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Abstract. Existential k-pebble games, k ≥ 2, are combinatorial games played
between two players, called the Spoiler and the Duplicator, on two structures.
These games were originally introduced in order to analyze the expressive power
of Datalog and related infinitary logics with finitely many variables. More recently,
however, it was realized that existential k-pebble games have tight connections
with certain consistency properties which play an important role in identifying
tractable classes of constraint satisfaction problems and in designing heuristic al-
gorithms for solving such problems. Specifically, it has been shown that strong
k-consistency can be established for an instance of constraint satisfaction if and
only if the Duplicator has a winnning strategy for the existential k-pebble game
between two finite structures associated with the given instance of constraint sat-
isfaction. In this paper, we pinpoint the computational complexity of determining
the winner of the existential k-pebble game. The main result is that the following
decision problem is EXPTIME-complete: given a positive integer k and two finite
structures A and B, does the Duplicator win the existential k-pebble game on A
and B? Thus, all algorithms for determining whether strong k-consistency can be
established (when k is part of the input) are inherently exponential.

1 Introduction and Summary of Results

Combinatorial games are a basic tool for analyzing logical definability and delineating
the expressive power of various logics. Typically, a logic L is decomposed into a union
L =

⋃
k≥1 L(k) of fragments according to some syntactic parameter, such as quantifier

rank, pattern of quantification, or number of variables.With each fragment L(k), one then
seeks to associate a natural combinatorial game G(k) that captures L(k)-equivalence.
Specifically, the desired game G(k) is played between two players, called the Spoiler
and the Duplicator, on two structures A and B, and has the following property: the
Duplicator has a winning strategy for G(k) on A and B if and only if A and B satisfy
the same L(k)-sentences. In the case of first-order logic FO, each such fragment is the
set FO(k) of all first-order sentences of quantifier rank at most k, and the game G(k)
is the k-move Ehrenfeucht-Fraı̈ssé-game. Moreover, in the case of the infinitary logic
Lω

∞ω with finitely many variables, each such fragment is the infinitary logic Lk
∞ω with k

variables, k ≥ 1, and the corresponding game is the k-pebble game. As is well known,
k-pebble games have turned out to be an indispensable tool in the study of logics with
fixed-point operators in finite model theory (see [7] for a survey).
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Each gameG(k) as above gives rise to the decision problem of determining the winner
of this game: given two finite structures A and B, does the Duplicator have a winning
strategy for G(k) on A and B? It is easy to show that, for every k ≥ 1, determining the
winner of the k-move Ehrenfeucht-Fraı̈ssé-game is in LOGSPACE (this is a consequence
of the fact that each equivalence class of FO(k)-equivalence is first-order definable).
The state of affairs, however, is quite different for the k-pebble games. Indeed, Grohe
[7] established that, for each k ≥ 2, determining the winner of the k-pebble game is
a P-complete problem, that is, complete for polynomial-time under logarithmic-space
reductions. It is also natural to consider the decision problem that arises by taking
the parameter k as part of the input (in addition to the structures A and B). Pezzoli
[13] investigated the computational complexity of this problem for the Ehrenfeucht-
Fraı̈ssé-game and showed that it is PSPACE-complete. In other words, Pezzoli showed
that the following problem is PSPACE-complete: given a positive integer k and two
finite structures A and B, does the Duplicator have a winning strategy for the k-move
Ehrenfeucht-Fraı̈ssé-game on A and B? Thus, when the number of moves is part of
the input, an exponential jump occurs in determining the winner of the Ehrenfeucht-
Fraı̈ssé-game. It is conjectured that a similar exponential jump in complexity holds for
the k-pebble game, when k is part of the input. Specifically, the conjecture is that the
following problem is EXPTIME-complete: given a positive integer k and two finite
structures A and B, does the Duplicator have a winning strategy for the k-pebble on A
and B? To date, this conjecture remains unsettled.

In this paper we investigate the computational complexity of the decision problems
associated with the class of existential k-pebble games (or, in short, (∃, k)-pebble games),
which are an asymmetric variant of the k-pebble games. These games were introduced
in [11] as a tool for studying the expressive power of Datalog and of the existential
positive infinitary logic ∃Lω

∞ω with finitely many variables. More precisely, ∃Lω
∞ω is

the collection of all Lω
∞ω-formulas containing all atomic formulas and closed under

existential quantification, infinitary conjunction
∧

, and infinitary disjunction
∧

. Clearly,
∃Lω

∞ω =
⋃

k≥1 ∃Lk
∞ω, where ∃Lk

∞ω is the collection of all ∃Lω
∞ω-formulas with at most

k distinct variables. The differences between the (∃, k)-pebble game and the k-pebble
game played on two structures A and B are that in the (∃, k)-pebble game: (1) the Spoiler
always plays on A; and (2) the Duplicator strives to maintain a partial homomorphism,
instead of a partial isomorphism. The main result of this paper is that determining the
winner of the (∃, k)-pebble game, when k is part of the input, is an EXPTIME-complete
problem. In contrast, for each fixed k ≥ 2, determining the winner of (∃, k)-pebble
game turns out to be a P-complete problem. Before commenting on the technique used
to establish the main result, we discuss the motivation for investigating this problem and
the implications of our main result.

