
The Containment Problem for Real Conjunctive Queries
with Inequalities

T.S. Jayram
IBM Almaden

jayram@almaden.ibm.com

Phokion G. Kolaitis∗

IBM Almaden

kolaitis@almaden.ibm.com

Erik Vee
IBM Almaden

vee@almaden.ibm.com

ABSTRACT
Query containment is a fundamental algorithmic problem in database query
processing and optimization. Under set semantics, the query-containment
problem for conjunctive queries has long been known to be NP-complete. In
real database systems, however, queries are usually evaluated under bag se-
mantics, not set semantics. In particular, SQL queries are evaluated under bag
semantics and return multisets as answers, since duplicates are not eliminated
unless explicitly requested. The exact complexity of the query-containment
problem for conjunctive queries under bag semantics has been an open prob-
lem for more than a decade; in fact, it is not even known whether this problem
is decidable.

Here, we investigate, under bag semantics, the query-containment prob-
lem for conjunctive queries with inequalities. It has been previously shown
that, under set semantics, this problem is complete for the second level of the
polynomial hierarchy. Our main result asserts that, under bag semantics, the
query-containment problem for conjunctive queries with inequalities is unde-
cidable. Actually, we establish the stronger result that this problem is unde-
cidable even if the following two restrictions hold at the same time: (1) the
queries use just a single binary relation; and (2) the total number of inequal-
ities is bounded by a certain fixed value. Moreover, the same undecidability
results hold under bag-set semantics.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—query processing, re-
lational databases; H.2.3 [Database Management]: Languages—
query languages; F.2.2 [Analysis of Algorithms & Problem Com-
plexity]: Nonnumerical Algorithms and Problems—computations
on discrete structures

General Terms
Algorithms, Management, Languages, Theory

Keywords
conjunctive queries, query containment, inequalities, bag semantics,
bag-set semantics, undecidability

∗On leave from UC Santa Cruz

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS’06, June 26–28, 2006, Chicago, Illinois, USA.
Copyright 2006 ACM 1-59593-318-2/06/0006 ...$5.00.

1. Introduction and Summary of Results

Query containment is regarded as a fundamental algorithmic prob-
lem in database query processing and optimization. This problem
asks: given two queries Q and Q′, is it true thatQ(D) ⊆ Q′(D), for
every database D? Over the years, researchers have investigated in
depth the query-containment problem for several different classes of
frequently asked database queries. The class of conjunctive queries
(that is, select-project-join queries) is arguably the most prominent
among these classes. Chandra and Merlin [3] showed that the query-
containment problem for conjunctive queries is NP-complete. After
this, researchers investigated the worst-case complexity of the query-
containment problem for broader classes of database queries that
naturally subsume conjunctive queries. Specifically, Sagiv and Yan-
nakakis [13] showed that the query-containment problem for unions
of conjunctive queries is Πp2-complete, where Πp2 is the second level
of the polynomial hierarchy (NP is the first level of the polynomial
hierarchy - see [11]). Klug [7] studied conjunctive queries with
comparison predicates �=, <, and ≤. He showed that the query-
containment problem for conjunctive queries with comparison pred-
icates is in Πp

2, and conjectured that this upper bound is tight. Klug’s
conjecture was subsequently confirmed by van der Meyden [14], who
proved that the query-containment problem for conjunctive queries
with comparison predicates is Πp2-complete. As a matter of fact, van
der Meyden showed that even the query-containment problem for
conjunctive queries with just inequalities (�=) as the only comparison
predicate is Πp2-complete; this result was further refined in [8].

All aforementioned complexity-theoretic results were obtained un-
der the assumption that queries are evaluated under set semantics.
This means that the database relations given as inputs to queries are
sets (i.e., no duplicate tuples are allowed) and that queries return sets
as answers. In real database systems, however, queries are usually
evaluated under bag semantics, not set semantics: input database
relations may be bags (multisets), and queries may return bags as
answers. In particular, SQL queries are evaluated under bag se-
mantics, since duplicate tuples are not eliminated unless explicitly
specified in the syntax using the SELECT DISTINCT construct.
In addition to faster response, the reason for not eliminating dupli-
cate tuples in SQL is that the values of aggregate operators, such as
AVG and COUNT, depend on the multiplicities of the tuples in the
database relations. In a paper titled “Optimization of Real Conjunc-
tive Queries” [4], Chaudhuri and Vardi drew attention to this discrep-
ancy between database theory and practice, and raised the question
of whether the known complexity results about conjunctive queries
carry over from set semantics to bag semantics.

Chaudhuri and Vardi [4] discovered that, under bag semantics,
the query-containment problem for conjunctive queries is Πp2-hard,
which implies that, in all likelihood, the change from set semantics
to bag semantics is accompanied by a jump in complexity. More-

80

over, they found that the same hardness result holds under bag-set
semantics, the variant of bag semantics in which the input database
relations are sets, but the queries return bags as answers. Chaudhuri
and Vardi, however, were not able to pinpoint the exact complexity
of this problem. As a matter of fact, even though more than a decade
has passed since the publication of [4], it is still not known whether,
under bag semantics, the query-containment problem for conjunc-
tive queries is decidable. On the other hand, Ioannidis and Ramakr-
ishnan [6] showed that, under bag semantics, the query-containment
problem for unions of conjunctive queries is undecidable.

In this paper, we study, under bag semantics, the query-containment
problem for conjunctive queries with inequalities (�=). Our study is
motivated by two considerations: first, this problem is of interest in
its own right, as conjunctive queries with inequalities form the most
natural extension of conjunctive queries with comparison predicates;
second, tools developed in the course of this study may turn out to be
of use in attacking, under bag semantics, the containment problem
for conjunctive queries. Our main result is that, under bag seman-
tics, the query-containment problem for conjunctive queries with in-
equalities is undecidable. Note that, in general, the inputs to this
problem are conjunctive queries over arbitrary relational schemas
and with an arbitrary number of inequalities. Thus, it is natural to
ask whether solvability results can be obtained by considering re-
strictions in which the relations in the schemas have bounded arities
or the total number of inequalities in the queries is bounded. We
establish the stronger result that, under bag semantics, the query-
containment problem for conjunctive queries with inequalities is un-
decidable, even if the following two restrictions hold at the same
time: (1) the queries use just a single binary relation; and (2) the
total number of inequalities is bounded by a certain fixed value.

To prove these results, we first show that, under bag semantics, the
query-containment problem for conjunctive queries with inequalities
is polynomial-time equivalent to the same problem under bag-set se-
mantics; moreover, we exhibit polynomial-time reductions that do
not increase the total number of inequalities in the queries. We also
show that, under either semantics, the problem is polynomial-time
equivalent to the restriction in which the queries use just a single
binary relation. After this, the crucial undecidability result is es-
tablished by showing that Hilbert’s Tenth Problem has a recursive
reduction to the query-containment problem for conjunctive queries
with inequalities and under bag-set semantics. This reduction is car-
ried out in two stages. In the first stage, we identify a class of spe-
cial databases, which we call polynomial encoders, and construct a
family of conjunctive queries (without inequalities) so that the evalu-
ation of polynomials can be simulated by evaluating these queries on
polynomial encoders under bag-set semantics. This makes it pos-
sible to recursively reduce Hilbert’s Tenth Problem to the query-
containment problem for conjunctive queries (without inequalities)
and under bag-set semantics, provided the input databases are re-
stricted to be polynomial encoders. In the second stage, we amend
appropriately the queries used in the first stage (in particular, we add
inequalities), so that the containment holds over arbitrary databases,
not just polynomial encoders.

It should be pointed out that Hilbert’s Tenth Problem was also used
by Ioannidis and Ramakrishman [6] in proving that, under bag se-
mantics, the containment problem for unions of conjunctive queries
is undecidable. Their reduction, however, is much simpler than ours,
as the union operation can be used to easily simulate the addition op-
eration on monomials. In the absence of the union operation, we have
to develop rather elaborate combinatorial machinery to simulate the
evaluation of polynomials; moreover, our simulation makes an essen-
tial use of the presence of inequalities in the queries. It should also
be pointed out that in a series of papers, including [1, 2, 12], a group

of researchers studied, under bag semantics, the query-containment
problems for conjunctive queries with and without comparison pred-
icates, but they did not settle the decidability question for these prob-
lems. The main technical assertion in these papers is a necessary
and sufficient condition for query containment under bag semantics,
a condition that involves a family of canonical databases. Unfortu-
nately, there is a subtle counting error in the proof of the claimed
necessary and sufficient condition. In fact, a counterexample to this
condition is reported in [16].

