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Abstract

The complexity class PP consists of all decision problems solvable by polynomial-time probabilistic Turing machines. It is well
known that PP is a highly intractable complexity class and that PP-complete problems are in all likelihood harder than NP-complete
problems. We investigate the existence of phase transitions for a family of PP-complete Boolean satisfiability problems under the
fixed clauses-to-variables ratio model. A typical member of this family is the decision problem # 3SAT(�2n/2): given a 3CNF-
formula, is it satisfied by at least the square-root of the total number of possible truth assignments? We provide evidence to the
effect that there is a critical ratio r3,2 at which the asymptotic probability of # 3SAT(�2n/2) undergoes a phase transition from 1
to 0. We obtain upper and lower bounds for r3,2 by showing that 0.9227�r3,2 �2.595. We also carry out a set of experiments on
random instances of # 3SAT(�2n/2) using a natural modification of the Davis–Putnam–Logemann–Loveland (DPLL) procedure.
Our experimental results suggest that r3,2 ≈ 2.5. Moreover, the average number of recursive calls of this modified DPLL procedure
reaches a peak around 2.5 as well.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction and summary of results

During the past several years, there has been an intensive investigation of random Boolean satisfiability in probability
spaces parameterized by a fixed clauses-to-variables ratio. More precisely, if k�2 is an integer, n is a positive integer
and r is a positive rational such that rn is an integer, then Fk(n, r) denotes the space of random kCNF-formulas with
n variables x1, . . . , xn and rn clauses that are generated uniformly and independently by selecting k variables without
replacement from the n variables and then negating each variable with probability 1

2 . Much of the work in this area
is aimed at establishing or at least providing evidence for the conjecture, first articulated by Chvátal and Reed [10],
that a phase transition occurs in the probability pk(n, r) of a random formula in Fk(n, r) being satisfiable, as n → ∞.
Specifically, this conjecture asserts that, for every k�2, there is a positive real number rk such that if r < rk , then
limn→∞ pk(n, r) = 1, whereas if r > rk , then limn→∞ pk(n, r) = 0.

� A preliminary version of this paper appeared in the Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence
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So far, this conjecture has been established only for k = 2 by showing that r2 = 1 [10,11,14]. For k�3, upper and
lower bounds for rk have been obtained analytically and experiments have been carried out that provide evidence for
the existence of rk and estimate its actual value. For k = 3, in particular, it has been proved that 3.42�r3 �4.571
[15,16] and extensive experiments have suggested that r3 ≈ 4.2 [23]. Moreover, the experiments reveal that the
median running time of the Davis–Putnam–Logemann–Loveland (DPLL) procedure for satisfiability attains a peak
around 4.2. Thus, the critical ratio at which the probability of satisfiability undergoes a phase transition coincides
with the ratio at which this procedure requires maximum computational effort to decide whether a random formula is
satisfiable.

Boolean satisfiability is the prototypical NP-complete problem. Since many reasoning and planning problems in arti-
ficial intelligence turn out to be complete for complexity classes beyond NP, in recent years researchers have embarked
on an investigation of phase transitions for such problems. For instance, it is known that STRIPS planning is complete
for the class PSPACE of all polynomial-space solvable problems [6]. A probabilistic analysis of STRIPS planning and
an experimental comparison of different algorithms for this problem have been carried out in [7]. In addition to STRIPS
planning, researchers have also investigated phase transitions for the prototypical PSPACE-complete problem QSAT,
which is the problem of evaluating a given quantified Boolean formula [8,12]. Actually, this investigation has mainly
focused on the restriction of QSAT to random quantified Boolean formulas with two alternations (universal–existential)
of quantifiers, a restriction which forms a complete problem for the class �2P at the second level of the polynomial
hierarchy PH. The lowest level of PH is NP, while higher levels of this hierarchy consist of all decision problems
(or of the complements of all decision problems) computable by nondeterministic polynomial-time Turing machines
using oracles from lower levels (see [27] for additional information on PH and its levels). Another PSPACE-complete
problem closely related to QSAT is stochastic Boolean satisfiability SSAT, which is the problem of evaluating an ex-
pression consisting of existential and randomized quantifiers applied to a Boolean formula. Experimental results on
phase transitions for SSAT have been reported in [17,19].

Between NP and PSPACE lie several other important complexity classes that contain problems of significance in
artificial intelligence. Two such classes, closely related to each other and of interest to us here, are #P and PP. The
class #P, introduced and first studied by Valiant [26,27], consists of all functions that count the number of accepting
paths of nondeterministic polynomial-time Turing machines. The prototypical #P-complete problem is #SAT, which
is the problem of counting the number of truth assignments that satisfy a CNF-formula. It is well known that nu-
merous #P-complete problems arise naturally in logic, algebra, and graph theory [26,27]. Moreover, #P-complete
problems are encountered in artificial intelligence; these include the problem of computing Dempster’s rule for
combining evidence [20] and the problem of computing probabilities in Bayesian belief networks [22]. In recent
years, researchers have initiated an experimental investigation of extensions of the DPLL procedure for solving SAT.
Specifically, a procedure for solving SAT, called counting Davis–Putnam (CDP), was presented and experiments on
random 3CNF formulas from the space F3(n, r) were carried out in [5]. The main experimental finding was that the
median running time of CDP reaches its peak when r ≈ 1.2. A different DPLL extension for solving SAT, called
decomposing Davis–Putnam (DDP), was presented in [4]; this procedure is based on recursively identifying con-
nected components in the constraint graph associated with a CNF-formula. Additional experiments on random 3CNF-
formulas from F3(n, r) were conducted and it was found out that the median running time of DDP reaches its peak
when r ≈ 1.5.

