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ABSTRACT
Data exchange is the problem of transforming data structured under a source
schema into data structured under a target schema in such a way that all con-
straints of a schema mapping are satisfied. At the heart of data exchange,
lies a basic decision problem, called the existence-of-solutions problem:
given a source instance, is there a target instance that satisfies the constraints
of the schema mapping at hand? Earlier work showed that for schema map-
pings specified by embedded implicational dependencies, this problem is
solvable in polynomial time, assuming that (1) the schema mapping is kept
fixed and (2) the constraints of the schema mapping satisfy a certain struc-
tural condition, called weak acyclicity.

We investigate the effect of these assumptions on the complexity of the
existence-of-solutions problem, and show that each one is indispensable in
deriving polynomial-time algorithms for this problem. Specifically, using
machinery from universal algebra, we show that if the weak acyclicity as-
sumption is relaxed even in a minimal way, then the existence-of-solutions
problem becomes undecidable. We also show that if, in addition to the
source instance, the schema mapping is part of the input, then the existence-
of-solutions problem becomes EXPTIME-complete. Thus, there is a prov-
able exponential gap between the data complexity and the combined com-
plexity of data exchange. Finally, we study restricted classes of schema
mappings and develop a comprehensive picture for the combined complex-
ity of the existence-of-solutions problem for these restrictions. In particular,
depending on the restriction considered, the combined complexity of this
problem turns out to be either EXPTIME-complete or coNP-complete.
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1. INTRODUCTION
Data exchange is the problem of transforming data structured un-

der a schema, called the source schema, to data structured under a
different schema, called the target schema. Even though data ex-
change is regarded as the “oldest database problem” [4], it is only
in the past few years that a systematic study of data exchange in
its own right has been carried out. The semantics and fundamen-
tal algorithmic issues in data exchange between relational schemas
were first investigated in [12] and explored further in [13, 14, 15,
23]; data exchange between XML schemas was studied in [25, 1].

Data exchange has been formalized using the concept of a schema
mapping, a concept that has also been widely used in data integra-
tion (see the survey [22]). By definition, a schema mapping (also
called a data exchange setting) is a quadrupleM = (S,T,Σst,Σt),
where S is a source schema, T is a target schema, Σst is a set
of constraints between S and T, and Σt is a set of constraints on
T. Every schema mappingM gives rise to the following data ex-
change problem: given a source instance I , construct a solution for
I , that is, a target instance J such that the pair (I, J) satisfies ev-
ery constraint in Σst ∪ Σt. In general, no solution may exist for
a given source instance I . Thus, the first component of the data
exchange problem forM is the following decision problem, called
the existence-of-solutions problem forM: given a source instance
I , does a solution for I exist? Even if a solution for I exists, how-
ever, it need not be unique. Thus, the second component of the
data exchange problem is to “sort out” the solutions (when they
exist) and return a “good” solution that reflects the source data as
accurately as possible.

In [12], the data exchange problem was studied for schema map-
pingsM = (S,T,Σst,Σt) in which Σst is a finite set of source-
to-target tuple generating dependencies (in short, s-t tgds) and Σt is
a finite set of target tuple-generating dependencies (in short, target
tgds) and target equality-generating dependencies (in short, target
egds). By definition, a s-t tgd is a first-order formula of the form
∀x(ϕ(x)→ (∃y)ψ(x,y)), where ϕ(x) is a conjunction of atoms
over S and ψ(x,y) is a conjunction of atoms over T. Similarly,
a target tgd is a formula of the same form in which both ϕ(x) and
ψ(x,y) are conjunctions of atoms over T. Finally, a target egd
is a formula of the form ∀x(χ(x) → xi = xj), where χ(x) is a
conjunction of atoms over T and xi, xj are variables in x. Note
that, taken together, tgds and egds have the same expressive power
as embedded implicational dependencies [11].

The concept of a universal solution was introduced in [12] and
a case was made that universal solutions are the preferred “good”
solutions in data exchange. After this, it was shown that if the
constraints of a schema mapping satisfy a certain acyclicity condi-
tion, then the existence-of-solutions problem is tractable and uni-
versal solutions are efficiently computable. More precisely, ifM
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= (S,T,Σst,Σt) is a fixed schema mapping such that Σst is a
set of s-t tgds and Σt is the union of a set of target egds with a
weakly acyclic set of target tgds, then there is a polynomial-time
algorithm with the following property: given a source instance I ,
the algorithm determines whether or not a solution for I exists and,
if so, it constructs a particular universal solution for I . Note that
weakly acyclic sets of tgds contain as special cases both acyclic
sets of inclusion dependencies [6] and sets of full tuple-generating
dependencies (full tgds) [3], where a full tgd is a tgd of the form
∀x(ϕ(x) → ψ(x)) (that is, no existential quantifiers occur in the
right-hand side).

In this paper, we explore the complexity of data exchange by
investigating two different issues. The first is: How critical is
the weak acyclicity assumption in obtaining the above polynomial-
time results for data exchange? Specifically, do these results hold
for schema mappings that satisfy conditions less stringent than weak
acyclicity? The second issue is the combined complexity of data ex-
change. The polynomial-time results assume a fixed schema map-
ping, and so they are about the data complexity of data exchange.
Do these results still hold when the schema mapping itself is part
of the input? If not, how do they change? In particular, what is the
complexity of the existence-of-solutions problem when the input
consists of both a schema mappingM and a source instance I?

Our first main result asserts that there is a fixed schema map-
pingM∗ = (S∗,T∗,Σ∗

st,Σ
∗
t ) such that the existence-of-solutions

problem forM∗ is undecidable. Moreover, M∗ is such that Σ∗
st

consists of a single full s-t tgd and Σ∗
t consists of one target egd,

one full target tgd, and one non-weakly acyclic target tgd. This re-
sult shows that weak acyclicity is indispensable for the tractability
of the existence-of-solution problem; in fact, since every set of full
tgds is weakly acyclic, our result implies that adding just one non-
weakly acyclic target tgd to a set of target egds and full target tgds
may cause a dramatic jump from polynomial-time solvability to
algorithmic unsolvability. The undecidability of the existence-of-
solutions problem forM∗ is obtained via a reduction from the em-
bedding problem for finite semigroups: given a finite partial semi-
group, is it embeddable in a finite semigroup? In turn, the unde-
cidability of the embedding problem for finite semigroups follows
from the undecidability of the word problem for finite semigroups,
due to Gurevich [19], and an intimate connection between the solv-
ability of the word problem and the solvability of the embedding
problem, discovered by Evans [9]. It is perhaps worth pointing out
that the undecidability of various word problems has been used in
the past to establish the undecidability of the implication problem
for various classes of database dependencies (see, for instance, [2,
20]). To the best of our knowledge, this is the first time that the
embedding problem is being used to obtain undecidability results
in database theory.

Vardi [27] developed a useful taxonomy for categorizing the com-
plexity of problems that involve formulas and databases, such as the
query evaluation problem. If the input consists of both a formula
and a database, then we talk about the combined complexity of the
problem. By fixing the formula, however, we obtain a family of al-
gorithmic problems (one for each fixed formula) in which the input
is just a database; in this case, we talk about the data complexity of
each of these problems. As a general rule, the combined complex-
ity is higher than the data complexity. For instance, the combined
complexity of conjunctive query evaluation is NP-complete, while
the data complexity of evaluating a fixed conjunctive query is in
LOGSPACE. Actually, the gap may be even higher: the combined
complexity of first-order query evaluation is PSPACE-complete,
while the data complexity of evaluating a fixed first-order query
is in LOGSPACE.

Vardi’s taxonomy makes sense in the context of data exchange,
since this problem involves two parameters: schema mappings and
source instances. As stated earlier, the complexity-theoretic analy-
sis of data exchange in [12] focused exclusively on data complexity,
since it was carried out under the assumption that the schema map-
ping is kept fixed. This is perfectly meaningful in applications in
which the same schema mapping is repeatedly used to move data
from a fixed source schema to a fixed target schema. In many appli-
cations, however, the schema mappings change frequently, because
the constraints between the two schemas tend to change or because
the schemas themselves tend to evolve over time. In turn, this calls
for an investigation of the combined complexity of data exchange.

Clearly, if we allow arbitrary schema mappings as part of the in-
put, then the existence-of-solutions problem is undecidable, since,
as described above, this problem may be undecidable even for a
fixed schema mapping in which the set of target tgds is not weakly
acyclic. For this reason, we focus on the combined complexity of
the existence-of-solutions problem for the class C of all schema
mappingsM = (S,T,Σst,Σt) in which Σst is a finite set of s-t
tgds and Σt is the union of a finite set of target egds with a finite
weakly acyclic set of target tgds. By inspecting the proofs in [12],
it is easy to see that the combined complexity of the existence-
of-solutions problem for C is in EXPTIME. Here, we establish a
matching lower bound by showing that this problem is EXPTIME-
complete. Since PTIME �= EXPTIME, this result shows that
there is a provable gap between the data complexity and the com-
bined complexity of data exchange. As a matter of fact, the com-
bined complexity of the existence-of-solutions problem remains
EXPTIME-complete even for the class of all schema mappings
M = (S,T,Σst,Σt) in which Σst is a set of full s-t tgds and Σt is
the union of a set of target egds with a set of full target tgds. These
hardness results are proved via rather delicate reductions from the
combined complexity of Datalog sirups (single-rule Datalog pro-
grams), which was shown to be EXPTIME-complete by Gottlob
and Papadimitriou [16].

