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Abstract. Global-as-view (GAV) constraints form a class of database constraints
that has been widely used in the study of data exchange and data integration.
Specifically, relationships between different database schemas are commonly de-
scribed by a schema mapping consisting of a finite set of GAV constraints. Such
schema mappings can be viewed as representations of an infinite set of data ex-
amples. We study the following problem: when is finite set of GAV constraints
uniquely characterizable via a finite set of data examples? By establishing a tight
connection between this problem and homomorphism dualities, we obtain a sim-
ple criterion for unique characterizability. We also pinpoint the computational
complexity of the corresponding decision problem.

1 Introduction and Summary of Results
Since the early days of the relational data model, constraints have played a major role
in both the theory and the practice of database systems. In the 1970s and the 1980s, sev-
eral different types of database constraints, also known as database dependencies, were
introduced and studied; these include functional dependencies, inclusion dependencies,
multi-valued dependencies, and several other classes of dependencies that were used to
capture a variety of semantic restrictions that the allowable data must satisfy (see [1]
for a survey). In recent years, database dependencies have been used to formalize and
study different facets of information integration, which is the problem of accessing and
processing data residing in multiple heterogeneous sources. Two prominent facets of
information integration are data exchange and data integration (see the surveys [2] and
[3]). A key role in the formalization of both data exchange and data integration, as well
as of other information integration tasks, is played by the notion of a schema mapping.
Intuitively, a schema mapping is a specification that describes the relationships between
two database schemas, a source schema and a target schema. More precisely, a schema
mapping is a tripleM = (S,T, Σ) with S a source schema, T a target schema disjoint
from S, andΣ a finite set of constraints involving the schemas S and T. The constraints
in Σ are typically expressed as formulas of a logical formalism. In particular, the class
of source-to-target tuple-generating dependencies (in short, s-t tgds) is the most exten-
sively studied and widely used collection of schema mapping constraints to date, as it
strikes a good balance between expressive power and desirable algorithmic properties.
By definition, an s-t tgd is a first-order formula of the form

∀x(ϕ(x)→ ∃yψ(x,y)),
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where ϕ(x) is a conjunction of atoms over S, each variable in x occurs in at least
one atom in ϕ(x), and ψ(x,y) is a conjunction of atoms over T with variables in
x and y (here, an atom is a formula P (x1, . . . , xm), where P is a relation symbol
and x1, . . . , xm are variables, not necessarily distinct). Intuitively, an s-t tgd asserts
that whenever a certain “pattern” is realized in the source, then another “pattern” must
be realized in the target. Schema mappings specified by s-t tgds contain as important
special cases the class of global-as-view (GAV) schema mappings and the class of local-
as-view (LAV) schema mappings; both GAV and LAV schema mappings are widely
used and are supported by many information integration tools. A GAV schema mapping
is a schema mappingM = (S,T, Σ) such that every constraint in Σ is an s-t tgd in
which the right-hand side consists of a single atom, that is, it has the form

∀x(ϕ(x)→ T (x)),

where T (x) is an atom over the target schema. Intuitively, a GAV constraint specifies
that a target relation is described in terms of certain source relations. A LAV schema
mapping is a schema mappingM = (S,T, Σ) such that every constraint in Σ is an s-t
tgd in which the left-hand side consists of a single atom, that is, it has the form

∀x(S(x)→ ∃yψ(x,y)),

where S(x) is an atom over the source schema. Intuitively, a LAV constraint
specifies that a source relation is described in terms of certain target relations.
For example, suppose that we wish to form a target relation by deleting the last
column from a ternary source relation. This is captured by an s-t tgd of the form
∀x, y, z(S(x, y, z) → U(x, y)); note that this is both a GAV and a LAV con-
straint. Similarly, suppose that we wish to form a target relation by appending a
column to some binary source relation. This is captured by an s-t tgd of the form
∀x, y(R(x, y) → ∃zT (x, y, z)), which is a LAV constraint, but not a GAV constraint.
Finally, suppose that we wish to form a target relation by joining two binary source re-
lations along the second column of the first relation and the first column of the second.
This is captured by an s-t tgd of the form ∀x, y, z(P (x, y) ∧ R(y, z) → T (x, y, z)),
which is a GAV constraint, but not a LAV constraint.

Background on Schema Mappings and Data Examples Let M = (S,T, Σ) be
a schema mapping in which Σ is a finite set of s-t tgds. A data example is a pair
(I, J) such that I is a source database and J is a target database. If a data example
(I, J) satisfies every s-t tgd in Σ, then we say that J is a solution for I w.r.t. M.
Every schema mappingM gives rise to the following data exchange problem: given a
source database I , construct a solution J for I w.r.t.M. In general, a source database
I may have an infinite number of solutions. This raises the question: which solution
J for I should we chose to materialize in solving the data exchange problem? This
question was addressed in [4], where the notion of a universal solution was introduced.
By definition, a universal solution J for I w.r.t. a schema mappingM is a solution J
for I such that for every solutionK for I w.r.t.M, there is a (not necessarily surjective)
homomorphism h : J → K that is constant on every element of J occurring in I .
Intuitively, a universal solution for I is a “most general” solution for I; moreover, a



universal solution represents, in a precise technical sense, the entire space of solutions
for I . Finally, as shown in [4], given a source database I , a canonical universal solution
for I can be constructed in time bounded by a polynomial in the size of I using the
chase procedure. By now, universal solutions have become the standard semantics in
data exchange (see [5] for a recent survey).

