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Abstract. Data exchange is the problem of taking data structured under a source
schema and creating an instance of a target schema that reflects the source data
as accurately as possible. In this paper, we address foundational and algorithmic
issues related to the semantics of data exchange and to query answering in the con-
text of data exchange. These issues arise because, given a source instance, there
may be many target instances that satisfy the constraints of the data exchange
problem. We give an algebraic specification that selects, among all solutions to
the data exchange problem, a special class of solutions that we call universal. A
universal solution has no more and no less data than required for data exchange
and it represents the entire space of possible solutions. We then identify fairly
general, and practical, conditions that guarantee the existence of a universal solu-
tion and yield algorithms to compute a canonical universal solution efficiently. We
adopt the notion of “certain answers" in indefinite databases for the semantics for
query answering in data exchange. We investigate the computational complexity
of computing the certain answers in this context and also study the problem of
computing the certain answers of target queries by simply evaluating them on a
canonical universal solution.

1 Introduction

In data exchange, data structured under one schema (which we call a source schema) must
be restructured and translated into an instance of a different schema (a target schema).
Data exchange is used in many tasks that require data to be transferred between exist-
ing, independently created applications. The first systems supporting the restructuring
and translation of data were built several decades ago. An early such system was EX-
PRESS [21], which performed data exchange between hierarchical schemas. The need
for systems supporting data exchange has persisted over the years. Recently this need
has become more pronounced, as the terrain for data exchange has expanded with the
proliferation of web data that are stored in different formats, such as traditional relational
database schemas, semi-structured schemas (for example, DTDs or XML schemas), and
various scientific formats. In this paper, we address several foundational and algorithmic
issues related to the semantics of data exchange and to query answering in the context
of data exchange.
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The data exchange problem. In a data exchange setting, we have a source schema S
and a target schema T, where we assume that S and T are disjoint. Since T can be an
independently created schema, it may have its own constraints that are given as a setΣt of
sentences in some logical formalism over T. In addition, we must have a way of modeling
the relationship between the source and target schemas. This essential element of data
exchange is captured by source-to-target dependencies that specify how and what source
data should appear in the target. These dependencies are assertions between a source
query and a target query. Formally, we have a set Σst of source-to-target dependencies
of the form ∀x(φS(x)→ χT(x)), where φS(x) is a formula in some logical formalism
over S and χT(x) is a formula in some (perhaps different) logical formalism over T.

Consider a data exchange setting determined by S, T, Σst, and Σt as above. This
setting gives rise to the following data exchange problem: given an instance I over
the source schema S, materialize an instance J over the target schema T such that the
target dependencies Σt are satisfied by J , and the source-to-target dependencies Σst
are satisfied by I and J together. The first crucial observation is that there may be many
solutions (or none) for a given instance of the data exchange problem. Hence, several
conceptual and technical questions arise concerning the semantics of data exchange.
First, when does a solution exist? If many solutions exist, which solution should we
materialize and what properties should it have, so that it reflects the source data as
accurately as possible? Finally, can such a “good" solution be efficiently computed?

We consider the semantics of the data exchange problem to be one of the two main
issues in data exchange. We believe that the other main issue is query answering. Specif-
ically, suppose that q is a query over the target schema T and I is an instance over the
source schema S. What does answering q with respect to I mean? Clearly, there is an
ambiguity arising from the fact that, as mentioned earlier, there may be many solutions
J for I and, as a result, different such solutions J may produce different answers q(J).
This conceptual difficulty was first encountered in the context of incomplete or indefinite
databases (see, for instance, [23]), where one has to find the “right" answers to a query
posed against a set of “possible" databases. There is general agreement that in the context
of incomplete databases, the “right" answers are the certain answers, that is, the answers
that occur in the intersection of all q(J)’s, as J varies over all “possible" databases. This
notion makes good sense for data exchange as well, where the “possible" databases are
the solutions J for the instance I . We thus adopt the certain answers for the semantics
of query answering in the data exchange setting and investigate the complexity of com-
puting the certain answers in the data exchange setting. A related important question
is whether the certain answers of a query can be computed by query evaluation on the
“good" target instance that we chose to materialize.

Data exchange vs. data integration. Before describing our results on data exchange,
we briefly compare and contrast data exchange with data integration. Following the
terminology and notation in the recent overview [13], a data integration system is a
triple 〈G,S,M〉, where G is the global schema, S is the source schema, andM is a set
of assertions relating elements of the global schema with elements of the source schema.
Both G and S are specified in suitable languages that may allow for the expression of
various constraints. In this generality, a data exchange setting 〈S,T, Σst, Σt〉 can be
thought of as a data integration system in which S is the source schema, T and Σt form
the global schema, and the source-to-target dependencies inΣst are the assertions of the
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data integration system. In practice, however, most data integration systems studied to
date are either LAV (local-as-view) systems or GAV (global-as-view) systems [11,13,
14]. In a LAV system, each assertion inM relates one element of the source schema S to
a query (a view) over the global schema G; moreover, it is usually assumed that there are
no target constraints (Σt = ∅). In a GAV system the reverse holds, that is, each assertion
inM relates one element of the global schema G to a query (a view) over the source
schema S. Since the source-to-target dependencies Σst relate a query over the source
schema S to a query over the target schema T, a data exchange setting is neither a LAV
nor a GAV system. Instead, it can be thought of as a GLAV (global-and-local-as-view)
system [10,13].