Although (∃, k)-pebble games were originally used in database theory and finite
model theory, in recent years they turned out to have applications to the study of con-
straint satisfaction. Numerous problems in several different areas of artificial intelligence
and computer science can be modeled as constraint satisfaction problems [4]. In full
generality, an instance of the Constraint Satisfaction Problem consists of a set of
variables, a set of possible values, and a set of constraints on tuples of variables; the
question is to determine whether there is an assignment of values to the variables that
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satisfies the given constraints. Alternatively, as first pointed out by Feder and Vardi [6],
the Constraint Satisfaction Problem can be identified with the Homomorphism
Problem: given two relational structures A and B, is there a homomorphism h from
A to B? Intuitively, the structure A represents the variables and the tuples of variables
that participate in constraints, the structure B represents the domain of values and the
tuples of values that the constrained tuples of variables are allowed to take, and the
homomorphisms from A to B are precisely the assignments of values to variables that
satisfy the constraints. The Constraint Satisfaction Problem is NP-complete, since
it contains Boolean Satisfiability, Colorability, Clique, and many other promi-
nent NP-complete problems as special cases. For this reason, there has been an extensive
pursuit of both tractable cases of the Constraint Satisfaction Problem and heuris-
tic algorithms for this problem. In this pursuit, a particularly productive approach has
been the introduction and systematic use of various consistency concepts that make ex-
plicit additional constraints implied by the original constraints. The strong k-consistency
property is the most important one among them; intuitively, this property holds when
every partial solution on fewer than k variables can be extended to a solution on k vari-
ables [5]. Closely related to this is the process of “establishing strong k-consistency”,
which is the question of whether additional constraints can be added to a given instance
of the Constraint Satisfaction Problem in such a way that the resulting instance is
strongly k-consistent and has the same space of solutions as the original one. Algorithms
for establishing strong k-consistency play a key role both in identifying tractable cases
of constraint satisfaction and in designing heuristics for this class of problems [2,5].

In [12], a tight connection was shown to exist between strong k-consistency proper-
ties and (∃, k)-pebble games. Specifically, it turns out that strong k-consistency can be
established for a given instance of the Constraint Satisfaction Problem if and only if
the Duplicator has a winning strategy for the (∃, k)-pebble game on the structures A and
B forming the instance of the Homomorphism Problem that is equivalent to the given
instance of the Constraint Satisfaction Problem. This connection was fruitfully
exploited in [3], where it was shown that the tractability of certain important cases of
constraint satisfaction follows from the fact that the existence of a solution is equivalent
to whether the Duplicator can win the (∃, k)-pebble game for some fixed k. Note that,
for every fixed k, there is a polynomial-time algorithm to determine whether, given two
finite structures A and B, the Duplicator has a winning strategy for the (∃, k)-pebble
game on A and B (this had been already observed in [11]). Nonetheless, since many
heuristics for constraint satisfaction require testing whether strong k-consistency can be
established for arbitrarily large k’s, it is important to identify the inherent computational
complexity of determining the winner in the (∃, k)-pebble game, when k is part of the
input. It is not hard to verify that this problem is solvable in time O(n2k), that is, in
time exponential in k. Moreover, it was conjectured in [12] that a matching lower bound
exists, which means that the following problem is EXPTIME-complete: given a positive
integer k and two finite structures A and B, does the Duplicator have a winning strategy
for the (∃, k)-pebble on A and B?