A schema mappingM = (S,T, Σ), whereΣ is a finite set of s-t tgds, is a syntactic
object that provides a finite representation for the infinite space

{(I, J) : (I, J) is a data example and J is a solution for I w.r.t.M}.

In [6], the following problem was investigated: can this infinite space of data examples
be “captured” by a finite set of data examples? The motivation for this problem is that,
since schema mappings arising in real-life applications can be quite complex, one would
like to use “good” data examples that illustrate the schema mapping at hand and aid
in its understanding and refinement. The problem of “capturing” a schema mapping
by finitely many data examples was formalized by introducing the notion of unique
characterizability of a schema mapping via a finite set of data examples of a certain
type w.r.t. to a class of s-t tgds. The main focus of [6] was on universal examples, where
a universal example forM is a data example (I, J) such that J is a universal solution
for I w.r.t.M. In this case, the concept of unique characterizability takes the following
precise form. Let M = (S,T, Σ) be a schema mapping, let C be a class of s-t tgds
such that Σ ⊆ C, and let U be a finite set of universal examples forM. We say thatM
is uniquely characterized by U w.r.t. to C if, whenever M′ = (S,T, Σ′) is a schema
mapping such that Σ′ ⊆ C and every data example in U is a universal example for
M′, then Σ′ is logically equivalent to Σ. In other words, up to logical equivalence,
M is the only schema mapping with s-t tgds from C for which U is a set of universal
examples. One of the main results in [6] is that every LAV schema mapping is uniquely
characterized by a finite set of universal examples w.r.t. the class of all LAV constraints.
On the other hand, it is also shown in [6] that there are natural GAV schema mappings
that cannot be uniquely characterized by any finite set of universal examples w.r.t. to
the class of GAV schema mappings. It should be noted that the proof of this result made
use of a generalization ([7, Theorem 3.15]) of Erdős’ well known theorem asserting the
existence of graphs of arbitrary large girth and chromatic number.

Summary of Results Our aim in this paper is to address the following questions.
Which GAV schema mappings are uniquely characterizable by a finite set of universal
examples w.r.t. the class of all GAV schema mappings? Is there an algorithm to tell
whether or not a given GAV schema mapping is uniquely characterizable by a finite
set of universal examples w.r.t. the class of all GAV schema mappings? If so, what is
the exact complexity of this problem? For simplicity, from now on, the term “uniquely
characterizable” will mean uniquely characterizable by a finite set of universal examples
w.r.t. the class of all GAV schema mappings. Our first main result yields a necessary
and sufficient condition for a GAV schema mapping to be uniquely characterizable.
This criterion unveils a tight (and rather unexpected) connection between unique char-
acterizability and homomorphism dualities, which we describe in what follows.

Informally, a homomorphism duality is an equivalence between the existence of a
homomorphism to a structure and the non-existence of a homomorphism from the same



Source schema: {Manages}; Target schema: {CEO,TopManager}

GAV constraints:
(σ1) ∀x (Manages(x, x) → CEO(x))
(σ2) ∀x, y, z (Manages(x, x) ∧ Manages(x, y) ∧ Manages(y, z) → TopManager(y))

Fig. 1. Example of a GAV schema mapping

structure. The prototypical example of a homomorphism duality is the well-known
characterization of 2-colorability: for every graph G, there is a homomorphism from
some odd cycle C2k+1 to G if and only if there is no homomorphism from G to the
complete graph K2 with two nodes. Let → be the existence-of-a-homomorphism re-
lation between structures over the same schema, i.e., B → C means that there is
a homomorphism from B to C. Assume that F and D are two collections of struc-
tures over the same schema. Following [8], we say that the pair (F ;D) is a homo-
morphism duality if for every structure A, there exists a structure F ∈ F such that
F → A if and only if there is no structure D ∈ D such that A → D; in sym-
bols,

⋃
F∈F (F→) =

⋂
D∈D( 6→D). If (F ;D) is a homomorphism duality, then we

say that F is an obstruction set for D. Thus, the aforementioned characterization of
2-colorability is equivalent to the assertion that the pair ({C2k+1 : k ≥ 1}; {K2}) is a
homomorphism duality; moreover, {C2k+1 : k ≥ 1} is an obstruction set for {K2}.

For every GAV schema mappingM = (S,T, Σ) and every relation symbol T in
T, we construct a finite set FM,T of relational structures over a signature consisting
of the relations from the source schema S plus finitely many constant symbols, and
show thatM is uniquely characterizable if and only if each FM,T is an obstruction set
for some finite set DM,T of structures. This result provides the aforementioned neces-
sary and sufficient condition for unique characterizability of GAV schema mappings;
however, it does not yield immediately an algorithm for testing whether or not a given
schema mapping is uniquely characterizable. In [8], it was shown that a finite set F of
homomorphically incomparable core structures is an obstruction set for some finite set
D if and only if every structure in F obeys a certain acyclicity condition. This result
holds for structures over a signature with relation symbols but no constant symbols.
Here, we show that this characterization can be extended to structures over a signa-
ture with both relation symbols and constant symbols. In particular, we show that a
GAV schema mappingM = (S,T, Σ) is uniquely characterizable if and only if every
structure in the aforementioned finite sets FM,T obeys a weaker acyclicity condition,
which we call c-acyclicity. Moreover, there is an algorithm that, given such a GAV
schema mapping, computes a uniquely characterizing set of examples. Informally, the
c-acyclicity condition allows for cycles, but every cycle must contain (the interpreta-
tion of) a constant symbol. This gives rise to a powerful tool for determining whether
or not a given GAV schema mapping is uniquely characterizable. As an illustration
of the power of this tool, it follows immediately that the GAV schema mapping M
specified by the single s-t tgd ∀x, y, z(E(x, z) ∧ E(z, y)→ P (x, y)) is uniquely char-
acterizable. In contrast, the GAV schema mapping M′ specified by the single s-t tgd
∀x, y, z, w(E(x, z) ∧ E(z, y) ∧ E(w,w)→ P (x, y)) is not uniquely characterizable.