Finally, it is interesting to note the similarities and differences be-
tween query containment and query equivalence, another fundamen-
tal problem in database query optimization. Clearly, query equiva-
lence is always reducible to query containment. Consider the case
of conjunctive queries (without inequalities). Under set semantics,
both query equivalence and query containment are NP-complete [3].
However, the situation is, in all likelihood, different under bag se-
mantics, since query equivalence has the same complexity as GRAPH

ISOMORPHISM (hence, is in NP), while query containment is ΠP2 -
hard [4]. In the case of conjunctive queries with inequalities, Nutt,
Sagiv, and Shurin [10] showed that query equivalence under bag se-
mantics is in PSPACE (see also [5, 15]). Thus, our undecidability
result for query containment under bag semantics shows a provable
dramatic difference in complexity between the two problems.

2. Basic Concepts and Notation
A bag or multiset is a collection of objects each of which occurs

one or more times in the collection. A relation R of arity k is a bag
of k-tuples whose elements belong to some underlying fixed domain.
If R is a k-ary relation and (A1, . . . , Ak) is a k-tuple, then we write
|R(A1, . . . , Ak)| to denote the multiplicity (number of occurrences)
of (A1, . . . , Ak) in the bag R. In particular, |R(A1, . . . , Ak)| = 0
means that (A1, . . . , Ak) does not occur in the bag R.

A database schema (or, simply, schema) is a set S of distinct re-
lation symbols {R1, . . . , Rt} of fixed arities k1, . . . , kt. A database
instance (or, simply, a database) D for the schema S is a set of rela-
tions, also denoted by R1, . . . , Rt, of arities k1, . . . , kt. If Ri is one
of the relations of a database D and (A1, . . . , Aki) is a ki-tuple, we
will write |R(A1, . . . , Aki)|D , to emphasize that Ri is a relation in
the databaseD, unless the database is understood from the context in
which case we will write |R(A1, . . . , Aki)|. If |R(A1, . . . , Aki)|D >
0, we say that R(A1, . . . , Aki) is a fact of D.

In what follows, we will upper-case letters to denote elements of
the domain, and lower-case letters to denote variables. As usual, �=
denotes the built-in inequality relation with the standard interpreta-
tion over any domain.

DEFINITION 1 (CONJUNCTIVE QUERY WITH INEQUALITIES).
Let S = {R1, . . . , Rt} be a schema and n a non-negative integer. A
n-ary conjunctive query with inequalities over S is a rule of the form:

Q(x1, . . . , xn) :– T1(�z1), . . . , Tp(�zp), (1)

where Ti is one of the relation symbols in S or the �= symbol, and
each �zi is a tuple of variables in set Z = {x1, . . . , xn,y1, . . . , ym}.

Each expression Ti(�zi) is a subgoal of Q; the list of subgoals is
the body of Q, while Q(x1, . . . , xn) is the head of Q. Note that
the same subgoal may occur more than once in the body of Q. We
only consider safe queries, that is, each variable xj in the head must
appear in at least one of the subgoals of Q that involve a relation
symbol in S . The variables x1, . . . , xn are called free and the vari-
ables y1, . . . , ym are called bound. When n = 0 (i.e., Q has no free
variables), then we say that Q is a bound (or, Boolean) query. �

81

An assignment mapping (or, simply, an assignment) is a mapping
τ from the set of free and bound variables of a query Q to the under-
lying domain of elements. If �z = (z1, . . . , zs) is a tuple of variables,
we will write τ (�z) to denote the tuple (τ (z1), . . . , τ (zs)). Assign-
ments are used to define the semantics of queries, that is, to define
what it means to evaluate a query on a database. Under set semantics,
relations are assumed to be sets, and evaluating a query essentially
amounts to determining whether there is an assignment that satisfies
every subgoal of the query. Here, we consider two different kinds of
semantics, namely bag semantics and bag-set semantics. The differ-
ence from set semantics is that, instead of asking whether a satisfying
assignment exists, we now want to know how many different satisfy-
ing assignment are there. Informally, in both bag semantics and bag-
set semantics, the query is evaluated over a database algebraically by
treating the conjunction as a product and then “marginalizing out”
the bound variables yj by summing over all choices for the yj’s. The
difference between bag and bag-set semantics is whether the multi-
plicities of the tuples in the database relations are taken into account
while evaluating the product.

Formally, let D be a database over a schema S = {R1, . . . , Rt}
and let Q be a conjunctive query with inequalities as in (1). The
result of evaluatingQ onD under bag semantics is the n-ary relation
EVALB(Q,D) defined as follows: for every n-tuple (A1, . . . , An) of
elements from the domain,

|EVALB(Q,D)(A1, . . . , An)| =
X
τ

pY
i=1

|Ti(τ (�zi))|D,

where τ ranges over all assignments such that τ (xi) = Ai, 1 ≤ i ≤
n. For a bound query, the result EVAL(Q,D) is just a single non-
negative integer. For bag-set semantics, we remove all duplicates of
facts in the instanceD so that each relation is a set. Let eD denote the
database obtained this way. The result of evaluating Q under bag-
set semantics is the n-ary relation EVALBS(Q,D) = EVALB(Q, eD).
When the subscript is omitted, EVAL(Q,D) simply refers to query
evaluation under bag semantics.

DEFINITION 2 (QUERY CONTAINMENT). LetQ andQ′ be two
n-ary conjunctive queries with inequalities over some schema S .
We say that Q is contained in Q′ under bag semantics, denoted
by Q ⊆B Q′ if for every database D over S and for every n-tuple
(A1, . . . , An) of elements from the domain, we have that

|EVALB(Q, D)(A1, . . . , An)| ≤ |EVALB(Q′, D)(A1, . . . , An)|.
In other words, the multiplicities of facts of tuples corresponding to
Q are no more than those corresponding toQ′. The conceptQ is con-
tained in Q′ under bag-set semantics, denoted by Q ⊆BS Q

′, is de-
fined in an analogous way using EVALBS(Q,D) and EVALBS(Q′,D).

The main problem that we consider in this paper is query contain-
ment under bag semantics and under bag-set semantics. In fact, we
parameterize this problem into a family of sub-problems using the
characteristics of the database schema and the number of inequali-
ties in the queries as parameters.

DEFINITION 3 (QUERY CONTAINMENT PROBLEM). Let k be
a non-negative integer and m,d be two positive integers. We write
ConQCB(k,m, d) to denote the following decision problem: given
a schema S having at most m relations, each of arity at most d, and
given two conjunctive queries Q and Q′ each of which has at most k
inequalities, is Q ⊆B Q

′?
We write ConQCBS(k,m, d) to denote the same problem under

bag-set semantics.
We also allow (some of) these parameters to be unbounded; we de-

note this by setting the appropriate parameter(s) to ∞. For example,

ConQCB(∞,∞,∞) denotes the conjunctive query problem under
bag semantics where there are no restrictions on any one of the three
parameters. �

To simplify our presentation, we will make systematic use of the
concept of a view. Informally, a view V is defined by a rule in which
other previously defined views can be part of the body of V . We
do not allow views to be defined in terms of themselves, that is, re-
cursive views are prohibited. In effect, views are queries defined
by a non-recursive Datalog program with inequalities. A formal self-
contained inductive definition of views over a schema S is as follows.
For the base case, any relation symbol in S ∪ {�=} with variables as
arguments is a view. Inductively, suppose V1, . . . Vk are views that
are already defined. Then, a view V can be defined by any rule of the

V (x1, . . . , xn) :– T1(�z1), . . . , Tp(�zp),

where each �zi is a tuple of variables from the set Z = {x1, . . . , xn,
y1, . . . , ym}, and each Ti(�zi) is obtained from one of the views Vj ,
1 ≤ j ≤ k, by replacing the free variables of Vj by corresponding
variables from �zj .

