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Abstract. Given a Boolean formula, do its solutions form a connected
subgraph of the hypercube? This and other related connectivity con-
siderations underlie recent work on random Boolean satisfiability. We
study connectivity properties of the space of solutions of Boolean for-
mulas, and establish computational and structural dichotomies. Specif-
ically, we first establish a dichotomy theorem for the complexity of the
st-connectivity problem for Boolean formulas in Schaefer’s framework.
Our result asserts that the tractable side is more generous than the
tractable side in Schaefer’s dichotomy theorem for satisfiability, while
the intractable side is PSPACE-complete. For the connectivity problem,
we establish a dichotomy along the same boundary between membership
in coNP and PSPACE-completeness. Furthermore, we establish a struc-
tural dichotomy theorem for the diameter of the connected components
of the solution space: for the PSPACE-complete cases, the diameter can
be exponential, but in all other cases it is linear. Thus, small diameter
and tractability of the st-connectivity problem are remarkably aligned.

1 Introduction

In 1978, T.J. Schaefer [1] introduced a rich framework for expressing variants
of Boolean satisfiability and proved a remarkable dichotomy theorem: the sat-
isfiability problem is in P for certain classes of Boolean formulas, while it is
NP-complete for all other classes in the framework. In a single stroke, this re-
sult pinpoints the computational complexity of all well-known variants of Sat,
such as 3-Sat, Horn 3-Sat, Not-All-Equal 3-Sat, and 1-in-3 Sat. Schae-
fer’s work paved the way for a series of investigations establishing dichotomies
for several aspects of satisfiability, including optimization [2–4], counting [5],
inverse satisfiability [6], minimal satisfiability [7], 3-valued satisfiability [8] and
propositional abduction [9].

Our aim in this paper is to carry out a comprehensive exploration of a dif-
ferent aspect of Boolean satisfiability, namely, the connectivity properties of
the space of solutions of Boolean formulas. The solutions (satisfying assign-
ments) of a given n-variable Boolean formula ϕ induce a subgraph G(ϕ) of the
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n-dimensional hypercube. Thus, the following two decision problems, called the
connectivity problem and the st-connectivity problem, arise naturally: (i) Given
a Boolean formula ϕ, is G(ϕ) connected? (ii) Given a Boolean formula ϕ and
two solutions s and t of ϕ, is there a path from s to t in G(ϕ)?

We believe that connectivity properties of Boolean satisfiability merit study
in their own right, as they shed light on the structure of the solution space of
Boolean formulas. Moreover, in recent years the structure of the space of solu-
tions for random instances has been the main consideration at the basis of both
algorithms for and mathematical analysis of the satisfiability problem [10–13].
It has been conjectured for 3-Sat [12] and proved for 8-Sat [14, 15], that the
solution space fractures as one approaches the critical region from below. This
apparently leads to performance deterioration of the standard satisfiability algo-
rithms, such as WalkSAT [16] and DPLL [17]. It is also the main consideration
behind the design of the survey propagation algorithm, which has far superior
performance on random instances of satisfiability [12]. This body of work has
served as a motivation to us for pursuing the investigation reported here. While
there has been an intensive study of the structure of the solution space of Boolean
satisfiability problems for random instances, our work seems to be the first to
explore this issue from a worst-case viewpoint.

Our first main result is a dichotomy theorem for the st-connectivity prob-
lem. This result reveals that the tractable side is much more generous than the
tractable side for satisfiability, while the intractable side is PSPACE-complete.
Specifically, Schaefer showed that the satisfiability problem is solvable in poly-
nomial time precisely for formulas built from Boolean relations all of which are
bijunctive, or all of which are Horn, or all of which are dual Horn, or all of which
are affine. We identify new classes of Boolean relations, called tight relations,
that properly contain the classes of bijunctive, Horn, dual Horn, and affine rela-
tions. We show that st-connectivity is solvable in linear time for formulas built
from tight relations, and PSPACE-complete in all other cases. Our second main
result is a dichotomy theorem for the connectivity problem: it is in coNP for
formulas built from tight relations, and PSPACE-complete in all other cases.