In this paper, we prove this conjecture by showing that another pebble game, which
was known to be EXPTIME-complete, has a polynomial-time reduction to the (∃, k)-
pebble game. Specifically, Kasai,Adachi, and Iwata [8] introduced a pebble game, which
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we will call the KAI game, and showed that it is EXPTIME-complete via a direct re-
duction from polynomial-space alternating Turing machines (recall that APSPACE =
EXPTIME [1]). Our reduction of the KAI game to the (∃, k)-pebble game is quite
involved and requires the construction of elaborate combinatorial gadgets. In describing
this reduction and establishing its correctness, we will adopt the setup and terminology
used by Grohe [7] in showing that, for every k ≥ 2, the k-pebble game is P-complete.
Some of the basic gadgets in our reduction already occurred in Grohe’s reduction. How-
ever, we will also need to explicitly construct other much more sophisticated gadgets that
will serve as “switches” with special properties in the reduction. We note that Grohe also
used highly sophisticated gadgets that were graphs with certain homogeneity properties.
Grohe’s gadgets, however, have size exponential in k and, hence, they cannot be used
in a polynomial-time reduction when k is part of the input (this is also the reason why
Grohe’s reduction does not show that the k-pebble game is EXPTIME-complete, when
k is part of the input). An immediate consequence of our main result is that determin-
ing whether strong k-consistency can be established, when k is part of the input, is an
EXPTIME-complete problem and, thus, inherently exponential. Moreover, this explains
why all known algorithms for establishing strong k-consistency are exponential in k
(even ones considered to be “optimal”, see [2]).

We also address the computational complexity of determining who wins the (∃, k)-
pebble game, when k is a fixed positive integer. Kasif [10] showed that determining
whether strong 2-consistency can be established is a P-complete problem. From this
and the aforementioned connection between strong k-consistency and the (∃, k)-pebble
game [12], it follows that determining who wins the (∃, 2)-pebble game is a P-complete
problem. Here we give a direct proof to the effect that, for every fixed k ≥ 2, determining
who wins the (∃, k)-pebble game is a P-complete problem. This is done via a reduction
from the Monotone Circuit Value Problem, which we present first as a warm-up to
the reduction of the KAI game to the (∃, k)-game, when k is part of the input. Due to
space limitations, here we present only outlines of these reductions; complete proofs can
be found in the full version of the paper, which is available at http://www.cs.ucsc.edu/
˜kolaitis/papers/.

2 The Existential k-Pebble Game

Let A and B be two relational structures over the same vocabulary. A homomorphism h
from A to B is a mapping h : A → B from the universe A of A to the universe B of B
such that, for every relation RA of A and every tuple (a1, . . . , am) ∈ RA, we have that
(h(a1), . . . , h(am)) ∈ RB. A partial homomorphism from A to B is a homomorphism
from a substructure of A to a substructure of B.

Let k ≥ 2 be a positive integer. The existential k-pebble game (or, in short, the
(∃, k)-pebble game) is played between two players, the Spoiler and the Duplicator, on
two relational structures A and B according to the following rules: each player has k
pebbles labeled 1, . . . , k; on the i-th move of a round of the game, 1 ≤ i ≤ k, the Spoiler
places a pebble on an element ai of A, and the Duplicator responds by placing the pebble
with the same label on an element bi of B. The Spoiler wins the game at the end of that
round, if the correspondence ai �→ bi, 1 ≤ i ≤ k, is not a homomorphim between the
substructures of A and B with universes {a1, . . . , ak} and {b1, . . . , bk}, respectively.
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Otherwise, the Spoiler removes one or more pebbles, and a new round of the game
begins. The Duplicator wins the (∃, k)-pebble game if he has a winning strategy, that is
to say, a systematic way that allows him to sustain playing “forever”, so that the Spoiler
can never win a round of the game.

To illustrate this game (and its asymmetric character), let Km be the m-clique, that
is, the complete undirected graph with m nodes. For every k ≥ 2, the Duplicator wins
the (∃, k)-pebble game on Kk and Kk+1, but the Spoiler wins the (∃, k + 1)-pebble
game on Kk+1 and Kk. As another example, let Ls be the s-element linear order, s ≥ 2.
If m < n, then the Duplicator wins the (∃, 2)-pebble game on Lm and Ln, but the
Spoiler wins the (∃, 2)-pebble game on Ln and Lm.

Note that the above description of a winning strategy for the Duplicator in the (∃, k)-
pebble game is rather informal. The concept of a winning strategy can be made precise,
however, in terms of families of partial homomorphisms with appropriate properties.
Specifically, a winning strategy for the Duplicator in the existential k-pebble game on
A and B is a nonempty family F of partial homomorphisms from A to B such that:

1. For every f ∈ F , the domain dom(f) of f has at most k elements.
2. F is closed under subfunctions, which means that if g ∈ F and f ⊆ g, then f ∈ F .
3. F has the k-forth property, which means that for every f ∈ F with |dom(f)| < k

and every a ∈ A on which f is undefined, there is a g ∈ F that extends f and is
defined on a.

Intuitively, the second condition provides the Duplicator with a “good” move when
the Spoiler removes a pebble from an element of A, while the third condition provides
the Duplicator with a “good” move when the Spoiler places a pebble on an element of A.