It is clear that every view can be unfolded to a conjunctive query
with inequalities. This is done by tracing the inductive definition of
views and replacing bound variables in such a way that the subgoals
of the views do not have common (“local” to the subgoal) bound
variables. For example, consider the views

U(u1, u2) :– A(u1, u2, w),

W (u1, u2) :– A(u1, u2, w), A(u1, u2, w), B(u1, w), u1 �= w

V (x1, x2) :– U(x1, y), U(x1, y), W (x2, y)

on the schema {A,B}. Unfolding V , yields the following conjunc-
tive query with inequalities:

Q(x1, x2) :– A(x1, y,w1), A(x1, y,w2), A(x2, y,w3),

A(x2, y,w3), B(x2, w3), x2 �= w3.

Given view V and database D, we can define EVALB(V,D), the
result of evaluating V on D under bag semantics, by first unfolding
V to a query Q and then evaluating Q on D under bag semantics. In
a similar way, we can define the result EVALBS(V,D) of evaluating
V on D under bag-set semantics.

By induction on the definition of views, it is not hard to show that
if we have a view

V (x1, . . . , xn) :– T1(�z1), . . . , Tp(�zp),

then for every database D and every n-tuple (A1, . . . , An) of ele-
ments from the domain, we have that

|EVALB(V, D)(A1, . . . , An)| =
X

τ

pY

i=1

|EVALB(Ti, D)(τ(�zi))|,

where τ ranges over all assignments such that τ (xi) = Ai, for 1 ≤
i ≤ n. Moreover, |EVALBS(V,D)(A1, . . . , An)| may be evaluated
similarly. In the sequel, we will use these two facts repeatedly.

We conclude this section with two more concepts. LetQ be a con-
junctive query with inequalities over a schema S defined by the rule
Q(x1, . . . , xn) :– T1(�z1), . . . , Tp(�zp), where each Ti ∈ S ∪ {�=}.
For an assignment τ that satisfies the inequalities in Q, we define
τ (Q) to be the database over S whose relations are the bags of facts
Ti(τ (�zi)), for every Ti ∈ S . Finally, we say that τ is a homomor-
phism from Q to a database D, if every fact in τ (Q) appears in D.

82

3. Bag vs. bag-set semantics
Depending on whether we use bag semantics or bag-set seman-

tics, evaluating queries can give different answers. So it is natural
to wonder whether the complexity of the conjunctive query contain-
ment problem (with or without inequalities) under bag semantics is
different than its complexity under bag-set semantics.

The following theorem shows that in fact, the two problems are
polytime reducible to each other, so their complexities are essentially
the same. In fact, the theorem shows something stronger: The con-
junctive query containment problem (with or without inequalities),
under both bag-set and bag semantics, in which we have no restric-
tions on the number of relations or their arity, is polytime reducible
to the conjunctive query containment problem (with or without in-
equalities, respectively) in which queries are restricted to use a sin-
gle binary relation. Previously, Chadhuri and Vardi [4] noted that
ConQCB(0,∞,∞) is polytime reducible to ConQCBS(0,∞,∞).
Our claim is stronger, not just because it applies to �=-constraints,
but because it also provides a reduction that reduces the queries to
have a single binary relation.

THEOREM 1. For any k ≥ 0, m ≥ 1, and d ≥ 1, we have the
following:

ConQCBS(k,m, d) ≤P ConQCB(2k,m, d)

ConQCB(k,∞,∞) ≤P ConQCBS(k, 1, 2)

The reductions hold even if we allow any combination of k,m, d to
be ∞. (If k = ∞, we interpret 2k = ∞ as well.)

PROOF SKETCH. We first give the reduction for the first item.
Suppose we are given an instance of ConQCBS(k, r,m) in the form
of queries Q1, Q2, which may have up to k �=-constraints each. (In
the case that k = ∞, we allow them to have arbitrarily many �=-
constraints.) Since we are considering bag-set semantics, we may
assume without loss of generality that every subgoal of Q1 and Q2

appears with multiplicity one. Let Q′
1 be query Q1 modified so that

each of its subgoals appears with multiplicity exactly two. Define

QB
1 : − Q1 ∧ Q1 and QB

2 : − Q2 ∧ Q′
1

Note that queries QB
1 and QB

2 both have at most 2k �=-constraints.
We claim that EVALBS(Q1,D) ≤ EVALBS(Q2,D) for all D if and
only if EVALB(QB

1 ,D
′) ≤ EVALB(QB

2 ,D
′) for all D′.

The key to this reduction is that if all of the facts in database D
have multiplicity one, then EVALB(Q1,D) = EVALB(Q′

1,D). On
the other hand, ifD has facts with multiplicity greater than one, then
query QB

2 will benefit more than QB
1 . Specifically, suppose that

EVALBS(Q1,D) > EVALBS(Q2,D)

for some database D. Of course, this implies by definition that

EVALB(Q1, eD) > EVALB(Q2, eD)

(Recall that eD is the database obtained from D by setting the multi-
plicity of all facts in D to one.) Hence,

EVALB(QB
1 , eD) = EVALB(Q1, eD) · EVALB(Q1, eD)

> EVALB(Q2, eD) · EVALB(Q′
1, eD)

= EVALB(QB
2 , eD)

On the other hand, suppose

EVALBS(Q1,D) ≤ EVALBS(Q2,D)

for all D. For query Q given by Q : −A1(�z1), . . . ,Ap(�zp), define
the weight of homomorphism φmapping from Q toD to be the value

Q
i∈[p] |Ai(φ(�zi))|D . Then for any w > 0, let kw be the number of

homomorphisms from Q1 to D that have weight w. Clearly,

EVALBS(Q1,D) =
X
w

kw

EVALB(Q1,D) =
X
w

wkw

EVALB(Q′
1,D) =

X
w

w2kw

Noting that EVALB(Q2,D) ≥ EVALBS(Q2, D) ≥ EVALBS(Q1, D),
we see

EVALB(Q2 ∧ Q′
1,D)

= EVALB(Q2,D) · EVALB(Q′
1,D)

≥ EVALBS(Q1, D) · EVALB(Q′
1,D)

=

 X
w

kw

! X
w

w2kw

!

≥
 X

w

w · kw

!2

by Cauchy-Schwartz

= EVALB(Q1 ∧ Q1,D)

That is, EVALB(QB
1 ,D) ≤ EVALB(QB

2 ,D). So the reduction works
as claimed. This completes the proof for the first item.

We now give the reduction for the second item. Suppose we are
given Q1 and Q2, each with at most k inequalities. Note that Q1 and
Q2 may have subgoals with multiplicity greater than one. Further,
suppose that Q1,Q2 are defined over r relations, R1, . . . ,Rr with
arities k1, . . . , kr respectively, and that the queries use variables V =
{v1, . . . , vn}. Without loss of generality, we assume ki ≥ 2 for all
i ∈ [r].

Given such a query, Q, suppose we may write Q as

Q : −
r̂

i=1

kî

j=1

Ri(�zij)

where each �zij belongs to V . Again, note that the above expression
may have repeated subgoals. We define a corresponding query, de-
noted QBS, which uses a single binary relation R, in terms of views
View1, . . . ,Viewr:

QBS : −
r̂

i=1

kî

j=1

Viewi(�zij)

where for each i ∈ [r], we define Viewi using binary relation R as
follows.

Path�(s, t)

: − R(s, v1),R(v1, v2), . . . ,R(v�−1, t)

Viewi(u1, . . . , uki)

: − Pathr+2(s1, u1), . . . ,Pathr+2(ski , uki)

Pathi+1(s1, t1), . . . ,Pathi+1(ski , tki)

R(s2, t1), . . . ,R(ski , tki−1)

Notice that QBS has no repeated subgoals. We claim that

EVALB(Q1,D) ≤ EVALB(Q2, D)

for all D if and only if

EVALBS(QBS
1 , D′) ≤ EVALBS(QBS

2 ,D′)

83

for all D′. The details of the proof of this claim appear in the full
version of this paper. Here, we only give a rough intuition.