Finally, from a computational-complexity standpoint, we show that the following
problem is NP-complete: given a GAV schema mappingM = (S,T, Σ), is it uniquely



characterizable? We also show that the computational complexity of this problem drops
down to LOGSPACE, ifM is in a certain normalized form in which the left-hand sides
of the s-t tgds in Σ are cores. In addition, we obtain results concerning the decidability
and computational complexity of several other natural algorithmic problems involving
GAV schema mappings, universal examples, and unique characterizability.

Most proofs in this paper are omitted for lack of space.

2 Basic Concepts and Preliminaries
Signatures, Structures, Schemas and Databases In logic, a signature is a collection
of relation symbols, function symbols, and constant symbols. Here, we will be con-
cerned only with signatures consisting of finitely many relation symbols R1, . . . , Rn
of designated arities and finitely many constant symbols c1, . . . , ck. A structure A over
such a signature is a tuple A = (D,RA1 , . . . , R

A
n , c

A
1 , . . . , c

A
k ), where D is a set, called

the domain of A, each RAi is a relation on D whose arity matches the arity of the re-
lation symbol Ri, and each cAj is an element of D. If no constant symbols are present,
then we talk about a relational signature and about relational structures over that sig-
nature. In what follows, we will assume that all structures considered are finite, that is,
the domain and the relations of the structure are finite. For simplicity of notation and
when the structure A at hand is understood from the context, we will often use Ri to
denote both the relation symbol Ri and the relation RAi interpreting it on A.

In databases, a schema is a finite collection of relation symbols R1, . . . , Rn of des-
ignated arities, i.e., a schema is a relational signature. A database I over such a schema
is a tuple I = (RI1, . . . , R

I
n) of finite relations over some domain. Every database I can

be identified with a relational structure (adom(I), RI1, . . . , R
I
n), where adom(I) is the

active domain of I , that is, the set of all values occurring in the relations of I . In what
follows, we will use relational structures and databases in an interchangeable way.

A homomorphism from A to B is a function h from the domain of A to the do-
main of B such that for every relation symbol Ri and every constant symbol cj : (1) if
(a1, . . . , am) ∈ RAi , then (h(a1), . . . , h(am)) ∈ RBi ; and (2) h(cAj ) = cBj .

Schema Mappings and Universal Solutions A schema mapping is a triple M =
(S,T, Σ), where S and T are disjoint schemas, called the source schema and the target
schema, and Σ is a set of source-to-target tuple generating dependencies, as defined in
Section 1. If Σ consists entirely of GAV constraints, thenM is called a GAV schema
mapping; if Σ consists entirely of LAV constraints, thenM is a LAV schema mapping.
In this paper, our main focus will be on GAV schema mappings.

Figure 1 contains an example of a GAV schema mapping; it will be our running
example throughout paper. In this example, the source database contains information
about managerial relationships in a company using a binary relation “Manages”, while
the target database contains information about managerial roles, using the unary rela-
tions “CEO” and “TopManager”. Incidentally, note that σ1 is both a GAV constraint
and a LAV constraint, while σ2 is a GAV constraint but not a LAV constraint.

LetM = (S,T, Σ) be a schema mapping. A data example is a pair (I, J), where I
is a source database (i.e., a database over S) and J is a target structure (i.e., a database
over T). If I is a source database, then a solution for I w.r.t.M is a target database J
such that the data example (I, J) satisfies every constraint in Σ. A universal solution



for I w.r.t.M is a solution J for I w.r.t.M such that for every solution J ′ for I w.r.t
M, there is a homomorphism h : J → J ′ such that h is constant on the active domain
adom(I) of I , i.e., h(a) = a, for each a ∈ adom(I) ∩ dom(h). It was shown in [4]
that if M is any schema mapping specified by s-t tgds, then every source structure
I has a canonical universal solution CanSolM(I), which can be constructed in time
bounded by a polynomial in the size of I . IfM is a GAV schema mapping and I is a
source database, then the active domain of CanSolM(I) is contained in adom(I). In
fact, in the case of GAV schema mappings, CanSolM(I) is the only universal solution
for I such that its active domain is contained in adom(I). Moreover, the relations of
CanSol(I) consist precisely of all tuples that are “dictated” by the GAV constraints of
M, in the sense that they are the right-hand-side of a GAV constraint σ ofM, under a
variable assignment that makes the left-hand-side of σ true in I . Note, however, that the
state of affairs is more complicated for non-GAV schema mappings (and, in particular,
for LAV schema mappings), since the active domain of CanSol(I) may contain values
not occurring in adom(I).