In the case of the NP-complete problems kSAT , k�3, the peak in the median running time of the DPLL proce-
dure occurs at the critical ratio at which the probability of satisfiability appears to undergo a phase transition. Since
#SAT is a counting problem (returning numbers as answers) and not a decision problem (returning “yes” or “no” as
answers), it is not meaningful to associate with it a probability of getting a “yes” answer; therefore, it does not seem
possible to correlate the peak in the median running times of algorithms for #SAT with a structural phase transition
of #SAT . Nonetheless, there exist decision problems that in a certain sense embody the intrinsic computational com-
plexity of #P-complete problems. These are the problems that are complete for the class PP of all decision problems
solvable using a polynomial-time probabilistic Turing machine, that is, a polynomial-time non-deterministic Turing
machine M that accepts a string x if and only if at least half of the computations of M on input x are accepting.
The class PP was first studied by Simon [24] and Gill [13], where several problems were shown to be PP-complete
under polynomial-time reductions. In particular, the following decision problem, also called #SAT , is PP-complete:
given a CNF-formula � and a positive integer i, does � have at least i satisfying truth assignments? This problem
constitutes the decision version of the counting problem #SAT , which justifies the innocuous overload of notation.
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Another canonical PP-complete problem, which is actually a special case of #SAT , is MAJORITY SAT: given a CNF-
formula, is it satisfied by at least half of the possible truth assignments to its variables? In addition, several evaluation
and testing problems in probabilistic planning under various domain representations have recently been shown to be
PP-complete [18].

It is known that the class PP contains both NP and coNP, and is contained in PSPACE (see [21]). Moreover, as
pointed out by Angluin [3], there is a tight connection between #P and PP. Specifically, P#P = PPP, which means that
the class of decision problems computable in polynomial time using #P oracles coincides with the class of decision
problems computable in polynomial time using PP oracles. This is precisely the sense in which PP-complete problems
embody the same intrinsic computational complexity as #P-complete problems. Moreover, PP-complete problems (and
#P-complete problems) are considered to be substantially harder than NP-complete problems, since in a technical sense
they dominate all problems in the polynomial hierarchy PH. Indeed, the main result in [25] asserts that PH ⊆ PPP =P#P.
In particular, Toda’s result implies that no PP-complete problem lies in PH, unless PH collapses down to one of its
levels, which is considered to be a highly improbable state of affairs in complexity theory.

In [17], initial experiments were carried out to study the median running time of an extension of the DPLL procedure
on instances (�, i) of the PP-complete decision problem #SAT in which � was a random 3CNF-formula drawn from
F3(n, rn) and i=2t , for some nonnegative integer t �n. These experiments were also reported in [19], which additionally
contains a discussion on possible phase transitions for the decision problem #SAT and preliminary results concerning
coarse upper and lower bounds for the critical ratios at which phase transitions may occur (in these two papers #SAT

is called MAJSAT). As noted earlier, the main emphasis of both [17] and Littman et al. [19] is not on #SAT or on PP-
complete problems, but on stochastic Boolean satisfiability SSAT, which is a PSPACE-complete problem containing
#SAT as a special case.

In this paper, we embark on a systematic investigation of phase transitions for a large family of PP-complete
satisfiability problems. Specifically, for every integer k�3 and every integer t �2, let #kSAT(�2n/t ) be the follow-
ing decision problem: given a kCNF-formula � with n variables, does � have at least 2n/t satisfying truth assign-
ments? In particular, for t = 2 and for every k�3, we have the decision problem #kSAT(�2n/2): given a kCNF-
formula, is it satisfied by at least the square-root of the total number of possible truth assignments? Intuitively, each
of these problems can be thought of as a question about the occurrence of 1 in a prefix part of the binary rep-
resentation of the total number of satisfying assignments. For instance, #3SAT(�2n/2)asks whether at least one of
the first n/2 Clearly, for every integer tgeq2, the problem #kSAT(�2n/t ) is a restriction of the decision problem
#SAT . Note that, while an instance of #SAT is a pair (�, i), an instance of #kSAT(�2n/t ) is just a kCNF-formula
�; this makes it possible to study the behavior of random #kSAT(�2n/t ) in the same framework as the one used
for random kSAT . One may also consider the behavior of random MAJORITY kSAT, k�3. In Section 3, however,
we observe that the asymptotic behavior of random MAJORITY kSAT is trivial and that, in particular, it does not un-
dergo any phase transition. In contrast, the state of affairs for random #kSAT(�2n/t ) will turn out to be by far more
interesting.