The above similarities notwithstanding, there are important differences between data
exchange and data integration. As mentioned earlier, in data exchange scenarios, the
target schema is often independently created and comes with its own constraints. In data
integration, however, the global schema G is commonly assumed to be a reconciled,
virtual view of a heterogeneous collection of sources and, as such, has no constraints.
In fact, with the notable exception of [5], which studied the impact of key and foreign
key constraints on query answering in a GAV system, most research on data integration
has not taken target constraints into account. Still, a more significant difference is that
in a data exchange setting we have to actually materialize a finite target instance that
best reflects the given source instance. In data integration no such exchange of data is
required. For query answering, both data exchange and data integration use the certain
answers as the standard semantics of queries over the target (global) schema. In data
integration, the source instances are used to compute the certain answers of queries
over the global schema. In contrast, in a data exchange setting, it may not be feasible
to couple applications together in a manner that data may be retrieved and shared on-
demand at query time. This may occur, for instance, in peer-to-peer applications that
must share data, yet maintain autonomy. Hence, queries over the target schema may
have to be answered using the materialized target instance alone, without reference to
the original source instance. This leads to the following problem in data exchange: under
what conditions and for which queries can the certain answers be computed using just
the materialized target instance?

Motivation from Clio. The results presented here were motivated by our experience
with Clio, a prototype schema mapping and data exchange tool to whose development
some of us have contributed [18,19]. In Clio, source-to-target dependencies are (semi)-
automatically generated from a set of correspondences between the source schema and
the target schema; these dependencies can then be used in a data integration system to
compute the certain answers to target queries. Most of the applications we considered,
however, were decoupled applications that would have had to be rewritten to operate
cooperatively, as required in data integration. For this reason, early on in the development
of Clio, we recognized the need to go farther and, given a source instance, generate a
single “universal” target instance that was the result of the schema mapping. In designing
the algorithms used in Clio for creating the target instance, we were guided mainly by our
own intuition rather than by formal considerations. It should be noted that there is a long
history of work on data translation that focuses on taking high-level, data-independent
translation rules and generating efficient, executable translation programs [1,20,21].
Yet, we could not find a formal justification for the intuitive choices we made in creating
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the target instance. In seeking to formalize this intuition and justify the choices made in
Clio, we were led to explore foundational and algorithmic issues related to the semantics
of data exchange and query answering in this setting. Clio supports schemas that are
relational or semi-structured. However, challenging issues already arise in the relational
case. For this reason, here we focus exclusively on data exchange between relational
schemas; extending this work to other types of schemas is the subject of on-going
investigation.

Summary of Results. In Section 2, we formally introduce the data exchange problem.
We then give an algebraic specification that selects, among all possible solutions for a
given source instance, a special class of solutions that we call universal. More precisely,
a solution for an instance of the data exchange problem is universal if it has homomor-
phisms to all solutions for that instance. We show that a universal solution has “good”
properties that justify its choice for the semantics of the data exchange problem. We
note that Calı̀ et al. [5] studied GAV systems with key and foreign key constraints at
the target. By means of a logic program that simulates the foreign key constraints, they
constructed a canonical database, which turns out to be a particular example of our
notion of universal solution.

Given the declarative specification of universal solutions, we go on in Section 3 to
identify fairly general, yet practical, sufficient conditions that guarantee the existence
of a universal solution and yield algorithms to compute such a solution efficiently. We
introduce the concept of a weakly acyclic set of target dependencies, which is broad
enough to contain as special cases both sets of full tuple-generating dependencies (full
tgds) [4] and acyclic sets of inclusion dependencies [7]. We then show that if Σst is
a set of tuple-generating dependencies (tgds) and Σt is the union of a weakly acyclic
set of tgds with a set of equality generating dependencies (egds), then, given a source
instance of the data exchange problem, (1) a universal solution exists if and only if a
solution exists, and (2) there is a polynomial-time algorithm that determines whether a
solution exists and, if so, it produces a particular universal solution, which we call the
canonical universal solution. These results make use of the classical chase procedure
[4,15]. We note that, even though the chase has been widely used in reasoning about
dependencies, we have not been able to find any explicit references to the fact that the
chase can produce instances that have homomorphisms to all instances satisfying the
dependencies under consideration.

After this, in Sections 4 and 5, we address algorithmic issues related to query answer-
ing in the data exchange setting. We study the computational complexity of computing
the certain answers, and explore the boundary of what queries can and cannot be an-
swered in a data exchange setting using the exchanged target instance alone. On the
positive side, if q is a union of conjunctive queries, then it is easy to show that the certain
answers of q can indeed be obtained by evaluating q on an arbitrary universal solution.
Moreover, universal solutions are the only solutions possessing this property; this can be
seen as further justification for our choice to use universal solutions for data exchange.
It also follows that, whenever a universal solution can be computed in polynomial time,
the certain answers of unions of conjunctive queries can be computed in polynomial time
(in particular, this is true when the dependencies in Σst and Σt satisfy the conditions
identified in Section 3).
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On the negative side, a dramatic change occurs when queries have inequalities.
The hardness of this problem arises from the complexity of reasoning over uncertain
databases, not from the data exchange per se. Indeed,Abiteboul and Duschka [2] showed
that in a LAV data integration system and with conjunctive queries as views, computing
the certain answers of conjunctive queries with inequalities is a coNP-complete problem.
Since LAV is a special case of a data exchange setting in which the canonical universal
solution can be computed in polynomial time, it follows that, unless P = NP, we
cannot compute the certain answers of conjunctive queries with inequalities by evaluating
them on the canonical universal solution (or on any other polynomial-time computable
universal solution).

We take a closer look at conjunctive queries with inequalities by focusing on the
number of inequalities. In [2], it was claimed that in the LAV setting and with conjunctive
queries as views, computing the certain answers of conjunctive queries with a single
inequality is a coNP-hard problem. The reduction given in that paper, however, is not
correct; a different reduction in the unpublished full version [3] shows that computing
the certain answers of conjunctive queries with six (or more) inequalities is a coNP-
complete problem. We conjecture that the minimum number of inequalities that give
rise to such coNP-hardness results is two. Towards this, we show that in the same LAV
setting, computing the certain answers of unions of conjunctive queries with at most two
inequalities per disjunct is coNP-complete. This result is tight, because we show that,
even for the more general data exchange setting, there is a polynomial-time algorithm
for computing the certain answers of unions of conjunctive queries with at most one
inequality per disjunct (thus, the claim in [2] is false, unless P = NP). Moreover, the
certain answers of unions of conjunctive queries with at most one inequality per disjunct
can be computed in time polynomial in the size of a given universal solution. We point
out, however, that this computation cannot be carried out by simply evaluating such
queries on the canonical universal solution. Thus, the question arises as to whether the
certain answers of unions of conjunctive queries with at most one inequality per disjunct
can be computed by evaluating some other (perhaps more complex) first-order query on
the canonical universal solution. Our final theorem provides a strong negative answer to
this question. It shows that there is a simple conjunctive query q with one inequality for
which there is no first-order query q∗ such that the certain answers of q can be computed
by evaluating q∗ on the canonical universal solution. The proof of this theorem makes
use of a novel combination of Ehrenfeucht-Fraı̈ssé games and the chase.