First of all, observe that each subgoal of the original queries, e.g.
Ri(�zij), is replaced by an analogous view, e.g. Viewi(�zij). Given a
database D, we can perform a similar operation: For each fact in D,
say Ri(Z1, . . . , Zki), we replace it with a set of facts correspond-
ing to the canonical database associated with Viewi(Z1, . . . , Zki).
(Specifically, for each subgoal R(x, y) in the unfolding of Viewi,
add fact R(X,Y) to the database, where X and Y are constants.
Furthermore, we require that each bound variable be mapped to its
own unique constant, and that each free variable u� is mapped to
the constant Z�.) Call this new database DBS . It is not hard to see
that every homomorphism from Q to D has a corresponding homo-
morphism from QBS to DBS. With some more work, it is possible
to show that the converse is true as well: for every homomorphism
from QBS to DBS, there is a corresponding homomorphism from Q
to D. (The exact structure of Viewi was chosen carefully to ensure
this.) That is,

EVALB(Q,D) = EVALBS(QBS,DBS) (2)

On the other hand, suppose we are given a database D, and we
wish to construct a database, which we denote DB, with the property
that

EVALBS(QBS, D) = EVALB(Q,DB) (3)

In this case, for each tupleX1, . . . ,Xki consisting of constants from
the domain of D, we add fact Ri(X1, . . . ,Xki) to database DB with
multiplicity EVALBS(Viewi(X1, . . . ,Xki),D). (Strictly speaking,
we do not add the fact if the evaluation has value 0.) It is not difficult
to see that produces a database DB satisfying equation (3).

So, if there is a D such that EVALB(Q1, D) > EVALB(Q2,D),
then EVALBS(QBS

1 ,DBS) > EVALBS(QBS
2 ,DBS), by equation (2).

Conversely, if EVALBS(QBS
1 ,D) > EVALBS(QBS

2 ,D) for some D,
then EVALB(Q1, D

B) > EVALB(Q2,D
B), by equation (3). The the-

orem thus follows.

COROLLARY 2. For all k ≥ 0,

ConQCB(k,∞,∞) ≤P ConQCBS(k, 1, 2)

≤P ConQCB(2k, 1, 2)

ConQCBS(k,∞,∞) ≤P ConQCBS(2k, 1, 2)

≤P ConQCB(4k, 1, 2)

In the next section, we will construct queries using many relations,
in order to show that ConQCBS(k,∞,∞) is undecidable for some
bounded k. Corollary 2 implies that both ConQCBS(2k, 1, 2) and
ConQCBS(4k, 1, 2) are undecidable as well.

4. Undecidability of conjunctive query contain-
ment

In this section, we show that the conjunctive query containment
problem with inequalities is undecidable under bag-set semantics by
exhibiting a reduction from Hilbert’s Tenth Problem. Our reduction
will use homogeneous polynomials of degree d (i.e., each term is
a product of d variables, not necessarily distinct) with non-negative
coefficients. We will use the following version of Hilbert’s Tenth
Problem in our reduction, which can be obtained by combining the
results of Matiayasevich [9] with some additional arguments (details
will appear in the full version of this paper).

THEOREM 3. Let P1(x1, . . . , xn), and P2(x1, . . . , xn) be ho-
mogeneous polynomials of degree d each having the same set of
terms with positive integer coefficients. Further, assume that x1 di-
vides both P1(�x) and P2(�x). Then it is undecidable to determine
whether there are non-negative integers x1, . . . , xn such that

P1(x1, . . . , xn) > xd1 · P2(x1, . . . , xn)

This problem is undecidable even if we restrict ourselves to homo-
geneous polynomials of degree d = 5 and with n = 59 variables.
�

Throughout the remainder of the paper, both P1(x1, . . . , xn) and
P2(x1, . . . , xn) will refer to degree d homogeneous polynomials
each having the same set of m terms with positive integer coeffi-
cients. For j ∈ [m], we associate the j-th term with an ordered d-
tuple Tj in [n]d; since x1 divides both P1(�x) and P2(�x), we further
assume that the first entry of Tj is 1. Abusing notation slightly, we
will also think of Tj as a multiset. For example, if Tj = (1, 1, 3, 7),
then

Q
i∈Tj xi = x2

1x3x7. We write

P1(�x) =
mX
j=1

αj
Y
i∈Tj

xi and P2(�x) =
mX
j=1

βj
Y
i∈Tj

xi,

where αj , βj ≥ 0 for all j. For the rest of the paper, we will fix
the m-dimensional vectors α and β corresponding to P1 and P2,
respectively.

4.1 Proof Overview

Our goal is to show that the undecidable problem on polynomi-
als described in Theorem 3 can be reduced to the problem of query
containment under bag semantics. Since the proof of the reduc-
tion is fairly involved, we will break it into several steps. We be-
gin in Section 4.2 by describing two queries Poly1 and Poly2 that
do not have any inequalities. Further, we will restrict the evalua-
tions of these queries over a very specific class of database instances,
called polynomial encoders. For each ξ ∈ N

n
0 , we will construct

a polynomial encoder, denoted Dξ , and show in Theorem 5 that
EVAL(Poly1,Dξ) = P1(ξ) and EVAL(Poly2,Dξ) = ξd1P2(ξ). By
Theorem 3, there is no algorithm for the query containment problem
if the evaluation is restricted to the class of polynomial encoders.

For the full problem where all instances are considered, we have
to work considerably harder, and this is where we use the power of
inequalities. In Section 4.3, we will extend the queries Poly1 and
Poly2 to produce queries Q1 and Q2, respectively, with inequalities.
For technical reasons, we will work with augmented polynomial en-
coders, which are database instances that consist of polynomial en-
coders augmented by a small set of facts. Now, when we consider
databases that are augmented polynomial encoders, the arguments
we laid out in Section 4.2 go through as before. But what if the
database does not have the desired structure? Then the left-hand
query, Q1, could potentially cheat by mapping to the database in
ways that we did not anticipate. Although we cannot stop this, we
can guarantee that for every map of Q1 to the database that cheats,
there is a corresponding map from Q2 to the database. We do this
by defining a view CounterCheating that will be part of Q2. This
view contains many copies of Poly1 along with appropriate inequal-
ity constraints. For every map from Q1 to the database that cheats,
there is a corresponding map from one of the copies of Poly1 in
CounterCheating that maps in an identical fashion. This ensures
that cheating helps Q2 as much as it helps Q1. The definition of
CounterCheating and the notion of cheating, together with the proofs
are described in Section 4.3.

84

4.2 Conjunctive Queries over Polynomial Encoders

The polynomial encoder for ξ ∈ N
n
0 , denoted Dξ, will use domain

elements X1, . . . ,Xn, corresponding to variables of the polynomial,
domain elements T1, . . . , Tm, corresponding to terms of the polyno-
mial, as well as auxiliary elements T0 and Uk,1, . . . , Uk,ξk for each
k ∈ [m]. We will describe its structure later in this section.

Recall that α and β denote the vector of coefficients for P1(�x)
and P2(�x), respectively. Both Poly1 and Poly2 will be described
in terms of the following views: Term(u1, . . . , ud, z0),Value(v),
Coeffα(z0), and Coeffβ(z0). The following lemma states the sev-
eral key properties of these views when evaluated on a polynomial
encoder. We defer its proof to the next subsection.

LEMMA 4. Let Dξ be a polynomial encoder. Then

1. EVAL(Term,Dξ) = {(Xi1 , . . . ,Xid , Tj)| (i1, . . . , id) = Tj},
with each element having multiplicity one.

2. EVAL(Value, Dξ) = {X1, . . . ,Xn}, with element Xk having
multiplicity ξk, for all k ∈ [n].

3. EVAL(Coeffα,Dξ) = {T0, . . . , Tj}, where Tj has multiplic-
ity αj for all j ∈ [m], and T0 has multiplicity one.

4. Likewise, EVAL(Coeffβ,Dξ) = {T0, . . . , Tj}, where Tj has
multiplicity βj for all j ∈ [m], and T0 has multiplicity one. �

We now define Poly1 and Poly2 in terms of the above views.