In addition to these two complexity-theoretic dichotomies, we establish a
structural dichotomy theorem for the diameter of the connected components of
the solution space of Boolean formulas. This result asserts that, in the PSPACE-
complete cases, the diameter of the connected components can be exponential,
but in all other cases it is linear. Thus, small diameter and tractability of the
st-connectivity problem are remarkably aligned.

To establish these results, we first show that all tight relations have “good”
structural properties. Specifically, in a tight relation every component has a
unique minimum element, or every component has a unique maximum element,
or the Hamming distance coincides with the shortest-path distance in the rela-
tion. These properties are inherited by every formula built from tight relations,
and yield both small diameter and linear algorithms for st-connectivity.

Next, the challenge is to show that for non-tight relations, both the connec-
tivity problem and the st-connectivity problem are PSPACE-hard. In Schaefer’s



Dichotomy Theorem, NP-hardness of satisfiability was a consequence of an ex-
pressibility theorem, which asserted that every Boolean relation can be obtained
as a projection over a formula built from clauses in the “hard” relations. Schae-
fer’s notion of expressibility is inadequate for our problem. Instead, we introduce
and work with a delicate and more strict notion of expressibility, which we call
faithful expressibility. Intuitively, faithful expressibility means that, in addition
to definability via a projection, the space of witnesses of the existential quanti-
fiers in the projection has certain strong connectivity properties that allow us
to capture the graph structure of the relation that is being defined. It should
be noted that Schaefer’s Dichotomy Theorem can also be proved using a Galois
connection and Post’s celebrated classification of the lattice of Boolean clones
(see [18]). This method, however, does not appear to apply to connectivity, as
the boundaries discovered here cut across Boolean clones. Thus, the use of faith-
ful expressibility or some other refined definability technique seems unavoidable.

The first step towards proving PSPACE-completeness is to show that both
connectivity and st-connectivity are hard for 3-CNF formulae; this is proved by
a reduction from a generic PSPACE computation. Next, we identify the simplest
relations that are not tight: these are ternary relations whose graph is a path
of length 4 between assignments at Hamming distance 2. We show that these
paths can faithfully express all 3-CNF clauses. The crux of our hardness result
is an expressibility theorem to the effect that one can faithfully express such a
path from any set of relations which is not tight.

Our original hope was that tractability results for connectivity could conceiv-
ably inform heuristic algorithms for satisfiability and enhance their effectiveness.
In terms of this motivation, our findings are prima facie negative: we show that
when satisfiability is intractable, then connectivity is also intractable. But our
results do contain a glimmer of hope: we show that there are broad classes of
intractable satisfiability problems, those built from tight relations, with polyno-
mial st-connectivity and small diameter. It would be interesting to investigate
if these properties make random instances built from tight relations easier for
WalkSAT and similar heuristics, and if so, whether such heuristics are amenable
to rigorous analysis.

For want of space, some proofs, as well as some additional results, are omitted
here; they can be found in the full version available at ECCC.
2 Basic Concepts and Statements of Results

A logical relation R is a non-empty subset of {0, 1}k, for some k ≥ 1; k is the
arity of R. Let S be a finite set of logical relations. A CNF(S)-formula over a
set of variables V = {x1, . . . , xn} is a finite conjunction C1 ∧ . . . ∧Cn of clauses
built using relations from S, variables from V , and the constants 0 and 1; this
means that each Ci is an expression of the form R(ξ1, . . . , ξk), where R ∈ S is a
relation of arity k, and each ξj is a variable in V or one of the constants 0, 1.

The satisfiability problem Sat(S) associated with a finite set S of logical re-
lations asks: given a CNF(S)-formula ϕ, is it satisfiable? All well known restric-
tions of Boolean satisfiability, such as 3-Sat, Not-All-Equal 3-Sat, and Pos-
itive 1-in-3 Sat, can be cast as Sat(S) problems, for a suitable choice of S. For



instance, Positive 1-in-3 Sat is Sat({R1/3}), where R1/3 = {100, 010, 001}.
Schaefer [1] identified the complexity of every satisfiability problem Sat(S). To
state Schaefer’s main result, we need to define some basic concepts.

