1)

and we can replace p′
1 by ∗, u2, u1, u0, ∗, v2, . . . , vm−4, ∗. We can choose

x0 = u2 and x1 = u1. See Figure 12 for an illustrating example.

This finishes the description of the case where all w0 are �-assistants.

—Now assume that all vertices first(pi ) are ⊕-assistants. This case is less
complicated than the one before. We may have subpaths of type (1) with
m − j ≥ 2 and of type 3 with j = 1 and j ′′ ≥ 2.

We distinguish five subcases.

—If there is a subpath pi = v0, . . . , vm of type (1) with j = 2, then we replace
p′

i by ∗, v0, ∗, v2, ∗∗ and we can set x0 = v2 and x1 = v0.
—If there is a subpath of type (1) with j = 3, we proceed as follows. First it should

be observed that none of the paths p′
i makes use of the ⊕m− j part (including the
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first vertex of this part). Let the first vertex of the ⊕-part of pi−1 be denoted z0
(this one is connected negatively with its predecessor in pi−1), the second z1 and
the third z2 (recall that there are at least two positive edges). We replace p′

i by
∗, z2, ∗, z1, z0, ∗∗. We can set x0 = z1 and x1 = z2.

—If there is a subpath of type (1) with j ≥ 4, then we replace p′
i by

∗, v j+1, ∗, v0, . . . , v j−3, ∗∗ and set x0 = v j+1 and x1 = v0.
—If there are no subpaths of type (1) and there is a subpath of type (3) with j ′ = 2,

we replace p′
i by ∗, v2, v1, v0, ∗∗ and set x0 = v2 and x1 = v1.

—Otherwise, there must be a subpath of type (3) with j ′ ≥ 3. In this case, we
replace p′

i by ∗, v−1, v0, ∗, v2, ∗∗, if j ′ = 3 and by ∗, v−1, v0, ∗, v2, . . . , v j ′, ∗∗,
if j ′ > 3. In either case, we can set x0 = v2 and x1 = v0.

This completes the proof of Lemma 6.8.

6.3.2. Dealing with a Constant Number of Bad Vertices. From Lemma 6.8, we
can conclude that, whenever a nonspecial graph G has a self-saturating mixed cycle
of some size l then it has such a cycle C with |Bad(C)| ≤ c for some constant c that
only depends on l. In this section, we show that we can always extend the coloring
of C to a legal coloring of G.

We start with a combinatorial lemma that states a relationship between being
nonspecial and the existence of long paths of pattern (�⊕)∗ or (⊕�)∗ for complete
bipartite �-⊕-graphs. Let G be a complete bipartite graph with vertex partition
(V1, V2) and edge labels from {�, ⊕}. We call two vertices u, u′ ∈ V1 equivalent
with respect to a subset T ⊆ V2, if for each w ∈ T lab(u, w) = lab(u′, w).

LEMMA 6.9. Let l > 0 and let G be a complete bipartite graph with vertex
partition (V1, V2) and edge labels from {�, ⊕}. Then at least one of the following
two conditions holds.

(a) There is a path of pattern (⊕�)l starting from (and ending in) a vertex from
V1.

(b) The vertices in V1 can be partitioned into sets W1, . . . , W2l and there is a set
T ⊆ V2 of size at most 22l such that for all i ≤ l the vertices in the set Wi are
equivalent with respect to V2 − T .

PROOF. Consider the execution of the following algorithm on input G.

(1) T := ∅, choose v1 ∈ V1 arbitrarily
(2) FOR i := 2 TO 2l DO

—IF there exists w ∈ V1 not equivalent to any v j , j < i , with respect to V2 − T
—vi := w
—Pick for each j < i a vertex xi j ∈ V2 − T such that lab(vi , xi j ) �= lab(v j , xi j )
—T := T ∪ {xi j | j < i}

—OTHERWISE Stop

There are two possibilities how this algorithm might terminate. The first is that no
furher vertex w is found. Then every vertex in V1 is equivalent to one of the vi with
respect to V2 − T . As |T | < i2 after the execution of i steps, condition (b) follows.
In the other case, we get 2l vertices v1, . . . , v2l that are pairwise not equivalent with
respect to V2. Let H be the directed graph with vertex set {v1, . . . , v2l } and edges
defined as follows. For j < i there is an edge (v j , vi ) in H if lab(v j , xi j ) = ⊕. If
lab(v j , xi j ) = �, then there is an edge (v j , vi ) in H . A directed path vi0, . . . , vim in
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H corresponds to a path vi0, xi0i1, vi1, xi1i2, . . . , vim with pattern (⊕�)m in G (where
xi j := x ji , for i < j). Note that, by construction, all the vertices xi j i j+1 are distinct.
It is easy to show that, as H is complete and has 2l vertices, it has a directed path
of length l. Hence, condition (a) holds in G.