3 The (∃, k)-Pebble Game Is P-Complete

In this section, we show that, for every k ≥ 2, determining the winner of the (∃, k)-
pebble game is a P-complete problem. We do this by constructing a reduction from
the Monotone Circuit Value problem (MCV) in the style of Grohe [7], but with
different gadgets. In this reduction, the structures will be undirected graphs with ten
unary predicates, called colors. So, we actually prove that, for every k ≥ 2, the (∃, k)-
pebble game restricted to such structures is P-complete.

The following concepts and terminology come from Grohe [7].

1. In an undirected graph with colors, a distinguished pair of vertices is a pair of
vertices that are of the same color, and that color is not used for any other vertex in
the graph.

2. A position of the (∃, k)-pebble game on A and B, is a set P of ordered pairs such
that P ⊆ A×B and |P | ≤ k. Often, we will omit the ordered pair notation and use
the shorthand ab ∈ P to mean that (a, b) ∈ P .

3. A strategy for the Spoiler is simply a mapping from positions to moves which tells
the Spoiler how to play given the current position.

4. We say that the Spoiler can reach a position P ′ from another position P of the
(∃, k)-pebble game on A and B if the Spoiler has a strategy for the (∃, k)-pebble
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ji i’ j’ji

h h h’

Fig. 1. H Gadget based on the one from [7]. HS is on the left and HD is on the right.

i j i i’ j j’

h’hh

Fig. 2. I Gadget based on the one from [7]. IS is on the left and ID is on the right.

game on A and B such that, starting from position P , either he wins the game or
after a number of moves the game is in a position P ′′ such that P ′ ⊆ P ′′.
This concept will be used to combine strategies of the Spoiler on different gadgets
in order to construct strategies for the combined game.

5. We say that the Duplicator can avoid a position P ′ from another position P of the
(∃, k)-pebble game on A and B if the Duplicator has a winning strategy for the
(∃, k)-pebble game on A and B such that starting from position P , position P ′

never occurs.

For each gadget used in the reduction there will be two pieces, one for the Spoiler’s
structure and one for the Duplicator’s structure. For gadget X , we call the Spoiler’s side
XS , the Duplicator’s side XD, and the pair (XS , XD) simply X .

3.1 The Gadgets H and I

The graphs HD and ID, which are both based on gadgets from [7], are going to be
used for and nodes and or nodes respectively. HD, as seen in Figure 1, consists of
six vertices h, h′, i, i′, j, j′. These six vertices form three distinguished pairs, (h, h′),
(i, i′), and (j, j′). There are edges from h to i, and h to j, and edges from h′ to i′ and
h′ to j′. This graph has only one non-identity automorphism, which we will call swi,
that maps any vertex a to a′ and any vertex a′ to a. HS is simply the subgraph of HD

determined by h, i, j. Starting from position hh′, the Spoiler can reach both ii′ and jj′

in the (∃, k)-pebble game on (HS , HD).
ID, seen in figure 2, has ten vertices. It contains the three distinguished pairs (h, h′),

(i, i′), and (j, j′), plus four additional nodes which we will name by their connections
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to the other vertices. These nodes are hij, h′ij′, h′i′j, and hi′j′. This graph has three
non-identity automorphisms, which we will refer to as fixi, fixj , and fixh. These
automorphism fix i, j, and h respectively, while switching the other two. By playing
according to these automorphisms, the Duplicator can avoid either ii′ or jj′ from hh′

but not both in the (∃, k)-pebble game.

3.2 Single Input One-Way Switches

The Single Input One-Way Switches are used to restrict the ways in which the Spoiler
can win the game. The basic intuition is that the Spoiler can only make progress in one
particular direction; moreover, to do so he must use all of his pebbles.

This lemma is similar to Lemma 14 from [7], adapted to the (∃, k)-pebble game.

Lemma 1. For every k ≥ 2 there exists a pair of graphs Ok
S and Ok

D with Ok
S ⊂ Ok

D,
{x, x′, y, y′} ⊂ V (Ok

D), xx′ and yy′ distinguished pairs of vertices, and {x, y} ⊂
V (Ok

S), such that:

y

x

y y’

O Ox x’4
S

4
D

Fig. 3. Single Input One-Way Switch O4.

1. The Spoiler can reach yy′ from xx′ in the (∃, k)-pebble game on (Ok
S , Ok

D).
2. There exist two disjoint sets of positions of the (∃, k)-pebble game on (Ok

S , Ok
D),

called Pretrapped and Trapped positions such that:
(a) Pretrapped and Trapped positions are partial homomorphisms
(b) The Duplicator can avoid positions that are not Trapped and not Pretrapped

from Pretrapped positions
(c) The Duplicator can avoid positions that are not Trapped from Trapped positions
(d) The position {xx′} is Pretrapped
(e) If P is Pretrapped and |P | < k , then P ∪ {yy} is Pretrapped
(f) The positions {yy} and {yy′} are Trapped
(g) If P is Trapped and |P | < k, then P ∪ {xx} is Trapped

We call (Ok
S , Ok

D) the Single Input One-Way Switch.

