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Abstract

A dichotomy theorem for a class of decision problems is a result asserting that certain problems in the

class are solvable in polynomial time, while the rest are NP-complete. The first remarkable such dichotomy

theorem was proved by Schaefer in 1978. It concerns the class of generalized satisfiability problems SatðSÞ,
whose input is a CNFðSÞ-formula, i.e., a formula constructed from elements of a fixed set S of generalized

connectives using conjunctions and substitutions by variables. Here, we investigate the complexity of

minimal satisfiability problems Min SatðSÞ, where S is a fixed set of generalized connectives. The input to

such a problem is a CNFðSÞ-formula and a satisfying truth assignment; the question is to decide whether

there is another satisfying truth assignment that is strictly smaller than the given truth assignment with

respect to the coordinate-wise partial order on truth assignments. Minimal satisfiability problems were first

studied by researchers in artificial intelligence while investigating the computational complexity of prop-

ositional circumscription. The question of whether dichotomy theorems can be proved for these problems
was raised at that time, but was left open. We settle this question affirmatively by establishing a dichotomy

theorem for the class of all Min SatðSÞ-problems, where S is a finite set of generalized connectives. We also

prove a dichotomy theorem for a variant ofMin SatðSÞ in which the minimization is restricted to a subset of

the variables, whereas the remaining variables may vary arbitrarily (this variant is related to extensions of

propositional circumscription and was first studied by Cadoli). Moreover, we show that similar dichotomy

theorems hold also when some of the variables are assigned constant values. Finally, we give simple criteria
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that tell apart the polynomial-time solvable cases of these minimal satisfiability problems from the NP-

complete ones.

� 2003 Elsevier Science (USA). All rights reserved.

1. Introduction and summary of results

Computational complexity strives to analyze important algorithmic problems by first placing
them in suitable complexity classes and then attempting to determine whether they are complete
for the class under consideration or they actually belong to a more restricted complexity class.
This approach to analyzing algorithmic problems has borne fruit in numerous concrete cases and
has led to the successful development of the theory of NP-completeness. In this vein, dichotomy
theorems for classes of NP-problems are of particular interest, where a dichotomy theorem is a
result that concerns an infinite class F of related decision problems and asserts that certain
problems in F are solvable in polynomial time, while on the contrary all other problems in F are
NP-complete. It should be pointed out that the a priori existence of dichotomy theorems cannot
not be taken for granted. Indeed, Ladner [17] showed that if P 6¼ NP, then there are problems in
NP that are neither NP-complete nor in P. Consequently, a given class F of NP-problems may
contain such problems of intermediate complexity, which rules out the existence of a dichotomy
theorem for F .

The first remarkable (and highly non-trivial) dichotomy theorem was established by Schaefer
[22], who introduced and studied the class of GENERALIZEDENERALIZED SATISFIABILITYATISFIABILITY problems (see also
[10, LO6, p. 260]). A logical relation (or generalized connective) R is a non-empty subset of f0; 1gk,
for some k � 1. If S ¼ fR1; . . . ;Rmg is a finite set of logical relations, then a CNFðSÞ-formula is a
conjunction of expressions (called generalized clauses or, simply, clauses) of the form
R0
iðx1; . . . ; xkÞ, where each R0

i is a relation symbol representing the logical relation Ri in S and each
xj is a Boolean variable. Each finite set S of logical relations gives rise to the GENERALIZEDENERALIZED

SATISFIABILITYATISFIABILITY problem SatðSÞ: given a CNFðSÞ-formula u, is u satisfiable? Schaefer isolated six
efficiently checkable conditions and proved the following dichotomy theorem for the class of all
GENERALIZEDENERALIZED SATISFIABILITYATISFIABILITY problems SatðSÞ: if the set S satisfies at least one of these six
conditions, then SatðSÞ is solvable in polynomial time; otherwise, SatðSÞ is NP-complete. Since
that time, only a handful of dichotomy theorems for other classes of decision problems have been
established. Two notable ones are the dichotomy theorem for the class of FIXEDIXED SUBGRAPHUBGRAPH

HOMEOMORPHISMOMEOMORPHISM problems on directed graphs, obtained by Fortune et al. [8], and the di-
chotomy theorem for the class of H -COLORINGOLORING problems on undirected graphs, obtained by Hell
and Ne�sset�rril [11]. The latter is a special case of CONSTRAINTONSTRAINT SATISFACTIONATISFACTION, a rich class of
problems that have been the object of systematic study in artificial intelligence. It should be noted
that no dichotomy theorem for the entire class of CONSTRAINTONSTRAINT SATISFACTIONATISFACTION problems has
been established thus far, in spite of intensive efforts to this effect (see [9,12]).

In recent years, researchers have obtained dichotomy theorems for optimization problems,
counting problems, enumeration problems, and decision problems that are variants of GENER-ENER-

ALIZEDALIZED SATISFIABILITYATISFIABILITY problems. Specifically, Creignou [3], Khanna et al. [14], and Zwick [23]
obtained dichotomy theorems for certain classes of optimization problems related to propositional
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satisfiability and Boolean constraint satisfaction; Creignou and Hermann [5] proved a dichotomy
theorem for the class of counting problems that ask for the number of satisfying assignments of a
given CNFðSÞ-formula; Creignou and H�eebrard [4] showed that a dichotomy theorem holds for the
class of enumeration problems that ask whether there is a polynomial-delay algorithm that gen-
erates all satisfying assignments of a given CNFðSÞ-formula; also, Kavvadias and Sideri [13] es-
tablished a dichotomy theorem for the class of decision problems INVERSENVERSE SATATðSÞ that ask whether
a given set of truth assignments is the set of all satisfying assignments of some CNFðSÞ-formula (in
all these results S is a finite set of logical relations). Even more recently, Reith and Vollmer [21]
proved a dichotomy theorem for the class of optimization problems LEXEXMININ SATATðSÞ and LEXEXMAXAX

SATATðSÞ that ask for the lexicographically minimal (or maximal) truth assignment that satisfies a
given CNFðSÞ-formula.

Researchers have also investigated the class of decision problemsMin SatðSÞ that ask whether a
satisfying truth assignment of a CNFðSÞ-formula is minimal with respect to the coordinate-wise
partial order. More precisely, if S is a finite set of logical relations, then Min SatðSÞ is the fol-
lowing decision problem: given a CNFðSÞ-formula u and a satisfying truth assignment a of u, is
there a satisfying truth assignment b of u such that b < a, where< is the coordinate-wise partial
order on truth assignments? These decision problems were introduced and studied by researchers
in artificial intelligence while investigating circumscription, a well-developed formalism of com-
mon-sense reasoning introduced by McCarthy [19] about 20 years ago. The main question left
open about Min SatðSÞ was whether a dichotomy theorem holds for the class of all Min SatðSÞ
problems, where S is a finite set of logical relations. In the present paper, we settle this question in
the affirmative and also provide easily checkable criteria that tell apart the polynomial-time
solvable cases of Min SatðSÞ from the NP-complete ones. Moreover, we obtain dichotomy the-
orems for classes of several related decision problems that have to do with powerful extensions of
circumscription.

In circumscription, properties are specified using formulas of some logic, a natural partial
order between models of each formula is considered, and preference is given to models that are
minimal with respect to this partial order. McCarthy�s key intuition was that minimal models
should be preferred because they are the ones that have as few ‘‘exceptions’’ as possible and thus
embody common-sense. A fundamental algorithmic problem about every logical formalism is
model checking, the problem of deciding whether a finite structure satisfies a formula. As regards
circumscription, model checking amounts to the problem of deciding whether a finite structure is
a minimal model of a formula. The simplest case of circumscription is propositional circum-
scription, where properties are specified using formulas of propositional logic; thus, the model
checking problem for propositional circumscription is precisely the problem of deciding whether
a satisfying truth assignment of a propositional formula is minimal with respect to the coor-
dinate-wise order. It is not hard to show that this problem is coNP-complete, when arbitrary
propositional formulas are allowed as part of the input. For this reason, researchers in artificial
intelligence embarked on the pursuit of tractable cases of the model checking problem for
propositional circumscription. In particular, Cadoli [1,2] adopted Schaefer�s approach, intro-
duced the class of decision problems Min SatðSÞ, identified several tractable cases, and raised the
question of the existence of a dichotomy theorem for this class (see [2, page 132]). Moreover,
Cadoli pointed out that if a dichotomy theorem for Min SatðSÞ indeed exists, then the dividing
line is going to be very different from the dividing line in Schaefer�s dichotomy theorem for
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SatðSÞ. To see this, consider first the set S ¼ fR1=3g, where R1=3 ¼ fð1; 0; 0Þ; ð0; 1; 0Þ; ð0; 0; 1Þg. In
this case, SatðSÞ is the well-known NP-complete problem POSITIVEOSITIVE-1-INN-3-SATAT, while on the
contrary Min SatðSÞ is trivial, since it can be easily verified that every satisfying truth assignment
of a given CNFðSÞ-formula is minimal. Thus, an intractable case of SatðSÞ becomes a tractable
(in fact, a trivial) case of Min SatðSÞ. In the opposite direction, Cadoli [1,2] showed that certain
tractable (in fact, trivial) cases of SatðSÞ become NP-complete cases of Min SatðSÞ. Specifically,
one of the six tractable cases in Schaefer�s dichotomy theorem is the case where S consists en-
tirely of 1-valid logical relations, that is, every relation R in S contains the all-ones tuple
ð1; . . . ; 1Þ (and, hence, every CNFðSÞ-formula is satisfied by the truth assignment that assigns 1 to
every variable). In contrast, Cadoli [1,2] discovered a finite set S of 1-valid relations such that
Min SatðSÞ is NP-complete.