After this, we study the combined complexity of the existence-
of-solutions problem for restricted classes of schema mappings and
develop a comprehensive picture that is summarized in Tables 1
and 2. In particular, the combined complexity of this problem can
be EXPTIME-complete even if the source schema and the target
schema are fixed, Σst is fixed and consists of full s-t tgds, while Σt

varies and consists of one target egd and one non-full target tgd. In
contrast, if the source and the target schemas are fixed, Σst varies
and consists of full s-t tgds, and Σt varies and consists of target
egds and full target tgds, then the existence-of-solutions problem
is always in coNP; moreover, it can be coNP-complete for fixed
source and target schemas, and a fixed set Σst of full s-t tgds.

2. BACKGROUND
A schema is a finite collection R = (R1, . . . , Rk) of relation

symbols, each of a fixed arity. An instance I over R is a sequence
(RI

1, . . . , R
I
k) such that eachRI

i is a finite relation of the same arity
as Ri. We shall often use Ri to denote both the relation symbol
and the relation RI

i that interprets it. Given a tuple t, we denote by
R(t) the association between t and the relation R where it occurs.
Let S = (S1, . . . , Sn) and T = (T1, . . . , Tm) be two disjoint
schemas. We refer to S as the source schema and to T as the target
schema. Instances over S are called source instances, and instances
over T are called target instances.

In this paper, we consider schema mappings of the formM =
(S,T,Σst,Σt), where S is a source schema, T is a target schema,
Σst is a finite set of s-t tgds, and Σt is the union of a finite set target
tgds with a finite set of target egds. As described in Section 1, if
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Schema Mapping Existence-of-Solutions Problem

Data Fixed, set of target tgds is arbitrary Can be undecidable
Complexity Fixed, set of target tgds is weakly acyclic In PTIME; can be PTIME-complete
Combined Varies, set of target tgds is weakly acyclic In EXPTIME; can be EXPTIME-complete
Complexity Schemas are fixed, constraints vary, all tgds are full In coNP; can be coNP-complete

Table 1: Complexity of Data Exchange

I is a source instance, then a solution for I is a target instance J
such that the pair (I, J) satisfies every constraint in Σst ∪Σt. The
data exchange problem associated withM asks, given a source in-
stance I , to construct a solution J for I . The existence-of-solutions
problem forM asks: given a source instance I , does a solution for
I exist? Clearly, this decision problem underlies the data exchange
problem itself, and any algorithm for the data exchange problem
will also solve the existence-of-solutions problem. Observe that if
Σt = ∅, then every source instance has a solution. The situation,
however, changes if target constraints are present.

EXAMPLE 2.1. LetM = (S,T,Σst,Σt) be the schema map-
ping in which S = {E}, T = {F}, and

Σst = {E(x, z) → ∃y(F (x, y) ∧ F (y, z))}
Σt = {F (x, y) ∧ F (y, z) → F (x, z),

F (x, u) ∧ F (x, v) → u = v}

Note that the universal quantifiers were omitted in the above con-
straints; in the sequel, we will often do this, and implicitly assume
such quantification. The source instance I = {E(1, 2)} has a so-
lution J = {F (1, 2), F (2, 2)}. In contrast, no solution exists for
the source instance I′ = {E(1, 2), E(2, 1)}.

We now give the definition of a weakly acyclic set of target tgds.
This crucial concept was formulated by A. Deutsch and L. Popa in
2001, and independently used in [12] and [7] (in the latter paper,
under the term constraints with stratified witness).

DEFINITION 2.2. Let Σ be a set of tgds over a schema T. Con-
struct a directed graph, called the dependency graph, as follows:

(i) Nodes: For every pair (R, A) with R a relation symbol of the
schema and A an attribute of R, there is a distinct node; call such a
pair (R, A) a position (here, the attributes of R are identified with
natural numbers between 1 and m, where m is the arity of R).

(ii) Edges: For every tgd φ(x) → ∃yψ(x,y) in Σ and for ev-
ery x in x that occurs in ψ, and for every occurrence of x in φ in
position (R, Ai):

1. For every occurrence of x in ψ in position (S, Bj ), add an
edge (R,Ai)→ (S,Bj) (if it does not already exist).

2. In addition, for every existentially quantified variable y and
for every occurrence of y in ψ in position (T ,Ck), add a spe-
cial edge (R,Ai) → (T,Ck) (if it does not already exists).
Note that there may be two edges in the same direction be-
tween two nodes but exactly one of the two edges is special.

• We say that Σ is weakly acyclic if the dependency graph has
no cycle going through a special edge.
•We say that a tgd θ is weakly acyclic if the singleton set {θ} is

weakly acyclic.

EXAMPLE 2.3. The tgdE(x, y)→ ∃z E(x, z) is weakly acyclic;
in contrast, the tgd E(x, y) → ∃z E(y, z) is not, because the de-
pendency graph contains a special self-loop (see Figure 1).

E,1 E,2 E,1 E,2

Figure 1: The dependency graphs of E(x, y)→ ∃zE(x, z) and
E(x, y)→ ∃zE(y, z). Special edges are shown in dotted lines.

Since no existentially quantified variables occur in full tgds, ev-
ery set of full tgds is weakly acyclic. Note also that if W1 and W2

are two weakly acyclic sets of tgds, then their union W1∪W2 need
not be weakly acyclic.

In [12], it was shown that weak acyclicity is a sufficient condition
for the tractability of the data exchange problem; in particular, it is a
sufficient condition for the tractability of the existence-of-solutions
problem. The precise result is stated next.

THEOREM 2.4. ([12]) LetM = (S,T,Σst,Σt) be a schema
mapping such that Σst is a set of s-t tgds and Σt is the union of
a set of target egds with a weakly acyclic set of target tgds. Then,
there is an algorithm that is based on the chase procedure and has
the following properties:

(1) Given a source instance I , the algorithm determines whether
a solution for I exists and, if so, it constructs a solution for I (in
fact, it constructs a universal solution).

(2) The running time of the algorithm is bounded by a polynomial
in the size of the source instance I .

Note that if M = (S,T,Σst,Σt) is a schema mapping such
that Σt is a weakly acyclic set of target tgds (in particular, Σt con-
tains no target egds), then the existence-of-solutions problem for
M is trivial, because it is easy to see that in this case every source
instance has a solution. It follows that if Σt is a set of full target
tgds, then the existence-of-solutions problem forM is trivial.

3. DATA COMPLEXITY
The preceding Theorem 2.4 is a result about the data complexity

of data exchange, because the schema mapping M is assumed to
be fixed. In this section, we investigate the data complexity of data
exchange in more depth. We begin with a simple, yet illuminating,
result.

3.1 PTIME-Completeness
Computational complexity theory has unveiled fine distinctions

between polynomial-time solvable problems. In particular, it has
been shown that there exist PTIME-complete problems, that is to
say, decision problems that are polynomial-time solvable and have
the property that every polynomial-time solvable problem is re-
ducible to them via a logarithmic-space reduction. The significance
of this is that PTIME-complete problems are regarded as inher-
ently sequential, thus they can not be solved dramatically faster
using parallel algorithms (see [24, 18]). Here, we observe that the
existence-of-solutions problem may be PTIME-complete, even for
schema mappings that satisfy the conditions of Theorem 2.4.
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PROPOSITION 3.1. There exists a schema mapping M′=(S′,
T′, Σ′

st, Σ′
t) with the following properties: (1) Σ′

st is a set of
full s-t tgds; (2) Σ′

t is a set of full target tgds and a single target
egd; and (3) the existence-of-solutions problem forM′ is PTIME-
complete.

PROOF. (Sketch) We will exhibit a logarithmic-space reduction
from HORN 3SAT, the satisfiability problem for Horn formulas
with at most three literals per clause; this problem is well known to
be PTIME-complete (see [18]).

Let M′=(S′, T′,Σ′
st,Σ

′
t) be the following schema mapping.