Corollary 1. The Spoiler can reach {(y, y′)} from {(x, x′)} in the (∃, k)-pebble game
on the Single Input One-Way Switch, but not in the (∃, k −1)-pebble game on the Single
Input One-Way Switch.
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Proof. The first part of the Corollary is simply a restatement of condition 1 from Lemma
1.Assume for the sake of contradiction that the Spoiler can reach {(x, x′)} from {(y, y′)}
in the (∃, k − 1)-pebble game on the Single Input One-Way Switch. Then, from the
position {(x, x′), (y, y)} of the (∃, k)-pebble game, the Spoiler could reach the position
{(y, y′), (y, y)} by ignoring the pebbles on (y, y) and playing the (∃, k−1)-pebble game.
The position {(x, x′), (y, y)} is Pretrapped, but {(y, y′), (y, y)} is neither Pretrapped nor
Trapped. This is a contradiction because the Duplicator can avoid such positions from
Pretrapped positions.

Because of Corollary 1, the Spoiler has to use all of his pebbles in order to make
progress. The “One-Way” aspect of the Switch lies in the fact that {(y, y′)} is Trapped,
and {(x, x′)} is not. This means that the Duplicator can avoid {(x, x′)} from {(y, y′)}.

3.3 Twisted Switches

The Twisted Switch consists of an H gadget, an I gadget, and two Single Input One-Way
Switches in parallel. We use a Twisted Switch in the reduction to initialize the game.
The construction of the Twisted Switch is the same as that in Grohe [7], except that we
substitute a One-Way Switch in place of what Grohe calls a Threshold Switch.

The following Lemma introduces a set of positions of the Single Input One-Way
Switch, called Switched positions. Within the Twisted Switch, the Duplicator uses
Switched positions instead of Trapped and Pretrapped positions on the Single Input
One-Way Switch.

Lemma 2. There is a set of positions of the (∃, k)-pebble game on Ok, called Switched
positions, such that

1. {xx′, yy} and {xx, yy′} are Switched.
2. If P is Switched, then either P ∪ {xx′, yy} or P ∪ {xx, yy′} is Switched.
3. The Duplicator can avoid positions that are not Switched from Switched positions

in the (∃, k)-pebble game.

Lemma 3. On the Twisted Switch, the Spoiler can reach {yy′} from {xx′} in the (∃, k)-
pebble game, and there exists a set of positions of the (∃, k)-pebble game called Twisted
positions such that

1. The Duplicator can avoid non-Twisted positions from Twisted positions
2. {yy}, and {yy′}, are Twisted positions.
3. If P is a Twisted position, then P ∪ {xx′} is a Twisted position.

The Twisted Switch will be used to initialize the game. In order to do this, x ∈ TS

and x′ ∈ TD are colored the same color, while x ∈ TD is colored a different color. Thus,
if the Spoiler plays on x, then the Duplicator must play on x′. From here the Spoiler can
play to {(y, y′)}. The Twisted positions allow the Duplicator to avoid {(x, x)}, which
is a losing position.
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y

x

O O O O

x’x

y y’

T TS D

Fig. 4. Twisted Switch [7].

3.4 Reduction from MCV to (∃, k)-Pebble Game

Theorem 1. For every fixed k ≥ 2, determining the winner of the (∃, k)-pebble game
is P-Complete.

Proof. (Outline) Given a monotone circuit C, an assignment of values to the input nodes,
and a node v, we construct a graph CD. For each node a in the circuit, there are three
choices.

1. If a is an input node, then CD contains vertices a and a′. If the value of a in C is
false, then we color a′ black.

2. If a is an and node with parents b and c, then CD contains nodes a and a′, a copy
of HD, called Ha with h and h′ identified with a and a′, as well as two copies of
Ok

D, one of which has x and x′ connected to i and i′, and y and y′ connected to b
and b′ called Oab. The other copy connects j and j′ to c and c′ in a similar manner
and is called Oac.

3. If a is an or node with parents b and c, then CD contains nodes a and a′, a copy of
ID called Ia with h and h′ identified with a and a′, as well as two copies of Ok

D,
one of which has x and x′ connected to i and i′, and y and y′ connected to b and b′

called Oab. The other copy connects j and j′ to c and c′ in a similar manner and is
called Oac.