The proofs of the results of this paper can be found in the full version [9].

2 The Data Exchange Problem

A schema is a finite collection R = {R1, . . . , Rk} of relation symbols. An instance I
over the schema R is a function that associates to each relation symbol Ri a relation
I(Ri). set of relations I(R1), . . . , I(Rk) interpreting the corresponding relation symbols
in S. In the sequel, we will on occasion abuse the notation and useRi to denote both the
relation symbol and the relation that interprets it. Given a tuple t occurring in a relation
R, we denote byR(t) the association between t andR and call it a fact. If R is a schema,
then a dependency over R is a sentence in some logical formalism over R.
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Let S = {S1, . . . , Sn} and T = {T1, . . . , Tm} be two disjoint schemas. We refer to
S as the source schema and to the Si’s as the source relation symbols. We refer to T as
the target schema and to the Tj’s as the target relation symbols. Similarly, instances over
S will be called source instances, while instances over T will be called target instances.
If I is a source instance and J is a target instance, then we write 〈I, J〉 for the instance
K over the schema S∪T such that K(Si) = I(Si) and K(Tj) = J(Tj), for i ≤ n and
j ≤ m.

A source-to-target dependency is a dependency of the form ∀x(φS(x) → χT(x)),
where φS(x) is a formula, with free variables x, of some logical formalism over S
and χT(x) is a formula, with free variables x, over some logical formalism over T
(these two logical formalisms may be different). We use the notation x for a vector of
variables x1, . . . , xk. A target dependency is a dependency over the target schema T
(the formalism used to express a target dependency may be different from those used
for the source-to-target dependencies). The source schema may also have dependencies
that we assume are satisfied by every source instance. While the source dependencies
may play an important role in deriving source-to-target dependencies [19], they do not
play any direct role in data exchange, because we take the source instance to be given.

Definition 1. A data exchange setting (S,T, Σst, Σt) consists of a source schema S,
a target schema T, a set Σst of source-to-target dependencies, and a set Σt of target
dependencies. The data exchange problem associated with this setting is the following:
given a finite source instance I , find a finite target instance J such that 〈I, J〉 satisfies
Σst and J satisfies Σt. Such a J is called a solution for I or, simply a solution if the
source instance I is understood from the context. The set of all solutions for I is denoted
by Sol(I).

For most practical purposes, and for most of the results of this paper, each source-to-
target dependency in Σst is a tuple generating dependency (tgd) [4] of the form

∀x(φS(x)→ ∃yψT(x,y)),

where φS(x) is a conjunction of atomic formulas over S and ψT(x,y) is a conjunction
of atomic formulas over T. Moreover, each target dependency in Σt is either a tuple-
generating dependency (tgd) (of the form shown below left) or an equality-generating
dependency (egd) [4] (shown below right):

∀x(φT(x)→ ∃yψT(x,y)) ∀x(φT(x)→ (x1 = x2))

In the above, φT(x) and ψT(x,y) are conjunctions of atomic formulas over T, and x1,
x2 are among the variables in x. Note that data exchange settings with tgds as source-to-
target dependencies include as special cases both LAV and GAV data integration systems
in which the views are sound [13] and are defined by conjunctive queries. It is natural
to take the target dependencies to be tgds and egds: these two classes together comprise
the (embedded) implicational dependencies [8], which seem to include essentially all
of the naturally-occurring constraints on relational databases. However, it is somewhat
surprising that tgds, which were originally “designed” for other purposes (as constraints),
turn out to be ideally suited for describing desired data transfer. For simplicity, in the rest
of the paper we will drop the universal quantifiers in front of a dependency, and implicitly
assume such quantification. However, we will write down all existential quantifiers.
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The next example shows that there may be more than one possible solution for a
given data exchange problem. The natural question is then which solution to choose.

Example 1. Consider a data exchange problem in which the source schema has three
relation symbols P,Q,R, each of them with attributesA,B,C, while the target schema
has one relation symbol T also with attributes A,B,C. We assume that Σt = ∅. The
source-to-target dependencies and the source instance are:

Σst : P (a, b, c)→ ∃Y ∃Z T (a, Y, Z)
Q(a, b, c)→ ∃X∃U T (X, b, U)
R(a, b, c)→ ∃V ∃W T (V,W, c)

I = { P (a0, b
′
0, c
′
0),

Q(a′′0 , b0, c
′′
0),

R(a′′′0 , b
′′′
0 , c0) }

We observe first that the dependencies in Σst do not completely specify the target
instance. It should be noted that such incomplete specification arises naturally in many
practical scenarios of data exchange (or data integration for that matter; see [11,13]).
For our example, one possible solution is:

J = {T (a0, Y0, Z0), T (X0, b0, U0), T (V0,W0, c0)},

where X0, Y0, . . . represent “unknown" values. We will call such values labeled nulls
and we will introduce them formally in the next section. The second observation is that
there may be more than one solution. For example, the following are solutions as well:

J1 = {T (a0, b0, c0)} J2 = {T (a0, b0, Z1), T (V1,W1, c0)}

In the above, Z1, V1 and W1 are labeled nulls. Note that J1 does not use labeled nulls;
instead, source values are used to witness the existentially quantified variables in the
dependencies. Solution J1 seems to be less general than J , since it “assumes" that
all three tuples required by the dependencies are equal to the tuple (a0, b0, c0). This
assumption, however, is not part of the specification. Similarly, solution J2 has extra
information that is not a consequence of the dependencies in Σst for the given source
data. We argue that neither J1 nor J2 should be used for data exchange. In contrast, J is
the “best" solution: it contains no more and no less than what the specification requires.
We formalize this intuition next.