The source schema S′ consists of two ternary relational symbols
P , N , and a unary relational symbol V . The target schema T′
consists of two ternary relational symbols P ′, N ′, and three unary
relational symbols V ′, M ′, W ′. The constraints are:

Σst : P (x, y, z) → P ′(x, y, z)
N(x, y, z) → N ′(x, y, z)
V (x) → V ′(x)

Σt : W ′(u) ∧ W ′(v) → u = v
P ′(x, x, x) → M ′(x)
P ′(x, y, z) ∧ M ′(y) ∧ M ′(z) → M ′(x)
N ′(x, y, z) ∧ M ′(x) ∧ M ′(y) ∧ M ′(z) ∧ V ′(u) → W ′(u)

Given a Horn 3CNF-formula ϕ, construct a source instance I(ϕ)
in which P and N encode the clauses of ϕ as follows: P (x, y, z)
iff (x ∨ ¬y ∨ ¬z); similarly, N(x, y, z) iff (¬x ∨ ¬y ∨ ¬z). Unit
positive clauses (x ∨ x ∨ x) are encoded by P (x, x, x). Finally,
let V = {0, 1}. It is not hard to show that ϕ is satisfiable if and
only there is a solution for the source instance I(ϕ). Intuitively, the
constraints in Σ′

t simulate the unit propagation algorithm, which is
correct and complete for Horn satisfiability.

3.2 Undecidability
In this section, we establish one of the main results of this pa-

per. Specifically, we show that if the set of target tgds of a schema
mappingM is not weakly acyclic, then the existence-of-solutions
problem forMmay very well be undecidable. Thus, that the weak
acyclicity assumption is of the essence in obtaining a polynomial-
time algorithm for the existence-of-solutions problem.

Before stating and proving our undecidability result, we need a
fair amount of background from universal algebra.

An algebra is a structure A of the form A = (A, f1, . . . , fm)
such that A is a non-empty set, called the domain of A, and each
fi is a function from some power Aki of A to A. The signature of
an algebra A = (A, f1, . . . , fm) is the tuple (k1, . . . , km) where
ki is the arity of the function fi, 1 ≤ i ≤ m. A finite algebra is
an algebra whose domain is a finite set. For example, a semigroup
is an algebra A = (A, f) such that f is an associative binary func-
tion on A; this means that, for every a, b, c ∈ A, we have that
f(f(a, b), c) = f(a, f(b, c)).

An identity (or equation) is a formula of the form ∀x(s = t),
where s and t are terms built from variables in x and function sym-
bols. For example, ∀x∀y∀z(f(f(x, y), z) = f(x, f(y, z)) is an
identity that axiomatizes associativity. A quasi-identity (or condi-
tional equation) is a formula of the form

∀x(s1 = t1 ∧ · · · ∧ sk = tk → u = v),

where s1, . . . , sk, t1, . . . , tk, u, v are terms built from the variables
in x and functions from the algebra. For example, the formula
∀x∀y∀z(f(x, y) = f(z, y) → x = z) is a quasi-identity that
axiomatizes the right-cancellation property.

If K is a class of algebras of the same signature and θ is a quasi-
identity, then we write K |= θ to denote that every algebra in K
satisfies θ. This concept gives rise to the following fundamental
decision problem.

DEFINITION 3.2. Let K be a class of algebras. The uniform
word problem forK or, simply, the word problem forK asks: given
a quasi-identity θ, does K |= θ?

The word problem is one of the oldest and most extensively studied
problems in algebra and logic. In particular, back in 1947, Post [26]
showed that word problem for the class of all semigroups is unde-
cidable. In 1966, Gurevich [19] showed that the word problem for
the class of all finite semigroups is undecidable; this follows also
from a stronger recursive inseparability result obtained by Gure-
vich and Lewis [21] much later. As we mentioned in Section 1, the
undecidability of the word problem for particular classes of alge-
bras has been used to prove the undecidability of the implication
problem for various classes of database dependencies [2, 20].

We now bring into the picture another decision problem, called
the embedding problem, which is intimately connected to the word
problem, but less well known. A partial algebra is a structure B
of the form B = (B, h1, . . . , hm), where B is a non-empty set
and each hi is a partial function from a power Bki to B (that
is, hi need not be defined on every ki-tuple from B). Let B =
(B, h1, . . . , hm) be a partial algebra and A = (A, f1, . . . , fm)
an algebra of the same signature. We say that B is embeddable
in A if B ⊆ A and each fi is an extension of hi, that is, when-
ever hi(b1, . . . , bki) is defined, we have that f(b1, . . . , bki) =
h(b1, . . . , bki).

DEFINITION 3.3. LetK be a class of algebras. The embedding
problem for K asks: given a finite partial algebra B, is B embed-
dable in some algebra A in K?

In a series of papers, including [8, 9, 10], Evans investigated
the embedding problem for varieties, that is, classes of algebras
axiomatized by identities. One of his main findings is that the word
problem for a variety K is decidable if and only if the embedding
problem for K is decidable [9]. A somewhat different proof of this
result can be found in Grätzer’s [17] book. In fact, Grätzer’s proof
holds for essentially arbitrary classes of algebras.

THEOREM 3.4. ([9, 17]) Let K be a class of algebras that is
closed under isomorphisms. Then the word problem forK is decid-
able if and only if the embedding problem for K is decidable.

The following result is an immediate consequence of Gurevich’s
undecidability of the word problem for finite semigroups and Evans’s
connection between the word problem and the embedding problem.

COROLLARY 3.5. The embedding problem for the class S of
all finite semigroups is undecidable.

We now state and prove the key result of this section.

THEOREM 3.6. There exists a schema mappingM∗= (S∗, T∗,
Σ∗

st, Σ∗
t ) having the following properties:

1. Σ∗
st consists of one full s-t tgd.

2. Σ∗
t consists of one target egd, one target full tgd, and one

non-weakly acyclic target tgd.

3. The existence-of-solutions problem forM∗ is undecidable.

PROOF. We give a schema mapping M∗=(S∗, T∗, Σ∗
st, Σ∗

t )
such that the embedding problem for the class of all finite semi-
groups is reducible to the existence-of-solutions problem forM∗.

1. S∗ = {R} and T∗ = {R′}, where R and R′ are ternary
relation symbols. The intuition is that R encodes the graph
of a partial binary function, and R′ encodes the graph of a
(total) binary function.
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2. Σ∗
st = {R(x, y, z)→ R′(x, y, z)}.

3. Σt has the following members:

(i) A target egd asserting that R′ is a partial function:

R′(x, y, z) ∧R′(x, y,w)→ z = w.

(ii) A target full tgd asserting that the partial function en-
coded by R′ is associative:

R′(x, y, u) ∧ R′(y, z, v) ∧R′(u, z, w)→ R′(x, v, w).

(iii) A target non-full tgd asserting that the partial function
encoded byR′ is actually total; this last property is expressed
by asserting that if two elements u and v occur in two triples
in R′, then there is an element w such that R′(u, v, w):

R′(x, y, z) ∧ R′(x′, y,′ , z′) → ∃w1 · · · ∃w9

(R′(x, x′, w1) ∧ R′(x, y′, w2) ∧ R′(x, z′, w3)∧
R′(y, x′, w4) ∧ R′(y, y′, w5) ∧ R′(y, z′, w6)∧
R′(z, x′, w7) ∧ R′(z, y′, w8) ∧ R′(z, z′, w9)).

The target non-full tgd in Σt is not weakly acyclic, since its depen-
dency graph contains a special edge from (R′, 1) to (R′, 3), and an
edge from (R′, 3) to (R′, 1) (where 1, 2, 3 are the attributes ofR′).

Given a partial algebra B = (B, g) with g a partial binary func-
tion, construct the source instance R(B) = {(a, b, c) ∈ B3 :
g(a, b) = c}. It is easy to see that B is embeddable in a finite semi-
group if and only if there is a solution for R(B) underM∗.

Note that, by definition, a solution in data exchange is a set of
finite relations, since a database instance is a set of finite relations.
Even if the definitions in data exchange are relaxed to allow for
sets of finite or infinite relations as solutions, the above schema
mappingM∗ can also be used to show that the (relaxed) existence-
of-solutions problem is undecidable. For this, instead of the un-
decidability of the embedding problem for finite semigroups, we
use the undecidability of the embedding problem for semigroups,
which follows from Post’s [26] undecidability of the word problem
for semigroups and Evans’ Theorem 3.4 in this section. In contrast,
it follows from results by Calı̀ et al. [5] that the existence of finite
or infinite solutions is decidable for schema mappingsM in which
Σt consists of key constraints and foreign-key constraints (the latter
need not form a weakly acyclic set).

4. COMBINED COMPLEXITY
In what follows, we investigate the combined complexity of the

existence-of-solutions problem, that is to say, we study this prob-
lem when the input consists of both a schema mapping and a source
instance. We begin by formalizing the existence-of-solutions prob-
lem for a class C of schema mappings and then proceed to investi-
gate the complexity of this problem.

DEFINITION 4.1. Let C be a class of schema mappings. The
existence-of-solutions problem for C is the following decision prob-
lem: given a schema mapping M in C, and a source instance I ,
does a solution for I underM exists?