We first show that, for every k�3 and every t �2, the problem #kSAT(�2n/t ) is indeed PP-complete. We con-
jecture that each of these problems undergoes a phase transition at some critical ratio rk,t of clauses to variables: as
n → ∞, for ratios r < rk,t , almost all formulas in Fk(n, r) are “yes” instances of #kSAT(�2n/t ), whereas for ratios
r > rk,t , almost all formulas in Fk(n, r) are “no” instances of #kSAT(�2n/t ). As a first step towards this conjecture,
we establish analytically upper and lower bounds for rk,t . A standard application of Markov’s inequality easily yields
that ((t − 1)/t)(1/(k − lg(2k − 1))) is an upper bound for rk,t (this was also implicit in [19]). Using an elementary
argument and the fact that the probability of satisfiability of random 2CNF-formulas undergoes a phase transition at
r2 = 1, we show that (1 − 1/t) is a coarse lower bound for rk,t . In particular, these results imply that the critical
ratio r3,2 of #3SAT(�2n/2) obeys the following bounds: 0.5�r3,2 �2.595. After this, we analyze a randomized al-
gorithm, called extended unit clause (EUC), for #3SAT(�2n/2) and show that with probability bounded away from
zero it returns a “yes” answer when r �0.9227; therefore, r3,2 �0.9227. Although EUC is a simple heuristic, its
analysis is rather complex. This analysis is carried out by adopting and extending the powerful methodology of dif-
ferential equations, first used by Achlioptas [1] to derive improved lower bounds for the critical ratio r3 of random
3CNF-formulas.

Finally, we complement these analytical results with a set of experiments for #3SAT(�2n/2) by implementing a
modification of the CDP procedure and running it on formulas drawn from F3(n, rn). Our experimental results suggest
that the probability of #3SAT(�2n/2) undergoes a phase transition when r ≈ 2.5. Thus, the 2.595 upper bound for r3,2
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obtained using Markov’s inequality turns out to be remarkably close to the value of r3,2 suggested by the experiments.
Moreover, the average number of recursive calls of the modified CDP procedure reaches a peak around the same critical
ratio 2.5.

2. PP-completeness of #kSAT(�2n/t )

In [26], the counting problem #SAT was shown to be #P-complete via parsimonious reductions, which means that
every problem in #P can be reduced to #SAT via a polynomial-time reduction that preserves the number of solutions.
Moreover, the same holds true for the counting versions of many other NP-complete problems, including #kSAT , the
restriction of #SAT to kCNF-formulas. We now use this fact to identify a large family of PP-complete problems.

Proposition 1. For every integer k�3 and every integer t �2, the decision problem #kSAT(�2n/t ) is PP-complete. In
particular, #3SAT(�2n/2) is PP-complete.

Proof. For concreteness, in what follows we show that #3SAT(�2n/2) is PP-complete. Let Q be the following decision
problem: given a 3CNF-formula � and a positive integer i, does � have at least 2i satisfying truth assignments? Since
#3SAT is a #P-complete problem under parsimonious reductions, there is a polynomial-time transformation such that,
given a CNF-formula � with variables x1, . . . , xn, it produces a 3CNF-formula � whose variables include x1, . . . , xn

and has the same number of satisfying truth assignments as �. Consequently, � is a “yes” instance of MAJORITY SAT

(that is, it has at least 2n−1 satisfying truth assignments) if and only if (�, n−1) is a “yes” instance of Q. Consequently,
Q is PP-complete.

We now show that there is a polynomial-time reduction of Q to #3SAT(�2n/2). Given a 3CNF-formula � with
variables x1, . . . , xn and a positive integer i, we can construct in polynomial time a 3CNF-formula � with variables
x1, . . . , xn, y1, . . . , yn that is tautologically equivalent to the CNF-formula � ∧ yn−i+1 ∧ · · · ∧ yn. It is clear that
#�=2n−i#�, where #� and #� denote the numbers of truth assignments that satisfy � and �, respectively. Consequently,
� has at least 2i satisfying truth assignments if and only if � has at least 2n = 22n/2 satisfying truth assignments. �

3. Upper and lower bounds for #kSAT(�2n/t )

Let X
n,r
k be the random variable on Fk(n, r) such that X

n,r
k (�) is the number of truth assignments on x1, . . . , xn that

satisfy �, where � is a random kCNF-formula in Fk(n, r). Thus, � is a “yes” instance of #kSAT(�2n/t ) if and only if
X

n,r
k (�)�2n/t . We now have all the notation in place to formulate the following conjecture for the family of problems

#kSAT(�2n/t ), where k�3 and t �2.

Conjecture 2. For every integer k�3 and every integer t �2, there is a positive real number rk,t such that

• If r < rk,t , then limn→∞ Pr[Xn,r
k �2n/t ] = 1.

• If r > rk,t , then limn→∞ Pr[Xn,r
k �2n/t ] = 0.

We have not been able to settle this conjecture, which appears to be as difficult as the conjecture concerning phase
transitions of random kSAT , k�3. In what follows, however, we establish certain analytical results that yield upper
and lower bounds for the value of rk,t ; in particular, these results demonstrate that the asymptotic behavior of random
#kSAT(�2n/t ) is nontrivial.