In any case, a is colored white.
The construction of CS is similar, except that we do not add a′ and we use the Spoiler

version of each gadget and switch instead of the Duplicator version.
Also, there is a Twisted Switch T , such that x is colored a fresh color in CS , and x′

is colored the same color in CD. Also, in CS , y in T is connected to v, while in CD, y
is connected to v and y′ is connected to v′.

The Spoiler plays from the top of the Twisted Switch through the graph attempting
to reach a false input. Because of the properties of the H and I gadgets and the Single
Input One-Way Switch , the Spoiler can do this if the value of the goal node is false. If
the value of the goal node is true, then the Duplicator can play along indefinitely. He
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does this by choosing a path down the simulated circuit which leads to a true input. If
the Spoiler attempts to depart from the intended mode of play, the Duplicator can use
the properties of Trapped and Pretrapped strategies to arrive at a partial homomorphism
that is a subset of the identity.

4 The (∃, k)-Pebble Game Is EXPTIME-Complete

Kasai, Adachi and Iwata [8] showed that the following pebble game, which (to avoid
confusion in the terminology) we will call the KAI game, is EXPTIME-complete. The
game is played between two players, called Player I and Player II. An instance of the
KAI game is a quadruple (X, S, R, t), where X is a set of nodes, R ⊆ X3 is a set of
rules, S ⊆ X is the initial position of the game, and t ∈ X is the goal. There are as
many pebbles as nodes in the initial position S; at the start of the game, each node in
S has a pebble on it. The two players take turns and in each turn they slide a pebble as
follows: if (x, y, z) ∈ R is a rule, then the current player may slide a pebble from x to z,
if there are pebbles on x and y, but not z. The first player to place a pebble on the goal
t wins. The problem is, given (X, R, S, t), does Player I have a winning strategy?

We will show that the (∃, k)-pebble game is EXPTIME complete by exhibiting a
reduction from the KAI game. The reduction procedes by constructing an instance of
the (∃, k)-pebble game such that the Spoiler and the Duplicator simulate the instance of
the KAI game. In particular, the Spoiler can only win by simulating a winning strategy
for Player I in the KAI game. If there is no winning strategy, then the Spoiler does not
gain any advantage by not simulating the KAI game.

In order to perform this simulation, we use a Twisted Switch (Section 3.3) to initialize
the game, and new switches to allow Player I and Player II to choose rules, to apply the
rules, and to force the Spoiler to simulate the game.

4.1 The Gadgets Hm and Im

These gadgets allow the Spoiler and Duplicator to choose rules of the KAI game to use.
In both the Hm and Im gadgets, the nodes yi, yi

0, y
i
1 are colored the same color, but the

color of yi is different that the color of yj for i 
= j.

x x x x

y y y y y y y y yy y y

0 1

1 2 3 1 2 31
0

1
1 0

2
1
2

0
3

1
3

Fig. 5. H3 Gadget.

Lemma 4. For every k ≥ 2, in the (∃, k)-pebble game on (Hm
S , Hm

D ), from a position
{xxj}, j ∈ {0, 1}, the Spoiler can reach {yiyi

j} for any i.



324 Phokion G. Kolaitis and Jonathan Panttaja

x x

y y y y y y y y yy y y

x x 1

1 2 3 1 2 31
0

1
1 0

2
1
2

0
3

1
3

0

Fig. 6. I3 Gadget.

Lemma 5. For every k ≥ 2, in the (∃, k)-pebble game on Im
S , Im

D , from a position
{xxj}, j ∈ {0, 1}, the Duplicator can choose any 1 ≤ i ≤ m, and avoid {ylyl

j} for
l 
= i.

4.2 Multiple Input One-Way Switches for the (∃, k)-Pebble Game

The idea of the Multiple Input One-Way Switch is to restrict the Spoiler’s potential
winning strategies. We simulate each node xi in the KAI game by using three nodes
in the Duplicator’s graph, xi

0, x
i
1, x

i. These correspond to not having pebble on xi in
the simulated game, having a pebble on xi in the simulated game, and no information
about xi, respectively. In the Multiple Input One-Way Switch, the Spoiler can only make
progress if he has information about each node in the simulated game.Also, if the Spoiler
attempts to play backwards through the Switch, he will end up with no information about
any nodes in the simulated game.

x x x x

y y y y

0 1 10

1y y

xxx x

y y

1 2 2 2

1 2
1 2

1 2 1 1

1 1 2 2
100

Fig. 7. A subgraph of M4.
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Lemma 6. For every k ≥ 2, there exists a pair of graphs Mk
S , and Mk