Definition 1 Let R be a logical relation.
(1) R is bijunctive if it is the set of solutions of a 2-CNF formula.
(2) R is Horn if it is the set of solutions of a Horn formula, where a Horn formula
is a CNF formula such that each conjunct has at most one positive literal.
(3) R is dual Horn if it is the set of solutions of a dual Horn formula, where a
dual Horn formula is a CNF formula such that each conjunct has at most one
negative literal.
(4) R is affine if it is the set of solutions of a system of linear equations over Z2.

Each of these types of logical relations can be characterized in terms of closure
properties [1]. A relation R is bijunctive if and only if it is closed under the
majority operation (if a,b, c ∈ R, then maj(a,b, c) ∈ R, where maj(a,b, c) of
a,b, c is the vector whose i-th bit is the majority of ai, bi, ci). A relation R is
Horn if and only if it is closed under ∨ (if a,b ∈ R, then a∨b ∈ R, where, a∨b
is the vector whose i-th bit is ai ∨ bi). Similarly, R is dual Horn if and only if it
is closed under ∧. Finally, R is affine if and only if it is closed under a⊕ b⊕ c.

Definition 2 A set S of logical relations is Schaefer if at least one of the follow-
ing holds: (1) Every relation in S is bijunctive; (2) Every relation in S is Horn;
(3) Every relation in S is dual Horn; (4) Every relation in S is affine.

Theorem 1 (Schaefer’s Dichotomy Theorem [1]) If S is Schaefer, then Sat(S)
is in P; otherwise, Sat(S) is NP-complete.

Note that the closure properties of Schaefer sets yield a cubic algorithm for
determining, given a finite set S of relations, whether Sat(S) is in P or NP-
complete (the input size is the sum of the sizes of relations in S).

Here, we are interested in the connectivity properties of the space of solutions
of CNF(S)-formulas. If ϕ is a CNF(S)-formula with n variables, then G(ϕ)
denotes the subgraph of the n-dimensional hypercube induced by the solutions
of ϕ. Thus, the vertices of G(ϕ) are the solutions of ϕ, and there is an edge
between two solutions of G(ϕ) precisely when they differ in a single variable. We
consider the following two algorithmic problems for CNF(S)-formulas.
(1) The st-connectivity problem st-Conn(S): given a CNF(S)-formula ϕ and
two solutions s and t of ϕ, is there a path from s to t in G(ϕ)?
(2) The connectivity problem Conn(S): given a CNF(S)-formula ϕ, is G(ϕ)
connected?

To pinpoint the computational complexity of st-Conn(S) and Conn(S), we
need to introduce certain new types of relations.

Definition 3 Let R ⊆ {0, 1}k be a logical relation.
(1) R is componentwise bijunctive if every connected component of G(R) is
bijunctive.



(2) R is OR-free if the relation OR = {01, 10, 11} cannot be obtained from R by
setting k−2 of the coordinates of R to a constant c ∈ {0, 1}k−2. In other words,
R is OR-free if (x1 ∨ x2) is not definable from R by fixing k − 2 variables.
(3) R is NAND-free if (x̄1∨ x̄2) is not definable from R by fixing k−2 variables.

The next lemma is proved using the closure properties of bijunctive, Horn,
and dual Horn relations. (We skip the easy proof).

Lemma 1 Let R be a logical relation.
(1) If R is bijunctive, then R is componentwise bijunctive.
(2) If R is Horn, then R is OR-free.
(3) If R is dual Horn, then R is NAND-free.
(4) If R is affine, then R is componentwise bijunctive, OR-free, and NAND-free.

These containments are proper. For instance, R1/3 = {100, 010, 001} is com-
ponentwise bijunctive, but not bijunctive as maj(100, 010, 001) = 000 6∈ R1/3.

We are now ready to introduce the key concept of a tight set of relations.

Definition 4 A set S of logical relations is tight if at least one of the following
three conditions holds: (1) Every relation in S is componentwise bijunctive; (2)
Every relation in S is OR-free; (3) Every relation in S is NAND-free.