In view of our undecidability Theorem 3.6, we will only con-
sider schema mappings in which the target tgds form a weakly
acyclic set. We begin by deriving an EXPTIME upper bound for
the existence-of-solutions problem for the class of all schema map-
pingsM = (S,T,Σst,Σt) in which Σst is a set of s-t tgds and Σt

is the union of a set of target egds with a weakly acyclic set of target
tgds. Moreover, we identify a family of restricted classes of schema
mappings for which this problem is in coNP. We then establish a
matching EXPTIME-hard lower bound for the general case and a

matching coNP-hard lower bound for the restricted one; further-
more, we prove that slight relaxations of the restrictions cause the
complexity to jump from coNP to EXPTIME-hard.

4.1 Combined Complexity: Upper Bounds
An inspection of the proof of Theorem 3.9 of [12] reveals that

the following result holds.

THEOREM 4.2. (Implicit in [12]) Let E be the class of all schema
mappings (S,T,Σst,Σt) such that Σst is a set of s-t tgds, and Σt

is the union of a set of egds with a weakly acyclic set of tgds. The
existence-of-solutions problem for E is in EXPTIME.

PROOF. (Hint) This follows from the proof of Theorem 3.9 of
[12]. It was shown in [12] that the length of every chase sequence
of I with Σst ∪ Σt is bounded by a polynomial in the size of the
instance I . This expression is exponential in the size of Σst ∪ Σt

and the size of T.

In contrast, for the classes of schema mappings such that the
source and target schemas are fixed, and the s-t tgds and the tar-
get tgds vary but are full, the existence-of-solutions problem is in
coNP.

THEOREM 4.3. Let S∗ be a fixed source schema and T∗ a fixed
target schema. Let C(S∗,T∗) be the class of all schema mappings
(S∗,T∗,Σst,Σt) such that Σst is a set of full s-t tgds and Σt is
the union of a set of egds with a set of full tgds. The existence-of-
solutions problem for C(S∗,T∗) is in coNP.

PROOF. Since Σst ∪ Σt consists of only full tgds, any solution
will have at most |I ||T| number of tuples, where |I | denotes the
number distinct values in I and |T| denotes the sum of arities of
each relation symbol in T. Since T is fixed, the size of any solution
is polynomial in the size of I .

If there is no solution, it must be that some egd in Σt is vio-
lated. We can therefore guess a failing chase sequence, where the
last chase step is an application of the egd that causes the violation.
Since the tgds in Σst and Σt are full, only the last chase step in the
chase sequence is an egd chase step; every other chase step in this
sequence is a tgd chase step. Because there are polynomially many
tuples that can be generated in the target and each tgd chase step
generates at least one new tuple in the target instance, we conclude
that the length of this failing chase sequence is polynomial in the
size of I . Clearly, verifying that this is a failing chase sequence
can be done in polynomial time: (1) for every chase step that gen-
erates K2 from K1 with tgd σ and homomorphism h, let σ be of
the form φ(x) → ψ(x). We verify that every tuple in φ(h(x))
is from K1, some tuple in ψ(h(x)) does not exist in K1, and that
K2 is the union of K1 with the tuples ψ(h(x)). This verification
takes polynomial time. For the last step where an egd of the form
φ′(x)→ x1 = x2 is applied on the instance K1, we verify that ev-
ery tuple in φ′(h(x)) is from K1 and that h(x1) �= h(x2). Clearly,
this verification step also takes polynomial time.

It is worth noting that if Σt consists of only a weakly acyclic
set of tgds (and no egds), then every source instance has a solution
and so the existence-of-solutions problem is trivial. Indeed, in this
case, the algorithm of [12] for computing a solution will always
terminate and produce a solution, because no finite chase is fail-
ing. This observation and the preceding Theorems 4.2 and 4.3 are
summarized in the first three rows of Table 2.

We now proceed to derive EXPTIME-hard and coNP-hard lower
bounds; the presence of target egds will play a crucial role in prov-
ing these results.
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S, T Σst: tgds Σt: egds and a weakly acyclic set of tgds Combined Complexity Theorem

Upper vary varies varies in EXPTIME 4.2
Bounds fixed varies; full tgds only varies; egds and full tgds only in coNP 4.3

vary varies varies; no egds trivial -

Lower vary varies; full tgds only varies; egds and full tgds only can be EXPTIME-complete 4.5
Bounds fixed varies varies; egds only can be EXPTIME-complete 4.8

fixed fixed; full tgds only varies can be EXPTIME-complete 4.9
fixed fixed; full tgds only varies; egds only can be coNP-complete 4.10
fixed varies; full tgds only fixed; egds only can be coNP-complete 4.12

Table 2: Combined Complexity of Data Exchange

4.2 Combined Complexity: Lower Bounds
In this section, we show that the existence-of-solutions problem

for the class E of schema mappings in Theorem 4.2 is EXPTIME-
complete. We also show that there are fixed schema mappings
S∗ and T∗ such that the existence-of-solutions problem for the
class C(S∗,T∗) in Theorem 4.3 is coNP-complete. In addition,
we establish that if we consider slight extensions of the classes
C(S∗,T∗), then the existence-of-solutions problem may become
EXPTIME-complete. Specifically, EXPTIME-completeness holds
for the following extensions of the class C(S∗,T∗):

1. the schemas are allowed to vary (Theorem 4.5);

2. the s-t tgds are non-full (Theorem 4.8);

3. the target tgds are non-full (Theorem 4.9).

Actually, Theorem 4.8 holds even when all target dependencies are
egds, and Theorem 4.9 holds even when the s-t tgds are fixed and
full. These results are summarized in the first three rows of the
lower part of Table 2.

We also show that the existence-of-solutions problem may be
coNP-complete even for a class of schema mappings in which the
schemas are fixed, the s-t tgds are full and held fixed, and the tar-
get dependencies are allowed to vary, but all are egds. (Theorem
4.10). Recall that the existence-of-solutions problem is solvable in
polynomial time for a fixed schema mapping with target egds as
its only target constraints. Hence, the slight relaxation that allows
the target egds to vary may cause the complexity to become coNP-
complete. Finally, we show that the existence-of-solutions problem
may be coNP-complete for another slight relaxation in which the
target egds are fixed, but the full s-t tgds are allowed to vary (The-
orem 4.12). These results are summarised in the last two rows of
Table 2.

4.2.1 EXPTIME-Completeness
Our EXPTIME-hardness reductions make use of a combined

complexity result of Datalog sirups from Gottlob and Papadim-
itriou [16], which we describe next.

Single rule Datalog programs A single rule program (sirup) is
a Datalog program with one rule and a number of initializations
consisting of facts. The rule is of the form: A0 ← A1, ..., Am,
where each Ai, 0 ≤ i ≤ m, is an atom. An atom is a formula
p(t1, ..., tn), where p is a predicate symbol of arity n and ti, 1 ≤
i ≤ n, is a variable or a constant. The head of the rule is A0,
while A1, ..., Am is the body of the rule. The predicate symbol
that appears in A0 is called an intensional database predicate (idb)
symbol, while those that appear only in the body of the rule are
called extensional database predicate (edb) symbols. A rule of the
form A0 ←, (with an empty body) is a fact. We say the fact is
ground if every term that appears in A0 is a constant. The edb
symbols occur in a database D and if the idb symbol also occurs in

the body of a sirup rule, it is initialized by facts. A single ground
fact (SGF) sirup is a Datalog program with one rule and at most
one ground fact. Gottlob and Papadimitriou [16] investigated the
combined complexity of Datalog programs, which is the following
decision problem: given a Datalog program P , a database D, and
a ground fact δ, is it the case that P ∪ D |= δ? In other words,
is δ derivable from D via P ? They showed that even if Datalog
programs are limited to SGF sirups, the combined complexity is
EXPTIME-complete. We refer to this decision problem as the SGF
sirup problem.

THEOREM 4.4. (Combined complexity of SGF sirups [16]) The
combined complexity of the SGF sirup problem is EXPTIME-
complete.

Using the preceding theorem, we show that the existence-of-
solutions problem for C is EXPTIME-hard, where C is the class
of schema mappings such that Σst consists of only full s-t tgds,
and Σt is the union of a set of egds with a set of full tgds. Observe
that this is only a slight extension of the class C(S∗,T∗) of schema
mappings in Theorem 4.3; here, the source and target schemas are
allowed to vary.

THEOREM 4.5. Let C be the class of all schema mappings (S,
T, Σst, Σt), where Σst is a set of full s-t tgds and Σt is the union
of a set of egds with a set of full tgds. The existence-of-solutions
problem for C is EXPTIME-hard.

PROOF. We are given a SGF sirup P , a database D, and a fact δ
which we wish to determine whether P ∪D |= δ. Let the sirup rule
be of the form: A(x) ← Q1(x1), . . . ,Qn(xn), where each sym-
bol Qi, 1 ≤ i ≤ n, either represents an extensional database pred-
icate or the intensional database predicate A. If A occurs among
Q1, ...,Qn, then A is initialized by a ground fact. Let the arity of
A be k and let δ denote the fact A(c1, ..., ck).