Characterizing Schema Mappings via Data Examples In [6], different notions of
data examples were considered for “illustrating” the semantics of a schema mapping,
such as positive examples, negative examples, and universal examples.
• A positive example (I, J) for a schema mappingM is a data example forM such

that J is a solution for I w.r.t.M.
• A negative example (I, J) for a schema mappingM is a data example forM such

that J is not a solution for I w.r.t.M.
• A universal example (I, J) for a schema mappingM is a data example forM such

that J is a universal solution for I w.r.t.M.
Among these, universal examples were shown in [6] to be the most promising type of
data example for capturing the semantics of a schema mapping. Specifically, the central
question studied in [6] is the unique characterizability problem: can a schema mapping
be “captured” by a finite set of data examples of particular types w.r.t. a class of s-t tgds?
In the context of universal examples, the unique characterizability problem is defined as
follows. First, ifM is a schema mappingM and U is a set of data examples, we say that
M fits the universal examples U if all data examples in U are universal examples ofM.
We say that a schema mappingM is uniquely characterized by a finite set of universal
examples U w.r.t. a class of s-t tgds C ifM fits U and for every finite set Σ′ ⊆ C such
thatM′ = (S,T, Σ′) fits U , we have that Σ and Σ′ are logically equivalent. Similar
definitions apply in the case of positive examples and negative examples.

The following results were established in [6]. First, there are LAV schema mappings
that are not uniquely characterizable by any finite set of positive and negative examples
w.r.t. to the class of all LAV constraints. In contrast, every LAV schema mapping is
uniquely characterized by some finite set of universal examples w.r.t. the class of all
LAV constraints. Moreover, this positive result extends to the much broader classes
of n-modular schema mappings [9], where n is a positive integer. The state of affairs
for GAV schema mappings and universal examples turned out to be quite different, as
revealed by the next result.



Theorem 1. ([6]) The following statements are true.
• The schema mapping specified by the GAV constraint ∀x, y(S(x, y) → T (x, y)) is

uniquely characterizable w.r.t. the class of GAV constraints by the universal exam-
ples given in Figure 2.

• The schema mapping specified by the GAV constraint ∀x, y, z(S(x, y) ∧ R(z, z) →
T (x, y)) is not uniquely characterizable by any finite set of universal examples
w.r.t. the class of GAV constraints.
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Fig. 2. Universal examples uniquely
characterizing the copy constraint
∀x, y (S(x, y) → T (x, y))

The constraint in the first part of Theorem 1 can be
thought of as a “copy” constraint that copies the re-
lation S into the relation T . The constraint in the
second part of Theorem 1 can be thought of as a
“copy constraint with a trigger”: S is copied into T ,
provided the relation R contains a self-loop. What
is the reason that these two GAV constraints have
such different properties? More generally, which
GAV schema mappings are uniquely characteriz-
able via universal examples w.r.t. to the class of all
GAV constraints? Is the associated decision prob-
lem (whether or not a given GAV schema mapping
is uniquely characterizable) decidable?

Before embarking on the study of these ques-
tions, we point out that unique characterizability of
GAV schema mappings via universal examples w.r.t. the class of all GAV constraints is
equivalent to unique characterizability via positive and negative examples.

Proposition 1. For GAV schema mappings M, the following are equivalent w.r.t. the
class of all GAV constraints:
1. M is uniquely characterizable by positive and negative examples,
2. M is uniquely characterizable by universal examples,
3. M is uniquely characterizable by positive, negative, and universal examples

Proposition 1 shows that, in the GAV setting, unique characterizability is a particularly
robust notion, in the sense that it does not depend on whether we consider universal ex-
amples, or positive and negative examples. As we will focus on GAV schema mappings,
we will therefore simply speak of unique characterizability, meaning unique charac-
terizability by a finite set of universal examples w.r.t. the class of GAV constraints.

3 Homomorphism dualities and unique characterizations
In this section, we establish a connection between unique characterizations of GAV
schema mappings on the one hand, and homomorphism dualities for relational struc-
tures on the other. Specifically, we show that the problem of testing whether a GAV
schema mapping is uniquely characterizable can be reduced to a certain problem con-
cerning the existence of a homomorphism duality; furthermore, the problem of testing
whether a GAV schema mapping is uniquely characterized by a given set of universal
examples can be reduced to the question of whether a given pair of sets of structures is a
homomorphism duality. Since these two problems concerning homomorphism dualities



are decidable (cf. Section 4), we will be able to derive decidability results for the two
problems concerning unique characterizations (cf. Section 5).

Homomorphism Dualities As described in Section 1, a homomorphism duality is
an equivalence between the existence of a homomorphism to a structure and the non-
existence of a homomorphism from the same structure. We will work with a finite sig-
nature consisting of relation symbols and constant symbols; recall that all structures
considered here are assumed to be finite. Given a structure A, we denote by A→ the set
of all structures (over the same signature) thatA has a homomorphism into; in symbols,
A→ = {B : A → B}. Similarly, 6→A is the set of all structures that do not have a
homomorphism into A, i.e., 6→A = {B : B 6→ A}.

Definition 1. Let F and D be two sets of structures. We say that the pair (F ;D) is a
homomorphism duality if

⋃
F∈F (F→) =

⋂
D∈D(6→D). If (F ;D) is a homomorphism

duality, then we say that F is an obstruction set for D.