3.1. Upper bounds for #kSAT(�2n/t )

Let X be a random variable taking nonnegative values and having finite expectation E(X). Markov’s inequality is
a basic result in probability theory which asserts that if s is a positive real number, then Pr[X�s]�(E(X)/s). The
special case of this inequality with s = 1 has been used in the past to obtain a coarse upper bound for the critical ratio
rk in random k SAT . We now use the full power of Markov’s inequality to obtain an upper bound for rk,t . As usual,
lg(x) denotes the logarithm of x in base 2.
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Proposition 3. Let k�3 and t �2 be two integers. For every positive rational number r > ((t − 1)/t)(1/(k −
lg(2k − 1))),

lim
n→∞ Pr[Xn,r

k �2n/t ] = 0.

It follows that if rk,t exists, then rk,t �((t − 1)/t)(1/(k − lg(2k − 1))). In particular, r3,2 � 1
2 (1/(3 − lg 7)) ≈ 2.595.

Proof. For every truth assignment � on the variables x1, . . . , xn, let I� be the random variable on Fk(n, r) such that
I�(�) = 1, if � satisfies �, and I�(�) = 0, otherwise. Each I� is a Bernoulli random variable with mean (1 − 1/2k)rn.
Since X

n,r
k = ��I�, the linearity of expectation implies that E(X

n,r
k ) = (1 − 1/2k)rn2n. By Markov’s inequality, we

have that

Pr[Xn,r
k �2n/t ]�(1 − 1/2k)rn2(1−1/t)n.

It follows that if r is such that (1 − 1/2k)r2(1−1/t) < 1, then limn→∞ Pr[Xn,r
k �2n/t ] = 0. The result then is obtained

by taking logarithms in base 2 in both sides of the above inequality and solving for r. �

Several remarks are in order now. First, note if k is kept fixed while t is allowed to vary, then the smallest upper bound
is obtained when t = 2. Moreover, the quantity (1/(k − lg(2k − 1))) is the coarse upper bound for the critical ratio rk
for random kSAT obtained using Markov’s inequality. In particular, for random 3SAT this bound is ≈ 5.91, which is
twice the bound for r3,2 given by Proposition 3.

Let MAJORITY kSAT be the restriction of MAJORITY SAT to kCNF-formulas, k�2. Obviously, a formula � in
Fk(n, r) is a “yes” instance of MAJORITY kSAT if and only if X

n,r
k (�)�2n−1. Markov’s inequality implies that

Pr[Xn,r
k �2n−1]�2(1 − 1/2k)rn, from which it follows that limn→∞ Pr[Xn,r

k �2n−1] = 0, for every k�2. Thus,
for every k�2, the asymptotic behavior of random MAJORITY kSAT is trivial; in particular, MAJORITY kSAT does not
undergo any phase transition. It is also worth noting that, although MAJORITY SAT is PP-complete, it is not known
whether there is an integer k�3, such that MAJORITY k-SAT is PP-complete.

3.2. Lower bounds for #kSAT(�2n/t )

We say that a partial truth assignment � covers a clause c if it satisfies at least one of the literals of c. We also say that
� covers a CNF-formula � with n variables if � covers every clause of �. Perhaps the simplest sufficient condition for �
to have at least 2n/t satisfying truth assignments is to ensure that there is a partial assignment over �n − n/t� variables
covering �. The next proposition shows that if r is small enough, then this sufficient condition is almost surely true for
formulas in Fk(n, r), as n → ∞.

Proposition 4. Let k�3 and t �2 be two integers. If 0 < r < 1−1/t , then, as n → ∞, almost all formulas in Fk(n, r)

are covered by a partial truth assignment on �n − n/t� variables. Consequently, if 0 < r < 1 − 1/t , then

lim
n→∞ Pr[Xn,r

k �2n/t ] = 1.

It follows that if rk,t exists, then rk,t �1 − 1/t . In particular, r3,2 �0.5.

Proof. In [10,11,14], it was shown that if r < 1, then 2CNF-formulas in F2,n,r are satisfiable with asymptotic probability
1. Fix a ratio r < 1 − 1/t and consider a random formula � in Fk(n, r). By removing (k − 2) literals at random from
every clause of �, we obtain a random 2CNF-formula �∗ which is almost surely satisfiable. Let � be a satisfying truth
assignment of �∗ and let � be the partial truth assignment obtained from � by taking for each clause a literal satisfied
by �. Since r < 1 − 1/t , we have that � is a truth assignment on �n − n/t� variables that covers �∗; hence, � covers �
as well. �

The preceding Propositions 3 and 4 imply that, unlike MAJORITY kSAT, for every k�3 and every t �2, the asymptotic
behavior of #kSAT(�2n/t ) is nontrivial.
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3.3. An improved lower bound for #3SAT(�2n/2)

In what follows, we focus on #3SAT(�2n/2). So far, we have established that if r3,2 exists, then 0.5�r3,2 �2.595.
The main result is an improved lower bound for r3,2.