Based on P , D, δ, and the ground fact, we construct a schema
mapping and a source instance I as follows: The source schema
S consists of all the extensional database predicates R1, ..., Rm as
well as two relational symbols A and W . Each Ri, 1 ≤ i ≤ m,
has the same arity as the corresponding relation in D, A has arity
k, and W has arity k + 1. The target schema is isomorphic to S.
It consists of the relational symbols R′

1, . . . , R
′
m, A′, and W ′. For

Σst, we create m + 2 full s-t tgds to copy each source relation to
its corresponding target relation:

Σst : Ri(x) → R′
i(x), 1 ≤ i ≤ m

A(y) → A′(y)
W (z) → W ′(z)

Next, we construct two dependencies in Σt. The first is a full tgd
that “implements” the sirup rule. The second is an egd that tests the
existence of δ.

Σt : Q′
1(x1) ∧ · · · ∧ Q′

n(xn) → A′(x)
A′(x1, x2, . . . , xk) ∧ W ′(x1, x2, . . . , xk, y) → x1 = y
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In the first tgd, Qi represents the ith predicate symbol, 1 ≤ i ≤ m,
in the body of the sirup rule P . For example, if the sirup rule is
A(x1) ← R2(x1, x2), R1(x2, x3), A(x3), then the first tgd in Σt

is R′
2(x1, x2) ∧R′

1(x2, x3) ∧A′(x3)→ A′(x1).
We create a source instance I as follows: First, we populate

R1, . . . , Rm, and A with the tuples from the corresponding rela-
tions in D and the ground fact, respectively. Then, we populate W
with a single tuple (c1, c2, . . . , ck, d), where d is a fresh symbol
that does not occur elsewhere in I .

Clearly, the schema mapping and source instance I can be con-
structed with one pass through the sirup input P , D, δ, and the
ground fact. We show that there is no solution for I under the con-
structed schema mapping if and only ifP∪D |= δ. If there is no so-
lution, then there is a failing chase sequence that applies the egd in
Σt. Since any application of the egd in a chase sequence must make
use of the tupleW ′(c1, ..., ck, d), it must be thatA′(c1, ..., ck) also
exists in the target instance. Thus, we conclude that δ is derivable
from D via P . Conversely, if P ∪ D |= δ, then chasing I with
Σst ∪ Σt will produce A′(c1, ..., ck). Since W ′(c1, ..., ck, d) ex-
ists in the target instance, the egd can be applied and therefore, the
chase fails. This means that there is no solution.

COROLLARY 4.6. Let C be the class of all schema mappings
(S,T,Σst,Σt), where Σst is a set of s-t tgds and Σt is the union
of a set of egds with a weakly acyclic set of tgds. The existence-of-
solutions problem for C is EXPTIME-complete.

The above corollary is a consequence of Theorem 4.2 and Theo-
rem 4.5. Observe that in the reduction of Theorem 4.5, a target tgd
was used to implement the sirup rule. In Theorem 4.8, we show
that even when the schemas are kept fixed and there are no target
tgds, but we allow non-full s-t tgds, then the EXPTIME-hard lower
bound continues to hold. Towards Theorem 4.8, we first prove a
lemma. The proof of this lemma shows how one can avoid using a
target tgd to implement the sirup rule.

LEMMA 4.7. Let C be the class of all schema mappings (S,
T, Σst, Σt), where Σt consists of only egds. The existence-of-
solutions problem for C is EXPTIME-hard.

PROOF. To avoid using a target tgd to implement the sirup rule,
we eagerly pre-compute all possible tuples that can be returned by
the sirup rule with a s-t tgd. We do this by generating all possi-
ble k-tuples with a s-t tgd, where k is the arity of the head of the
sirup rule, with values from the source instance. Along with every
possible k-tuple, this s-t tgd will also generate a null that is used
to indicate whether this k-tuple is in the result of the sirup rule.
Hence, the s-t tgd is non-full. Subsequently, an egd in Σt is used to
simulate the sirup rule and if a k-tuple is indeed in the result of the
sirup rule, the egd will convert the associated null of that k-tuple
into some constant. Thus, one can determine whether a k-tuple is
part of the result of a sirup rule depending on whether the tuple is
associated with a null or a constant. As in the proof of Theorem
4.5, another egd is used to detect when the given fact δ is produced
and if so, equates one constant with another to obtain a violation.
We describe the proof in detail next.

This proof is by reduction from the SGF sirup problem. We are
given a SGF sirup rule P , a database D, and a fact δ which we
wish to determine whether P ∪ D |= δ. Let the sirup rule be
of the form: A(x) ← Q1(x1), . . . ,Qn(xn), where each sym-
bol Qi, 1 ≤ i ≤ n, either represents an extensional database
predicate or the intensional database predicate A. If A occurs
among Q1, ...,Qn, then we assume that there is a ground fact that
initializes A. Let the arity of A be k and let δ denote the fact
A(c1, ..., ck).

Based on P , D, δ, and the ground fact, we construct a schema
mapping and a source instance I as follows: The source schema
S consists of all the extensional database predicates R1, ..., Rm as
well as four relational symbols A, W , U , and V . Note that the
relational symbol A in S is the same as the intensional database
predicate of the sirup P . Each Ri, 1 ≤ i ≤ m, has the same
arity as the corresponding relation in D, and A has arity k, W
has arity k + 1 and the relations U and V are unary. The target
schema consists of the relational symbols R′

1, . . . , R
′
m, A′, W ′,

U ′, and V ′. The arities of each relation in T is the same as the
corresponding relation in S except thatA′ has arity k+1. For Σst,
we create the following s-t tgds:

Σst : R1(x) → R′
1(x)

...
Rm(x) → R′

m(x)
U(x) → U ′(x)
W (x1, ..., xk, x) → W ′(x1, ..., xk, x)
U(x) ∧ A(x1, ..., xk) → A′(x1, ..., xk, x)
V (x1) ∧ ... ∧ V (xk) → ∃N A′(x1, ..., xk, N)

The dependencies in Σt consists of the following egds:

Σt : U ′(y) ∧ A′(x1, ..., xk, x) ∧ Q′
1(y1) ∧ ... ∧ Q′

n(yn)
→ x = y
U ′(y) ∧ W ′(x1, ..., xk, z) ∧ A′(x1, ..., xk, y) → y = z

The symbol Q′
i, 1 ≤ i ≤ n, represents the underlying predicate

symbols. We create the source instance I as follows. As in the
proof of Theorem 4.5, we populate R1, . . . , Rn, and A with tuples
from the corresponding relations in D and the ground fact. For W ,
we create a single tuple (c1, c2, . . . , ck, d) where d is a fresh value
that does not occur elsewhere in I . Lastly, for U , we create single
tuple with the value “1”, and for V , we insert all distinct values of
P , D, δ, and the ground fact, each as a unary tuple in V .

The first m tgds of Σst copies the Ri to R′
i, where 1 ≤ i ≤ m.

The next two s-t tgds copy tuples in U and W to U′ and W ′, re-
spectively. The last two s-t tgds in Σst build the relationA′: one tgd
copies every tuple from A to A′ along with an additional column
which contains the value “1”. The last tgd generates all possible
tuples composed of values from the source instance I in the target
relation A′, along with a labeled null. Intuitively, a labeled null in-
dicates that the tuple is not in the result of applying the sirup rule,
and a value “1” indicates otherwise. The first egd in Σt simulates
the sirup rule. It sets the last column v of a tuple (a1, ..., ak, v)
in A′ to “1” if and only if P ∪D |= A(a1, ..., ak). For example,
if the sirup rule is A(x1) ← R2(x1, x2), R1(x2, x3), A(x3), then
the first egd in Σt isU ′(y)∧A′(x1, x)∧R′

2(x1, x2)∧R′
1(x2, x3)∧

A′(x3, y)→ x = y. The second egd has a similar effect to that of
the egd in the proof of Theorem 4.5. It detects whether the fact δ
is in the result of the sirup rule. If so, this egd will be violated as it
equates “d” with “1”.

It is easy to see that the schema mapping and the source instance
I can be constructed in polynomial time. Moreover, there is no
solution to the schema mapping with source instance I if and only
if P ∪D |= δ. If there is no solution, we know that the chase must
fail on one of the egds in Σt. Since the chase of I with Σst only
adds the tuple “1” to U′ and no other tuples are added to U′, we
know that y is always bound to the value “1” with the first egd in
Σt. Since the last column of every tuple in A′ is either a labeled
null or the value “1”, this egd cannot cause a violation. Hence, we
conclude that the violation is due to the second egd in Σt. Since the
chase only adds the tuple (c1, ..., ck, d) toW ′ and y always binds to
the value “1”, the violation must have been due to the existence of
a tuple A′(c1, ..., ck, 1). Therefore, we conclude that P ∪D |= δ.
It is easy to see that if P ∪D |= δ, then there will be no solution
since the last egd of Σt can never be satisfied.
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Using Lemma 4.7, we are now ready to show that the EXPTIME-
hard lower bound continues to hold even when we fix the source
and target schemas.