2.1 Universal Solutions

We next give an algebraic specification that selects, among all possible solutions, a
special class of solutions that we call universal. As we will see, a universal solution
has several “good" properties that justify its choice for the semantics of data exchange.
Before presenting the key definition, we introduce some terminology and notation.

We denote by Const the set of all values that occur in source instances and we
also call them constants. In addition, we assume an infinite set Var of values, which we
call labeled nulls, such that Var ∩ Const = ∅. We reserve the symbols I, I ′, I1, I2, . . .
for instances over the source schema I and with values in Const. We also reserve the
symbols J, J ′, J1, J2, . . . for instances over the target schema T and with values in
Const ∪Var.
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If R = {R1, . . . , Rk) is a schema and K is an instance over R with values in
Const∪Var, then Var(K) denotes the set of labelled nulls occurring in relations in K.

Definition 2. Let K1 and K2 be two instances over R with values in Const ∪Var.
A homomorphism h : K1 → K2 is a mapping from Const ∪Var(K1) to Const ∪

Var(K2) such that: (1) h(c) = c, for every c ∈ Const; (2) for every fact Ri(t) of
K1, we have that Ri(h(t)) is a fact of K2 (where, if t = (a1, . . . , as), then h(t) =
(h(a1), . . . , h(as))).

K1 is homomorphically equivalent toK2 if there is a homomorphism h : K1 → K2
and a homomorphism h′ : K2 → K1.

Definition 3 (Universal solution). Consider a data exchange setting (S,T, Σst, Σt).
If I is a source instance, then a universal solution for I is a solution J for I such that
for every solution J ′ for I , there exists a homomorphism h : J → J ′.

Example 2. The instances J1 and J2 in Example 1 are not universal. In particular, there
is no homomorphism from J1 to J and also there is no homomorphism from J2 to
J . This fact makes precise our earlier intuition that the instances J1 and J2 contain
“extra" information. In contrast, there exist homomorphisms from J to both J1 and J2.
Actually, it can be easily shown that J has homomorphisms to all other solutions. Thus,
J is universal.

From an algebraic standpoint, being a universal solution is a property akin to being an
initial structure [17] for the set of all solutions (although an initial structure for a setK of
structures is required to have unique homomorphisms to all other structures inK). Initial
structures are ubiquitous in several areas of computer science, including semantics of
programming languages and term rewriting, and are known to have good properties (see
[17]). The next result asserts that universal solutions have good properties as well.

Proposition 1. Let (S,T, Σst, Σt) be a data exchange setting.

1. If I is a source instance and J , J ′ are universal solutions for I , then J and J ′ are
homomorphically equivalent.

2. Assume that Σst is a set of tgds. Let I , I ′ be two source instances, J a universal
solution for I , and J ′ a universal solution for I ′. Then Sol(I) ⊆ Sol(I ′) if and only
if there is a homomorphism h : J ′ → J . Consequently, Sol(I) = Sol(I ′) if and only
if J and J ′ are homomorphically equivalent.

The first part of Proposition 1 asserts that universal solutions are unique up to ho-
momorphic equivalence. The second part implies that if J is a universal solution for two
source instances I and I ′, then Sol(I) = Sol(I ′). Thus, in a certain sense, each universal
solution precisely embodies the space of solutions.

3 Computing Universal Solutions

Checking the conditions in Definition 3 requires implicitly the ability to check the (in-
finite) space of all solutions. Thus, it is not clear, at first hand, to what extent the notion
of universal solution is a computable one. This section addresses the question of how
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to check the existence of a universal solution and how to compute one (if one exists).
In particular, we show that the classical chase can be used for data exchange and that
every finite chase, if it does not fail, constructs a universal solution. If the chase fails,
then no solution exists. However, in general, for arbitrary dependencies, there may not
exist a finite chase. Hence, in Section 3.2 we introduce the class of weakly acyclic sets
of tgds, for which the chase is guaranteed to terminate in polynomial time. For such
dependencies, we show that: (1) the existence of a universal solution can be checked in
polynomial time, (2) a universal solution exists if and only if a solution exists, and (3) a
universal solution (if solutions exist) can be produced in polynomial time.

3.1 Chase: Canonical Generation of Universal Solutions

Intuitively, we apply the following procedure to produce a universal solution: start with
an instance 〈I, ∅〉 that consists of I , for the source schema, and of the empty instance, for
the target schema; then chase 〈I, ∅〉 by applying the dependencies in Σst and Σt for as
long as they are applicable1. This process may fail (as we shall see shortly, if an attempt
to identify two constants is made) or it may never terminate. But if it does terminate and
if it does not fail, then the resulting instance is guaranteed to satisfy the dependencies
and, moreover, to be universal (Theorem 1).

We next define chase steps. Similar to homomorphisms between instances, a ho-
momorphism from a conjunctive formula φ(x) to an instance J is a mapping from the
variables x to Const ∪ Var(J) such that for every atom R(x1, . . . , xn) of φ, the fact
R(h(x1), . . ., h(xn)) is in J . The chase that we use is a slight variation of the classical
notion of chase with tgds and egds of [4] in the sense that we chase instances rather than
symbolic tableaux. Consequently, the chase may fail.

Definition 4 (Chase step). Let K be an instance.
(tgd) Let d be a tgd φ(x)→ ∃yψ(x,y). Let h be a homomorphism from φ(x) toK

such that there is no extension of h to a homomorphism h′ from φ(x) ∧ ψ(x,y) to K.
We say that d can be applied to K with homomorphism h.