If (F ;D) is a homomorphism duality, it means that the class of all structures is par-
titioned into two disjoint subclasses, namely, the subclass

⋃
F∈F (F→) of those struc-

tures that some structure inF has a homomorphism into, and the subclass
⋃
D∈D(→D)

of those structures that have a homomorphism into some structure in D. This is illus-
trated in Figure 3 (where, intuitively, the direction of homomorphisms is upward).

Fig. 3. A homomorphism duality

A homomorphism duality in which both sets of
structures are singletons is called a simple homomor-
phism duality pair, and is typically written without
curly braces. Homomorphism dualities, and in partic-
ular simple homomorphism duality pairs, have been
studied extensively in graph theory (where they are
used to gain understanding of the structure of the lat-
tice of graphs and homomorphisms, cf. [7]) and in the
context of constraint satisfaction problems (where they
have been used in order to identify classes of tractable
constraint satisfaction problems, cf. e.g., [10]).

Homomorphism Dualities and Unique Characterizations We will now establish the
fundamental connection between unique characterizations of GAV schema mappings
and homomorphism dualities. In order to state the result, we associate a canonical struc-
ture with every GAV constraint. Specifically, consider a GAV constraint

σ = ∀x1, . . . , xm(φ(x1, . . . , xm)→ T (y1, . . . , yk))

over a source schema S = {S1, . . . , Sn} and a target schema T = {T, . . .}, with
y1, . . . , yk ∈ {x1, . . . , xm}. The canonical structure associated with σ is the following
structure Aσ over the signature {S1, . . . , Sn, c1, . . . , ck}:

Aσ = ({x1, . . . , xm}, SAσ1 , . . . , SAσn , cAσ1 , . . . , cAσk )

where each relation SAσi consists of the tuples in the atoms of φ that involve Si, and each
cAσj = yj . In database-theory terms,Aσ is the canonical instance of the left-hand side of
σ (viewed as a conjunctive query), expanded with constant symbols marking the exact



sequence of exported variables y1, . . . , yk. For a GAV schema mappingM = (S,T, Σ)
and a target relation T ∈ T, we denote by FM,T the set of all canonical structures of
GAV constraints σ ∈ Σ that use the target relation T in their right-hand-side.

Theorem 2. A GAV schema mapping M = (S,T, Σ) is uniquely characterizable if
and only if for each T ∈ T, FM,T is an obstruction set for a finite set of structures.

Before we present the proof of Theorem 2, let us illustrate the result by revisiting our
running example in Figure 1. The canonical structures Aσ1

and Aσ2
of the GAV con-

straints σ1, σ2 can be depicted as 	 · c1 and 	 · −→ ·c1 −→ · , respectively, where
an arrow indicates that two elements stand in the Manages relation. Since σ1 and σ2
use different target relations, Theorem 2 tells us that, in order to determine whether this
GAV schema mapping is uniquely characterizable, it is enough to test whether each of
these structures, taken as a singleton set, is an obstruction set for a finite set of struc-
tures. As it turns out, {Aσ1} is indeed an obstruction set for a finite set of structures
(in fact, the reader may easily verify that (Aσ1

;B) is a simple homomorphism duality
pair, withB the structure depicted by ·c1 ←→ · 	 ). On the other hand, {Aσ2

} is not an
obstruction set for any finite set of structures, as will follow from results presented in
Section 4. It follows that our example schema mapping is not uniquely characterizable.

We will now proceed with the proof of Theorem 2. We will use the follow-
ing convenient notation, familiar from logic. If A is a structure over the signature
{S1, . . . , Sn}, and a1, . . . , ak is a sequence of (not necessarily distinct) elements of
the domain of A, then we denote by 〈A, a1, . . . , ak〉 the structure over the signature
{S1, . . . , Sn, c1, . . . ck} that has the same domain as A and agrees with A on the de-
notation of the relations S1, . . . , Sn, and in which each constant symbol ci denotes the
element ai. In other words, 〈A, a1, . . . , ak〉 is identical to A except that the elements
a1, . . . , ak are named using fresh constant symbols.

Proof (of Theorem 2). First, we show that, when it comes to the question of unique
characterizability, we can restrict attention to schema mappings for a single target rela-
tion. This is stated by the next lemma. For any relation T ∈ T, we denote byM|T the
schema mapping (S, {T}, Σ′) where Σ′ ⊆ Σ consists of all GAV constraints whose
right-hand side contains the target relation T .

Lemma 1. M is uniquely characterizable if and only if for each T ∈ T, the schema
mappingM|T is uniquely characterizable.

We will also make use of the following fact concerning canonical universal solutions of
GAV schema mappings (cf. [9]):

Lemma 2. For all source structures I1, I2, every homomorphisms h : I1 → I2 is also
a homomorphism h : CanSolM(I1)→ CanSolM(I2).

We now proceed with the main proof. By Lemma 1, we may assume T = {T}, and
show thatM is uniquely characterizable if and only if FM,T is an obstruction set for a
finite set of structures.