THEOREM 4.8. There exists a fixed source schema S∗ and a
fixed target schema T∗ such that the existence-of-solutions problem
for C∗ is EXPTIME-hard, where C∗ is the class of all schema
mappings (S∗,T∗,Σst,Σt) such that Σst consists of s-t tgds with
at most two existentially-quantified variables, and Σt consists of
only two egds.

PROOF. We describe the idea behind how we fix the source and
target schema before we present the proof. The fixed source schema
has a 5-ary relation symbol G and we use a trick to encode every
tuple of every relation of D in G. There is also a binary relation
O that keeps a linear ordering of the extensional and intensional
predicate symbols of P ∪D. For example, suppose P is the sirup
ruleA(x1)← R2(x1, x2), R1(x2, x3), A(x3), andR1 = {(a, a)},
R2 = { (c, d), (e, f) }, and the ground fact is A(b) ←. Then, G
and O are shown below:

G:
R1 1 2 id1 a
R1 2 3 id1 a
R2 1 2 id2 c
R2 2 3 id2 d
R2 1 2 id3 e
R2 2 3 id3 f
A 1 2 id5 b

O:
R1 R2

R2 A

Intuitively, the first two tuples inG represent R1(a, a). The next
two tuples in G represent R2(c, d) and so on. The last tuple in G
represents the ground fact A(b). The first column of a tuple in G
stores the relation name that the tuple belongs to. The fourth col-
umn of a tuple inG contains the identifier of the original tuple. It is
used to identify the set of tuples in G that describe the same origi-
nal tuple. The second and third columns of a tuple in G encode the
position of the original tuple that the value in the last column of this
tuple belongs to. For the two tuples with identifier id2, the second
and third column values are (1,2) and (2,3), respectively. Hence,
we conclude that the values c and d belong to the first column and
respectively, second column of the original tuple in R2. Note that
a pair of numbers (1,2) is used to store the position of c, instead
of a single number, in order to retrieve the values of the original
tuple in the correct order. It is easy to see that one can reconstruct
the database D from G. The relation O stores a linear order of the
relations in D which we will need in order to retrieve tuples from
the desired relations. Using the same idea behind the construction
of G, we store the fact δ in a separate fixed arity relation, say, W .
Hence, we can fix the source schema in the proof of Lemma 4.7
with this encoding. The fixed target schema is isomorphic to the
source schema but consists of disjoint relation symbols. The s-t
tgds essentially copies each source relations to its corresponding
target relation. There is a non-full s-t tgd that generates, in ad-
vance, all possible output tuples as described in the proof sketch of
Lemma 4.7. To store every possible output tuple of a sirup rule as
several tuples in a fixed arity relation, we now need an additional
existentially-quantified variable to generate tuple identifiers.

We prove our result by a reduction from the SGF sirup problem.
As before, we are given a SGF sirup P , a database D, and a fact δ
which we wish to determine whether P ∪D |= δ. Let the sirup rule
be of the form: A(x) ← Q1(x1), . . . ,Qn(xn), where each sym-
bol Qi, 1 ≤ i ≤ n, either represents an extensional database pred-
icate or the intensional database predicate A. If A occurs among
Q1, ...,Qn, then there is a ground fact that initializes A. Let the
arity of A be k and let δ denote the fact A(c1, ..., ck).

The source schema S contains the relational symbols O, G, W ,
A, U , and V , where O is a binary relation that stores a linear order
of the relations involved, G is a 5-ary relation that stores all tuples
of each relation,W is a ternary relation that stores the fact δ, andA
is a ternary relation that stores the initialization tuple, if any. Note
that the relational symbol A in S is the same as the intensional
database predicate of the sirup P . The relations U and V are unary,
where U stores the single value “1” and V stores all possible values
that occur in P , D and δ. The target schema T is an isomorphic
copy of S and consists of the relational symbols O′, G′, W ′, A′,
U ′, and V ′.

Next, we show how the source instance I is constructed based on
P , D, δ, and the ground fact before we describe the construction
of Σst and Σt. Suppose R1, . . . Rm are the extensional database
predicates, and A is the only intensional database predicate. We
now construct O to contain a linear order on the relational sym-
bols that occur in D and A. That is, we define O={(R1, R2),
..., (Rm−1, Rm), (Rm, A)}. Next, we construct the relation W
to hold δ. That is, W = {(1, 2, c1), (2, 3, c2),...,(k, k + 1, ck),
(k + 1, k + 2, d)}. Intuitively, the ordering of the values in δ is
maintained by the pair of numbers in the first two columns of each
tuple in W . The value d is not used anywhere else and stored as an
extra column to the tuple δ. We will subsequently use the existence
of d to test if a solution was found. Finally, we construct the relation
G. For every tuple (a1, . . . , aki) of a relation Ri, where Ri has ar-
ity ki, we create ki tuples in G using the trick we described earlier:
(Ri, 1, 2, n, a1),(Ri, 2, 3, n, a2), ..., (Ri, ki, ki + 1, n, aki). The
fourth column holds a value n, which is a unique identifier for the
tuple and every tuple has a different identifier. We repeat this pro-
cess for the ground fact, if any. We create a single tuple “1” in U
and for V , we insert all distinct values of P , D, δ, and the ground
fact, each as a unary tuple in V .

We describe next the construction of Σst and Σt with an example
first. Suppose the sirup rule is A(x1)← R2(x1, x2), R1(x2, x3),
A(x3). There are tgds in Σst that copy each relation G, U , W ,
and O in the source to G′, U ′, W ′, and O′ in the target. In addi-
tion, there are two tgds that build the relation A′ in G in the target,
similar to what was described in Lemma 4.7.

U(y) ∧ O(u1, u2) ∧ O(u2, u0) ∧ W (s1, s2, z1) ∧ W (s2, s3, z2)∧
G(u0, p1, p2, y0, x) → G′(u0, s1, s2, y0, x) ∧ G′(u0, s2, s3, y0, y)

V (x) ∧ O(u1, u2) ∧ O(u2, u0) ∧ W (s1, s2, z1) ∧ W (s2, s3, z2)
→ ∃N∃M G′(u0, s1, s2, N, x) ∧ G′(u0, s2, s3, N, M)

The first s-t tgd copies every tuple inG that belongs toA over toG′

and extends the tuple with a value “1” at the second column. The
second s-t tgd generates every possible output tuple of the sirup
rule along with a labeled null N that is the identifier of the output
tuple. An additional labeled null M is also generated at the second
column which will be used to indicate whether this tuple exists in
the result of the sirup rule. The first egd in Σt is

U ′(y) ∧ O′(u1, u2) ∧ O′(u2, u0)∧
G′(u0, s1, s2, y0, x1) ∧ G′(u0, s2, s3, y0, z)∧
G′(u2, p1, p2, y1, x1) ∧ G′(u2, p2, p3, y1, x2)∧
G′(u1, q1, q2, y2, x2) ∧ G′(u1, q2, q3, y2, x3)∧
G′(u0, r1, r2, y3, x3) ∧ G′(u0, r2, r3, y3, y) → y = z

and the second egd is

U ′(y) ∧ O′(u1, u2) ∧ O′(u2, u0) ∧ W ′(v1, v2, x) ∧ W ′(v2, v3, z)
G′(u0, r1, r2, y0, x) ∧ G′(u0, r2, r3, y0, y) → y = z

These egds are a “rewriting” of the egds in Σt of the proof of
Lemma 4.7 based on the fixed schema T. The first egd simulates
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the sirup rule and sets the last column of a tuple inG′ to “1” when-
ever the tuple is generated by the sirup rule. The second egd detects
if δ has been produced.