As it turns out, the collection of 1-valid relations holds the key to the dichotomy theorem for
Min SatðSÞ. More precisely, we first establish a dichotomy theorem for the class of Min SatðSÞ
problems, where S is a finite set of 1-valid relations. Using this restricted dichotomy theorem as a
stepping stone, we derive the desired dichotomy theorem for the full class ofMin SatðSÞ problems,
where S is a finite set of arbitrary logical relations. It should be noted that our results differ from
earlier dichotomy theorems in one important aspect. Specifically, in all earlier dichotomy theo-
rems the tractable cases arise from conditions that are directly applied to the set S of logical
relations under consideration; in our main dichotomy theorem, however, the tractable cases arise
from conditions that are applied not to the set S of logical relations at hand, but to a certain set S�

of 1-valid logical relations obtained from S by projecting the relations in S in a particular way.
This provides an a posteriori explanation for the earlier observation that the dividing line in any
dichotomy theorem for Min SatðSÞ has to be different from the dividing line in Schaefer�s di-
chotomy theorem for SatðSÞ.

All dichotomy theorems described thus far involve CNFðSÞ-formulas that do not contain the
constant symbols 0 and 1; Schaefer, however, [22] also proved a dichotomy theorem for CNFðSÞ-
formulas with constant symbols. Here, we derive dichotomy theorems for minimal satisfiability of
CNFðSÞ-formulas with constant symbols as well. Researchers in artificial intelligence have also
investigated various powerful extensions of circumscription in which the partial order among
models of a formula is modified, so that some parts of the model are assigned fixed values and
some other parts are allowed to vary arbitrarily [18,20]. In the present paper, we also establish
dichotomy theorems for the model checking problem for the main extensions of propositional
circumscription; this answers another question left open by Cadoli [1,2].

2. Preliminaries and background

This section contains the definitions of the main concepts used in this paper and a minimum
amount of the necessary background material from Schaefer�s work on the complexity of GEN-EN-

ERALIZEDERALIZED SATISFIABILITYATISFIABILITY problems [22].

Definition 2.1. Let S ¼ fR1; . . . ;Rmg be a finite set of logical relations of various arities, let
S 0 ¼ fR0

1; . . . ;R
0
mg be a set of relation symbols whose arities match those of the relations in S, and

let V be an infinite set of variables.
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A CNFðSÞ-formula is a finite conjunction C1 ^ . . . ^ Cn of clauses built using relation symbols
from S 0 and variables from V , that is, each Ci is an atomic formula of the form R0

jðx1; . . . ; xkÞ,
where R0

j is a relation symbol of arity k in S 0, and x1; . . . ; xk are variables in V . A CNFCðSÞ-formula
is a formula obtained from a CNFðSÞ-formula by substituting some of its variables by the constant
symbols 0 or 1. The semantics of CNFðSÞ-formulas and CNFCðSÞ-formulas are defined in a
standard way by assuming that variables range over the set of bits f0; 1g, each relation symbol R0

j
in S0 is interpreted by the corresponding relation Rj in S, and the constant symbols 0 and 1 are
interpreted by 0 and 1 respectively.

SatðSÞ is the following decision problem: given a CNFðSÞ-formula u, is it satisfiable? (i.e., is
there a truth assignment to the variables of u that makes every clause of u true?) The decision
problem SatCðSÞ is defined in a similar way.

It is clear that, for each finite set S of logical relations, both SatðSÞ and SatCðSÞ are problems in
NP.Moreover, several well-knownNP-complete problems and several important tractable cases of
Boolean satisfiability can easily be cast as SatðSÞ problems for particular sets S of logical relations.
Indeed, we already saw in the previous section that theNP-complete problemPOSITIVEOSITIVE-1-INN-3-SATAT

[10, LO4, p. 259] is precisely the problem SatðSÞ, where S is the singleton consisting of the relation
R1=3 ¼ fð1; 0; 0Þ; ð0; 1; 0Þ; ð0; 0; 1Þg. Moreover, the prototypical NP-complete problem 3-SATAT coin-
cides with the problem SatðSÞ, where S ¼ fR0;R1;R2;R3g and R0 ¼ f0; 1g3 � fð0; 0; 0Þg (expressing
the clause ðx _ y _ zÞ), R1 ¼ f0; 1g3 � fð1; 0; 0Þg (expressing the clause ð:x _ y _ zÞ), R2 ¼ f0; 1g3 �
fð1; 1; 0Þg (expressing the clause ð:x _ :y _ zÞ), and R3 ¼ f0; 1g3 � fð1; 1; 1Þg (expressing the clause
ð:x _ :y _ :zÞ). Similarly, but on the side of tractability, 2-SATAT is precisely the problem SatðSÞ,
where S ¼ fR0;R1;R2g and R0 ¼ f0; 1g2 � fð0; 0Þg (expressing the clause ðx _ yÞ), R1 ¼ f0; 1g2 �
fð1;0Þg (expressing the clause ð:x_ yÞ), andR2 ¼ f0;1g2 �fð1;1Þg (expressing the clause ð:x_:yÞ).

The next two definitions introduce the key concepts needed to formulate Schaefer�s dichotomy
theorems.

Definition 2.2. Let u be a propositional formula.
u is 1-valid if it is satisfied by the truth assignment that assigns 1 to every variable. Similarly, u

is 0-valid if it is satisfied by the truth assignment that assigns 0 to every variable.
u is bijunctive if it is a 2CNF-formula, i.e., it is a a conjunction of clauses each of which is a

disjunction of at most two literals (variables or negated variables).
u is Horn if it is the conjunction of clauses each of which is a disjunction of literals such that at

most one of them is a variable. Similarly, u is dual Horn if it is the conjunction of clauses each of
which is disjunction of literals such that at most one of them is a negated variable.

u is affine if it is the conjunction of subformulas each of which is an exclusive disjunction of
literals or a negation of an exclusive disjunctions of literals (by definition, an exclusive disjunction
of literals is satisfied exactly when an odd number of these literals are true; we will use � as the
symbol of the exclusive disjunction). Note that a formula u is affine precisely when the set of its
satisfying assignments is the set of solutions of a system of linear equations over the field f0; 1g.

Definition 2.3. Let R be a logical relation and S a finite set of logical relations.
R is 1-valid if it contains the tuple ð1; 1; . . . ; 1Þ, whereas R is 0-valid if it contains the tuple

ð0; 0; . . . ; 0Þ. We say that S is 1-valid (0-valid) if every member of S is 1-valid (0-valid).

24 L.M. Kirousis, P.G. Kolaitis / Information and Computation 187 (2003) 20–39



R is bijunctive (Horn, dual Horn, or affine, respectively) if there is a propositional formula u
which is bijunctive (Horn, dual Horn, or affine, respectively) and such that R coincides with the set
of truth assignments satisfying u.

S is Schaefer if at least one of the following four conditions hold: every member of S is bi-
junctive; every member of S is Horn; every member of S is dual Horn; every member of S is affine.
Otherwise, we say that S is non-Schaefer.