In view of Lemma 1, if S is Schaefer, then it is tight. The converse, however,
does not hold. It is also easy to see that there is a polynomial-time algorithm for
testing whether a given finite set S of logical relations is tight. Our first main
result is a dichotomy theorem for the computational complexity of st-Conn(S).

Theorem 2 Let S be a finite set of logical relations. If S is tight, then st-
Conn(S) is in P; otherwise, Conn(S) is PSPACE-complete.

Our second main result asserts that the dichotomy in the computational
complexity of st-Conn(S) is accompanied by a parallel structural dichotomy in
the size of the diameter of G(ϕ) (where, for a CNF(S)-formula ϕ, the diameter
of G(ϕ) is the maximum of the diameters of the components of G(ϕ)).

Theorem 3 Let S be a finite set of logical relations. If S is tight, then for every
CNF(S)-formula ϕ, the diameter of G(ϕ) is linear in the number of variables
of ϕ; otherwise, there are CNF(S)-formulas ϕ such that the diameter of G(ϕ)
is exponential in the number of variables of ϕ.

Our third main result establishes a dichotomy for the complexity of Conn(S).

Theorem 4 Let S be a finite set of logical relations. If S is tight, then Conn(S)
is in coNP; otherwise, it is PSPACE-complete.

We also show that if S is tight, but not Schaefer, then Conn(S) is coNP-
complete. Our results and their comparison to Schaefer’s Dichotomy Theorem
are summarized in the table below.



S Sat(S) st-Conn(S) Conn(S) Diameter
Schaefer in P in P in coNP O(n)
Tight, not Schaefer NP-compl. in P coNP-compl. O(n)
Not tight NP-compl. PSPACE-compl. PSPACE-compl. 2Ω(

√
n)

As an application, the set S = {R1/3}, where R1/3 = {100, 010, 001}, is tight,
but not Schaefer. It follows that Sat(S) is NP-complete (recall that this problem
is Positive 1-in-3 Sat), st-Conn(S) is in P, and Conn(S) is coNP-complete.
Consider also the set S = {RNAE}, where RNAE = {0, 1}3 \ {000, 111}. This set
is not tight, hence Sat(S) is NP-complete (this problem is Positive Not-All-
Equal 3-Sat), while both st-Conn(S) and Conn(S) are PSPACE-complete.

We conjecture that if S is Schaefer, then Conn(S) is in P. If this conjecture
is true, it will follow that the complexity of Conn(S) exhibits a trichotomy : if S
is Schaefer, then Conn(S) is in P; if S is tight, but not Schaefer, then Conn(S)
is coNP-complete; if S is not tight, then Conn(S) is PSPACE-complete.

3 The Easy Cases of Connectivity

In this section, we determine the complexity of Conn(S) and st-Conn(S) for
tight sets S of logical relations, and also show that for such sets, the diameter of
G(ϕ) of CNF(S)-formula ϕ is linear. We prove only the key structural properties
of tight relations here, and defer the rest to the full version.

We will use a,b, . . . to denote Boolean vectors, and x and y to denote vectors
of variables. We write |a| to denote the Hamming weight (number of 1’s) of a
Boolean vector a. Given two Boolean vectors a and b, we write |a−b| to denote
the Hamming distance between a and b. Finally, if a and b are solutions of
a Boolean formula ϕ and lie in the same component of G(ϕ), then we write
dϕ(a,b) to denote the shortest-path distance between a and b in G(ϕ).

3.1 The st-Conn Problem for Tight Sets

Lemma 2 Let S be a set of componentwise bijunctive relations and ϕ a CNF(S)-
formula. If a and b are two solutions of ϕ that lie in the same component of
G(ϕ), then dϕ(a,b) = |a− b|.