Let K ′ be the union of K with the set of facts obtained by: (a) extending h to h′

such that each variable in y is assigned a fresh labeled null, followed by (b) taking the
image of the atoms of ψ under h′. We say that the result of applying d to K with h is

K ′, and write K
d,h−→ K ′.

(egd) Let d be an egd φ(x)→ (x1 = x2). Let h be a homomorphism from φ(x) to
K such that h(x1) = h(x2). We say that d can be applied to K with homomorphism h.
We distinguish two cases.

• If both h(x1) and h(x2) are in Const then we say that the result of applying d to K

with h is “failure”, and write K
d,h−→ ⊥.

• Otherwise, let K ′ be K where we identify h(x1) and h(x2) as follows: if one is a
constant, then the labeled null is replaced everywhere by the constant; if both are
labeled nulls, then one is replaced everywhere by the other. We say that the result of

applying d to K with h is K ′, and write K
d,h−→ K ′.

1 It is possible to apply first Σst as long as applicable and then apply Σt as long as applicable.
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In the definition,K
d,h−→ K ′ (including the case whereK ′ is⊥) defines one single chase

step. We next define chase sequences and finite chases.

Definition 5 (Chase). Let Σ be a set of tgds and egds, and let K be an instance.

• A chase sequence of K with Σ is a sequence (finite or infinite) of chase steps

Ki
di,hi−→ Ki+1, with i = 0, 1, . . ., with K = K0 and di a dependency in Σ.

• A finite chase of K with Σ is a finite chase sequence Ki
d,h−→ Ki+1, 0 ≤ i < m,

with the requirement that either (a) Km = ⊥ or (b) there is no dependency di of Σ
and there is no homomorphism hi such that di can be applied toKm with hi. We say
that Km is the result of the finite chase. We refer to case (a) as the case of a failing
finite chase and we refer to case (b) as the case of a successful finite chase.

In general, there may not exist a finite chase of an instance (cyclic sets of dependencies
could cause infinite application of chase steps). Infinite chases can be defined as well,
but for this paper we do not need to do so. Also, different chase sequences may yield
different results. However, each result, if not ⊥, satisfies Σ.

For data exchange, we note first that, due to the nature of our dependencies, any
chase sequence that starts with 〈I, ∅〉 does not change or add tuples in I . Then, if a finite
chase exists, its result 〈I, J〉 is such that J is a solution. Furthermore, J is universal, a
fact that does not seem to have been explicitly noted in the literature on the chase. The
next theorem states this, and also states that the chase can be used to check the existence
of a solution.

Theorem 1. Assume a data exchange setting whereΣst consists of tgds andΣt consists
of tgds and egds.

1. Let 〈I, J〉 be the result of some successful finite chase of 〈I, ∅〉 with Σst ∪Σt. Then
J is a universal solution.

2. If there exists some failing finite chase of 〈I, ∅〉 with Σst ∪ Σt, then there is no
solution.

For case 1 of Theorem 1 we refer to such J as a canonical universal solution. In
further examples and proofs, when such J is unique, we will also use the term the
canonical universal solution. We note that a canonical universal solution is similar, in its
construction, to the representative instance defined in the work on the universal relation
(see [16]).

The following is an example of cyclic set of inclusion dependencies for which there
is no finite chase; thus, we cannot produce a universal solution by the chase. Still, a finite
solution does exist. This illustrates the need for introducing restrictions in the class of
dependencies that are allowed in the target.

Example 3. Consider the data exchange setting (S,T, Σst, Σt) as follows. The source
schema S has one relation DeptEmp(dpt id, mgr name, eid) listing departments with
their managers and their employees. The target schema T has a relation Dept(dpt id,
mgr id, mgr name) for departments and their managers, and a separate relation for
employees Emp(eid, dpt id). The source-to-target and target dependencies are:

Σst = { DeptEmp(d, n, e)→ ∃M.Dept(d,M, n) ∧ Emp(e, d) }
Σt = { Dept(d,m, n)→ ∃D.Emp(m,D), Emp(e, d)→ ∃M∃N.Dept(d,M,N) }
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Assume now that the source instance I has one tuple in DeptEmp, for department CS with
manager Mary and employee E003. Chasing 〈I, ∅〉 with Σst yields the target instance:

J1 = {Dept(CS,M,Mary), Emp(E003, CS)}
where M is a labeled null that instantiates the existentially quantified variable of the
tgd, and encodes the unknown manager id of Mary. However, J1 does not satisfy Σt;
therefore, the chase does not stop at J1. The first tgd in Σt requires M to appear in
Emp as an employee id. Thus, the chase will add Emp(M,D) where D is a labeled null
representing the unknown department in which Mary is employeed. Then the second tgd
becomes applicable, and so on. It is easy to see that there is no finite chase. Satisfying
all the dependencies would require building an infinite instance:

J = {Dept(CS,M,Mary), Emp(E003, CS), Emp(M,D), Dept(D,M ′, N ′), . . . }
On the other hand, finite solutions exist. Two such examples are:

J ′ = {Dept(CS,E003,Mary), Emp(E003, CS)}
J ′′ = {Dept(CS,M,Mary), Emp(E003, CS), Emp(M,CS)}

However, neither J ′ nor J ′′ are universal: there is no homomorphism from J ′ to J ′′

and there is no homomorphism from J ′′ to J ′. We argue that neither should be used for
data exchange. In particular, J ′ makes the assumption that the manager id of Mary is
equal to E003, while J ′′ makes the assumption that the department in which Mary is
employed is the same as the department (CS) that Mary manages. Neither assumption is
a consequence of the given dependencies and source instance. It can be shown that no
finite universal solution exists for this example.

We next consider sets of dependencies for which every chase sequence is guaranteed
to reach its end after at most polynomially many steps (in the size of the input instance).
For such sets of dependencies it follows that checking the existence of a solution, as well
as generating a universal solution, can be carried out in polynomial time.