There are simple criteria to determine whether a logical relation is bijunctive, Horn, dual Horn,
or affine. In fact, a set of such criteria was already provided by Schaefer [22]; moreover, Dechter
and Pearl [7] gave even simpler criteria for a relation to be Horn or dual Horn. Each of these
criteria involves a closure property of the logical relations at hand under a certain function.
Specifically, a relation R is bijunctive if and only if for all t1; t2; t3 2 R, we have that ðt1 _ t2Þ ^
ðt2 _ t3Þ ^ ðt1 _ t3Þ 2 R, where the operators _ and ^ are applied coordinate-wise to the bit-tuples.
This means that the i-th coordinate of the tuple ðt1 _ t2Þ ^ ðt2 _ t3Þ ^ ðt1 _ t3Þ is equal to 1 exactly
when the majority of the i-th coordinates of t1; t2; t3 is equal to 1. Thus, this criterion states that R
is bijunctive exactly when it is closed under coordinate-wise applications of the ternary majority

function. R is Horn (respectively, dual Horn) if and only if for all t1; t2 2 R, we have that t1 ^ t2 2 R
(respectively, t1 _ t2 2 R). Finally, R is affine if and only if for all t1; t2; t3 2 R, we have that
t1 � t2 � t3 2 R. As an example, it is easy to apply these criteria to the ternary relation
R1=3 ¼ fð1; 0; 0Þ; ð0; 1; 0Þ; ð0; 0; 1Þg and verify that R1=3 is neither bijunctive, nor Horn, nor dual
Horn, nor affine; moreover, it is obvious that R1=3 is neither 1-valid nor 0-valid. Finally, there are
polynomial-time algorithms that given a logical relation that is bijunctive (Horn, dual Horn, or
affine, respectively), produce a defining propositional formula which is bijunctive (Horn, dual
Horn, or affine, respectively). See [7,16] for descriptions of these algorithms.

If S is a 0-valid or a 1-valid set of logical relations, then SatðSÞ is a trivial decision problem (the
answer is always ‘‘yes’’). If S is an affine set of logical relations, then SatðSÞ can easily be solved in
polynomial time using Gaussian elimination. Moreover, there are well-known polynomial-time
algorithms for the satisfiability problem for the class of all bijunctive formulas (2-SATAT), the class
of all Horn formulas, and the class of all dual Horn formulas. Schaefer�s seminal discovery was
that the above six cases are the only ones that give rise to tractable cases of SatðSÞ; furthermore,
the last four are the only ones that give rise to tractable cases of SatCðSÞ.

Theorem 2.4 (Schaefer�s dichotomy theorems [22]). Let S be a finite set of logical relations.If S is

0-valid or 1-valid or Schaefer, then SatðSÞ is solvable in polynomial time; otherwise, it is NP-
complete.If S is Schaefer, then SatCðSÞ is solvable in polynomial time; otherwise, it is NP-complete.

As an application, Theorem 2.4 immediately implies that POSITIVEOSITIVE-1-INN-3-SATAT is NP-com-
plete, since this is the same problem as SatðR1=3Þ, and R1=3 is neither 0-valid, nor 1-valid, nor
Schaefer.

To obtain the above dichotomy theorems, Schaefer had to first establish a result concerning the
expressive power of CNFCðSÞ formulas. Informally, this result asserts that if S is a non-Schaefer
set of logical relations, then CNFCðSÞ-formulas have extremely highly expressive power, in the
sense that every logical relation can be defined from a CNFCðSÞ-formula using existential quan-
tification.

L.M. Kirousis, P.G. Kolaitis / Information and Computation 187 (2003) 20–39 25



Theorem 2.5 (Schaefer�s expressibility theorem [22]). Let S be a finite set of logical relations. If S is
non-Schaefer, then for every k-ary logical relation R there is a CNFCðSÞ-formula uðx1; . . . ; xk; z1;
. . . ; zmÞ such that R coincides with the set of all truth assignments to the variables x1; . . . ; xk that
satisfy the formula ð9z1Þ � � � ð9zmÞuðx1; . . . ; xk; z1; . . . ; zmÞ.

3. Dichotomy theorems for minimal satisfiability

In this section, we present our main dichotomy theorem for the class of all minimal satisfiability
problems Min SatðSÞ. We begin with the precise definition of Min SatðSÞ, as well as of certain
variants of it that will play an important role in the sequel.

Definition 3.1. Let 6 denote the standard total order on f0; 1g, which means that 06 1.Let k be a
positive integer and let a ¼ ða1; . . . ; akÞ, b ¼ ðb1; . . . ; bkÞ be two k-tuples in f0; 1gk. We write b6 a
to denote that bi 6 ai, for every i6 k. Also, b < a denotes that b6 a and b 6¼ a.

Let S be a finite set of logical relations. Min SatðSÞ is the following decision problem: given a
CNFðSÞ-formula u and a satisfying truth assignment a of u, is there a satisfying truth assignment
b of u such that b < a? In other words,Min SatðSÞ is the problem to decide whether or not a given
truth assignment of a given CNFðSÞ-formula is minimal. The decision problem Min SatCðSÞ is
defined in a similar way by allowing CNFCðSÞ-formulas as part of the input.

Let S be a 1-valid set of logical relations. 1�Min SatðSÞ is the following decision problem:
given a CNFðSÞ-formula u (note that u is necessarily 1-valid), is there a satisfying truth assign-
ment of u that is different (and, hence, smaller) from the all-ones truth assignment ð1; . . . ; 1Þ?

A CNF1ðSÞ-formula is obtained from a CNFðSÞ-formula by replacing some of its variable by the
constant symbol 1. The decision problem 1�Min Sat1ðSÞ is defined the same way as
1�Min SatðSÞ, except that CNF1ðSÞ-formulas are allowed as part of the input (arbitrary
CNFCðSÞ-formulas are not allowed, since substituting variables by 0 may destroy 1-validity).

As mentioned Section 1, Cadoli [1,2] raised the question of whether a dichotomy theorem for
the class of all Min SatðSÞ problems exists. Note that if S is a 0-valid set of logical relations, then
Min SatðSÞ is a trivial decision problem. Moreover, Cadoli showed that if S is a Schaefer set, then
Min SatðSÞ is solvable in polynomial time. To see this, let u be a CNFðSÞ-formula and a be a k-
tuple in f0; 1gk that satisfies u. By reordering the variables, we may assume without loss of
generality that for some l such that 16 l6 k þ 1, each component aj, for 16 j < l, is equal to 0,
while each of the remaining components is equal to 1. For each i such that l6 i6 k, let ui be the
CNFCðSÞ-formula obtained from u by substituting the variables x1; . . . ; xl�1 and the variable xi
with 0. It is easy to see that u has a satisfying truth assignment strictly less than a if and only if at
least one of the formulas ui for l6 i6 k is satisfiable. This argument shows that Min SatðSÞ is
polynomially reducible to SatCðSÞ; consequently, if S is Schaefer, then Min SatðSÞ is solvable
in polynomial time. This argument also shows that if S is Schaefer, thenMin SatCðSÞ is solvable in
polynomial time. Actually, if S is Schaefer then the complexities of both Min SatðSÞ and
Min SatCðSÞ are at most n times the complexity of SatCðSÞ, where n is the size of the input.
Moreover, if, in addition, SatCðSÞ is in NC, then so are Min SatðSÞ and Min SatCðSÞ (for
a characterization of the polynomial-time cases of SatðSÞ that are in NC, see [6]). On the
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intractability side, however, Cadoli [1,2] showed that there is a 1-valid set of logical relations such
that Min SatðSÞ is NP-complete. Consequently, any dichotomy theorem for Min SatðSÞ will be
substantially different from Schaefer�s dichotomy theorem for SatðSÞ.

Clearly, a dichotomy theorem for Min SatðSÞ should also yield a dichotomy theorem for the
special case of Min SatðSÞ in which S is restricted to be a 1-valid set of logical relations. In what
follows, we first establish a dichotomy theorem for this restricted case of Min SatðSÞ and then use
it to derive the desired dichotomy theorem for Min SatðSÞ, where S is an arbitrary finite set of
logical relations. In fact, the first step in establishing the dichotomy of Min SatðSÞ for 1-valid S is
to prove an NP-hardness result for a special case of 1�Min Sat1ðSÞ (see Step 1 in the proof of
Theorem 3.2). At this point, we should mention that Creignou and H�eebrard [4] have established a
dichotomy theorem for the family of the following decision problems Sat�ðSÞ, where S is an ar-
bitrary finite set of logical relations: given a CNFðSÞ-formula u, does u have a satisfying truth
assignment that differs from both the all-ones truth assignment ð1; . . . ; 1Þ and the all-zeros as-
signment ð0; . . . ; 0Þ? While Sat�ðSÞ bears a similarity to 1�Min SatðSÞ, Creignou and H�eebrard�s
results for Sat

�ðSÞ do not imply the NP-hardness for the special case of 1�Min SatðSÞ that is
need in our proof; furthermore, they do not imply the dichotomy theorem for Min SatðSÞ, when S
a 1-valid set of logical relations. This is because an affirmative answer to an instance u of
1�Min SatðSÞ does not imply an affirmative answer to the same instance of Sat�ðSÞ (for example,
if u is satisfied only by the all-ones and the all-zeros assignment, then u is a ‘‘yes’’ instance of
1�Min SatðSÞ, but a ‘‘no’’ instance of Sat�ðSÞ). Therefore, we cannot directly deduce that a hard
case of Sat�ðSÞ is a hard case of 1�Min SatðSÞ or of Min SatðSÞ, even for 1-valid sets S of logical
relations. Moreover, the proof of the dichotomy of Sat�ðSÞ in [4] cannot be used to simplify the
proof of our result, because of a certain ‘‘symmetry’’ between zero and one which is exploited in
establishing the NP-hard cases of Sat�ðSÞ in [4]. The problems we study in this paper, however,
lack this kind of ‘‘symmetry’’ and, consequently, the proofs of our dichotomy results turn out to
be different. The dichotomy theorem in [4], however, uses a certain technical lemma, which is also
used in our proof (see Lemma 3.3).