Proof. (Sketch) Consider first the special case in which every relation in S is
bijunctive. In this case, ϕ is equivalent to a 2-CNF formula and so the space of
solutions of ϕ is closed under maj. We show that there is a path in G(ϕ) from
a to b, such that along the path only the assignments on variables with indices
from the set D = {i : ai 6= bi} change. This implies that the shortest path is of
length |D| by induction on |D|. Consider any path a → u1 → · · · → ur → b
in G(ϕ). We construct another path by replacing ui by vi = maj (a,ui,b) for
i = 1, . . . , r, and removing repetitions. This path has the desired property.

For the general case, it can be shown that every component F of G(ϕ) is the
solution space of a 2-CNF formula ϕ′. If C is a clause of ϕ involving a relation R



in S, then the projection of F on the variables of C is contained in a component
of R. Then the formula ϕ′ is obtained from ϕ as follows: replace each clause
C of ϕ by a 2-CNF formula expressing the component of R that contains the
projection of F on the variables of C. ut
Corollary 1 Let S be a set of componentwise bijunctive relations. Then (1) for
every ϕ ∈ CNF(S) with n variables, the diameter of each component of G(ϕ) is
bounded by n; (2) st-Conn(S) is in P; and (3) Conn(S) is in coNP.

Next, we consider sets of OR-free relations (sets of NAND-free relations are
handled dually). Define the coordinate-wise partial order ≤ on Boolean vectors
as follows: a ≤ b if ai ≤ bi, for each i.

Lemma 3 Let S be a set of OR-free relations and ϕ a CNF(S)-formula. Every
component of G(ϕ) contains a minimum solution with respect to the coordinate-
wise order; moreover, every solution is connected to the minimum solution in
the same component via a monotone path.

Proof. Suppose there are two distinct minimal assignments u and u′ in some
component of G(ϕ). Consider the path between them where the maximum Ham-
ming weight of assignments on the path is minimized. If there are many such
paths, pick one where the smallest number of assignments have the maximum
Hamming weight. Denote this path by u = u1 → u2 · · · → ur = u′. Let ui be the
assignment of largest Hamming weight in the path. Then ui 6= u and ui 6= u′,
since u and u′ are minimal. The assignments ui−1 and ui+1 differ in exactly 2
variables, say, in x1 and x2. So {ui−1

1 ui−1
2 , ui

1u
i
2, ui+1

1 ui+1
2 } = {01, 11, 10}. Let

û be such that û1 = û2 = 0, and ûi = ui for i > 2. If û is a solution, then the
path u1 → u2 → · · · → ui → û → ui+1 → · · · → ur contradicts the way we
chose the original path. Therefore, û is not a solution. This means that there
is a clause that is violated by it, but is satisfied by ui−1, ui, and ui+1. So the
relation corresponding to that clause is not OR-free, which is a contradiction.

The unique minimal solution in a component is its minimum solution. Fur-
thermore, starting from any assignment s in the component, and repeatedly
flipping variables from 1 to 0 provides a monotone path to the minimum. ut
Corollary 2 Let S be a set of OR-free relations. Then (1) For every ϕ ∈
CNF(S) with n variables, the diameter of each component of G(ϕ) is bounded
by 2n; (2) st-Conn(S) is in P; and (3) Conn(S) is in coNP.

4 The PSPACE-Complete Cases of Connectivity

If k ≥ 2, then a k-clause is a disjunction of k variables or negated variables.
For 0 ≤ i ≤ k, let Di be the set of all satisfying truth assignments of the k-
clause whose first i literals are negated, and let Sk = {D0, D1, . . . , Dk}. Thus,
CNF(Sk) is the collection of k-CNFformulas.

The starting point of the proof is to show that Conn(S3) and st-Conn(S3)
are PSPACE-complete. The proof is fairly intricate, and is via a direct reduction



from the computation of a polynomial-space Turing machine. We also show that
3-CNF formulas can have exponential diameter, by inductively constructing a
path of length at least 2

n
2 on n variables and then identifying it with the solution

space of a 3-CNF formula with O(n2) clauses.

Lemma 4 st-Conn(S3) and Conn(S3) are PSPACE-complete.

Lemma 5 For n even, there is a 3-CNF formula ϕn with n variables and O(n2)
clauses, such that G(ϕn) is a path of length greater than 2

n
2 .