Poly1 :– Term(u1, . . . , ud, z0),Coeffα(z0),

Value(u1), . . . ,Value(ud)

and

Poly2 :– Term(u1, . . . , ud, z0),Coeffβ(z0),

Value(u1), . . . ,Value(u1)| {z }
d times

,

Value(u1), . . . ,Value(ud)

Given Lemma 4, we can prove the key theorem of this section that
the evaluation of Poly1 and Poly2 over polynomial encoders indeed
results in the evaluations of polynomials P1(�x) and P2(�x), respec-
tively.

THEOREM 5. Let ξ ∈ N
n
0 , and let Dξ be a polynomial encoder.

Then EVAL(Poly1,Dξ) = P1(ξ) and EVAL(Poly2,Dξ) = ξd1P2(ξ).

PROOF. Fix a ξ ∈ N
n
0 , and let D = Dξ. First, consider the value

of EVAL(Poly1,D):X
i1,...,id,Tj :

(i1,...,id)=Tj

|Term(Xi1 , . . . , Xid , Tj)| · |Coeffα(Tj)|

· |Value(Xi1)| . . . |Value(Xid)|

By Lemma 4, the above expression evaluates to
P
j αj

Q
i∈Tj ξi =

P1(ξ), as we claimed. Applying Lemma 4, a similar proof shows that
EVAL(Poly2,D) =

P
j βjξ

d
1

Q
i∈Tj ξi = ξd1P2(ξ), as desired.

The rest of this subsection is devoted to the proof of Lemma 4.
We first give the definitions of the views Term, Value, Coeffα, and
Coeffβ and the polynomial encoders.

Let R,R1, . . . ,Rd,S0, . . . , Sm be binary relation names, and de-
fine the views as follows. Here, we let Nk �

Pk
j=1 αj for all

k ∈ [m].

Term(�u, z0) :– R1(u1, z0), . . . ,Rd(ud, z0)

Value(v) :– R(v, v′)

Coeffα(z0) :– S1(z0, z1), . . . , S1(zN1−1, zN1),

S2(zN1 , zN1+1), . . . , S2(zN2−1, zN2),

...

Sm(zNm−1 , zNm−1+1), . . .

. . . , Sm(zNm−1, zNm),

S0(zNm , zNm)

We define Coeffβ(z0) in analogy with Coeffα(z0), where we replace
each Nk with Mk �

Pk
j=1 βj for all k ∈ [m].

We are now ready to describe the polynomial encoder Dξ as the
union of two databases D∗ and Dξ with disjoint relations. D∗ is
independent of ξ and is defined below:

Rk ={(Xi, Tj) | i is the k-th entry of Tj}, ∀k ∈ [d]

Sj ={(Tj , Tj), (Tj+1, Tj+1), . . . , (Tm, Tm)}
∪ {(Tj , T0)} ∪ {(T0, T0)}, ∀j ∈ [m]

S0 ={(T0, T0)}

For each ξ ∈ N
n
0 , we define Dξ as follows:

R ={(X1, U1,1), . . . , (X1, U1,ξ1),

...

(Xn, Un,1), . . . , (Xn, Un,ξn)}

Observe that each fact in the polynomial encoderDξ has multiplicity
1. Moreover, Dξ = D∗, when ξ = 0.

PROOF OF LEMMA 4. For part (1), notice that Rk(Xi, Tj) is a
fact of Dξ if and only if i is the kth entry of Tj , for each i ∈
[n], j ∈ [m], k ∈ [d]. Hence, EVAL(Term,Dξ) returns the tuple
(Xi1 , . . . ,Xid , Tj) if and only if (i1, . . . , id) = Tj . Since all vari-
ables in this view are free, each tuple has multiplicity one, as we
claimed.

For part (2), since Value(v) :– R(v, v′), v must map to Xk for
some k ∈ [n]. Then, v′ can map to exactly one of the ξk elements
Uk,1, . . . , Uk,ξk . Therefore, the query returns the set {X1, . . . ,Xn}
with element Xk having multiplicity precisely ξk.

The proof for parts (3) and (4), are similar so we prove only part (3).
For every j ∈ [m], the query Coeffα has a subgoal Sj(zi−1, zi) for
every i such that Nj−1 < i ≤ Nj . Since only facts in Dξ where
T0 is the first component are Sj(T0, T0), for all j ∈ [m], we have
by induction that (*) if zi is mapped to T0, then zk must be mapped
to T0 for all k > i. Similarly, the only facts in Dξ where Tj is the
second component are Sj′(Tj , Tj), for all j′ ≤ j. Therefore, (**) if
zi is mapped to Tj for some j, then i ≤ Nj , and zk is mapped to Tj
for all k < i.

In Dξ, the only choices for z0 are T0, T1, . . . Tm. Consider the
case when z0 maps to T0. By (*), every zk maps to T0, and this
satisfies all the subgoals so the multiplicity of T0 is 1.

Next, consider the case when z0 is mapped to Tj for some j ∈ [m].
To satisfy the subgoal S0, zN must map to T0. In the database
Sj(Tj , T0) is the only fact in which Tj is paired with any other ele-
ment. Together with (*) and (**), it follows that the only maps that
satisfy the query are such that for some i where Nj−1 < i ≤ Nj ,
zk is mapped to Tj for all k < i, and zk is mapped to Tj for all
k ≥ i. Each of theseNj−Nj−1 = αj choices of i result in z0 being
mapped to Tj , so the multiplicity of Tj is αj , as desired.

85

4.3 The Full Construction

We start by formally defining an augmented polynomial encoder.
Let Dsink be the database on universe {C0, C1} containing

R ={(C0, C0)}
Ri ={(C0, C0), (C1, C0)}, ∀i ∈ [d]

Sj ={(C0, C0), (C0, C1)}, ∀j ∈ [m]

S0 ={(C0, C0)}

The class of augmented polynomial encoders are simply Daug
ξ =

Dξ ∪Dsink, for each ξ ∈ N
n
0 .

LEMMA 6. Let Poly1,Poly2 be defined as in the last subsection.
For all ξ ∈ N

n
0 , we have

EVAL(Poly1,D
aug
ξ) = 1 + P1(ξ)

EVAL(Poly2,D
aug
ξ) = 1 + ξd1P2(ξ)

PROOF. First of all, consider EVAL(Poly1,D
sink). For the sub-

goal Value(ui), the only fact in Dsink involving R is R(C0, C0),
therefore each ui must map to C0. Now, examining the subgoal
Term(�u, z0), it is clear that with each ui mapping to C0, z0 must
map to C0 as well. Further, the subgoal S0(zNm , zNm) can only be
satisfied by mapping zNm to C0. So z� must map to C0 as well,
for all � ∈ [Nm]. Hence, EVAL(Poly1,D

sink) returns the tuple
(C0, . . . , C0) with multiplicity 1.

To finish the proof, observe that the constants appearing inDξ and
Dsink are disjoint, and the constraints are such that no single map
of the variables can use the constants in both databases at the same
time. Since Daug

ξ = Dξ ∪Dsink, we have

EVAL(Poly1,D
aug
ξ)

= EVAL(Poly1,D
sink) + EVAL(Poly1,Dξ) = 1 + P1(ξ)

The proof showing EVAL(Poly2,D
aug
ξ) = 1+ξd1P2(ξ) follows sim-

ilarly.

We would like to guarantee that the databases we consider con-
tain a copy of the augmented polynomial encoder Daug

0 = D∗ ∪
Dsink, where D∗ is defined in Section 4.2. Recall that the canoni-
cal query QD corresponding to a database D is one where there is
a distinct variable x corresponding to a domain element X in the
database; the query is a conjunction of subgoals R(x1, . . . , xk) such
thatR(X1, . . . ,Xk) is a fact in the database. All variables are free in
QD . The crucial property is that given any database D′, any map for
evaluating QD on D′ induces a copy of D in D′. We define AugDB
as the conjunction of two sub-queries (1) the canonical query asso-
ciated with Daug

0 , in which we identify variable xi with constant Xi
for each i ∈ [n], variable tj with constant Tj for each j ∈ [m], and
variables c0, c1 with constants C0, C1 respectively, and (2) inequal-
ities constraints on every pair of distinct variables. All the variables
are free in AugDB.