Theorem 5. For every positive real number r �0.9227,

lim
n→∞ Pr[Xn,r

3 �2n/2] > 0.

It follows that if r3,2 exists, then r3,2 �0.9227.

In the remainder of this section, we first discuss the methodology used and then present the Proof of Theorem 5. We
adopt an algorithmic approach, which originated in [9] and has turned out to be very fruitful in establishing a lower
bound for the critical ratio r3 of random 3SAT (see [2] for an overview). We consider a particular randomized algorithm,
called EUC, that takes as a input a 3CNF-formula � on n variables and attempts to construct a small partial assignment
� covering all clauses of �. Algorithm EUC succeeds if a covering partial assignment � is produced which assigns
values to at most ��n/2� variables, and fails otherwise. Our goal is to show that algorithm EUC succeeds with positive
probability (not tending to 0 as n → ∞) on formulas � from F3(n, r) for each r �0.9227. Consequently, r3,2 �0.9227.

EUC Algorithm:
For t := 1 to n do

If there are any 1-clauses, (forced step)
pick a 1-clause uniformly at random and satisfy it.

Otherwise, (free step)
pick an unassigned variable uniformly at random and remove all
literals involving that variable in all remaining clauses.

Return true if no 0-clause (contradiction) has been generated and
the number of assigned variables is ��n/2�;

otherwise, return false.

Note that if algorithm EUC returns true, then the assigned variables form a covering partial assignment. To analyze
the average performance of algorithm EUC we use the differential equations methodology (DEM), initially introduced
in [1] and described more extensively in [2].

Since DEM was developed to analyze satisfiability testing algorithms, it should not be surprising that certain modi-
fications are needed so that it can be applied to counting algorithms, such as EUC. The main component of EUC not
handled directly by DEM is the free step, since in a satisfiability context it is always a better strategy to assign a value
to the selected variable, instead of removing all the literals involving that variable. We will describe where and how we
extend DEM to handle free steps.

Let V (t) be the random set of variables remaining at iteration t (0� t �n) and let Si(t) denote the set of random i-
clauses (0� i�3) remaining at iteration t. To trace the value of |Si(t)|, we rely on the assumption that, at every iteration of
the execution of the algorithm being considered, a property called uniform randomness is maintained. This property as-
serts that at every iteration 0� t �n, conditional on |V (t)|=n′ and |Si(t)|=m′, Si(t) is drawn from Fi(n

′, m′) on the vari-
ables in V (t). In [2], a protocol, called card game, is presented; this protocol restricts the possible ways in which a vari-
able can be selected and assigned. It is shown that any algorithm obeying that protocol satisfies the uniform randomness
property.

Due to the presence of the free steps, algorithm EUC does not satisfy the card game protocol. Let us first describe
briefly the card protocol, as introduced in [2]. Then we will define an extension of the card game suitable for the EUC
algorithm.

At each iteration of the card game protocol, a variable is selected and set to a value true or false. After the value of
a variable has been fixed, the set of clauses is modified accordingly: that is, every clause satisfied by the assignment
is removed and every literal falsified by the assignment is removed in the remaining clauses. The card game specifies
some restrictions in the way a variable can be selected and set. More precisely, the satisfiability algorithm does not
have complete access to the formula (set of clauses). Instead the algorithm can only “see” for each clause a collection
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of cards, each containing a literal, turned “face-down”, and placed in a column. In order to select the variable, the
algorithm is then allowed to do one of the following:

1. It can point to a particular card; in this case, some hypothetical intermediary will react by revealing all the cards
carrying the literal whose underlying variable coincides with the variable of the literal occurring in the selected
card.

2. It can name a variable; in this case, the reaction of the intermediary will be to flip every card that carries a literal
whose underlying variable coincides with the named variable.

In either cases, the algorithm is then forced to select a value for the involved variable. At this point, the algo-
rithm can only use the information at hand, that is, the state of the cards as shown to it. After the value has been
set, the intermediary removes all the cards associated with satisfied clauses and falsified literals, and a new round
of the game starts. Since the card game was originally conceived for satisfiability, it is not surprising than the
only reasonable action to perform after a variable has been selected is to give it a value, since any other choice
could only diminish our probabilities to find a satisfying assignment. However, if our goal is to certify that a large
number of solutions exist by finding a small cover, then there is a legitimate second choice: to “save” the vari-
able as unset, thus, removing all literals associated with that variable in the set of clauses. We will call extended
card game the generalization of the ordinary card game in which this last possibility is also allowed. It is te-
dious, but straightforward, to show that the extended card game also guarantees the uniform randomness
property.

We analyze the algorithm EUC by studying the evolution of the random variables that count the number of clauses in
Si(t), Ci(t)=|Si(t)|. We also need a random variable F(t) that counts the number of variables assigned up to iteration
t. We trace the evolution of Ci(t) and F(t) by using the following result from [28].