4.1 Faithful Expressibility

From here onwards, all our hardness results are proved by showing that if S is a
non-tight set, then every 3-clause is expressible from S in a certain special way
that we describe next. In his dichotomy theorem, Schaefer [1] used the following
notion of expressibility: a relation R is expressible from a set S of relations if
there is a CNF(S)-formula ϕ so that R(x) ≡ ∃y ϕ(x,y). This notion, is not
sufficient for our purposes. Instead, we introduce a more delicate notion, which
we call faithful expressibility. Intuitively, we view the relation R as a subgraph of
the hypercube, rather than just a subset, and require that this graph structure
be also captured by the formula ϕ.

Definition 5 A relation R is faithfully expressible from a set of relations S if
there is a CNF(S)-formula ϕ such that:

(1) R = {a : ∃y ϕ(a,y)};
(2) For every a ∈ R, the graph G(ϕ(a,y)) is connected;
(3) For a,b ∈ R with |a − b| = 1, there exists a w such that (a,w) and

(b,w) are solutions of ϕ.

For a ∈ R, the witnesses of a are the y’s such that ϕ(a,y). The last two
conditions say that the witnesses of a ∈ R are connected, and that neighboring
a,b ∈ R have a common witness. This allows us to simulate an edge (a,b)
in G(R) by a path in G(ϕ), and thus relate the connectivity properties of the
solution spaces. There is however, a price to pay: it is much harder to come up
with formulas that faithfully express a relation R. An example is when S is the
set of all paths of length 4 in {0, 1}3, a set that plays a crucial role in our proof.
While S3 is easily expressible from S in Schaefer’s sense, the CNF(S)-formulas
that faithfully express S3 are fairly complicated and have a large witness space.

Lemma 6 Let S and S′ be sets of relations such that every R ∈ S is faith-
fully expressible from S′. Given a CNF(S)-formula ψ(x), one can efficiently
construct a CNF(S′)-formula ϕ(x,y) such that:

(1) ψ(x) ≡ ∃y ϕ(x,y);
(2) if (s,ws), (t,wt) ∈ ϕ are connected in G(ϕ) by a path of length d, then

there is a path from s to t in G(ψ) of length at most d;
(3) If s, t ∈ ψ are connected in G(ψ), then for every witness ws of s, and

every witness wt of t, there is a path from (s,ws) to (t,wt) in G(ϕ).



Proof. Suppose ψ is a formula on n variables that consists of m clauses C1, . . . , Cm.
For clause Cj , assume that the set of variables is Vj ⊆ [n], and that it involves
relation Rj ∈ S. Thus, ψ(x) is ∧m

j=1Rj(xVj
). Let ϕj be the faithful expression for

Rj from S′, so that Rj(xVj ) ≡ ∃yj ϕj(xVj ,yj). Let y be the vector (y1, . . . ,ym)
and let ϕ(x,y) be the formula ∧m

j=1ϕj(xVj ,yj). Then ψ(x) ≡ ∃y ϕ(x,y).
Statement (2) follows from (1) by projection of the path on the coordinates

of x. For statement (3), consider s, t ∈ ψ that are connected in G(ψ) via a path
s = u0 → u1 → · · · → ur = t . For every ui,ui+1, and clause Cj , there exists an
assignment wi

j to yj such that both (ui
Vj ,w

i
j) and (ui+1

Vj ,w
i
j) are solutions

of ϕj , by condition (2) of faithful expressibility. Thus (ui,wi) and (ui+1,wi) are
both solutions of ϕ, where wi = (wi

1, . . .wi
m). Further, for every ui, the space of

solutions of ϕ(ui,y) is the product space of the solutions of ϕj(ui
Vj ,yj) over j =

1, . . . , m. Since these are all connected by condition (3) of faithful expressibility,
G(ϕ(ui,y)) is connected. The following describes a path from (s,ws) to (t,wt)
in G(ϕ): (s,ws) Ã (s,w0) → (u1,w0) Ã (u1,w1) → · · · Ã (ur−1,wr−1) →
(t,wr−1) Ã (t,wt). Here Ã indicates a path in G(ϕ(ui,y)). ut

Corollary 3 Suppose S and S′ are as in Lemma 6.
(1) There are polynomial time reductions from Conn(S) to Conn(S′), and from
st-Conn(S) to st-Conn(S′).
(2) Given a CNF(S)-formula ψ(x) with m clauses, one can efficiently construct
a CNF(S′)-formula ϕ(x,y) such that the length of y is O(m) and the diameter
of the solution space does not decrease.