Now we come back to the saturation problem.

LEMMA 6.10. Let P be a pattern graph and let c, l be integers. Then there
are constants k and t such that the following holds. If G is a �-⊕graph that is not
(k, t)-special and has a mixed self-saturating cycle C of length l of pattern different
from (�⊕)∗ and (�⊕)∗ with |Bad(C)| ≤ c and |Good(C)| ≤ log(|Bad(C)|), then
G ∈ SATU(P) via a coloring that extends the coloring of C.

PROOF. Let c1 be large enough such that a graph of tree-width >c1 always
contains a path of length l (cf. Proposition 5.11). Let c2 = l + log(c) + c + 22l+1

and c3 = 2l+12c2 . We prove by induction on c that a mixed self-saturating coloring
of a cycle C of length l can be extended to a legal coloring of G. If c = 0, then
Bad(C) is empty and there is nothing to prove. Let therefore c > 0. Let k ′ and t ′ be
the constants obtained from the statement of the Lemma for c′ = c − 1 and l ′ = l.
We set k = max(c3, 2lk ′) and t = max(c1 + c2, t ′ + l ′).

Let now G be a graph which is not (k, t)-special and let C = w1, . . . , wl be a
cycle with self-saturating coloring col. If |Bad(C)| < c, we are done by induction.
Hence, we can assume |Bad(C)| = c. We show that col can be extended to a legal
coloring of G. Let therefore v ∈ Bad(C).

By pm(w j ) we denote the path w j−m, w j−m+1, . . . , w j , where indices are modulo
l. We construct a saturating path p = v0, . . . , vm for v , for some m ≤ l, that is, a
path such that, for some j ,

—v0 = v ,
—vm = w j ∈ C ,
—{v0, . . . , vm−1} ∩ C = ∅, and
—pat(p) = pat(pm(w j )).

Given such a path, we can color the vertices vi via col(vi ) = col(w j−m+i ). Hence,
each vertex vi becomes saturated by vi+1. Let G ′ = G − {v0, . . . , vm−1}. Toward a
contradiction, assume that G ′ is (k ′, t ′)-special with partition A, A1 . . . , Ak ′ . Then
it follows that G is (2lk ′, t + l)-special by adding the vertices v0, . . . , vm−1 to A
and partitioning each set Ai , i > 0, into at most 2m ≤ 2l subsets with respect to the
polarity of their edges to v0, . . . , vm−1. By the choice of k and t , G would be (k, t)-
special, a contradiction. Therefore, G ′ is not (k ′, t ′)-special. As |Bad(C)| ≤ c − 1
in G ′, G ′ can be legally colored with a coloring which extends col, by induction.
By adding back {v1, . . . , vm} with their chosen colors, we get a legal coloring of G.

It remains to describe the construction of p. First, we choose a fixed extension
of col to the vertices of Neu(C) such that all of them are saturated and all of them
are colored with colors that also appear in col(C). For each u ∈ Neu(C), let j(u)
be such that u is saturated by w j(u)+1, in particular, col(u) = col(w j(u)).

For a �-⊕-string s let Bs be the set of vertices from Neu(C) which saturate via
paths of pattern s. More formally, Bs is the set of vertices u ∈ Neu(C) such that
pat(pi (w j(u))) = s, where i is the length of s. Note that, by definition, B� ∩ B⊕ = ∅
and that Bs ⊆ Bs ′ if s ′ is a suffix of s.
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If, for some �-⊕-string s, there is a path p′ of pattern s from v to a vertex u in
Bs , consisting only of vertices in Neu(C), then one can obtain p by adding w j(u)+1
to p′. We call such a path p′ useful for v . Our goal is to show that a useful path for
v exists.