Recall the definitions of a homomorphism τ and the database τ (Q)
for a query Q, which were given at the end of Section 2. Notice that
the inequalities of (2) guarantee that if ψ is a homomorphism from
AugDB to D, then ψ(AugDB) is isomorphic to Daug

0 , since distinct
variables are mapped to distinct constants. In particular, this means
that if EVAL(AugDB,D) > 0, then D must contain an isomorphic
copy of Daug

0 . We restate this in the following lemma

LEMMA 7. Let D be a database, and let ψ be a homomorphism
from AugDB to D. Then ψ(AugDB) is isomorphic to Daug

0 . There-
fore, if EVAL(AugDB,D) > 0, then D must contain an isomorphic
copy of Daug

0 .

Next, we define our queries

Q1 :– Poly1,AugDB(�x,�t,�c)

Q2 :– Poly2,CounterCheating(�x,�t,�c)

We are now ready to define cheating more formally.
Let D be a database, and suppose D′ ⊆ D (i.e. all facts in D′

belong to D) is a database isomorphic to Daug
0 . Let φ be a homo-

morphism from Poly1 to D. Roughly speaking, we think of φ as
cheating with respect to D′ if any of the subgoals—ignoring those
subgoals involving Value—are mapped to facts not in D′. More
formally, define Q :– Term(�u, z0),Coeffα(z0). Notice that Q is
essentially the query Poly1 with all subgoals involving Value re-
moved. Further, let φ′ be the restriction of φ to the variables in
vars(Q) = {u1, . . . , ud, z0, . . . , zNm}. Notice that φ′ is a homo-
morphism from Q to D. We say that φ cheats with respect to D′ if
φ′ is not a homomorphism from Q to D′.

Now, for each homomorphism, ψ, from AugDB toD, the database
ψ(AugDB) is isomorphic to Daug

0 , by Lemma 7. The following
key technical lemma guarantees that for each of these ψ(AugDB),
the value of CounterCheating is large enough to counter the num-
ber of homomorphisms from Poly1 to D that cheat with respect to
ψ(AugDB). We defer the proof of this, as well as the definition of
CounterCheating, to the next subsection.

LEMMA 8. Let D be a database, and let Poly1 be defined as in
the last subsection.

• If D is an augmented polynomial encoder, then

EVAL(AugDB,D) = EVAL(CounterCheating,D)

Both return only the tuple (�X, �T , �C), with multiplicity one.

• For general D, let ψ be a homomorphism from AugDB to D,
if one exists. If there are γ homomorphisms from Poly1 to D
that cheat with respect to ψ(AugDB), then

|CounterCheating(ψ(�x,�t,�c))|D ≥ 1 + γ

With Lemma 6 and Lemma 8 in hand, we are ready for the main
result of this paper. Once CounterCheating is defined, it will be
easy to see that the queries Q1 and Q2 use at most n2d inequality
constraints. Remember here that we only need n = 59 and d = 5.

THEOREM 9. For some k bounded by n2d, where n ≤ 59 and
d ≤ 5, the problem ConQCBS(k,∞,∞) is undecidable.

PROOF. We will show that Q1 ⊆BS Q2 if and only if P1(ξ) ≤
(ξ1)

dP2(ξ) for all ξ ∈ N
n
0 . It will thus follow by Theorem 3 that

ConQCBS(k,∞,∞) is undecidable.
First, suppose that there is a ξ ∈ N

n
0 such that P1(ξ) > ξd1P2(ξ).

Lemma 6 shows that EVAL(Poly1,D
aug
ξ) = 1 + P1(ξ) > 1 +

ξdi P2(ξ) = EVAL(Poly2,D
aug
ξ). Further, Lemma 8 guarantees that

EVAL(AugDB,Daug
ξ) = EVAL(CounterCheating,Daug

ξ). Hence,
EVAL(Q1,D

aug
ξ) > EVAL(Q2, D

aug
ξ), as we wanted.

Now, suppose that P1(ξ) ≤ ξdi P2(ξ) for all ξ ∈ N
n
0 . Let D be

a database, and let Ψ be the set of homomorphisms from AugDB to
D. For each ψ ∈ Ψ, let Nψ be the number of homomorphisms from
Poly1 to D that cheat with respect to ψ. Further, we need to count
the number of homomorphisms from Poly1 to D that do not cheat
with respect to ψ.

Recall that in our definition of cheating, we intentionally ignored
the view Value, which has the effect of ignoring relation R. But
homomorphisms from Poly1 toD must respect R. So we need a way
to “add R back.”

To this end, define Dψ iteratively as follows:

86

1. Start with Dψ equal to ψ(AugDB).

2. For each fact of D, check if it is of the form R(ψ(xi), C) for
some i and some constant C. If it is, then add that fact to Dψ

(with multiplicity one)

It is not hard to see that Dψ is isomorphic to Daug
ξψ

for some ξψ.

(In particular, the value of its ith entry, (ξψ)i = |Value(ψ(xi))|D .)
It is also not hard to see that if φ does not cheat with respect to
ψ(AugDB), then φ is a homomorphism from Poly1 to Dψ . Thus,
the number of homomorphisms from Poly1 to D that do not cheat is

EVAL(Poly1,D
ψ) = 1 + P1(ξψ)

by Lemma 6. Hence, we see

EVAL(Q1,D) =
X
ψ∈Ψ

(1 + P1(ξψ) +Nψ)

Denoting the first coordinate of ξψ by ξψ,1, we also see that

EVAL(Poly2,D
ψ) ≥ 1 + (ξψ,1)

dP2(ξψ)

≥ 1 + P1(ξψ)

Putting this together with Lemma 8 completes the proof:

EVAL(Q2,D)

≥
X
ψ∈Ψ

(1 + P1(ξψ)) · (1 +Nψ)

≥
X
ψ∈Ψ

(1 + P1(ξψ) +Nψ)

= EVAL(Q1, D)

Thus, applying Corollary 2 (and counting the number of inequal-
ities in Q1 and Q2 a little more carefully), we have the following
corollary.

COROLLARY 10. For some k bounded by n2d, where n ≤ 59
and d ≤ 5, we have that both

ConQCB(k, 1, 2) is undecidable, and

ConQCBS(k, 1, 2) is undecidable.

4.4 Proof Sketch of Lemma 8

We now sketch the proof for the main technical lemma. We begin
by defining CounterCheating. We break this into 8 main compo-
nents. One of the components is simply AugDB. Each of the other 7
is to counter a different type of cheating that could occur. We outline
these 7 ways of cheating below.

Recall that Poly1 was a bound query. In defining our anti-cheating
views, it will be necessary to use inequalities involving the vari-
ables of Poly1. Hence, we define Poly′1 analogously to Poly1, but
in such a way that many of its variables become free. Specifically,
let Coeff′

α(�z) be defined as the query with the same body as Coeffα,
but with free variables z0, . . . , zNm . Then define

Poly′1(�u, �z)

:– Term(�u, z0),Coeff′
α(�z),Value(u1), . . . ,Value(ud)

For all k ∈ [d] and all j ∈ [m], we define the following views.

Counter1(t1, . . . , tm) :–

Poly′
1(�u, �z),∧�∈[m]z0 �= t�

Counter2(t0) :–

Poly′
1(�u, �z), zNm �= t0

Counterk3(�x) :–

Poly′
1(�u, �z),∧i∈[n]uk �= xi

Counterk4 :–

Poly′
1(�u, �z), Rk(w, z0), w �= uk

Counterj5(t0) :–

Poly′
1(�u, �z), Sj(z0, w), w �= z0, w �= t0

Counterj6(tj) :–

Poly′
1(�u, �z), Sj(z0, w), w �= z0, z0 �= tj

Counterj7(t0) :–

Poly′
1(�u, �z), Sj(zNm , w), w �= t0

Notice that each of the above views contains Poly′1 as a subgoal.
So if it were not for the �=-constraints, each view would return a
multiplicity at least as large as Poly1 since Poly1 is just Poly′1 with all
variables bound. The �=-constraints guarantee that there is only one
homomorphism, unless there are maps from Poly1 to the database
that cheat.