Theorem 6 (Wormald, [28]). Let X1(t), . . . , Xk(t) be random variables evolving jointly with t = 1, ..., n such that
at each iteration t , conditional on the history of the joint process X1(1), ..., Xk(1), ..., X1(t), ..., Xk(t), the following
properties hold:

1. The random variable Xj(t) is bounded by Bn, for some B.
2. The random variable �Xj(t) = Xj(t + 1) − Xj(t) with high probability (w.h.p.) is very close to its conditional

expectation.
3. �Xj(t) evolves smoothly with t and X1(t), ..., Xk(t).

Then the entire evolution of Xj(t) will remain close to its mean path, that is, the path that Xj(t) would follow if
�Xj(t) was, at each iteration, the value of its conditional expectation. Furthermore, this mean path can be expressed
as the set of solutions of a system of differential equations corresponding to the scaled version of the space state of the
process obtained by dividing every parameter by n.

As discussed in [2], Wormald’s Theorem guarantees that the value of the random variables considered differs in o(n)

from its mean path.
Unfortunately, we faced several obstacles when we attempted to apply Wormald’s theorem to analyze algorithm

EUC. In order to overcome these obstacles, we will modify algorithm EUC, making it suitable for application of
Wormald’s theorem, while keeping, at the same time, the algorithmic scheme behind EUC. To understand where the
problem arises, we will start by tracing the evolution of the values of Ci(t) and F(t) under the application of forced
and free steps.

Let H(t) be a random variable representing the history of Ci(t), 0� i�3 and F(t) up to iteration t, (that is, H(t) =
〈C(0), ..., C(t)〉, where C(t)= (C0(t), C1(t), C2(t), C3(t), F (t))). Here, the uniform randomness comes to play: since
Si(t), 1� i�3 distributes as Fi(n − t, Ci(t)), the expected number of clauses in Ci(t) containing a given literal l,
chosen uniformly among the literals with underlying variable in V (t), is equal to iCi(t)/2(n − t). Furthermore, given
a variable chosen uniformly among the variables in V (t), the expected number of clauses in Ci(t) containing a v or v̄

is equal to iCi(t)/(n − t).
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Consequently, for all 0� t �n − 3, conditional on H(t), if C1(t) = 0 (free step):

E(�C3(t)|H(t)) = −3C3(t)

n − t
,

E(�C2(t)|H(t)) = −2C2(t)

n − t
+ 3C3(t)

(n − t)
,

E(�C1(t)|H(t)) = 2C2(t)

n − t
,

E(�C0(t)|H(t)) = 0,

E(�F(t)|H(t)) = 1.

To prove this set of difference equations we first claim that for every 0� t �n−3 the variable v selected in the free step
is chosen uniformly among the variables in V (t), which is a direct consequence of the definition of the EUC algorithm.
Thus, the set of clauses “leaving” S3 at turn t are precisely those containing v or v̄. By the uniform randomness the
expected number of such clauses is 3C3(t)/(n − t). Every such clause, after removal of v or v̄ becomes a 2-clause
and consequently, ends up in S2(t + 1); hence the positive term 3C3(t)/(n − t) in the right side of E(�C2(t)|H(t)).
Furthermore, there is also a stream of clauses from S2 to S1 (after removal of v or v̄). By the uniform randomness, the
expected value of the number of such clauses is 2C2(t)/(n − t). Finally, since S1(t) = ∅, the flow of clauses from S1
to S0 is null.

The difference equations for the case of forced step are derived similarly, obtaining that for all 0� t �n−3, conditional
on H(t), if C1(t) �= 0 (forced step)

E(�C3(t)|H(t)) = −3C3(t)

n − t
,

E(�C2(t)|H(t)) = −2C2(t)

n − t
+ 3C3(t)

2(n − t)
,

E(�C1(t)|H(t)) = −C1(t)

n − t
+ C2(t)

n − t
,

E(�C0(t)|H(t)) = C1(t)

2(n − t)
,

E(�F(t)|H(t)) = 0.

We are now in a situation manifesting the several technical difficulties that prevent us from applying directly
Worlmald’s theorem in the analysis of algorithm EUC. All of these difficulties have to do with the smoothness condition
(3) of Wormald’s theorem which states, leaving technicalities aside, that for every function f, changing any of t, F(t),
C0(t), C2(t), C3(t) by O(f (n)) should affect each �F(t), �Co(t), �C1(t), �C2(t), �C3(t) within O(f (n)/n). First,
it is easy to observe that, as t gets close to n, the quantity n − t gets small and then the smoothness condition is
easily violated. Following Achlioptas [2], this problem is fixed by determining an iteration t∗ = �(1 − 	)n� at which
our algorithm will stop the iterative process. Then the algorithm deals with the remaining formula in a deterministic
fashion.

Nonetheless, there are additional and deeper difficulties. First, due to the different nature of free and forced steps,
knowing whether C1(t) = 0 or not may affect �C2(t), �C1(t), �C0(t), and �F(t) by 
(1). Finally, notice also that
knowing the value of C0(t) with o(n) precision, as guaranteed by Wormald’s theorem, is rather useless since we need
to now exactly whether C0(t) = 0 in order to certify that EUC algorithm succeeds.