D such that

{x1, x1
0, x

1
1, . . . , x

k−1, xk−1
0 , xk−1

1 , y1, y1
0 , y1

1 , . . . , yk−1, yk−1
0 , yk−1

1 } ⊂ V (Mk
D),

{x1, . . . , xk−1, y1, . . . , yk−1} ⊂ V (Mk
S) and the following properties hold:

1. From a position {xixi
ji

|1 ≤ i ≤ k − 1, ji ∈ {0, 1}}, the Spoiler can reach the
position {yiyi

ji
|1 ≤ i ≤ k − 1, ji ∈ {0, 1}} in the (∃, k)-pebble game on Mk

S and
Mk

D.
2. There exist two disjoint sets of positions of the (∃, k)-pebble game on (Mk

S , Mk
D),

called Pretrapped and Trapped positions such that:
(a) Pretrapped and Trapped positions are partial homomorphisms
(b) The Duplicator can avoid positions that are not Pretrapped and not Trapped

from Pretrapped positions
(c) The Duplicator can avoid positions that are not Trapped from Trapped positions
(d) From any position P = {xia|1 ≤ i ≤ k−1} where |{xixi

j ∈ P |j ∈ {0, 1}}| <

k − 1, the Duplicator can avoid yiyi
j for all 1 ≤ i ≤ k − 1, j ∈ {0, 1}.

(e) All positions that are subsets of positions of the form {xixi
ji

|1 ≤ i ≤ k−1, ji ∈
{0, 1}}, are PreTrapped.

(f) If P is Pretrapped and |P | < k , then P ∪ {yiyi} is Pretrapped for all i
(g) Any position in which all of the Spoiler’s pebbles are on nodes yi, is Trapped.
(h) If P is Trapped and |P | < k, then P ∪ {xixi} is Trapped for all i

Moreover, |V (Mk
S)| is O(k2) and |V (Mk

D)| is O(k2).

4.3 The Rule Gadget

The Rule gadgets are used to simulate a move of the KAI game. One rule gadget causes
the Spoiler to lose if the rule gadget corresponds to a rule that cannot be applied, and
another causes the Duplicator to lose if the rule cannot be applied.

Lemma 7. If the rule gadget RSn does not correspond to a legal rule, that is, if one of
xx1, yy1, zz0 is not in P , then the Duplicator can avoid z′z′

1 in the (∃, k)-pebble game
on RSn.

x y z

x’ y’ z’

x y z

x’ y’

x x y y z z

x’ y’ z’ z’z’y’x’

0

0 0

0 0

0

1

1

1

1

1

1

Fig. 8. The Rule Gadget RSn that penalizes the Spoiler for choosing a bad rule.
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Lemma 8. If the rule gadget RDn does not correspond to a legal rule, that is, if one of
xx1, yy1, zz0 is not in P , then the Spoiler can play to z′z′

0, which causes the Duplicator
to lose.

x’ y’ z’ x’ y’x’ y’ z’ z’z’y’x’0 0 01 1 1

z
x y z

x y zx x y y z
0 0 01 1 1

Fig. 9. The Rule Gadget RDn that penalizes the Duplicator for choosing a bad rule.

4.4 Winning the Game

For each gadget, we define its boundary to be the set of nodes which are used to connect
that gadget to other gadgets. For Mk, Hm, and Im, the x and y nodes form the boundary.
For RSn and RDn, the boundary consists of all the nodes except for the middle nodes.
For the Twisted Switch, the boundary consists of y in TS and y, y′ in TD. In the Twisted
Switch, x and x′ are never connected to any other gadgets.

Lemma 9. For each gadget other than the Twisted Switch, starting from a position that
is a subset of the identity on the boundary, the Duplicator can avoid any position that is
not a subset of the identity on the boundary.

By combining this lemma with the properties of the Multiple Input One-Way Switch,
we obtain a sufficient condition for the Duplicator to win the (∃, k)-pebble game.

4.5 Reduction from KAI Game to (∃, k)-Pebble Game

Theorem 2. Determining the winner of the (∃, k)-pebble game with k part of the input
is EXPTIME-Complete.

Proof. (Outline) We will give a polynomial-time reduction from the KAI Game to the
(∃, k)-pebble game. Given an instance (X, S, R, t) of the KAI game, we form an instance
of the (∃, k)-pebble game as follows.

The Duplicator’s graph and the Spoiler’s graph each have two sides. One side rep-
resents Player I’s turn in the KAI game, while the other side represents Player II’s turn.