Define CounterCheating(�x,�t,�c) to be the conjunction of the above
views and AugDB(�x,�t,�c). Note that the free variables (�x,�t,�c) are
the same for each view, but the variables (�u, �z) are local to each view.

We first sketch the proof that if D is an augmented polynomial
encoder, then

EVAL(AugDB,D) = EVAL(CounterCheating,D)

with both expressions returning only the tuple (�X, �T , �C), with mul-
tiplicity one. It is not difficult to check that EVAL(AugDB,D) re-
turns only the tuple (�X, �T , �C) with multiplicity one. Further, since
CounterCheating contains AugDB as a subgoal, we see that evaluat-
ing CounterCheating on D returns only the tuple (�X, �T , �C). How-
ever, we still need to verify that its multiplicity is one.

We do this by showing that there is exactly one homomorphism
from each view Counteri toD that maps (�x,�t,�c) to (�X, �T , �C). Con-
sider the view Counterj6 for some j. The proof for each of the other
views Counteri is similar. Since Counterj6 contains Poly′1(�u, �z) as
a subgoal, there is precisely one homomorphism that maps (�u, �z) to
(C0, . . . , C0) and w to C1. In analogy with the proof of Lemma 4,
we see that any other homomorphism φmust map z0 to Tj′ for some
j′. Now, if j′ �= j, then φ(w) = Tj′ , contradicting the �=-constraint
w �= z0. If j′ = j, then φ(z0) = Tj , contradicting z0 �= tj .

We now sketch the proof of the second item. LetD be any database,
and let ψ be a homomorphism from AugDB to D. Further, suppose
that there are γ homomorphisms from Poly1 to D that cheat with
respect to ψ(AugDB). We will show

|CounterCheating(ψ(�u,�t,�c))|D ≥ 1 + γ

For convenience and readability, relabel the constants in D so that
ψ(xi) = Xi for all i ∈ [n], ψ(tj) = Tj for all j ∈ [m], and
ψ(c�) = C� for � = 0, 1. Under the relabeling of the constants,
ψ(AugDB) is the canonical database Daug

0 .
We partition cheating homomorphisms into seven classes. Notice

that each class Ni corresponds to the respective Counteri. Let φ0 be
the homomorphism mapping every variable in Q′

1 to C0, and let Φ

87

be the set of homomorphisms from Q′
1 to D excluding φ0. For each

j ∈ [m], k ∈ [d], define
1. N1 = {φ ∈ Φ| for all j ∈ [m], φ(z0) �= Tj}.
2. N2 = {φ ∈ Φ| φ(zNm) �= T0}.
3. Nk

3 = {φ ∈ Φ| for all i ∈ [n], φ(uk) �= Xi}.
4. Nk

4 = {φ ∈ Φ| φ(u1, . . . , ud, t)= (Xi1 , . . . ,Xid , Tj′) for
some j′ ∈ [m], but ik is not the kth entry of Tj′}.

5. Nj
5 = {φ ∈ Φ | φ(zNm) = T0, ∃� such that Sj(z�, z�+1) is a

subgoal of Poly1, ∃j′∈[m]φ(z0) = φ(z�) = Tj′ , but φ(z�+1)
is neither Tj′ nor T0 }.

6. Nj
6 = {φ ∈ Φ | φ(zNm) = T0, ∃� such that Sj(z�, z�+1) is a

subgoal of Poly1, ∃j′∈[m]φ(z0) = φ(z�) = Tj′ with j′ �= j,
but φ(z�+1) = T0 }.

7. Nj
7 = {φ ∈ Φ | φ(zNm) = T0, ∃� such that Sj(z�, z�+1) is a

subgoal of Poly1, φ(z�) = T0, but φ(z�+1) �= T0 }.

CLAIM 11. If φ is a homomorphism from Poly1 to D that cheats
with respect to ψ(AugDB), then φ belongs toN1∪N2

S
k∈[d](N

k
3 ∪

Nk
4)
S
j∈[m](N

j
5 ∪Nj

6 ∪Nj
7).

PROOF. Let φ be a homomorphism that cheats with respect to
ψ(AugDB). Throughout this proof, we assume that φ(zNm) = T0,
for otherwise φ ∈ N1. Likewise, we assume φ(z0) = Tj for some
j, for otherwise φ ∈ N2. Finally, we assume for each k, there is an �
such that φ(uk) = X�, for otherwise φ ∈ Nk

3 .
If φ cheats, then some subgoal of Poly1, not involving relation R,

is mapped to a fact that is not in ψ(AugDB). We say such a subgoal
is mapped incorrectly.

First, suppose subgoal Rk(a, b) is mapped incorrectly by φ. Note
that a = uk and b = z0. By our assumption, φ(uk) = X� for some
� ∈ [n] and φ(z0) = Tj for some j. Hence, Rk(X�, Tj) is not a fact
for ψ(AugDB). So � is not the kth entry in Tj . That is, φ ∈ Nk

4 .
Now, suppose a subgoal involving relation Sk′ is mapped incor-

rectly by φ, for some k′. Let � be the smallest index such that, for
some j ∈ [m], Sj(z�, z�+1) is a subgoal of Poly1 that is mapped in-
correctly by φ. Note that φ(z�) is either T0 or Tj′ for some j′ ∈ [m].
If it is T0, then φ(z�+1) �= T0 since Sj(z�, z�+1) is mapped incor-
rectly. Hence, φ ∈ Nj

7 .
If φ(z�) = Tj′ , then φ(z0) = Tj′ by the minimality of �. Further,

either (1) φ(z�+1) = T0, (2) φ(z�+1) �= T0, Tj′ , or (3) φ(z�+1) =
Tj′ . In the first case, we see j′ �= j since Sj(z�, z�+1) is mapped
incorrectly. Hence, φ ∈ Nj

6 . In the second case, we see φ ∈ Nj
5 .

In the third case, let �′ be the smallest index such that φ(z�′+1) �=
Tj′ , and let k′ be such that Sk′(z�′ , z�′+1) is a subgoal of Poly1.
Notice that φ(z0) = φ(z�′) = Tj′ . Further, notice that j > j′ since
Sj(Tj′ , Tj′) is not a fact for Dψ , hence k′ �= j′. So if φ(z�′+1) =

T0, we see φ ∈ Nk′
6 . On the other hand, if φ(z�′+1) �= T0, then

φ ∈ Nk′
5 .

Claim 11 thus gives us that γ ≤ |N1| + |N2| +
P
k∈[d](|N

k
3 | +

|Nk
4 |) +

P
j∈[m](|N

j
5 | + |Nj

6 | + |Nj
7 |).

Our next claim simply says that each Counter does its job.

CLAIM 12. For all k ∈ [d], j ∈ [m],

|Counter1(T1, . . . , Tm)|D ≥ 1 + |N1|
|Counter2(T0)|D ≥ 1 + |N2|
|Counterk3(�X)|D ≥ 1 + |Nk

3 |
|Counterk4 |D ≥ 1 + |Nk

4 |
|Counterj5(T0)|D ≥ 1 + |Nj

5 |
|Counterj6(Tj)|D ≥ 1 + |Nj

6 |
|Counterj7(T0)|D ≥ 1 + |Nj

7 |

PROOF SKETCH. Consider a homomorphism φ mapping Poly1

toD. Then each local variable ui in Poly1 gets mapped to φ(ui), and
likewise, each local variable zi in Q′

1 gets mapped to φ(zi). Suppose,
e.g., φ ∈ N1. Then we may specify a corresponding homomorphism
φ̂ from Counter1 to D such that φ̂ maps each local variable ui of
Counter1 to φ(ui), and likewise, φ̂ maps each local variable zi of
Counter1 to φ(zi). Finally, we set φ̂(tj) = Tj for each j. It is
not hard to see that φ̂ is indeed a homomorphism, and further, that it
respects all the �=-constraints of Counter1. Hence, for every cheat-
ing homomorphism in N1, there is a corresponding homomorphism
from Counter1 to D. Furthermore, there is a homomorphism from
Counter1 to D in which every variable is mapped to C0. It thus
follows that

|Counter1(T1, . . . , Tm)|D ≥ 1 + |N1|
An analogous proof holds for each of the other cases. We include
a proof sketch for the last four inequalities, since in each of those
cases, we must also specify where the local variable w is mapped.