Theorem 3.2 (Dichotomy of Min SatðSÞ for 1-valid S). Let S be a 1-valid set of logical relations. If

S is 0-valid or Schaefer, thenMin SatðSÞ is solvable in polynomial time; otherwise, it is NP-complete.
If S is Schaefer, then Min SatCðSÞ is solvable in polynomial time; otherwise, it is NP-complete.

Proof. Let S be a 1-valid set of logical relations. In view of the remarks preceding the statement of
the theorem, it remains to establish the intractable cases of the two dichotomies. The proof in-
volves three main steps; the first step uses Schaefer�s expressibility Theorem 2.5, whereas the
second step requires the development of additional technical machinery concerning the express-
ibility of the binary logical relation fð0; 0Þ; ð0; 1Þ; ð1; 1Þg, which represents the implication con-
nective !.

Step 1: If S is 1-valid and non-Schaefer, then SatðR1=3Þ is log-space reducible to 1�Min

Sat1ðS [ f!gÞ. Consequently, if S is 1-valid and non-Schaefer, then 1�Min Sat1ðS [ f!gÞ is
NP-complete.

Step 2: If S is 1-valid and non-Schaefer, then 1�Min Sat1ðS [ f!gÞ is log-space reduc-
ible to Min SatCðSÞ. Consequently, if S is 1-valid and non-Schaefer, then Min SatCðSÞ is NP-
complete.
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Step 3: If S is 1-valid but neither 0-valid nor Schaefer, then Min SatCðSÞ is log-space reducible
to Min SatðSÞ. Consequently, if S is 1-valid but neither 0-valid nor Schaefer, then Min SatðSÞ is
NP-complete. �

Proof of Step 1. Assuming that S is 1-valid and non-Schaefer, we will exhibit a log-space reduction
of SatðR1=3Þ to 1�Min Sat1ðS [ f!gÞ. According to Definition 3.1, the latter problem asks: given
a CNF1ðS [ f!gÞ-formula, is it satisfied by a truth assignment that is different from the all-ones
truth assignment ð1; . . . ; 1Þ?

Let uð�xxÞ be a given CNFðfR1=3gÞ-formula, where �xx ¼ ðx1; . . . ; xnÞ is the list of its variables. By
applying Schaefer�s Expressibility Theorem 2.5 to the occurrences of R1=3 in uð�xxÞ, we can construct
in log-space a CNFðSÞ-formula vð�xx;�zz;w0;w1Þ, such that uð�xxÞ � 9�zzvð�xx;�zz; 0=w0; 1=w1Þ, where
�zz ¼ ðz1; . . . ; zmÞ;w0;w1 are new variables different from �xx (substitutions of different variables by the
same constant can be easily consolidated to substitutions of the occurrences of a single variable by
that constant). Notice that the formula vð�xx;�zz;w0; 1=w1Þ, whose variables are �xx;�zz, and w0, is a
CNF1ðSÞ-formula, since it is obtained from a CNFðSÞ-formula by substitutions by 1 only. Let
wð�xx;�zz;w0Þ be the following formula:

vð�xx;�zz;w0; 1=w1Þ ^
n̂

i¼1

ðw0

 
! xiÞ

!
^

m̂

j¼1

ðw0

 
! zjÞ

!
:

It is clear that wð�xx;�zz;w0Þ is a CNF1ðS [ f!gÞ-formula (hence, 1-valid, because S is 1-valid) and
that the following two logical equivalences hold:

wð�xx;�zz; 0=w0Þ � vð�xx;�zz; 0=w0; 1=w1Þ and uð�xxÞ � 9�zzvð�xx;�zz; 0=w0; 1=w1Þ � 9�zzwð�xx;�zz; 0=w0Þ:
It is now easy to verify that the given CNFðfR1=3gÞ-formula uð�xxÞ is satisfiable if and only if the
CNF1ðS [ f!gÞ-formula wð�xx;�zz;w0Þ is satisfied by a truth assignment different from the all-ones
truth assignment ð1; . . . ; 1Þ. This completes the proof of Step 1. �

To motivate the proof of Step 2, let us consider the combined effect of Steps 1 and 2. Once both
these steps have been established, it will follow that SatðfR1=3gÞ is log-space reducible to
Min SatCðSÞ, which means that an NP-complete satisfiability problem will have been reduced to a
minimal satisfiability problem. Note that the only information we have about S is that it is a 1-
valid, non-Schaefer set of logical relations. Therefore, it is natural to try to use Schaefer�s ex-
pressibility Theorem 2.5 in the desired reduction, since it tells us that R1=3 is definable from some
CNFCðSÞ-formula using existential quantification. The presence of existential quantifiers, how-
ever, introduces a new difficulty in our context, because this way we reduce the satisfiability of a
CNFðfR1=3gÞ-formula uð�xxÞ to the minimal satisfiability of a CNFCðSÞ-formula wð�xx;�zzÞ, where �zz are
additional variables. It is the presence of these additional variables that creates a serious difficulty
for minimal satisfiability, unlike the case of satisfiability in Schaefer�s dichotomy Theorem 2.4.
Specifically, it is conceivable that, while we toil to preserve the minimality of truth assignments to
the variables �xx, the witnesses to the existentially quantified variables �zz may very well destroy the
minimality of truth assignments to the entire list of variable �xx;�zz. Note that this difficulty was
bypassed in Step 1 by augmenting S with the implication connective !, which made it possible to
produce formulas in which we control the witnesses to the variables �zz. The proof of Step 2,
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however, hinges on the following technical result that provides precise information about the
definability of the implication connective ! from an arbitrary 1-valid, non-Schaefer set S of
logical relations. This result is an immediate corollary of Lemma 4.9 in [4].

Lemma 3.3 (cf. [4]). Let S be a 1-valid, non-Schaefer set of logical relations. Then at least one of the

following two statements is true about the implication connective.
1. There exists a CNFCðSÞ-formula eðx; yÞ such that ðx ! yÞ � eðx; yÞ.
2. There exists in CNFCðSÞ-formula gðx; y; zÞ such that (i) ðx ! yÞ � ð9zÞgðx; y; zÞ; (ii) gðx; y; zÞ is

satisfied by the truth assignment ð1; 1; 1Þ; (iii) gðx; y; zÞ is not satisfied by the truth assignment

ð1; 1; 0Þ.
In other words, the formula ð9zÞgðx; y; zÞ is logically equivalent to ðx ! yÞ and has the additional

property that 1 is the only witness for the variable z under the truth assignment ð1; 1Þ to the variables

ðx; yÞ.

To make this paper as self-contained as possible, we include in Appendix A a proof of the
above Lemma 3.3. We are now ready to embark on the proof of Step 2.

Proof of Step 2. Assuming that S is 1-valid and non-Schaefer, we will exhibit a log-space reduction
of 1�Min Sat1ðS [ f!gÞ to Min SatCðSÞ. According to Lemma 3.3, either there is a CNFCðSÞ-
formula eðx; yÞ that is logically equivalent to ðx ! yÞ or there is a CNFCðSÞ-formula gðx; y; zÞ such
that ð9zÞgðx; y; zÞ is logically equivalent to ðx ! yÞ and conditions (i)–(iii) above hold. In what
follows, we assume that the latter case holds, since the former is similar and actually much easier
to handle.