3.2 Polynomial-Length Chase

We first discuss sets of full tgds (tgds with no existentially quantified variables). It has
been proven in [4] that every chase sequence with a set Σ of full tgds has at most finite
length. Moreover every chase has the same result. It is simple to show that the length of
the chase is bounded by a polynomial in the size of the input instance (the dependencies
and the schema are fixed). Also, any set of egds can be added to Σ without affecting the
uniqueness of the result or the polynomial bound.

Although full tgds enjoy nice properties, they are not very useful in practice. Most
dependencies occurring in real schemas are non-full, for example, foreign key con-
straints or, more generally, inclusion dependencies [6]. It is well known that chasing
with inclusion dependencies may not terminate in general. Acyclic sets of inclusion de-
pendencies [7] are a special case for which every chase sequence has a length that is
polynomial in the size of the input instance. Such dependencies can be described by
defining a directed graph in which the nodes are the relation symbols, and such that
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Fig. 1. Dependency graphs for: (a) a set of tgds that is not weakly acyclic, (b) a weakly acyclic set
of tgds.

there exists an edge from R to S whenever there is an inclusion dependency from R
to S. A set of inclusion dependencies is acyclic if there is no cycle in this graph. We
define next a weakly acyclic sets of tgds, a notion that strictly includes both sets of full
tgds and acyclic sets of inclusion dependencies. This notion is inspired by the definition
of weakly recursive ILOG [12], even though the latter is not directly related to depen-
dencies. Informally, a set of tgds is weakly acyclic if it does not allow for cascading of
labeled null creation during the chase.

Definition 6 (Weakly acyclic set of tgds). Let Σ be a set of tgds over a fixed schema.
Construct a directed graph, called the dependency graph, as follows: (1) there is a node
for every pair (R,A) withR a relation symbol of the schema andA an attribute ofR; call
such pair (R,A) a position; (2) add edges as follows: for every tgd φ(x)→ ∃yψ(x,y)
in Σ and for every x in x that occurs in ψ:

• For every occurence of x in φ in position (R,Ai):

(a) for every occurence of x in ψ in position (S,Bj), add an edge (R,Ai) →
(S,Bj) (if it does not already exist).

(b) in addition, for every existentially quantified variable y and for every occurrence
of y in ψ in position (T,Ck), add a special edge (R,Ai)

∗→ (T,Ck) (if it does
not already exist).

Note that there may be two edges in the same direction between two nodes, if exactly
one of the two edges is special. Then Σ is weakly acyclic if the dependency graph has
no cycle going through a special edge.

Intuitively, part (a) keeps track of the fact that a value may propagate from position
(R,Ai) to position (S,Bj) during the chase. Part (b), moreover, keeps track of the fact
that propagation of a value into (S,Bj) also creates a labeled null in any position that
has an existentially quantified variable. If a cycle goes through a special edge, then a
labeled null appearing in a certain position during the chase may determine the creation
of another labeled null, in the same position, at a later chase step. This process may thus
continue forever. Note that the definition allows for cycles as long as they do not include
special edges. In particular, a set of full tgds is a special case of a weakly acyclic set of
tgds (there are no existentially quantified variables, and hence no special edges).

Example 4. Recall Example 3. The dependency graph of Σt is shown in Figure 1(a).
The graph contains a cycle with two special edges. Hence Σt is not weakly acyclic and
therefore a finite chase may not exist (as seen in Example 3). On the other hand, let
us assume that we know that each manager of a department is employed by the same
department. Then, we replace the set Σt by the set Σ′t, where
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Σ′t = { Dept(d,m, n)→ Emp(m, d), Emp(e, d)→ ∃M∃N.Dept(d,M,N) }
The dependency graph ofΣ′t, shown in Figure 1(b), has no cycles going through a special
edge. Thus, Σ′t is weakly acyclic. As Theorem 2 will show, it is guaranteed that every
chase sequence is finite. For Example 3, one can see that the chase of J1 with Σ′t stops
with result J ′′. Thus J ′′ is universal. Note that for J ′′ to be universal it was essential that
we explicitly encoded in the dependencies the fact that managers are employeed by the
department they manage. Finally, we remark that Σ′t is an example of a set of inclusion
dependencies that, although weakly acyclic, is cyclic according to the definition of [7].

We now state the main results regarding weakly acyclic sets of tgds.

Theorem 2. Let Σ be the union of a weakly acyclic set of tgds with a set of egds, and
let K be an instance. Then there exists a polynomial in the size of K that bounds the
length of every chase sequence of K with Σ.

Corollary 1. Assume a data exchange setting where Σst is a set of tgds, and Σt is the
union of a weakly acyclic set of tgds with a set of egds. The existence of a solution can
be checked in polynomial time. If a solution exists, then a universal solution can be
produced in polynomial time.

4 Query Answering

As stated earlier, we adopt the notion of certain answers for the semantics of query
answering. We first give the formal definition of this notion and then address the problem
of whether and to what extent the certain answers of a query over the target schema can
be computed by evaluating some query (same or different) on a universal solution.

Definition 7. Let (S,T, Σst, Σt) be a data exchange setting.

• Let q be a k-ary query over the target schema T and I a source instance. The certain
answers of q with respect to I , denoted by certain(q, I), is the set of all k-tuples t of
constants from I such that for every solution J of this instance of the data exchange
problem, we have that t ∈ q(J).

• Let q be a Boolean query over the target schema T and I a source instance. We write
certain(q, I) = true to denote that for every solution J of this instance of the data
exchange problem, we have that q(J) = true. We also write certain(q, I) = false
to denote that there is a solution J such that q(J) = false.

On the face of it, the definition of certain answers entails a computation over the entire
set of solutions of a given instance of the data exchange problem. Since this set may very
well be infinite, it is desirable to identify situations in which the certain answers of a
query q can be computed by evaluating q on a particular fixed solution and then keeping
only the tuples that consist entirely of constants. More formally, if q is a k-ary query
and J is a target instance, then q(J)↓ is the set of all k-tuples t of constants such that
t ∈ q(J). We extend the notation to Boolean queries by agreeing that if q is a Boolean
query, then q(J)↓ = q(J) (= true or false).