(⇒) Let U be a set of universal examples uniquely characterizing M. Let D be
the set {〈I,a〉 | (I, J) ∈ U ,a ∈ dom(I)k \ T J}. We claim that (FM,T ;D) is a
homomorphism duality. To see this, it is enough to observe that, for all source structures
I and for all tuples a, we have that:



• 〈F,b〉 → 〈I,a〉 for some 〈F,b〉 ∈ FM,T if and only if T (a) ∈ CanSolM(I),
• 〈I,a〉 → 〈D,b〉 for some 〈D,b〉 ∈ D if and only if T (a) 6∈ CanSolM(I).
The first item follows immediately from the construction of F . The left-to-right direc-
tion of the second item follows from Lemma 2. The right-to-left direction of the second
item can be shown by contradiction: suppose CanSolM(I) does not contain T (a) and
〈I,a〉 does not homomorphically map into any 〈D,b〉 ∈ D. LetM′ extendM with an
extra GAV constraint, namely the canonical GAV constraint of 〈I,a〉. Clearly,M′ is not
logically equivalent toM, but it is not hard to see thatM′ fits the universal examples
U , contradicting the fact that the universal examples U uniquely characterizeM.

(⇐) Let D be a finite set of structures such that (FM,T ;D) is a homomorphism
duality. Let U = {(I,CanSolM(I)) | 〈I,a〉 ∈ FM,T ∪ D}. We claim that U uniquely
characterizesM. For, consider any schema mappingM′ fitting the universal examples
in U , any source structure I and any k-tuple a of elements from the domain of I , where
k is the arity of T . There are two cases:

The first case is where 〈F,b〉 → 〈I,a〉 for some 〈F,b〉 ∈ FM,T . By construction
of FM,T , we have that CanSolM(F ), hence also CanSolM′(F ), contains T (b). It
follows by Lemma 2 that CanSolM(I) and CanSolM′(I) contain T (a).

The second case is where 〈I,a〉 → 〈D,b〉 for some 〈D,b〉 ∈ D. It follows from
the duality and from the construction of FM,T that CanSolM(D), and therefore also
CanSolM′(D), does not contain T (b). It follows by Lemma 2 that CanSolM(I) and
CanSolM′(I) both do not contain T (a).

This shows that CanSolM(I) = CanSolM′(I). In other words, M and M′ are
logically equivalent, and henceM is uniquely characterized by U . ut

The above result links the notion of unique characterizability to that of being an ob-
struction set of a finite set of structures. In a similar fashion, we can link unique charac-
terizations themselves to homomorphism dualities. This is expressed by the following
Theorem. The proof is a variation of that of Theorem 2.

Theorem 3. LetM = (S,T, Σ) be a GAV schema mapping and U a set of universal
examples forM. For each T ∈ T, let FT = {〈I,a〉 | (I, J) ∈ U , a ∈ T J} and let
DT = {(〈I,a〉 | (I, J) ∈ U , a ∈ dom(I)k \ T J}, where k is the arity of T . Then the
following statements are equivalent:
1. U uniquely characterizesM.
2. For each T ∈ T, (FT ;DT ) is a homomorphism duality.

Theorem 2 and 3 reduce questions about unique characterizations to questions about ho-
momorphism dualities. In the remainder of this section, we show that the same applies
the other way around (so that we will be able to transfer not only complexity theoretic
upper bounds for these questions, but also lower bounds). To state these results, we need
a way to associate to each structure a GAV constraint. Given a structure

A = ({a1, . . . , am}, SA1 , . . . , SAn , cA1 , . . . , cAk )

with cA1 = ai1 , . . . , c
A
k = aik , we associate with it the canonical GAV constraint

σA = ∀x1, . . . , xm(
∧

1≤i≤n
(aj1 ,...,aj` )∈S

A
i

Si(xj1 , . . . , xj`) → T (xi1 , . . . , xik))



over the source schema S = {S1, . . . , Sn} and a target schema T = {T}, where T is
a k-ary target relation. In other words, the antecedent of σA is the atomic diagram of
(the purely relational part of) A, while the conclusion of σA lists the elements denoted
by the constant symbols in order. The reader may verify that, by this definition, the
canonical GAV constraint of the canonical structure of a GAV constraint σ is just σ
itself (up to renaming of variables and reordering of conjuncts). The canonical GAV
schema mappingMF of a finite set of structures F is the schema mapping defined by
the canonical GAV constraints of the structures in F .

Theorem 4. Let F be a finite set of structures for a signature {S1, . . . , Sn, c1, . . . , ck}.
Then F is an obstruction set for a finite set of structures if and only ifMF is uniquely
characterizable.

Theorem 5. Let F ,D be finite sets of structures for a signature
{S1, . . . , Sn, c1, . . . , ck}. Let UF,D be the set of all pairs (I,CanSolMF (I))
where I = (D,SA1 , . . . , S

A
n ) for some A = (D,SA1 , . . . , S

A
n , c

A
1 , . . . , c

A
k ) ∈ F ∪ D.

The following are equivalent:
1. (F ;D) is a homomorphism duality
2. MF is uniquely characterized by UF,D, and, moreover, for each structure
A = (D,SA1 , . . . , S

A
n , c

A
1 , . . . , c

A
k ) ∈ D, CanSolMF (A) does not contain

T (cA1 , . . . , c
A
k ).

4 Results on Homomorphism Dualities
In this section, we will present a characterization of the finite sets of structures F that
are an obstruction set for a finite set of structuresD. For the case of relational signatures
without constant symbols, an elegant characterization of such sets F was established
in [8]. Our main contribution in this section is to show that the characterization can be
extended in a natural way to structures with constant symbols.