Given a CNF1ðS [ f!gÞ-formula uð�xxÞ, construct in log-space a CNFCðSÞ-formula vð�xx;�zzÞ by
removing each occurrence of the implication connective in uð�xxÞ as follows: (i) if the occurrence is
the form ð1 ! 1Þ or of the form ðxi ! 1Þ, then this occurrence is simply deleted; (ii) if the oc-
currence is of the form ð1 ! xiÞ, then it is substituted by the formula gð1; xi; zpÞ, where a different
new variable zp is used in each such substitution; and (iii) if the occurrence is of the form ðxi ! xjÞ,
then it is substituted by the formula gðxi; xj; zpÞ, where a different new variable zp is used in each
such substitution. Note that the variables of v are the original variables �xx and the new variables
�zz ¼ ðz1; . . . ; zp; . . .Þ. Using Lemma 3.3, it is not hard to show that vð�xx;�zzÞ is 1-valid and that
uð�xxÞ � 9�zzvð�xx;�zzÞ. Finally, using Lemma 3.3 again, one can show that uð�xxÞ is satisfied by a truth
assignment that is different from the all-ones truth assignment ð1; . . . ; 1Þ to the variables �xx if and
only if vð�xx;�zzÞ is satisfied by a truth assignment that is different from the all-ones truth assignment
ð1; . . . ; 1Þ to the variables �xx and �zz. Indeed, first assume that we have a different from the all-ones
truth assignment a to the variables �xx that satisfies uð�xxÞ. Extend a to a different from the all-ones
truth assignment b that satisfies vð�xx;�zzÞ by letting the variables �zz be assigned the truth values that
witness the fact that 9�zzvð�xx;�zzÞ is satisfied by a. Conversely, assume that a different from the all-ones
truth assignment b of vð�xx;�zzÞ is given. If we restrict b to the variables �xx, we obviously get a truth
assignment a that satisfies uð�xxÞ. It remains to show that a is different from the all-ones assignment.
Suppose it were not. Then by the property (iii) of Lemma 3.3 and by the way v was constructed,
we would conclude that the truth values corresponding to the variables �zz would also be all equal to
one, contradicting the hypothesis that b was different from the all-ones assignment. This com-
pletes the proof of Step 2. �
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Proof of Step 3. Assuming that S is 1-valid but neither 0-valid nor Schaefer, we will exhibit a log-
space reduction of Min SatCðSÞ to Min SatðSÞ. In constructing the reduction, we will need the
following fact: For any set of relations T that is not 0-valid, there is a CNFðT Þ-formula sðw0;w1Þ
such that sð0=w0;w1Þ is satisfied by a truth assignment if and only if w1 takes the value 1 under this
assignment. To see this, let R be a non-0-valid relation in T , and say that R is of arity k. Let
a ¼ ða1; . . . ; akÞ be an element of R which is different from the all-zeros k-tuple. Let R0 be a relation
symbol corresponding to R. The desired formula sðw0;w1Þ is then obtained from the CNFðT Þ-
formula R0ðx1; . . . ; xkÞ as follows: if ai ¼ 1, replace xi by w1; otherwise, replace xi by w0.

Consider an instance of Min SatCðSÞ consisting of a CNFCðSÞ-formula uð�xx; 0=w0; 1=w1Þ and a
satisfying truth assignment a for the variables �xx. Let vð�xx;w0;w1Þ be the CNFðSÞ-formula
uð�xx;w0;w1Þ ^ sðw0;w1Þ, where sðw0;w1Þ is as above. The satisfying truth assignment a of u can be
extended to a satisfying truth assignment a0 of v by letting w0 ¼ 0 and w1 ¼ 1. It is then easy to
verify that uð�xx; 0=w0; 1=w1Þ has a satisfying truth assignment b < a if and only if vð�xx;w0;w1Þ has a
satisfying truth assignment b0 < a0. This holds true because any satisfying truth assignment of v
that is smaller than a0 must assign the value 0 to w0; consequently, it must also assign the value 1
to w1 (by the way sð0=w0;w1Þ is defined). This completes the proof of Step 3, as well as the proof of
Theorem 3.2. �

The following three examples illustrate the preceding Theorem 3.2.

Example 3.4. Consider the ternary logical relation

K ¼ fð1; 1; 1Þ; ð0; 1; 0Þ; ð0; 0; 1Þg:
Since K is 1-valid, the satisfiability problem SatðfKgÞ is trivial (the answer is always ‘‘yes’’). In
contrast, Theorem 3.2 implies that the minimal satisfiability problems Min SatðfKgÞ and
Min SatCðfKgÞ are NP-complete. Indeed, it is obvious that K is not 0-valid. Moreover, using the
criteria mentioned after Definition 2.3, it is easy to verify that K is neither bijunctive, nor Horn,
nor dual Horn, nor affine (for instance, K is not Horn because ð0; 1; 0Þ ^ ð0; 0; 1Þ ¼ ð0; 0; 0Þ 62 K).

Note that the logical relation K can also be used to illustrate Lemma 3.3. Specifically, it is clear
that ðx ! yÞ is logically equivalent to the formula ð9zÞKðx; y; zÞ; moreover, 1 is the only witness for
the variable z such that ð9zÞKð1; 1; zÞ holds.

Example 3.5. Consider the 1-valid set

S ¼ fR0;R1;R2g;
where R0 ¼ f0; 1g3 � fð0; 0; 0Þg (expressing the clause ðx _ y _ zÞ), R1 ¼ f0; 1g3 � fð1; 0; 0Þg (ex-
pressing the clause ð:x _ y _ zÞ), R2 ¼ f0; 1g3 � fð1; 1; 0Þg (expressing the clause ð:x _ :y _ zÞ).
Since S is a 1-valid set, SatðSÞ is trivial. In contrast, Theorem 3.2 implies that Min SatðSÞ and
Min SatCðSÞ are NP-complete. Indeed, S is not 0-valid, since R0 is not a 0-valid logical relation.
Moreover, it is not hard to verify that S is not Schaefer. For this, observe that R1 is not Horn
(since ð1; 1; 0Þ ^ ð1; 0; 1Þ ¼ ð1; 0; 0Þ 62 R1Þ, R1 is not bijunctive (since the coordinate-wise majority
of ð1; 1; 0Þ, ð1; 0; 1Þ, ð0; 0; 0Þ is ð1; 0; 0Þ 62 R1Þ, and R1 is not affine (since ð1; 1; 1Þ � ð1; 1; 0Þ�
ð1; 0; 1Þ ¼ ð1; 0; 0Þ 62 R1). Furthermore, R2 is not dual Horn (since ð1; 0; 0Þ _ ð0; 1; 0Þ ¼
ð1; 1; 0Þ 62 R2).
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Example 3.6. Consider the 1-valid set

S ¼ fR1;R2g;

where R1 and R2 are as in the preceding Example 3.5. Clearly, Min SatðSÞ is trivial, since S is a 0-
valid set. Theorem 3.2, however, implies that Min SatCðSÞ is NP-complete, since S is not Schaefer
(as seen in the preceding example, the relations R1 and R2 form a non-Schaefer set).

Theorem 3.2 yields a dichotomy for Min SatðSÞ , where S is a 1-valid set of logical relations. In
what follows, we will use this result to establish a dichotomy for Min SatðSÞ, where S is an ar-
bitrary set of logical relations. Before doing so, however, we need to introduce the following
crucial concept.

Definition 3.7. Let R be a k-ary logical relation and R0 be a corresponding relation symbol. We say
that a logical relation T is a 0-section of R if either T is the relation R itself or T can be defined
from the formula R0ðx1; . . . ; xkÞ by replacing at least one, but not all, of the variables x1; . . . ; xk by
the constant symbol 0.

To illustrate this concept, observe that the 1-valid logical relation fð1Þg is a 0-section of R1=3 ¼
fð1; 0; 0Þ; ð0; 1; 0Þ; ð0; 0; 1Þg, since it is definable by R0

1=3ðx1; 0; 0Þ, where R0
1=3 is a relation symbol

corresponding to R1=3. Note that the logical relation fð1; 0Þ; ð0; 1Þg is also a 0-section of R1=3, since
it is definable by the formula R0

1=3ð0; x2; x3Þ, but it is not 1-valid. In fact, it is easy to verify that
{(1)} is the only 0-section of R1=3 that is 1-valid.

Theorem 3.8 [Dichotomy of Min SatðSÞ]. Let S be a set of logical relations and let S� be the set of
all logical relations P such that P is both 1-valid and a 0-section of some relation in S. If S� is 0-valid

or Schaefer, then Min SatðSÞ is solvable in polynomial time; otherwise, it is NP-complete. If S� is
Schaefer, then Min SatCðSÞ is solvable in polynomial time; otherwise, it is NP-complete.Moreover,

each of these two dichotomies can be decided in polynomial time; that is to say, there is a polynomial-
time algorithm to decide whether, given a finite set S of logical relations, Min SatðSÞ is solvable in

polynomial time or NP-complete (and similarly for Min SatCðSÞ).