First, we build Player I’s side of the graph. For each xi ∈ X , we form three nodes
in D, called xsi, xsi

0, xsi
1. These three nodes correspond to specific information about

the simulated KAI game. If there is a pebble on xsi
1, then there is a pebble on x in the

KAI game, and xsi
0 corresponds to no pebble on x. A pebble on xsi in the Duplicator’s
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I I I

R

M

R

M

M

R

M

R

y

x

x

y

T

D

Fig. 10. This is component decomposition of the Duplicator’s graph for the reduction.

graph means that the Spoiler has made a mistake. For each (x, y, z) ∈ R, construct a
rule gadget to penalize the Spoiler, connected to each xsi, xsi

0, xsi
1 by Hm gadgets. The

other end is then connected to a Multiple Input One-Way Switch .
On the other half of the graph, there are another set of nodes xdi, xdi

0, xdi
1. Con-

necting the xd nodes to Duplicator punishing rule gadgets are a set of Im gadgets where
m = |R|. Given any two of these Im gadgets A and B, there is an edge between A.yi

j

and B.yi
k for all i, j, k, and an edge between A.yi and B.yi for all i. We then connect

a Multiple Input One-Way Switch to each of the rule gadgets in the obvious way. The
outputs of these are connected back around to the first set of state nodes.

We use a Twisted Switch to set up the initial positions. If xi ∈ S, then there is an
edge from y′ of the Twisted Switch to xsi

1 otherwise there is an edge from y′ to xsi
0.

There is an edge from y to xsi for every i. We then color x′ a unique color. In addition
we give t1 a unique color so that if the Spoiler can reach tt1, then the Duplicator loses.

The Spoiler’s graph is constructed in a similar way. The Spoiler gets xsi and xdi

for every xi ∈ X . Also, for each rule and each side, there is a corresponding Multiple
Input One-Way Switch followed by a rule gadget. For the Twisted Switch, we color x
the same color that we colored x′ in the Duplicator’s graph.

The two players now simulate the KAI game by playing the (∃, k)-pebble game
on these structures. The Spoiler initializes the game by playing on the Twisted Switch.
From here, the Spoiler uses the Hm gadgets to choose a rule, then plays through the RSn



328 Phokion G. Kolaitis and Jonathan Panttaja

gadget and the Multiple Input One-Way Switch to simulate the move of Player I in the
KAI game. Then, the Spoiler continues to play through Player II’s side of the structures,
allowing the Duplicator to choose a rule to simulate, and applying that rule. If Player I
has a winning strategy for the KAI game, then this simulation process will eventually
simulate Player I placing a pebble on t. Because of the coloring of the structures, this
causes the Spoiler to win the (∃, k)-pebble game. The more difficult step is showing that
if Player I does not have a winning strategy, then the Duplicator wins the (∃, k)-pebble
game. If the Spoiler plays nice and simulates the KAI game, then the Duplicator can
avoid t, by playing a smart strategy for the KAI game. If the Spoiler does not play
nice, and departs from the simulation, then, because of the properties of the gadgets, the
Duplicator can play along indefinitely.

As pointed out in Section 3, the structures used in the reduction of MCV to the
(∃, k)-pebble game with fixed k were undirected graphs with a fixed number (ten) of
colors. In contrast, the structures used in the preceding reduction of the KAI game to the
(∃, k)-game with k part of the input are undirected graphs with a number of colors that is
linear in the size of the input. It is an interesting technical problem to exhibit a reduction
of the KAI game to the (∃, k)-game with k part of the input in which the structures are
undirected graphs with a fixed number of colors.

5 Concluding Remarks

Although in this paper we focused on the (∃, k)-pebble game because of its connections
to constraint satisfaction, in database theory there is also interest in the one-to-one (∃, k)-
pebble game, which is the variant of the (∃, k)-pebble game in which the Duplicator
strives to maintain one-to-one homomorphisms (see [11]).A perusal of the two reductions
presented here reveals that in both these reductions the structures constructed have the
property that the Duplicator wins the (∃, k)-pebble game if and only if the Duplicator
wins the one-to-one (∃, k)-pebble game. Consequently, determining the winner in the
one-to-one (∃, k)-pebble is P-complete for every fixedk ≥ 2, and is EXPTIME-complete
when k is part of the input.

Several problems remain open in this area. Kasai and Iwata [9] proved that the
number of pebbles used in the KAI game gives rise to a strict hierarchy on the time
complexity of that game. Thus, it is natural to ask whether a similar strict hierarchy
result can be proved for the (∃, k)-pebble, for fixed k. This amounts to showing that,
for each fixed k ≥ 2, determining the winner of the (∃, k)-pebble game is not solvable
in time O(ns) for any s < 2k. Finally, it remains an open problem to establish that the
(two-sided) k-pebble game with k part of the input is an EXPTIME-complete problem.
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