We now introduce some terminology and state two basic facts concerning homo-
morphism dualities. Recall that, for structures A,B, we write A → B if there is a
homomorphism from A to B. We say that A and B are homomorphically equivalent if
A → B and B → A, and we say that A and B are homomorphically incomparable
if there are neither A → B, nor B → A. Every finite structure A is known to have
a unique (up to isomorphism) smallest homomorphically equivalent substructure that
is homomorphically equivalent to A, which is known as the core of A [11]. A struc-
ture is said to be a core if it is its own core. For a set X of structures, we denote by
coreX the set of cores of structures in X , we denote by maxX any subset Y ⊆ X
consisting of homomorphically incomparable structures such that for all A ∈ X , there
is a B ∈ Y with A → B; in a dual manner, we denote by minX any subset Y ⊆ X
consisting of homomorphically incomparable structures such that for all A ∈ X , there
is a B ∈ Y with B → A. If one reflects on the definition of homomorphism dualities,
and keeps in mind Figure 3, the following fact becomes evident (note that, if A → B,
then (B →) ⊆ (A→) and (→ A) ⊆ (→ B)):

Fact 6 LetF andD be finite sets of structures. Then (F ;D) is a homomorphism duality
if and only if (min coreF ; max coreD) is a homomorphism duality.



By construction, min coreF and max coreD have the property that they consist of pair-
wise homomorphically incomparable core structures. Hence, we may restrict attention
to sets F and D consisting of pairwise homomorphically incomparable core structures.

The second fact states that for any given finite set of structures F , there is at most
one finite set of structuresD for whichF is an obstruction set, assuming thatD consists
of pairwise incomparable core structures. The proof, which we omit, is elementary, us-
ing the definition of homomorphism duality and the fact that homomorphisms compose.

Fact 7 Let F ,D,D′ be finite sets of homomorphically incomparable core structures
such that (F ;D) and (F ;D′) are homomorphism dualities. Then D and D′ contain the
same structures up to isomorphism.

Known Results for Structures without Constant Symbols Consider signatures con-
sisting only of relation symbols. The main result from [8] states that a finite set of
homomorphically incomparable core structures F for such a signature is an obstruction
set for a finite set of structures D if and only if each structure from F obeys a certain
acyclicity condition, which we will now define.

A fact of a structure A is an expression R(a1, . . . , am) such that R is one of the
relations of A and (a1, . . . , am) ∈ R. The incidence graph inc(A) of a structure A is
the undirected (bi-partite) graph whose vertices are the elements and the facts of A, and
with an edge between an element and a fact if the element occurs in the fact. We call
a structure A acyclic if inc(A) is acyclic and no fact of A contains the same element
twice. Note that the second condition has to be included explicitly in the definition,
since it is not implied by the first (however, in [8], an equivalent definition is given in
terms of an incidence multi-graph that may contain several edges between the same fact
and element, so that the second condition is not needed).

Theorem 8 ([8]). Consider a signature consisting of relation symbols only, and let F
be a finite set of homomorphically incomparable core structures. Then F is an ob-
struction set for a finite set of structures if and only if every structure in F is acyclic.
Moreover, there is an algorithm that, given such a setF consisting of acyclic structures,
computes a finite set D such that (F ;D) is a homomorphism duality.

Incidentally, the algorithm for computing D from F given in [8] runs in double expo-
nential time, and no matching lower bound is known (cf. also [12] for improved bounds
in the special case of simple homomorphism duality pairs). Foniok et al. [8] also con-
sider the problem of testing whether a given finite set of structures F has a finite ob-
struction set. They show (for structures without constant symbols) that this problem is
NP-complete and that one can effectively compute an obstruction set if it exists.

A Generalization for the Case with Constant Symbols In the presence of constant
symbols, acyclicity is no longer a necessary condition for being an obstruction set for
a finite set of structures. For instance, consider the structure A depicted by · ←→ · ,
and let A′ be the expansion of A with a constant symbol c1 denoting the left-most ele-
ment, as in c1 · ←→ · . Since the incidence graph of A contains a cycle, by Theorem 8
there is no finite set of structures D such that ({A};D) is a homomorphism duality.
The situation for A′ is very different. Indeed, if we let B′ be the structure depicted by

	 · −→ · c1 −→←−−−−−−→ · 	 , then (A′;B′) is a simple homomorphism duality pair.



Nevertheless, Theorem 8 can be extended in a natural way to structures with con-
stant symbols. To this end, we call a structure A over a signature consisting of relation
symbols and constant symbols c-acyclic if the following both hold:
1. Every cycle in inc(A) passes through an element named by a constant symbol,
2. If a fact of A contains the same element a twice, a is named by a constant symbol.

Note that for structures without constant symbols, c-acyclicity is equivalent to acyclic-
ity. Also note that the structure A′ we discussed above is c-acyclic.

The proof of the following Theorem is based on a reduction to Theorem 8.

Theorem 9. Consider a signature consisting of relation symbols and constant symbols,
and let F be a finite set of homomorphically incomparable core structures. Then F is
an obstruction set for a finite set of structures if and only if every structure in F is c-
acyclic. Moreover, there is an algorithm that, given such a set F consisting of c-acyclic
structures, computes a finite set D such that (F ;D) is a homomorphism duality.

From Theorem 9, we can derive the following computability and complexity results
(using the fact that undirected reachability is in LOGSPACE [13]).