Proof. We only prove the theorem for Min SatðSÞ; the case with constants is analogous and, in
fact, easier. We first show that if the 1-valid set S� is neither 0-valid nor Schaefer, then Min SatðSÞ
is NP-complete. In this case, by Theorem 3.2, Min SatðS�Þ is NP-complete. We will produce a
polynomial-time reduction ofMin SatðS�Þ toMin SatðSÞ. Let u be a CNFðS�Þ-formula and let a be
a satisfying truth assignment of u. For every relation symbol P 0

i in u, let Pi be the corresponding
logical relation in S�, let Ri be a relation in S such that Pi is a 0-section of Ri, and let R0

i be the
corresponding relation symbol. Let also w0 be a new variable. We now construct a CNFðSÞ-for-
mula v by transforming each occurrence of P 0

i in u to an occurrence of R0
i as follows: (i) we put the

variable w0 in all variable positions that correspond to coordinates of Ri that were set to 0 to
obtain the 0-section Pi; (ii) for the remaining variables of R0

i, we use the variables in the occurrence
of P 0

i under consideration and we put them in the same arrangement they appear in this occurrence
of P 0

i . Also, we extend a to a satisfying truth assignment a0 of v by assigning the value 0 to w0. The
formula v and the assignment a0 is the instance of Min SatðSÞ to which the reduction is made. It is
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not hard to prove that there is a truth assignment b < a that satisfies u if and only if there is a
truth assignment b0 < a0 that satisfies v. This completes the reduction that establishes the hardness
part of the dichotomy for Min SatðSÞ.

For the other direction, suppose that the 1-valid set S� is 0-valid or Schaefer. In this case, by
Theorem 3.2, Min SatðS�Þ is solvable in polynomial time. We will now reduce Min SatðSÞ to
Min SatðS�Þ in polynomial time. Suppose we are given a CNFðSÞ-formula v and a satisfying truth
assignment a of it. We now construct in polynomial time a CNFðS�Þ-formula u as follows.
Consider an occurrence R0

iðy1; . . . ; ymÞ of a relation symbol R0
i in v, and let Ri be the corresponding

logical relation in S. Depending on the values assigned by a to the variables y1; . . . ; ym, we either
eliminate this occurrence of R0

i or transform it to an occurrence of a relation symbol P 0
i corre-

sponding to a relation Pi in S�. Specifically, there are three cases to consider:
1. If a assigns value 0 to each variable y1 . . . ; ym, then we eliminate the occurrence R0

iðy1; . . . ; ymÞ.
2. If a assigns value 1 to each variable y1; . . . ; ym, then we keep the occurrence R0

iðy1; . . . ; ymÞ. Note
that, since a satisfies v, the relation Ri must be 1-valid and so it is a member of S�.

3. If a assigns value 0 to some variable yr and value 1 to some other variable ys in the occurrence
R0
iðy1; . . . ; ymÞ, then let Pi be the 0-section of Ri obtained by setting equal to 0 each variable yr to

which a assigns value 0. Note that, since a satisfies v, the relation Pi must be 1-valid and so it is a
member of S�. We now replace the occurrence R0

iðy1; . . . ; ymÞ by the occurrence P 0
i ðyi1 ; . . . ; yitÞ,

where ðyi1 ; . . . ; yytÞ is the subsequence of the sequence ðy1; . . . ; ymÞ consisting of all variables
among y1; . . . ; ym to which a assigns value 1.
It should be pointed out that in this construction the same relation symbol R0

i in v may give rise
to several different relation symbols in u, corresponding to different occurrences of R0

i in v; the
reason for this is that, depending on a, different occurrences of the same relation symbol may
correspond to different 0-sections.

It is easy to show that v has a satisfying assignment b < a if and only if u has a satisfying
assignment that is different from the all-ones assignment. This completes the proof of the trac-
tability part of the dichotomy.

Note that the size of S� is polynomial in the size of S, since every relation in S� is either a
relation in S or is determined by a relation R in S and a tuple a in R that is different from the all-
ones tuple ð1; . . . ; 1Þ (the positions of the zeros in a determine the variables that are replaced by 0
to obtain a 1-valid 0-section of R). The existence of a polynomial-time algorithm for deciding
between tractability and NP-completeness in the dichotomy is established by combining this fact
with the existence of a uniform polynomial-time algorithm for deciding whether a given set of
logical relations is Schaefer (see [16]). �

We now present several different examples that illustrate the power of Theorem 3.8.

Example 3.9. If m and n are two positive integers with m < n, then Rm=n is the n-ary logical relation
consisting of all n-tuples that have m ones and n� m zeros. Clearly, Rm=n is neither 0-valid nor 1-
valid. Moreover, it is not hard to verify that Rm=n is not Schaefer. To see this consider the fol-
lowing three n-tuples in Rm=n:

a ¼ ð1; . . . ; 1|fflfflfflffl{zfflfflfflffl}
m

; 0; . . . ; 0Þ;b ¼ ð0; 1; . . . ; 1|fflfflfflffl{zfflfflfflffl}
m

; 0; . . . ; 0Þ; c ¼ ð1; 0; 1; . . . ; 1|fflfflfflffl{zfflfflfflffl}
m�1

; 0; . . . ; 0Þ:
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Rm=n is neither Horn nor dual Horn, because a ^ b has m� 1 ones and a _ b has mþ 1 ones.
Moreover, Rm=n is not bijunctive, because the coordinate-wise majority of a, b and c has mþ 1
ones. Finally, Rm=n is not affine, because a� b� c has m� 2 ones.

Let S be a set of logical relations each of which is a relation Rm=n for some m and n with m < n.
The preceding remarks and Schaefer�s dichotomy Theorem 2.4 imply that SatðSÞ is NP-complete.
In contrast, the Dichotomy Theorem 3.8 implies that Min SatðSÞ and Min SatCðSÞ are solvable in
polynomial time. Indeed, S� is easily seen to be Horn (and, hence, Schaefer), since every relation P
in S� is a singleton P ¼ fð1; . . . ; 1Þg consisting of the m-ary all-ones tuple for some m.

This family of examples contains POSITIVEOSITIVE-1-INN-3-SATAT as the special case where S ¼ fR1=3g;
thus, Theorem 3.8 provides an explanation for the difference in complexity between the satisfi-
ability problem and the minimal satisfiability problem for POSITIVEOSITIVE-1-INN-3-SATAT.

Example 3.10. Consider the 3-ary logical relation

T ¼ f0; 1g3 � fð0; 0; 0Þ; ð1; 1; 1Þg:
SatðfTgÞ is the well-known problem POSITIVEOSITIVE-NOTOT-ALLLL-EQUALQUAL-3-SATAT: given a 3CNF-formula
u with clauses of the form ðx _ y _ zÞ, is there a truth assignment such that in each clause of u at
least one variable is assigned value 1 and at least one variable is assigned value 0? Using Schaefer�s
dichotomy Theorem 2.4, it is easy to see that this problem is NP-complete. To begin with, it is
obvious that T is neither 0-valid nor 1-valid. Moreover, T is neither Horn nor dual Horn, because
ð1; 1; 0Þ ^ ð0; 0; 1Þ ¼ ð0; 0; 0Þ 62 T and ð1; 1; 0Þ _ ð0; 0; 1Þ ¼ ð1; 1; 1Þ 62 T . Finally, T is neither bi-
junctive nor affine, because the coordinate-wise majority of ð1; 1; 0Þ, ð0; 1; 1Þ and ð1; 0; 1Þ is
ð1; 1; 1Þ 62 T , whereas their coordinate-wise � is ð0; 0; 0Þ 62 T .

In contrast, the Dichotomy Theorem 3.8 easily implies that Min SatðfTgÞ and Min SatCðfTgÞ
are solvable in polynomial time. To see this, observe that

fTg� ¼ ffð1Þg; fð0; 1Þ; ð1; 0Þ; ð1; 1Þgg;

where the logical relation fð1Þg is the 0-section of T obtained from T by setting any two variable
to 0 (for instance, it is definable by the formula T 0ðx; 0; 0Þ) and the logical relation
fð0; 1Þ; ð1; 0Þ; ð1; 1Þg is the 0-section of T obtained from T by setting any one variable to 0 (for
instance, it is definable by the formula T 0ðx; y; 0Þ). It is clear that each of these two logical relations
is bijunctive (actually, each is also dual Horn), hence fTg� is Schaefer.

This provides another example of a natural NP-complete satisfiability problem whose associ-
ated minimal satisfiability problem is tractable.

Example 3.11. As seen earlier, 3-SATAT coincides with SatðSÞ, where S ¼ fR0;R1;R2;R3g and
R0 ¼ f0; 1g3 � fð0; 0; 0Þg (expressing the clause ðx _ y _ zÞ), R1 ¼ f0; 1g3 � fð1; 0; 0Þg (expressing
the clause ð:x _ y _ zÞ), R2 ¼ f0; 1g3 � fð1; 1; 0Þg (expressing the clause ð:x _ :y _ zÞ), and R3 ¼
f0; 1g3 � fð1; 1; 1Þg (expressing the clause ð:x _ :y _ :zÞ).