4. Let k ∈ [d], let φ ∈ Nk
4 , and consider where the bound vari-

ables of Poly1 are mapped by φ. In particular, φ(uk) = Xi for
some i ∈ [n] and φ(z0) = Tj for some j ∈ [m], but i is not the
kth entry of Tj . Hence, we may map the corresponding bound
variables of Counterk4 in precisely the same way without vio-
lating any �=-constraints. As for the variable w, we may map
it to Xi′ , where i′ is the k entry of Tj . Since φ(uk) �= φ(w),
no �=-constraint is violated.

Furthermore, there is an additional homomorphism mapping
from Counterk4 to D in which we map w to C1 and all the
other bound variables to C0, giving an extra homomorphism.
Hence,

|Counterk4 |D ≥ 1 + |Nk
4 |

5. Let j ∈ [m], let φ ∈ N j
5 , and consider where the bound vari-

ables of Poly1 are mapped by φ. In particular, there are vari-
ables z�, z�+1 such that Sj(z�, z�+1) is a subgoal of Poly1,
φ(z�) = φ(z0) = Tj′ for some j′ ∈ [m], but φ(z�+1) is
mapped to neither T0 nor Tj′ . We may map the corresponding
bound variables of Counterj5 in precisely the same way with-
out violating any �=-constraints. As for the variable w, we may
map it to φ(z�+1). Since φ(w) �= T0 and φ(w) �= φ(z0), no
�=-constraint is violated.

Furthermore, there is an additional homomorphism mapping
from Counterj5 to D in which we map w to C1 and all the
other bound variables to C0, giving an extra homomorphism.
Hence,

|Counterj5(T0)|D ≥ 1 + |Nj
5 |

6. Let j ∈ [m], let φ ∈ N j
6 , and consider where the bound vari-

ables of Poly1 are mapped by φ. In particular, there are vari-
ables z�, z�+1 such that Sj(z�, z�+1) is a subgoal of Poly1,
φ(z�) = φ(z0) = Tj′ for some j′ ∈ [m]withj′ �= j, but
φ(z�+1) = T0. We may map the corresponding bound vari-
ables of Counterj6 in precisely the same way without violating
any �=-constraints. As for the variable w, we may map it to T0,
since Sj(Tj′ , T0) must be a fact of D. Since φ(z0) �= Tj and
φ(w) �= φ(z0), no �=-constraint is violated.

Furthermore, there is an additional homomorphism mapping
from Counterj6 to D in which we map w to C1 and all the
other bound variables to C0, giving an extra homomorphism.
Hence,

|Counterj6(Tj)|D ≥ 1 + |Nj
6 |

88

7. Let j ∈ [m], let φ ∈ N j
7 , and consider where the bound vari-

ables of Poly1 are mapped by φ. In particular, there are vari-
ables z�, z�+1 such that Sj(z�, z�+1) is a subgoal of Poly1,
φ(z�) = T0, but φ(z�+1) �= T0. We may map the correspond-
ing bound variables of Counterj7 in precisely the same way
without violating any �=-constraints. As for the variable w, we
may map it to φ(z�+1). Since φ(w) �= T0, no �=-constraint is
violated.

Furthermore, there is an additional homomorphism mapping
from Counterj7 to D in which we map w to C1 and all the
other bound variables to C0, giving an extra homomorphism.
Hence,

|Counterj7(T0)|D ≥ 1 + |Nj
7 |

To complete the proof:

EVAL(CounterCheating(ψ(�x,�t,�c)),D)

≥ (1 + |N1|)(1 + |N2|)
dY
k=1

[(1 + |Nk
3 |)(1 + |Nk

4 |)]

·
mY
j=1

[(1 + |Nj
5 |)(1 + |Nj

6 |)(1 + |Nj
7 |)]

≥ 1 + |N1| + |N2| +
dX
k=1

(|Nk
3 | + |Nk

4 |)

+

mX
j=1

(|Nj
5 | + |Nj

6 | + |Nj
7 |)

≥ 1 + γ

5. Concluding Remarks
We showed that, under bag semantics, the query containment prob-

lem for conjunctive queries with inequalities is undecidable. Actu-
ally, even drastic restrictions of this problem are undecidable; specif-
ically, undecidability persists even if the following two restrictions
hold at the same time: (1) the queries involve a single binary relation
symbol; and (2) the total number of inequalities is bounded by a cer-
tain fixed (albeit large) value. Furthermore, the same undecidability
results hold under bag-set semantics.

These strong undecidability results reveal that there is no hope
of using query containment as a tool to optimize conjunctive queries
with inequalities in real database systems. At the same time, these re-
sults motivate several different lines of investigation. From a database-
theoretic point of view, it would be interesting to identify syntactic
or structural conditions that may give rise to classes of conjunctive
queries with inequalities for which the containment problem under
bag semantics is decidable (or, even better, has low complexity).
From a graph-theoretic point of view, note that we made heavy use of
directed graphs in the reduction from Hilbert’s 10th Problem. Thus,
it is natural to ask whether, under bag semantics, the containment
problem for conjunctive queries with inequalities is decidable when
the queries involve a single binary relation symbol that is interpreted
by an undirected graph.

Our work was originally motivated from the decidability question
for the conjunctive-query containment problem (without inequali-
ties) under bag semantics. While this question remains unanswered,
we hope that the combinatorial tools developed here may turn out to
be of use in resolving this long-standing question.

6. References
[1] N. Brisaboa and H. Hernández. Testing bag-containment of

conjunctive queries. Acta Informatica, 34(7):557–578, 1997.
[2] N. Brisaboa, H. Hernández, J. Paramá, and M. Penabad.

Conjunctive queries with built-in predicates with variables and
constants over any ordered domain. In ABDIS Research
Communications, pages 46–57. 1998.

[3] A. Chandra and P. Merlin. Optimal implementation of
conjunctive queries in relational databases. In Proc. 9th ACM
Symp. on Theory of Computing, pages 77–90, 1977.

[4] S. Chaudhuri and M. Vardi. Optimization of real conjunctive
queries. In Proceedings of the 12th ACM Symposium on the
Principles of Database Systems, pages 59–70, 1993.

[5] S. Cohen, W. Nutt, and A. Serebrenik. Rewriting aggregate
queries using views. In Proc. 18th ACM Symp. on Principles of
Database Systems, pages 155–166, 1999.

[6] Y. Ioannidis and R. Ramakrishnan. Containtment of
conjunctive queries: beyond relations as sets. ACM
Transactions on Database Systems, 20(3):288–324, September
1995.

[7] A. Klug. On conjunctive queries containing inequalities.
Journal of the Association for Computing Machinery,
35(1):146–160, January 1988.

[8] P. Kolaitis, D. Martin, and M. Thakur. On the complexity of
the containment problem for conjunctive queries with built-in
predicates. In Proceedings of the 17th ACM Symposium on the
Principles of Database Systems, pages 197–204, 1998.

[9] Y. Matiyasevich. Hilbert’s 10th Problem. MIT Press, 1993.
[10] W. Nutt, Y. Sagiv, and S. Shurin. Deciding equivalences

among aggregate queries. In Proc. 17th ACM Symp. on
Principles of Database Systems, pages 214–223, 1998.

[11] C. Papadimitriou. Computational Complexity.
Addison-Wesley, 1994.

[12] M. Penabad, N. Brisaboa, H. Hernández, and J. Paramá. A
general procedure to check conjunctive query containment.
Acta Informatica, 38(7):489–529, 2002.

[13] Y. Sagiv and M. Yannakakis. Equivalences among relational
expressions with the union and difference operators. Journal of
the Association for Computing Machinery, 27(4):633–655,
October 1980.

[14] R. van der Meyden. The complexity of querying infinite data
about linearly ordered domains. Journal of Computer and
System Sciences, 54(1):113–135, Feb. 1997.

[15] E. Vee. The equivalence problem for real conjunctive queries
with inequalities. Submitted, 2006.

[16] E. Vee. A note on “Testing bag-containment of conjunctive
queries”. Submitted to Acta Informatica, 2006.

89

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