To settle technical difficulties of this nature, Achlioptas derived an elegant solution, inspired by a result from queuing
theory, called the lazy-server lemma. This lemma states that if, instead of handling unit clauses deterministically as
they appear, our algorithm handles them in a lazy randomized fashion, by taking care of unit clauses at iteration t
with probability p(t) < 1 − �, for some fixed � > 0, and performing a free step with probability 1 − p(t), then we
can guarantee that with positive probability (that is not tending to 0 as n → ∞) the number of unit clauses remains
bounded and that 0-clauses are not generated whenever p(t) is bigger than the expected number of 1-clauses added
to S1(t). Furthermore, if p(t) is very close to the number of 1-clauses added to S1(t), then the probability that the
algorithm with lazy-server policy tries to satisfy a unit clause and finds S1(t) empty tends to 0. Thus, we have a strategy
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to decide whether to perform a free or forced step that does not depend on the actual content of S1(t) and that can be
made arbitrarily ‘close’ to the deterministic selection performed in EUC.

We now modify algorithm EUC by incorporating the features described above and obtain the following algorithm

EUC with lazy-server policy:
For t := 1 to t∗ do

Set U(t) = 1 with probability p(t)

If U(t) = 1
(a) If there are 1-clauses,

pick a 1-clause uniformly at random and satisfy it.
(b) Otherwise

pick an unset variable uniformly at random
and assign it uniformly at random

Otherwise
Pick an unset variable uniformly at random
and remove all literals with that underlying
variable in all remaining clauses.

Find a minimal covering for the remaining clauses.
Return true if no 0-clause has been generated and

the number of assigned variables is �n/2�;
otherwise, return false.

Notice than when the algorithm attempts to satisfy a unit clause and finds S1(t) empty, instead of doing something
‘clever’, it just satisfies a randomly selected literal. The reason for this is that, in this way, the dynamics of C2(t) and
F(t) are completely independent of the value C1(t), depending only on the random coin flips that determine U(t).

Now we can apply Wormald’s theorem to analyze algorithm EUC with lazy-server policy. First, we compute the
difference equations that determine the expected value for the evolution of C2(t), C3(t) and F(t), conditional on the
history of the random variables considered up to iteration t. It is not necessary to trace the values of C1(t) and C0(t)

as the lazy-server lemma takes care of it.

E(�C3(t)|H(t)) = −3C3(t)

n − t
,

E(�C2(t)|H(t)) = −2C2(t)

n − t
+ p(t)

3C3(t)

2(n − t)
+ (1 − p(t))

3C3(t)

n − t
,

E(�F(t)|H(t)) = p(t),

with initial conditions C2(0) = 0, C3(0) = rn, F(0) = 0.
Each difference equation is obtained by adding the right value of the corresponding difference equation for the forced

step in the EUC algorithm weighted (multiplied) by p(t) and the right value of the corresponding difference equation
for the free step multiplied by 1 − p(t).

It is time to fix the value of p(t). At time t the expected number of clauses added to S1(t), is (p(t)(C2(t)/(n − t)) +
(1 − p(t))(2C2(t)/(n − t)). Thus, according to the lazy-server lemma any value such that

p(t) > p(t)
C2(t)

n − t
+ (1 − p(t))

2C2(t)

n − t

would suffice. This inequality is solved by setting

p(t) = (1 + �)
(2C2(t)/(n − t))

1 + C2(t)/(n − t)
,

with � > 0.
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To obtain the set of differential equations associated with the process, as discussed in [2], we consider the scaled
version of the process, x, c2(x), c3(x), f (x) obtained by dividing every parameter t, C2(t), C3(t), F (t) by n. We obtain
the following differential equations:

dc3

dx
= −3c3(x)

1 − x
,

dc2

dx
= −2c2(x)

1 − x
+ p(x, c2(x))

3c3(x)

2(1 − x)
+ (1 − p(x, c2(x))

3c3(x)

1 − x
,

df

dx
= p(x, c2(x)),

with p(x, c2(x))=(1+�)(2c2(x)/(1−x))/(1+c2(x)/(1−x)) and initial conditions c3(0)=r , c2(0)=0 and f (0)=0.
We solve the system numerically using the utility dsolve of mapple (it is easy to get c3(x) = r(1 − x)3 analytically)
setting, with foresight, r = 0.9227, 	 = 10−2 and � = 10−5.

Now we are almost done. First, we have that S0(t) = ∅ with positive probability; this can be seen by testing
numerically that p(x, c2(x)) < 1 − 10−1, if x ∈ [0, 1 − 10−2], and appealing to the lazy-server lemma. Moreover, we
get f (1 − 10−2) < 0.49978 and, transforming this result back to the randomized space state, we can infer that w.h.p
F(t∗) < 0.49978n+o(n). Similarly, the number of remaining clauses at that iteration is w.h.p C2(t

∗)+C3(t
∗)=c2(1−

10−2)n + c3(1 − 10−2)n + o(n) < 0.00021n + o(n). It is easy to verify that the ratio of clauses to variables at iteration
t∗ is smaller than 1, and we can apply again the argument used to obtain the first naive lower bound of 1

2 to guarantee
that there exists a covering partial assignment with size < 0.00021n. Thus, by adding the previous quantities, we get
0.49999n < n/2, which means that the algorithm succeeds.