Since the logical relations R0, R1, R2 are 1-valid, they are members of S�. It follows that S� is not
0-valid, since it contains R0. Moreover, as seen in Example 3.5, the logical relation R1 is not Horn,
it is not bijunctive, and it is not affine, whereas the logical relation R2 is not dual Horn. Conse-
quently, S� is not Schaefer. We can now apply Theorem 3.8 and immediately conclude that
Min SatðSÞ (i.e., MINMIN 3-SATAT) is NP-complete.
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This example illustrates a fine point in the concept of a 0-section of a logical relation. Spe-
cifically, it is crucial to allow each logical relation to be a 0-section of itself (see Definition 3.7).
Indeed, it is easy to see that every 0-section of Ri other than Ri itself is bijunctive, 06 i6 3.
Consequently, if a logical relation were not allowed to be a 0-section of itself, then S� would
consist entirely of bijunctive relations and, hence, it would be Schaefer.

Example 3.12.Consider the set S ¼ fR0;R3g, where R0 and R3 are as in the preceding Example 3.11.
In this case, SatðSÞ is the problem MONOTONEMONOTONE 3-SATAT, that is to say, the restriction of 3-SATAT to
3CNF-formulas in which every clause is either the disjunction of positive literals or the disjunction
of negative literals. Clearly, S is neither 0-valid nor 1-valid.Moreover, it is easy to verify that S is not
Schaefer. Consequently, Schaefer�s dichotomy Theorem 2.4 implies that SatðSÞ is NP-complete.

In contrast, the Dichotomy Theorem 3.8 implies thatMin SatðSÞ andMin SatCðSÞ are solvable in
polynomial time. For this, it suffices to verify that S� is Schaefer. Note that the relation R0 is dual
Horn, because it is definable by the formula ðx _ y _ zÞ. Since dual Horn formulas are closed under
substitutions by constants, it follows that every 0-section of R0 is dual Horn as well. Let us now
consider those 0-sections of R3 that are also 1-valid relations. Observe that R3 is not such a relation,
since it is not 1-valid. Thus, every 1-valid 0-section of R3 must be obtained from R3 either by setting
one variable to 0 or by setting two variables to 0. The first case gives rise to the trivial binary relation
fð0; 0Þ; ð0; 1Þ; ð1; 0Þ; ð1; 1Þg, whereas the second case gives rise to the trivial unary relation fð0Þ; ð1Þg.
Since each of these relations is dual Horn, it follows that S� is dual Horn and, hence, S� is Schaefer.

4. Dichotomy theorems for extensions of minimal satisfiability

In this section, we establish a dichotomy theorem for minimal satisfiability problems with re-
spect to a modified partial order between truth assignments. This modified partial order allows for
a part of the assignment to be kept fixed, while another part of it may vary arbitrarily. As
mentioned earlier, the existence of a dichotomy theorem for these minimal satisfiability problems
was raised by Cadoli [1,2] while investigating propositional circumscription and its extensions.

Definition 4.1. Let k be a positive integer, let a ¼ ða1; . . . ; akÞ and b ¼ ðb1; . . . ; bkÞ be two k-tuples
in f0; 1gk, and let ðP ;Q; ZÞ be a partition of the set f1; 2; . . . ; kg in which P is non-empty, while at
least one of Q and Z may be empty.

We write a=P to denote the tuple that results from a by keeping only those coordinates aj such
that j 2 P . We also write b <ðP ;Q;ZÞ a to denote that b=P < a=P and b=Q ¼ a=Q.

Let S be a finite set of logical relations. ðP ;Q; ZÞ �Min SatðSÞ is the following decision
problem: given a CNFðSÞ-formula u, a satisfying truth assignment a of u, and a partition ðP ;Q;ZÞ
of the set of variables of u (in which P is non-empty, while at least one of Q and Z may be empty),
is there a satisfying truth assignment b of u such that b <ðP ;Q;ZÞ a? (here the partition ðP ;Q;ZÞ of
the indices of a is the one induced by the partition ðP ;Q; ZÞ of the variables of u).

Observe that ðP ;Q;ZÞ �Min SatðSÞ contains both Min SatðSÞ and Min SatCðSÞ as restricted
cases. Indeed, Min SatðSÞ is the same problem as ðP ;Q;ZÞ �Min SatðSÞ with Q ¼ ; and Z ¼ ;,
whileMin SatCðSÞ is the same problem as ðP ;Q;ZÞ �Min SatðSÞ with Z ¼ ;. The last result of this
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paper establishes a dichotomy for ðP ;Q;ZÞ �Min SatðSÞ (with no restrictions on Q or Z), as well
as for the restricted case of ðP ;Q; ZÞ �Min SatðSÞ with Q ¼ ;.

Theorem 4.2 (Dichotomy of ðP ;Q;ZÞ �Min SatðSÞ). Let S be a set of logical relations.If S is
Schaefer, then ðP ;Q;ZÞ �Min SatðSÞ is solvable in polynomial time; otherwise, it is NP-complete.If

S is 0-valid or Schaefer, then ðP ;Q;ZÞ �Min SatðSÞ with Q ¼ ; is solvable in polynomial time;
otherwise, it is NP-complete.

Proof. Let K be a logical relation such thatMin SatðfKgÞ is NP-complete (for instance, the logical
relation K introduced in Example 3.4 has this property). To show the NP-completeness of
ðP ;Q; ZÞ �Min SatðSÞ, when S is not Schaefer, we will exhibit a polynomial-time reduction of
Min SatðfKgÞ to ðP ;Q;ZÞ �Min SatðSÞ. Suppose we are given a CNFðfKgÞ-formula uð�xxÞ, where
�xx ¼ ðx1; . . . ; xnÞ is the list of its variables, and a satisfying truth assignment a of u. By repeatedly
applying Schaefer�s Expressibility Theorem 2.5 to the occurrences of K in uð�xxÞ, we can construct in
log-space a CNFðSÞ-formula vð�xx;�zz;w0;w1Þ, such that uð�xxÞ � 9�zzvð�xx;�zz; 0=w0; 1=w1Þ, where �zz ¼
ðz1; . . . ; zmÞ;w0;w1 are new variables different from �xx (substitutions of different variables by the same
constant can be easily consolidated to substitutions of the occurrences of a single variable by that
constant). Let P be the set of variables x of u, let Q be the two-element set fw0;w1g, and let Z be the
set of variables z. We now construct the following truth assignment b that satisfies vð�xx;�zz;w0;w1Þ: to
the variables x, it assigns a; to the variable w0, it assigns 0; to the variable w1, it assigns 1; finally, to
the variables z, it assigns a tuple that witnesses the fact that the formula 9�zzvð�xx;�zz; 0=w0; 1=w1Þ � uð�xxÞ
is satisfied by a. The CNFðSÞ-formula vð�xx;�zz;w0;w1Þ, the partition ðP ;Q;ZÞ, and the satisfying truth
assignment b constitute the instance of ðP ;Q; ZÞ �Min SatðSÞ to which the instance uð�xxÞ and a of
Min SatðSÞ is being reduced. It is now immediate that there is a truth assignment b0 satisfying
vð�xx;�zz;w0;w1Þ and such thatb0 <ðP ;Q;ZÞ b if and only if uð�xxÞ � 9�zzvð�xx;�zz; 0=w0; 1=w1Þ has a satisfying
truth assignment a0 < a. This completes the NP-hardness proof of the first part of the theorem.

Next, assume that S is neither 0-valid nor Schaefer. To show that ðP ;Q; ZÞ �Min SatðSÞ is NP-
complete even when Q ¼ ;, we produce again a reduction from Min SatðfKgÞ. As before, we start
with a CNFðfKgÞ-formula uð�xxÞ and a satisfying truth assignment a; we then construct a CNFðSÞ-
formula vð�xx;�zz;w0;w1Þ such that uð�xxÞ � 9�zzvð�xx;�zz; 0=w0; 1=w1Þ. Consider now the CNFðSÞ-formula
sðw0;w1Þ used in the proof of Step 3 of Theorem 3.2; this formula has the property that
sð0=w0;w1Þ is satisfied by a truth assignment if and only if w1 gets the value 1 under this as-
signment. We now consider the following instance of ðP ;Q; ZÞ �Min SatðSÞ with Q ¼ ;: the
formula is defined to be vð�xx;�zz;w0;w1Þ ^ sðw0;w1Þ (thus w1 is forced to take value 1 in every sat-
isfying truth assignment that assigns 0 to w0); P is defined to be the set consisting of the variables
x, w0, and w1; Q is the empty set; finally, Z and b are defined as in the previous reduction. It is now
immediate that there is a truth assignment b0 satisfying vð�xx;�zz;w0;w1Þ ^ sðw0;w1Þ and such that
b0 <ðP ;Q;ZÞ b if and only if uð�xxÞ � 9�zzvð�xx;�zz; 0=w0; 1=w1Þ has a satisfying truth assignment a0 < a.
This completes the NP-hardness proof of the second part of the theorem.