The next proposition characterizes universal solutions with respect to query answer-
ing, when the queries under consideration are unions of conjunctive queries. First, it
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shows that certain(q, I) = q(J)↓ whenever J is a universal solution and q is a union
of conjunctive queries. Concrete instances of this result in the LAV setting have been
established in [2]. Another instance of this result has also been noted for the GAV setting
with key/foreign key constraints in [5]. Thus, evaluation of conjunctive queries on an
arbitrarily chosen universal solution gives precisely the set of certain answers. Moreover,
the second statement of the proposition shows that the universal solutions are the only
solutions that have this property. This is further justification for using universal solutions
for data exchange.

Proposition 2. Consider a data exchange setting with S as the source schema, T as the
target schema, and such that the dependencies in the setsΣst andΣt are arbitrary.

1. Let q be a union of conjunctive queries over the target schema T. If I is a source
instance and J is a universal solution, then certain(q, I) = q(J)↓.

2. Let I be a source instance and J be a solution such that for every conjunctive query
q over T, we have that certain(q, I) = q(J)↓. Then J is a universal solution.

The following result follows from Corollary 1 and Part 1 of Proposition 2.

Corollary 2. Assume a data exchange setting where Σst is a set of tgds, and Σt is the
union of a weakly acyclic set of tgds with a set of egds. Let q be a union of conjunctive
queries. For every source instance I , the set certain(q, I) can be computed in polynomial
time in the size of I .

The state of affairs changes dramatically when conjunctive queries with inequalities
are considered. The next proposition shows that there is a simple Boolean conjunctive
query q with inequalities such that no universal solution can be used to obtain the certain
answers of q by evaluating q on that universal solution. This proposition also shows that
in this particular case, there is another conjunctive query q∗ with inequalities such that
the certain answers of q can be obtained by evaluating q∗ on the canonical universal
solution.

Proposition 3. Let S be a binary source relation symbol, T a binary target relation
symbol, S(x, y) → ∃z(T (x, z) ∧ T (z, y)) a source-to-target dependency, and q the
following Boolean conjunctive query with one inequality: ∃x∃y(T (x, y)∧(x = y)).
1. There is a source instance I such that certain(q, I) = false, but q(J) = true for

every universal solution J .

2. Let q∗ be the query ∃x∃y∃z(T (x, z) ∧ T (z, y) ∧ (x = y)). If I is a source instance
and J is the canonical universal solution, then certain(q, I) = q∗(J).

In view of Proposition 3, we address next the question of whether, given a conjunctive
query with inequalities, it is always possible to find a query (not necessarily the same)
that computes the certain answers when evaluated on the canonical universal solution.

5 Query Answering: Complexity and Inexpressibility

It is known that in LAV data integration systems, computing the certain answers of
conjunctive queries with inequalities is a coNP-hard problem [2]. It follows that in the
data exchange setting, it is not possible to compute the certain answers of such queries



Data Exchange: Semantics and Query Answering 221

by evaluating them on the canonical universal solution or on any universal solution that
is generated in polynomial time (unless P = NP). We take in Section 5.1 a closer
look at conjunctive queries with inequalities. First we show (Theorem 3) that, in the data
exchange setting, the problem of computing the certain answers for unions of conjunctive
queries with inequalities is in coNP. Surprisingly, we show (Theorem 6) that there is a
polynomial-time algorithm that computes the certain answers of unions of conjunctive
queries with at most one inequality per disjunct. This is an optimal result because we
also show (Theorem 5) that it is coNP-hard to compute the certain answers of unions of
conjunctive queries with at most two inequalities per disjunct.

In the case of unions of conjunctive queries with at most one inequality per disjunct,
the certain answers can be computed in polynomial time from an arbitrary universal
solution. However, Section 5.2 shows (with no unproven complexity-theoretic assump-
tions such as P = NP) that there is a conjunctive query q with one inequality whose
certain answers cannot be computed by rewriting q to a first-order query q∗ and then
evaluating q∗ on the canonical universal solution. We begin by formally introducing the
decision problem associated with the computation of the set of certain answers.

Definition 8. Let (S,T, Σst, Σt) be a data exchange setting.

1. Let q be a k-ary query over the target schema T. Computing the certain answers of
q is the following decision problem: given a source instance I over S and a k-tuple
t of constants from I , is it the case that t ∈ certain(q, I)?

2. Let q be a Boolean query over the target schema T. Computing the certain answers
of q is the following decision problem: given a source instance I over S, is it the
case that certain(q, I) = true?

3. Let C be a complexity class and Q a class of queries over the target schema T. We
say that computing the certain answers of queries in Q is in C if for every query
q ∈ Q, computing the certain answers of q is in C. We say that computing the certain
answers of queries in Q is C-complete if it is in C and there is at least one query
q ∈ Q such that computing the certain answers of q is a C-complete problem.

Thus, computing the certain answers of a k-ary query q is a decision problem. One
can also consider a related function problem: given a source instance I , find the set
certain(q, I). The latter problem has a polynomial-time reduction to the former, since
there are polynomially many k-tuples from I and so we can compute the set certain(q, I)
by going over each such k-tuple t and deciding whether or not t ∈ certain(q, I).

5.1 Computational Complexity

Since the complexity-theoretic lower bounds and inexpressibility results presented in the
sequel hold for LAV data integration systems with sound views defined by conjunctive
queries, we review the definition of this type of data integration system first. A LAV data
integration system with sound views defined by conjunctive queries is a special case
of a data exchange setting (S,T, Σst, Σt) in which Σt = ∅ and each source-to-target
dependency inΣst is a tgd of the form Si(x)→ ∃yψT(x,y), where Si is some relation
symbol of the source schema S and ψT is an arbitrary conjunction of atomic formulas
over the target schema T. In what follows we will refer to such a setting as a LAV setting.
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Abiteboul and Duschka [2] showed that in the LAV setting computing the certain
answers of unions of conjunctive queries with inequalities is in coNP. We extend this by
showing that the same upper bound holds in the data exchange setting, provided Σst is
a set of tgds and Σt is a union of a set of egds with a weakly acyclic set of tgds.