4.2 Expressing 3-clauses from non-tight Sets of Relations

In order prove Theorems 2, 3 and 4, it suffices to prove the following Lemma:

Lemma 7 If set S of relations is non-tight, S3 is faithfully expressible from S.

First, observe that all 2-clauses are faithfully expressible from S. There exists
R ∈ S which is not OR-free, so we can express (x1∨x2) by substituting constants
in R. Similarly, we can express (x̄1∨ x̄2) using a relation that is not NAND-free.
The last 2-clause (x1 ∨ x̄2) can be obtained from OR and NAND by a technique
that corresponds to reverse resolution. (x1 ∨ x̄2) = ∃y (x1 ∨ y) ∧ (ȳ ∨ x̄2). It is
easy to see that this gives a faithful expression. From here onwards we assume
that S contains all 2-clauses. The proof now proceeds in four steps.

Step 1: Faithfully expressing a relation in which some distance expands.
For a relation R, we say that the distance between a and b expands if a and b
are connected in G(R), but dR(a,b) > |a−b|. By Lemma 2 no distance expands
in componentwise bijunctive relations. This property also holds for the relation
RNAE = {0, 1}3 \ {000, 111}, which is not componentwise bijunctive. However,
we show that if Q is not componentwise bijunctive, then, by adding 2-clauses, we
can faithfully express a relation Q′ in which some distance expands. For instance,
when Q = RNAE, then we can take Q′(x1, x2, x3) = RNAE(x1, x2, x3)∧ (x̄1∨ x̄3).
The distance between a = 100 and b = 001 in Q′ expands. Similarly, in the
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Fig. 1. Proof of Lemma 8

general construction, we identify a and b on a cycle, and add 2-clauses that
eliminate all the vertices along the shorter arc between a and b.
Step 2: Expressing a path of length r + 2 between assignments at distance r.
The relation Q′ obtained in Step 1 may have several disconnected components.
This cleanup step isolates a pair of assignments whose distance expands. By
adding 2-clauses, we obtain a relation T that consists of a pair of assignments
a,b of Hamming distance r and a path of length r + 2 between them.

Step 3: Faithfully expressing paths of length 4.
Let P denote the set of all ternary relations whose graph is a path of length 4
between two assignments at Hamming distance 2. Up to permutations of coor-
dinates, there are 6 such relations. Each of them is the conjunction of a 3-clause
and a 2-clause. For instance, the relation M = {100, 110, 010, 011, 001} can be
written as of (x1∨x2∨x3)∧(x̄1∨ x̄3). These relations are “minimal” examples of
relations that are not componentwise bijunctive. By projecting out intermediate
variables from the path T obtained in Step 2, we faithfully express one of the
relations in P . We faithfully express other relations in P using this relation.

Step 4: Faithfully expressing S3.
We faithfully express (x1 ∨ x2 ∨ x3) from M using a formula derived from a
gadget in [19]. This gadget expresses (x1 ∨x2 ∨x3) in terms of “Protected OR”,
which corresponds to our relation M . From this, we express the other 3-clauses.

Lemma 8 There exist a CNF(S)-definable relation Q′ and a,b ∈ Q′ such that
the distance between them expands.