The tractability results follow easily, as in Theorem 3.2. �

We conclude by pointing out that the above Dichotomy Theorem 4.2 for ðP ;Q;ZÞ�
Min SatðSÞ does not imply the Dichotomy Theorem 3.8 for Min SatðSÞ and Min SatCðSÞ. Indeed,
since Min SatðSÞ is a restricted case of ðP ;Q;ZÞ �Min SatðSÞ, one cannot a priori rule out the
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existence of sets S of logical relations such that ðP ;Q;ZÞ �Min SatðSÞ is NP-complete, whereas
Min SatðSÞ is solvable in polynomial time. Actually, the familiar set S ¼ fR1=3g has this property,
thus manifesting that the dichotomy for Min SatðSÞ cannot be derived from the dichotomy for
ðP ;Q;ZÞ �Min SatðSÞ.
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Appendix A. Proof of Lemma 3.3

For completeness, we give in this section a full proof of Lemma 3.3 due to Creignou and
H�eebrard [4]. To make the proof entirely self-contained, we first present the proof of a result due to
Creignou and Hermann [5], which will be used in the sequel.

Proposition A.1 (cf. [5]). If R is a 1-valid logical of arity k, then the following statements are

equivalent:
• R is affine.

• For all s; t 2 R, we have that �11� s� t 2 R, where �11 is the all-ones k-tuple ð1; . . . ; 1Þ.

Proof. As mentioned in Section 2, Schaefer [22] showed that a logical relation R is affine if and
only if for all t1; t2; t3 2 R, we have that t1 � t2 � t3 2 R. It follows that if R is both 1-valid and
affine, then for all s; t 2 R, we have that �11� s� t 2 R. For the other direction, assume that R is 1-
valid and such that if s; t 2 R, then �11� s� t 2 R. Let t1; t2; t3 2 R. It follows that u ¼ �11� t1 �
t2 2 R. By applying the closure property of R again, we get that �11� u� t3 2 R. Since �11� �11 ¼ �00 and
� is associative, we have that �11� u� t3 ¼ �11� ð�11� t1 � t2Þ � t3 ¼ t1 � t2 � t3. �

Lemma 3.3 (cf. [4]). Let S be a 1-valid, non-Schaefer set of logical relations. Then at least one of the

following two statements is true about the implication connective.
1. There exists a CNFCðSÞ-formula eðx; yÞ such that ðx ! yÞ � eðx; yÞ.
2. There exists in CNFCðSÞ-formula gðx; y; zÞ such that

(i) ðx ! yÞ � ð9zÞgðx; y; zÞ; (ii) gðx; y; zÞ is satisfied by the truth assignment ð1; 1; 1Þ; (iii) gðx; y; zÞ
is not satisfied by the truth assignment ð1; 1; 0Þ.

In other words, the formula ð9zÞgðx; y; zÞ is logically equivalent to ðx ! yÞ and has the additional
property that 1 is the only witness for the variable z under the truth assignment ð1; 1Þ to the variables

ðx; yÞ.
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Proof. Since S is a 1-valid, non-Schaefer set of logical relations, it must contain a 1-valid logical
relation R that is not affine. Let k be the arity of R. From Proposition A.1, it follows that there are
two k-tuples s; t 2 R such that �11� s� t 62 R. Let x1; . . . ; xk be propositional variables and let R0 be a
relation symbol of arity k that will be interpreted by R. For ði; jÞ 2 f0; 1g2, let Vij be the set of all
variables xp, 16 p6 k, such that the pth coordinate of the tuple s is equal to i, and the pth coordinate
of the tuple t is equal to j. Let x; y; z;w be four new propositional variables and letu1ðx; y; z;wÞ be the
CNFðSÞ-formula R0ðx=V00; y=V10; z=V01;w=V11Þ obtained from the formula R0ðx1; . . . ; xkÞ by substi-
tuting the variable x for all occurrences of the variables in V00, and similarly for the variables y, z, and
w. Also let u2ðx; y; zÞ be the CNF1ðSÞ-formula u1ðx; y; z; 1=wÞ. Now observe the following:
• the truth assignment ð1; 1; 1; 1Þ satisfies u1ðx; y; z;wÞ, because �11 2 R;
• the truth assignment ð0; 1; 0; 1Þ satisfies u1ðx; y; z;wÞ, because s 2 R;
• the truth assignment ð0; 0; 1; 1Þ satisfies the u1ðx; y; z;wÞ, because t 2 R;
• the truth assignment ð1; 0; 0; 1Þ does not satisfy u1ðx; y; z;wÞ, because �11� s� t 62 R.
Therefore, ð1; 1; 1Þ, ð0; 1; 0Þ and ð0; 0; 1Þ satisfy u2ðx; y; zÞ, while ð1; 0; 0Þ does not.

For the remaining four truth assignments ð1; 1; 0Þ, ð0; 1; 1Þ, ð1; 0; 1Þ and ð0; 0; 0Þ, we have no
information as to whether or not they satisfy u2ðx; y; zÞ. Consequently, we have 16 possibilities to
examine regarding the satisfiability of u2ðx; y; zÞ by these four truth assignments. To facilitate the
case analysis, we introduce a notation that we explain by an example. Case [N(o)-Y(es)-N(o)-*]
means that the following hold:
• ð1; 1; 0Þ, the first truth assignment under consideration, does not satisfy u2ðx; y; zÞ;
• ð0; 1; 1Þ, the second truth assignment under consideration, satisfies u2ðx; y; zÞ;
• ð1; 0; 1Þ, the third truth assignment under consideration, does not satisfy u2ðx; y; zÞ;
• ð0; 0; 0Þ, the fourth truth assignment under consideration, may or may not satisfy u2.

We will show that for each of the 16 possibilities there exists a CNFCðSÞ-formula gðx; yÞ that is
logically equivalent to the implication x ! y, or there exists a CNFCðSÞ-formula eðx; yÞ having the
properties stipulated in Lemma 3.3, or there exists a CNFCðSÞ-formula that is logically equivalent
to the disjunction x _ y:
• Case [N-*-N-*]: Set gðx; y; zÞ � u2ðx; y; zÞ.
• Case [*-*-Y-Y]: Set eðx; yÞ � u2ðx; 0; yÞ.
• Case [*-Y-*-N]: Observe that x _ y � u2ð0; x; yÞ.
• Case [*-N-Y-*]: Set eðx; yÞ � u2ðy; x; 1Þ.
• Case [Y-N-*-*]: Set eðx; yÞ � u2ðy; 1; xÞ,
• Case [*-Y-N-*]: Set eðx; yÞ � u2ðx; y; 1Þ.

It is easy to check that the above cases cover all 16 possibilities. Note, however, that the proof
of Lemma 3.3 has not been completed, because in Case [*-Y-*-N] we only succeeded to define
x _ y using a CNFCðSÞ-formula. Since not every element of S is a dual Horn relation, S must
contain a logical relation Q for which there are tuples s; t 2 Q such that s _ t 62 Q (here we use the
closure properties of dual Horn relations, due to Dechter and Pearl [7], mentioned in Section 2).
By arguments similar to the preceding ones, we can construct a CNFCðSÞ-formula w2ðx; y; zÞ that is
satisfied by ð1; 1; 1Þ, ð0; 1; 0Þ and ð0; 0; 1Þ, but it is not satisfied by ð0; 1; 1Þ. Let w3ðx; y; zÞ be the
CNFCðSÞ-formula w2ðx; y; zÞ ^ ðy _ zÞ. Observe that w3ðx; y; zÞ is satisfied by ð1; 1; 1Þ, ð0; 1; 0Þ and
ð0; 0; 1Þ, but it is not satisfied by ð0; 1; 1Þ, ð1; 0; 0Þ, ð0; 0; 0Þ. We are now left with the triples ð1; 1; 0Þ
and ð1; 0; 1Þ about which there is no information as to whether they satisfy w3ðx; y; zÞ or not. We
consider the following three exhaustive cases:
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• If ð1; 1; 0Þ satisfies w3ðx; y; zÞ, then set

eðx; yÞ � w3ðy; 1; xÞ:
• If ð1; 0; 1Þ satisfies w3ðx; y; zÞ, then set

eðx; yÞ � w3ðy; x; 1Þ:
• If neither ð1; 1; 0Þ nor ð1; 0; 1Þ satisfies w3ðx; y; zÞ, then set

gðx; y; zÞ � w3ðx; y; zÞ:
This completes the proof of Lemma 3.3. �
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