Theorem 3. Consider a data exchange setting in which Σst is a set of tgds and Σt is a
union of a set of egds with a weakly acyclic set of tgds. Let q be a union of conjunctive
queries with inequalities. Then computing the certain answers of q is in coNP.

We first note that, in the particular case when all the tgds in Σt are full, the theorem can
be proved by using the “small model property" (essentially this argument was used in [2]
for the LAV setting). However, for the more general case when the tgds in Σt may have
existentially quantified variables, the proof is more involved. It is based on an extension
of the chase, called the disjunctive chase; see the full version [9] for details.

Theorem 3 yields an upper bound in a fairly general data exchange setting for the
complexity of computing the certain answers of unions of conjunctive queries with
inequalities. It turns out, as we discuss next, that this upper bound is tight, even in
fairly restricted data exchange settings. Specifically, computing certain answers for such
queries is coNP-complete. Therefore no polynomial algorithm exists for computing the
certain answers when the input is a universal solution, unless P = NP.

Abiteboul and Duschka [2] showed that in the LAV setting, computing certain an-
swers of conjunctive queries with inequalities is coNP-complete. They also sketched a
proof which, if correct, would establish that this problem is coNP-complete even for
conjunctive queries with a single inequality. Unfortunately, the reduction is erroneous.
A correct reduction cannot be produced without increasing the number of inequalities,
since here we show that in the LAV setting, there is a polynomial-time algorithm for
computing the certain answers of unions of conjunctive queries with at most one in-
equality per disjunct. Still, the result of Abiteboul and Duschka [2] is correct; in fact, the
unpublished full version [3] of that paper contains a proof to the effect that in the LAV
setting, computing certain answers of Boolean conjunctive queries with six inequali-
ties is coNP-complete. A different proof of the same result can be extracted by slightly
modifying the proof of Theorem 3.2 in van der Meyden [22]. Thus, the next result pro-
vides a matching lower bound for the complexity of computing the certain answers of
conjunctive queries with inequalities.

Theorem 4. [2,22] In the LAV setting, computing the certain answers of Boolean con-
junctive queries with six or more inequalities is coNP-complete.

It is an interesting technical problem to determine the minimum number of inequalities
needed to give rise to a coNP-complete problem in this setting.

Conjecture 1. In the LAV setting, computing the certain answers of Boolean conjunctive
queries with two inequalities is coNP-complete.

We have not been able to settle this conjecture, but have succeeded in pinpointing the
complexity of computing the certain answers of unions of Boolean conjunctive queries
with at most two inequalities per disjunct.

Theorem 5. In the LAV setting, computing the certain answers of unions of Boolean
conjunctive queries with at most two inequalities per disjunct is coNP-complete. In fact,
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this problem is coNP-complete even for the union of two queries the first of which is a
conjunctive query and the second of which is a conjunctive query with two inequalities.

For unions of conjunctive queries with inequalities, Theorem 5 delineates the bound-
ary of intractability, because the next theorem asserts that computing certain answers of
unions of conjunctive queries with at most one inequality per disjunct can be solved in
polynomial time by an algorithm that runs on universal solutions.

Theorem 6. Assume a data exchange setting in whichΣst is a set of tgds, andΣt is the
union of a weakly acyclic set of tgds with a set of egds. Let q be a union of conjunctive
queries with at most one inequality per disjunct. Let I be a source instance and let J
be an arbitrary universal solution for I . Then there is a polynomial-time algorithm with
input J that computes certain(q, I).

Corollary 3. Assume a data exchange setting in which Σst is a set of tgds, and Σt
is the union of a weakly acyclic set of tgds with a set of egds. Let q be a union of
conjunctive queries with at most one inequality per disjunct. Then there is a polynomial-
time algorithm for computing the certain answers of q.

5.2 First-Order Inexpressibility

The following theorem shows that, in general, even for a conjunctive query q with
just one inequality, there is no first-order query q∗ that computes the certain answers
when evaluated on the canonical universal solution. This is in strong contrast with the
polynomial-time algorithm that we have seen earlier (Theorem 6). It is also in contrast
with the second part of Proposition 3, where we have seen a particular example for which
such a q∗ exists. The proof of the theorem combines Ehrenfeucht-Fraı̈ssé games with
the chase procedure.

Theorem 7. There is a LAV setting with source I and there is a Boolean conjunctive
query q with one inequality, for which there is no first-order query q∗ over the canonical
universal solution J such that certain(q, I) = q∗(J).

In the full version we also show that the result holds even if we allow the first-order
formula q∗ to contain the predicate const that distinguishes between constants and nulls.

The next result, of particular interest to query answering in the data integration
context, is a corollary to the proof of Theorem 7. It shows that for conjunctive queries
with just one inequality we cannot in general find any first-order query over the source
schema that, when evaluated on the source instance, computes the certain answers.

Corollary 4. There is a LAV setting with source I and there is a Boolean conjunctive
query q with one inequality, for which there is no first-order query q∗ over the source
schema such that certain(q, I) = q∗(I).

6 Concluding Remarks

We plan to further investigate how universal solutions can be used for query answering
in data exchange. We wish to characterize when a query q can be rewritten to a first-
order query q∗ such that the certain answers of q can be computed by evaluating q∗ on a
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universal solution. We also wish to understand how well the certain answers of a query
can be approximated by evaluating the same query on a universal solution and how this
differs from universal solution to universal solution. Finally, an important direction is
extending the notion of universal solution to cover data exchange between nested (e.g.
XML) schemas.
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