Proof. Since S is not tight, it contains a relation Q which is not component-
wise bijunctive. If Q contains a,b where the distance between them expands,
we are done. So assume that for all a,b ∈ G(Q), dQ(a,b) = |a− b|. Since Q is
not componentwise bijunctive, there exists a triple of assignments a,b, c lying
in the same component such that maj(a,b, c) is not in that component (which
also easily implies it is not in Q). Choose the triple such that the sum of pair-
wise distances dQ(a,b) + dQ(b, c) + dQ(c,a) is minimized. Let U = {i|ai 6= bi},
V = {i|bi 6= ci}, and W = {i|ci 6= ai}. Since dQ(a,b) = |a− b|, a shortest path
does not flip variables outside of U , and each variable in U is flipped exactly
once. We note some useful properties of the sets U, V, W .



1) Every index i ∈ U ∪ V ∪W occurs in exactly two of U, V, W .
Consider going by a shortest path from a to b to c and back to a. Every
i ∈ U ∪ V ∪W is seen an even number of times along this path since we return
to a. It is seen at least once, and at most thrice, so in fact it occurs twice.
2) Every pairwise intersection U ∩ V, V ∩W and W ∩ U is non-empty.
Suppose the sets U and V are disjoint. From Property 1, we must have W =
U ∪ V . But then it is easy to see that maj(a,b, c) = b which is in Q. This
contradicts the choice of a,b, c.
3)The sets U ∩ V and U ∩W partition the set U .
By Property 1, each index of U occurs in one of V and W as well. Also since no
index occurs in all three sets U, V, W this is in fact a disjoint partition.
4)For each index i ∈ U ∩W , it holds that a⊕ ei 6∈ Q.
Assume for the sake of contradiction that a′ = a⊕ ei ∈ R. Since i ∈ U ∩W we
have simultaneously moved closer to both b and c. Hence dQ(a′,b)+dQ(b, c)+
dQ(c,a′) < dQ(a,b)+dQ(b, c)+dQ(c,a). Also maj(a′,b, c) = maj(a,b, c) 6∈ Q.
But this contradicts our choice of a,b, c.

Property 4 implies that the shortest paths to b and c diverge at a, since
for any shortest path to b the first variable flipped is from U ∩ V whereas for
a shortest path to c it is from W ∩ V . Similar statements hold for the vertices
b and c. Thus along the shortest path from a to b the first bit flipped is from
U ∩V and the last bit flipped is from U ∩W . On the other hand, if we go from a
to c and then to b, all the bits from U∩W are flipped before the bits from U∩V .
We use this crucially to define Q′. We will add a set of 2-clauses that enforce the
following rule on paths starting at a: Flip variables from U ∩W before variables
from U ∩ V . This will eliminate all shortest paths from a to b since they begin
by flipping a variable in U ∩ V and end with U ∩W . The paths from a to b via
c survive since they flip U ∩W while going from a to c and U ∩ V while going
from c to b. However all remaining paths have length at least |a− b|+ 2 since
they flip twice some variables not in U .

Take all pairs of indices {(i, j)|i ∈ U ∩W, j ∈ U ∩ V }. The following condi-
tions hold from the definition of U, V, W : ai = c̄i = b̄i and aj = cj = b̄j . Add
the 2-clause Cij asserting that the pair of variables xixj must take values in
{aiaj , cicj , bibj} = {aiaj , āiaj , āiāj}. The new relation is Q′ = Q ∧i,j Cij . Note
that Q′ ⊂ Q. We verify that the distance between a and b in Q′ expands. It is
easy to see that for any j ∈ U , the assignment a⊕ ej 6∈ Q′. Hence there are no
shortest paths left from a to b. On the other hand, it is easy to see that a and
b are still connected, since the vertex c is still reachable from both. ut

Due to space constraints, all remaining proofs are in the full version.

5 Discussion and Open Problems

In Section 2, we conjectured a trichotomy for Conn(S). We have made progress
towards this conjecture; what remains is to pinpoint the complexity of Conn(S)
when S is Horn or dual-Horn. We can extend our dichotomy theorem for st-
connectivity to formulas without constants; the complexity of connectivity for



formulas without constants is open. We conjecture that when S is not tight, one
can improve the diameter bound from 2Ω(

√
n) to 2Ω(n). Finally, we believe that

our techniques can shed light on other connectivity-related problems, such as
approximating the diameter and counting the number of components.
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