Corollary 1. The following problem is NP-complete: given a finite set of structures F ,
determine if F is an obstruction set for a finite set of structures. The same problem is in
LOGSPACE if the input is a set of homomorphically incomparable core structures.

Corollary 2. The following problem is decidable: given finite sets of structures F and
D, determine if (F ;D) is a homomorphism duality.

5 An Effective Characterization of Unique Characterizability
We now put the results from the previous sections to use. Our main result is an effective
characterization of the uniquely characterizable GAV schema mappings.

We say that a GAV schema mapping M is normalized if (i) the canonical struc-
ture of the left-hand-side of each GAV constraint is a core, and (ii) for any two GAV
constraints for the same target relation, the canonical structures are homomorphically
incomparable. Note that every GAV schema mapping is equivalent to a normalized GAV
schema mapping, of the same size or smaller, which can be computed in exponential
time (in fact, in polynomial time using an NP oracle). For example, consider the schema
mappingM defined by the following GAV constraints:

(σ1) ∀x, y, z (S(x, y, z)→ T (x))
(σ2) ∀x, y (S(x, y, y)→ T (x))
(σ3) ∀x, y (S(x, x, x) ∧ S(x, y, x)→ V (x))

This schema mapping is not normalized. It violates the first requirement because the
canonical structure of σ3 is not a core, and it violates the second requirement because
there is a homomorphism from the canonical structure of σ1 to the canonical structure
of σ2. A logically equivalent normalized schema mappingM′ can be obtained fromM
by removing the conjunct S(x, y, x) from σ3 and by removing the entire constraint σ2.

We call a GAV schema mapping c-acyclic if the canonical structure of each of its
GAV constraints is c-acyclic.



Given a GAV constraint σ, a join cycle of σ is a sequence
x1, F1, x2, F2 . . . , xnFnxn+1 (n > 1) where x1, x2, . . . are variables, xn+1 = x1, each
Fi is an atom from the left-hand-side of σ containing both xi and xi+1, and Fi 6= Fi+1

for all i < n (this is to exclude trivial cycles traversing the same edge twice in opposite
directions). An exported variable of σ is a variable occurring in the right-hand side of
σ. Using these two notions, it is easy to see that c-acyclicity is equivalent to saying that
the following two conditions hold:
• atoms may not contain two occurrences of the same non-exported variable
• each join cycle passes through an exported variable.
The schema mappingM described above is not c-acyclic, as the non-exported variable
y of σ2 occurs twice in the same conjunct. However, the normalized schema mapping
M′, where σ2 is removed and the conjunct S(x, y, x) removed from σ3, is c-acyclic.
The example schema mapping in Figure 1 is normalized and not c-acyclic.

From Theorem 9, we obtain the following characterization of the uniquely charac-
terizable GAV schema mappings:

Theorem 10. Every c-acyclic GAV schema mapping is uniquely characterizable, and
a uniquely characterizing set of universal examples can be effectively computed from a
given c-acyclic GAV schema mapping. Conversely, every uniquely characterizable GAV
schema mapping M is logically equivalent to a c-acyclic GAV schema mapping; in
fact,M is c-acyclic after normalization.

It follows that, for instance, the schema mapping defined by the GAV constraint
∀x1, . . . , xn(S(x1, x2)∧ · · · ∧S(xn−1, xn)→ T (x1, xn)) is uniquely characterizable,
as are schema mappings defined by GAV constraints whose variables are all exported.

In the remainder of this section, we analyze the complexity of various decision prob-
lems concerning unique characterizability and unique characterizations. In our com-
plexity analysis, we assume that the source schema and target schema are fixed (and
finite). This makes all reductions described in Section 3 polynomial time computable.

Corollary 3. The following problem is NP-complete: given a GAV schema mapping,
is it uniquely characterizable? If the schema mapping is normalized, the problem is in
LOGSPACE.

Corollary 4. The following problem is decidable: given a GAV schema mapping M
and a finite set of universal examples U , does U uniquely characterizeM?

Below, we will consider two additional decision problems.

Theorem 11. The following problem is DP-complete: given a finite set of universal
examples U , is there a GAV schema mapping fitting U? If the input consists of ground
universal examples, the problem is coNP-complete. In both cases, the hardness holds
already for a single universal example.

Here, by a ground data example we mean a data example (I, J) such that the domain
of J is a subset of the domain of I . The proof of Theorem 11, in effect, establishes
something stronger: from any given finite set of universal examples U , it is possible



to compute in polynomial time a candidate GAV schema mapping MU , such that if
any GAV schema mapping fits the universal examples U , then MU fits (in fact, MU
is guaranteed to be the logically weakest fitting schema mapping, meaning that for any
other schema mapping M′ fitting the universal examples U , the GAV constraints of
MU logically imply those ofM′).

Theorem 12. The following problem is decidable: given a finite set of universal exam-
ples U , is there a unique schema mappingM that fits them?

6 Concluding Remarks
We have established a tight connection between unique characterizability of GAV
schema mappings via data examples, and homomorphism dualities, and we used this
connection to obtain criteria and complexity results of unique characterizability for
GAV schema mappings, and other related results.

The homomorphism dualities we considered in this paper consist of finite sets of
structures. In the literature on constraint satisfaction problems, more general types of
homomorphism dualities have been studied, for instance where one of the sets consists
of infinitely many structures of bounded treewidth [10]. This raises the question whether
known results about such dualities can be used to obtain further insights into the unique
characterizability of schema mappings.
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