More precisely, the set Σst consists of the following s-t tgds:

1) G(u, v, x, y, z) → G′(u, v, x, y, z)
2) U(x) → U ′(x)
3) W (x1, x2, y) → W ′(x1, x2, y)
4) O(x, y) → O′(x, y)
5) U(y) ∧ O(u1, u2) ∧ ... ∧ O(um−1, um) ∧ O(um, u0)∧

W (s1, s2, z1) ∧ ... ∧ W (sk+1, sk+2, zk+1)
G(u0, s1, s2, y0, x1) ∧ ... ∧ G(u0, sk, sk+1, y0, xk)
→ G′(u0, s1, s2, y0, x1) ∧ ... ∧ G′(u0, sk, sk+1, y0, xk)∧

G′(u0, sk+1, sk+2, y0, y)
6) V (x1) ∧ ... ∧ V (xk) ∧ W (s1, s2, z1) ∧ ... ∧ W (sk+1, sk+2, zk+1)

∧O(u1, u2) ∧ ... ∧ O(um−1, um) ∧ O(um, u0)
→ ∃N∃M(G′(u0, s1, s2, N, x1) ∧ ... ∧ G′(u0, sk, sk+1, N, xk)∧

G′(u0, sk+1, sk+2, N, M))

and Σt consists of the following egds:

1) U ′(y) ∧ O′(u1, u2) ∧ ... ∧ O′(um−1, um) ∧ O′(um, u0)∧
G′(u0, s1, s2, y0, z1) ∧ ... ∧ G′(u0, sk, sk+1, y0, zk)∧
G′(u0, sk+1, sk+2, y0, z)∧
G′(q1, s1, s2, y1, x1

1) ∧ ... ∧ G′(q1, sk1 , sk1+1, y1, x1
k1

)

...
G′(qn, s1, s2, yn, xn

1 ) ∧ ... ∧ G′(qn, skn , skn+1, yn, xn
kn

)

→ z = y
2) U ′(y) ∧ O′(u1, u2) ∧ ... ∧ O′(um−1, um) ∧ O′(um, u0)∧

W ′(s1, s2, x1) ∧ ... ∧ W ′(sk, sk+1, xk) ∧ W ′(sk+1, sk+2, z)∧
G′(u0, p1, p2, y0, x1) ∧ ... ∧ G′(u0, pk, pk+1, y0, xk)∧
G′(u0, pk+1, pk+2, y0, y)∧
→ y = z

In the first egd above, the symbol qi represents variable uj if the
predicate symbol of the ith subgoal in the body of the datalog rule
is the relation symbol Rj . It represents u0 if predicate symbol is
A. The symbol xi

j , where 1 ≤ i ≤ n and 1 ≤ j ≤ ki, represents
the jth variable in the ith subgoal in the body of the datalog rule.
Similarly, the symbol zi, where 1 ≤ i ≤ k, represents the ith
variable in the head of the datalog rule.

A similar argument as in the proof of Lemma 4.7 shows that
there is no solution to the schema mapping with source instance I
if and only if P ∪D |= δ.

A slight extension of the classes C(S∗,T∗) of schema map-
pings with a non-full but weakly acyclic target tgd may also cause
the complexity of the existence-of-solutions problem to become
EXPTIME-hard. In fact, this EXPTIME-hard lower bound holds
even when the s-t tgds are held fixed.

THEOREM 4.9. There exist a fixed source schema S∗, a fixed
target schema T∗, and a fixed set Σ∗

st such that

1. Σ∗
st consists of full s-t tgds.

2. The existence-of-solutions problem for C∗ is EXPTIME-
hard, where C∗ is the class of all schema mappings of the
form (S∗,T∗,Σ∗

st,Σt) and such that Σt consists of one egd
and one weakly acyclic tgd with one existentially-quantified
variable.

PROOF. (Sketch) The basic idea behind the proof of this result
uses the same encoding to fix the schemas as described in the proof
sketch of Theorem 4.8. The source schema consists of three fixed
arity relations symbols G, O and W . The fixed target schema is
isomorphic to the source schema, with relation symbolsG′,O′ and
W ′ respectively. There are three fixed full s-t tgds that copy G, O

andW toG′,O′ andW ′, respectively. In Σt, there is one target tgd
that simulates the sirup rule and uses one existentially-quantified
variable to generate tuple identifiers, in order to store an output of
the sirup rule as several fixed arity tuples in G′. Also, there is one
egd that detects the presence of δ in the target instance.

4.2.2 coNP-Completeness
We show that the existence-of-solutions problem may be coNP-

hard even when the schemas are held fixed and consist of a single
relation, and Σst is fixed and consists of only a single full s-t tgd.
Furthermore, our reduction requires only a single egd in Σt to de-
rive this lower bound. Thus, a slight extension from a fixed schema
mapping immediately gives us the coNP-hard lower bound.

THEOREM 4.10. There exist a fixed source schema S∗, a fixed
target schema T∗, and a fixed set Σ∗

st with the following properties:

1. S∗ and T∗ consist of a single relational symbol, and Σ∗
st

consists of a single full s-t tgd.

2. The existence-of-solutions problem for C∗ is coNP-hard, where
C∗ is the class of all schema mappings (S∗,T∗,Σ∗

st,Σt)
such that Σt consists of a single egd.

PROOF. We give a reduction from 3SAT. The source schema S
and target schema T each consist of a single 5-ary relation D and
D′, respectively. There is only a single full s-t tgdD(u, v, x, y, z)→
D′(u, v, x, y, z) in Σst that copies D toD′. Given a 3SAT formula
ϕ with n clauses, we let C1, C2, . . . , Cn denote the n clauses. We
create the instance I(ϕ) as follows. For each clause Ci, 1 ≤ i ≤ n,
we create seven tuples in D. For example, if Ci is the clause
(x ∨ y ∨ ¬z), then the following seven tuples are created in D:
(Ci,Ci+1,1,1,1), (Ci,Ci+1,1,1,0), (Ci,Ci+1,1,0,1), (Ci,Ci+1,0,1,1),
(Ci,Ci+1,1,0,0), (Ci,Ci+1,0,1,0), (Ci,Ci+1,0,0,0). There is one
tuple for every satisfying assignment forCi. The last three columns
contain the satisfying assignment and the first two columns of ev-
ery tuple contain the values Ci and Ci+1, to denote that this sat-
isfying assignment belongs to the clause Ci. Hence, the tuple
(Ci, Ci+1, 0, 0, 1) does not occur in D since (0, 0, 1) is not a sat-
isfying assignment for Ci. After generating seven tuples for each
clause, we add a “dummy” tuple to D: (Cn+1, Cn+1, d, d, d). The
value “d” is different any other value in the relation D.

Finally, we construct an egd of the form φ(x) → x1 = x2

for Σt based on ϕ. The left-hand-side φ(x) is constructed as fol-
lows: There is a relational atomD′(un+1, un+1, w,w,w) in φ(x),
where w is a fresh variable not used anywhere else in φ(x). Then,
for each clauseCi there is a relational atomD′(ui, ui+1, xi, yi, zi)
where xi, yi and zi are variables that represent the literals in Ci.
The right hand side of the egd is x = w, where x is one of the vari-
ables representing a literal that occur in φ(x). As an example, sup-
pose ϕ is the 3SAT formula (x1∨x2∨x3)∧(x2∨¬x3∨¬x4). The
following egd D′(u1, u2, x1, x2, x3) ∧ D′(u2, u3, x2, x3, x4) ∧
D′(u3, u3, w,w,w)→ x1 = w will be constructed.

Clearly, the schema mapping D(ϕ) and the source instance I(ϕ)
can be constructed in polynomial time in the size of ϕ. It is also
easy to see that there is no solution for I(ϕ) under D(ϕ) if and
only if ϕ is satisfiable.

Theorem 4.3 and Theorem 4.10 yield the following corollary.

COROLLARY 4.11. Let S∗ be a fixed source schema and T∗

a fixed target schema. Let C(S∗,T∗) be the class of all schema
mappings (S∗,T∗,Σst,Σt), where Σst is a set of full s-t tgds, and
Σt is the union of a set of egds with a set of full tgds. The existence-
of-solutions problem for C(S∗,T∗) is coNP-complete.

38



A slight variation of the proof of Theorem 4.10 yields the same
lower bound, where Σt is now kept fixed, while Σst is allowed to
vary but consists entirely of full s-t tgds.

THEOREM 4.12. There exist a fixed source schema S∗, a fixed
target schema T∗, and a fixed set Σ∗

t with the following properties:

1. S∗ and T∗ consist of a single relation symbol, and Σ∗
t con-

sists of a single egd;

2. The existence-of-solutions problem for C∗ is coNP-hard, where
C∗ is the class of all schema mappings (S∗,T∗,Σst,Σ

∗
t )

such that Σst consists of a single full s-t tgd.

5. CONCLUDING REMARKS
The results presented here shed light on both the data complexity

and the combined complexity of data exchange for schema map-
pings M = (S,T,Σst,Σt) in which Σst is a set of s-t tgds
and Σt is a set of target egds and target tgds. Earlier work on
the data complexity of data exchange showed that the existence-of-
solutions problem is polynomial-time solvable, assuming that the
target tgds form a weakly acyclic set. Our first main finding is that
if the weak acyclicity assumption is relaxed, then the existence-of-
solutions problem may become undecidable. To establish this, we
brought into center stage the embedding problem from universal
algebra, a problem intimately connected to the word problem, but
not previously used in database theory. Regarding the combined
complexity of data exchange, we demonstrated a provable expo-
nential gap between the data complexity and the combined com-
plexity of the existence-of-solutions problem for schema mappings
M = (S,T,Σst,Σt), where Σst is a set of s-t tgds and Σt is the
union of a set of target egds with a weakly acyclic set of target tgds.
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bined complexity of data exchange had not been investigated.