In any of the following situations, the existence of a useful path p′ follows.

—If v has a negative edge to a vertex u from B� or a positive edge to a vertex u
from B⊕, then p′ := v, u.

—If there is a positive edge between vertices u1 ∈ B�� and u2 ∈ B⊕⊕ and v
is connected by positive edges to the vertices in B��, then p′ can be chosen
as v, u1, u2. Analogously, if there is a negative edge between B�� and B⊕⊕.
Hence, in the following we can assume that there is no edge between B�� and
B⊕⊕ which implies that B�� = ∅ or B⊕⊕ = ∅.

—If there is a path q = z0, . . . , zl of pattern ⊕l in B⊕ and v is connected by
negative edges to the vertices in B⊕, then we can construct p as follows. Let
j = j(zl). As C is a mixed cycle, there is a j ′ such that pat(p j ′(w j )) = �⊕ j ′

.
Hence, we can choose p′ as v, zl− j ′, . . . , zl . An analogous construction can be
done if there is a path q of length l of pattern �l in B�.

—If there is a positive edge between two vertices, u1, u2 ∈ B�⊕ and v is connected
by negative edges to the vertices in B�⊕, then we can choose p′ = v, u1, u2.

—Analogously, if there is a negative edge between two vertices in B⊕� and v is
connected by positive edges to the vertices in B�⊕, then we can choose p′ =
v, u1, u2.

Let us therefore assume that none of these situations occur, that is,

—positive(v, B�), negative(v, B⊕),
—without loss of generality B⊕⊕ = ∅,
—there is neither a positive path of length l in B⊕ nor a negative path of length l in

B�, in particular, the positive graph induced by B�� has tree-width at most c1,
and

—B�⊕ is a negative clique and B⊕� is a positive clique.

Now we apply Lemma 6.9 to the bipartite graph G ′ with V1 := B⊕� and V2 :=
B�⊕ and the edges between these two sets induced from G. Hence, there is a path
of pattern (⊕�)l starting from and ending in a vertex from B⊕� or condition (b) of
Lemma 6.9 holds.

Assume first the existence of such a path q = z0, . . . , z2l and let j = j(z2l).
Recall that zi is in = B⊕�, for even i , and in B�⊕, for odd i . As the pattern of C
neither is of the form (�⊕)∗ nor of the form (�⊕)∗ we can assume that there is a
j ′, with 2 j ′ ≤ l, such that pat(p2 j ′+1(w j−1)) = ⊕(⊕�) j ′

or pat(p2 j ′+2(w j−1)) =
��(⊕�) j ′

. In the first case, we can choose p′ = v, z2l−2 j ′−1, . . . , z2l as a useful
path, in the second case p′ = v, z2l−2 j ′−2, . . . , z2l .

By switching V1 and V2 as well as � and ⊕, we get, again from Lemma 6.9, that
there is a path of pattern (�⊕)l starting from and ending in a vertex from B�⊕ or the
analogue of condition (b) holds for B�⊕. If there is such a path, we can construct
p′, analogously.

Hence, it remains to consider the situation where in both cases condition (b) holds.
Let T , W1, . . . , W2l be the sets obtained from the first application of Lemma 6.9



Existential Second-Order Logic Over Graphs 361

and let T ′, W ′
1, . . . , W ′

2l be the respective sets obtained from the second application.
Let

S := C ∪ Good(C) ∪ Bad(C) ∪ T ∪ T ′.

Note that |S| ≤ l + log(c) + c + 22l+1 = c2. For each subset U ⊆ S and each
i ≤ 2l , let Wi (U ) be the set of vertices of Wi that are connected positively with
the vertices in U and negatively with the vertices in S − U . Let W ′

i (U ) be defined
analogously. Then, for each i and U ⊆ S, the vertices in Wi (U ) (as well as those
in W ′

i (U )) are equivalent with respect to V . Therefore, the set A := B�� ∪ S and
the (≤ 2l+12c2 = c3) sets Wi (U ) and W ′

i (U ) partition V and actually witness that
G is (c3, c1 + c2)-special, the desired contradiction.

This completes the proof of the lemma.
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