The astute reader might wonder whether algorithm EUC (and its lazy-server variant) suffers from greed. Clearly,
delaying the satisfaction of a 1-clause can only hurt our probabilities of succeeding; it is still conceivable, however,
that when choices are available (that is, clauses with more than one literal are present), a wiser policy that does not
prioritize the retention of unset variables could do better. Our alternative algorithm could, instead, try to satisfy as soon
as possible the formula by satisfying a uniformly chosen literal in each step hoping that after setting �n/2� variables
all the clauses are satisfied (covered), or even more generally, it could toss a q-coin, and decide the type of operation,
to satisfy a uniformly chosen literal or to mark a uniformly chosen variable as unset, depending on the outcome of the
q-coin. After analyzing these possibilities, we found that algorithm EUC dominates them even in the case in which a
presumably more intelligent strategy is used in the process of selecting the literal satisfied in the case of absence of
1-clauses. The new algorithm, called EUC with majority, performs the following actions: if there are 1-clauses then
pick one of them uniformly at random and satisfy it. When no 1-clauses are present and the outcome of a q-coin is 0,
then select a variable v uniformly at random, and remove all the occurrences of v and v̄ in the formula. If the outcome
is 1, then pick a variable v at random and set it in such a way that minimizes the number of 3-clauses that become
2-clauses. Again the best performance is obtained when q =0, in which case the algorithm behaves identically to EUC.

There is still room for improvement. One possibility is to design more sophisticated algorithms to find small coverings.
Nevertheless, it is not difficult to see that this approach is limited. In fact, a direct application of the Markov bound
shows that if r �1.4343, then almost surely there does not exist a covering of size at most �n/2� of a formula drawn
according to F3(n, rn). Hence, any attempt to find a lower bound close to the observed value 2.5 of r3,2 must necessarily
be based on a completely different approach.

4. Experimental results for #3SAT(�2n/2)

Experiments were run for random 3CNF-formulas with 10, 20, 30 and 40 variables on a SUN Ultra 5 workstation.
For each space we generated 1200 random 3CNF-formulas with sizes ranging from 1 to 200 clauses in length. Each
clause was generated by randomly selecting three variables without replacement and then negating each of them with
probability of 1

2 .
Our goal was to test the formulas for being “yes” instances of #3SAT(�2n/2), that is, for having at least as many

satisfying assignments as the square root of the total number of truth assignments. For this, we implemented a
threshold DPLL algorithm by modifying the basic CDP algorithm in [5] to include tracking of lower and upper
bounds on the count and early termination, if the threshold is violated by the upper bound or satisfied by the lower
bound.
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Fig. 1. Phase transition graphs.
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Fig. 2. Performance graphs.

The results are depicted in Figs. 1 and 2. In both figures the horizontal axis is the ratio of the number of clauses to
number of variables in the space. The ranges of formula sizes represented in the graphs are 1–50, 1–100, 1–1500, and
1–200 for the 10, 20, 30 and 40 variable spaces, respectively.

The phase transition graphs show for each test point the fraction of 1200 newly generated random formulas that had a
number of satisfying truth assignments greater than or equal to the square root of the total number of truth assignments.
They strongly suggest that 2.5 is a critical ratio around which a phase transition occurs. The performance graphs show
the average number of recursive calls required to test each formula and they exhibit a peak around the same ratio. In the
test runs a range of 1–200 clauses was used for each space and the run times on the SUN Ultra 5 varied from several
minutes to several hours.
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Fig. 3. Finite-size scaling results.

We also performed finite-size scaling, assuming a power law of the form ((r − r3,2)n
)/r3,2, to obtain estimates for

the critical ratio r3,2 and for the exponent . The estimates from the finite-size scaling are r3,2 = 2.50 and  = 0.5800.
Fig. 3 shows evidence that the probability curves collapse to one curve when the re-scaling is applied which further
supports the value of 2.5 for the critical ratio of the phase transition.

We conclude by pointing out that in Section 3.1.4 of [19] it was suggested that for every 0���1, the critical ratio
of #3SAT(�2�n) is given approximately by the formula 4.2(1 − �). By taking � = 1

2 , this formula suggests that the
critical ratio r3,2 of #3SAT(�2n/2) should be approximately 2.1, which is at odds with our experimental finding of 2.5
as the approximate value of r3,2. We believe that this discrepancy is not caused by any significant difference in the
outcome between the experiments carried out by Littman et al. [19] and ours, but rather is due to the way in which the
above formula was extrapolated from the experiments in [19]. Specifically, in [19] experiments were carried out by
varying � and the ratio r of clauses to variables, but keeping the number of variables to a fixed value n = 30. The above
formula 4.2(1 − �) was then derived by visual inspection of the resulting surface. We believe that, instead, the value
of the critical ratio should be estimated by the crossover points of the curves obtained from experiments for different
values of the number n of variables. In any case, we see no theoretical argument or experimental evidence that a linear
relationship between the critical ratio and � should hold.
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