6. REFERENCES
[1] M. Arenas and L. Libkin. XML Data Exchange: Consistency

and Query Answering. In Proceedings of the ACM
Symposium on Principles of Database Systems (PODS),
pages 13–24, 2005.

[2] C. Beeri and M. Y. Vardi. The Implication Problem for Data
Dependencies. In Proceedings of the International
Colloquium on Automata, Languages and Programming
(ICALP), pages 73–85, 1981.

[3] C. Beeri and M. Y. Vardi. A Proof Procedure for Data
Dependencies. Journal of the Association for Computing
Machinery (JACM), 31(4):718–741, 1984.

[4] P. A. Bernstein. Applying Model Management to Classical
Meta Data Problems. In Proceedings of the Conference on
Innovative Data Systems Research (CIDR), pages 209–220,
2003.

[5] A. Calı̀, D. Calvanese, G. D. Giacomo, and M. Lenzerini.
Data integration under integrity constraints. Information
Systems, 29:147–163, 2004.

[6] S. S. Cosmadakis and P. C. Kanellakis. Functional and
Inclusion Dependencies: A Graph Theoretic Approach. In
Advances in Computing Research, volume 3, pages 163–184.
JAI Press, 1986.

[7] A. Deutsch and V. Tannen. Reformulation of XML Queries
and Constraints. In International Conference on Database
Theory (ICDT), pages 225–241, 2003.

[8] T. Evans. The word problem for abstract algebras. Journal of
the London Mathematical Society, 26:64–71, 1951.

[9] T. Evans. Embeddability and the word problem. Journal of
the London Mathematical Society, 28:76–80, 1953.

[10] T. Evans. Word Problems. Bulletin of the American
Mathematical Society, 84(5):789–802, 1978.

[11] R. Fagin. Horn clauses and database dependencies. Journal
of the Association for Computing Machinery (JACM),
29(4):952–985, 1982.

[12] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data
Exchange: Semantics and Query Answering. Theoretical
Computer Science (TCS), 336(1):89–124, 2005.

[13] R. Fagin, P. G. Kolaitis, and L. Popa. Data Exchange:
Getting to the Core. ACM Transactions on Database Systems
(TODS), 30(1):174–210, 2005.

[14] R. Fagin, P. G. Kolaitis, L. Popa, and W. Tan. Composing
Schema Mappings: Second-Order Dependencies to the
Rescue. In Proceedings of the ACM Symposium on
Principles of Database Systems (PODS), pages 83–94, 2004.

[15] G. Gottlob. Computing cores for data exchange: Hard cases
and practical solutions. In Proceedings of the ACM
Symposium on Principles of Database Systems (PODS),
pages 148–159, 2005.

[16] G. Gottlob and C. Papadimitriou. On the complexity of
single-rule datalog queries. Information and Computation,
183(1):104–122, 2003.

[17] G. Grätzer. Universal Algebra, Second Edition.
Springer-Verlag, 1979.

[18] R. Greenlaw, H. J. Hoover, and W. L. Ruzzo. Limits to
Parallel Computation: P-Completeness Theory. Oxford
University Press, 1995.

[19] Y. Gurevich. The word problem for certain classes of
semigroups. Algebra and Logic, 5:25–35, 1966.

[20] Y. Gurevich and H. R. Lewis. The Inference Problem for
Template Dependencies. In Proceedings of the ACM
Symposium on Principles of Database Systems (PODS),
pages 221–229, 1982.

[21] Y. Gurevich and H. R. Lewis. The word problem for
cancellation semigroups with zero. Journal of Symbolic
Logic, 49(1):184–191, 1984.

[22] M. Lenzerini. Data Integration: A Theoretical Perspective. In
Proceedings of the ACM Symposium on Principles of
Database Systems (PODS), pages 233–246, 2002.

[23] A. Nash, P. Bernstein, and S. Melnik. Composition of
Mappings Given by Embedded Dependencies. In
Proceedings of the ACM Symposium on Principles of
Database Systems (PODS), pages 172–183, 2005.

[24] C. H. Papadimitriou. Computational Complexity.
Addison-Wesley, 1994.

[25] L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernández, and
R. Fagin. Translating Web Data. In Proceedings of the
International Conference on Very Large Data Bases (VLDB),
pages 598–609, 2002.

[26] E. L. Post. Recursive Unsolvability of a Problem of Thue.
Journal of Symbolic Logic, 12(1):1–11, 1947.

[27] M. Y. Vardi. The complexity of relational query languages
(extended abstract). In Proceedings of the ACM Symposium
on Theory of Computing (STOC), pages 137–146, 1982.

39



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Academy
    /AgencyFB-Bold
    /AgencyFB-Reg
    /Alba
    /AlbaMatter
    /AlbaSuper
    /Algerian
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialRoundedMTBold
    /ArialUnicodeMS
    /BabyKruffy
    /BaskOldFace
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BlackadderITC-Regular
    /BodoniMT
    /BodoniMTBlack
    /BodoniMTBlack-Italic
    /BodoniMT-Bold
    /BodoniMT-BoldItalic
    /BodoniMTCondensed
    /BodoniMTCondensed-Bold
    /BodoniMTCondensed-BoldItalic
    /BodoniMTCondensed-Italic
    /BodoniMT-Italic
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BradleyHandITC
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /CalisMTBol
    /CalistoMT
    /CalistoMT-BoldItalic
    /CalistoMT-Italic
    /Castellar
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chick
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CopperplateGothic-Bold
    /CopperplateGothic-Light
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Croobie
    /CurlzMT
    /EdwardianScriptITC
    /Elephant-Italic
    /Elephant-Regular
    /EngraversMT
    /ErasITC-Bold
    /ErasITC-Demi
    /ErasITC-Light
    /ErasITC-Medium
    /EstrangeloEdessa
    /Fat
    /FelixTitlingMT
    /FootlightMTLight
    /ForteMT
    /FranklinGothic-Book
    /FranklinGothic-BookItalic
    /FranklinGothic-Demi
    /FranklinGothic-DemiCond
    /FranklinGothic-DemiItalic
    /FranklinGothic-Heavy
    /FranklinGothic-HeavyItalic
    /FranklinGothic-Medium
    /FranklinGothic-MediumCond
    /FranklinGothic-MediumItalic
    /FreestyleScript-Regular
    /FrenchScriptMT
    /Freshbot
    /Frosty
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Gigi-Regular
    /GillSansMT
    /GillSansMT-Bold
    /GillSansMT-BoldItalic
    /GillSansMT-Condensed
    /GillSansMT-ExtraCondensedBold
    /GillSansMT-Italic
    /GillSans-UltraBold
    /GillSans-UltraBoldCondensed
    /GlooGun
    /GloucesterMT-ExtraCondensed
    /GoudyOldStyleT-Bold
    /GoudyOldStyleT-Italic
    /GoudyOldStyleT-Regular
    /GoudyStout
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /ImprintMT-Shadow
    /InformalRoman-Regular
    /Jenkinsv20
    /Jenkinsv20Thik
    /Jokerman-Regular
    /Jokewood
    /JuiceITC-Regular
    /Karat
    /Kartika
    /KristenITC-Regular
    /KunstlerScript
    /Latha
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSans-TypewriterBoldOblique
    /LucidaSans-TypewriterOblique
    /LucidaSansUnicode
    /Magneto-Bold
    /MaiandraGD-Regular
    /Mangal-Regular
    /MaturaMTScriptCapitals
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MSOutlook
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /OCRAExtended
    /OldEnglishTextMT
    /Onyx
    /PalaceScriptMT
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Papyrus-Regular
    /Parchment-Regular
    /Perpetua
    /Perpetua-Bold
    /Perpetua-BoldItalic
    /Perpetua-Italic
    /PerpetuaTitlingMT-Bold
    /PerpetuaTitlingMT-Light
    /Playbill
    /Poornut
    /PoorRichard-Regular
    /Porkys
    /PorkysHeavy
    /Pristina-Regular
    /PussycatSassy
    /PussycatSnickers
    /Raavi
    /RageItalic
    /Ravie
    /Rockwell
    /Rockwell-Bold
    /Rockwell-BoldItalic
    /Rockwell-Condensed
    /Rockwell-CondensedBold
    /Rockwell-ExtraBold
    /Rockwell-Italic
    /ScriptMTBold
    /ShowcardGothic-Reg
    /Shruti
    /SnapITC-Regular
    /Square721BT-Roman
    /Stencil
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /TwCenMT-Bold
    /TwCenMT-BoldItalic
    /TwCenMT-Condensed
    /TwCenMT-CondensedBold
    /TwCenMT-CondensedExtraBold
    /TwCenMT-Italic
    /TwCenMT-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Vrinda
    /Webdings
    /WeltronUrban
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


