
juNe 2011 | voL. 54 | No. 6 | CoMMuniCATions of The ACM 103

the iNteractioN BetWeeN computation
and logic goes back to the early begin-
nings of computer science with the
development of computability theory
in the 1930s by A. Turing, K. Gödel, A.
Church, S. Kleene, and the other great
logicians of that era. In more recent de-
cades, the interaction between compu-
tation and logic has spanned the entire
spectrum of computer science, from
programming languages to artificial
intelligence and from computational
complexity to database systems. Con-
sider, for example, the P vs. NP problem,
which is justly regarded to be the cen-
tral open problem in theoretical com-
puter science.1 Formally, the P vs. NP
problem asks whether or not the class
NP of all algorithmic problems solvable
by a non-deterministic Turing machine
in polynomial time coincides with the
class P of all algorithmic problems solv-
able by a deterministic Turing machine
in polynomial time. Informally, the P
vs. NP problem asks whether every algo-
rithmic problem whose solutions can
be efficiently verified has the property
that its solutions can also be efficiently
computed. Logic has played a key role
in the investigation of this problem. In-
deed, in 1971, S. Cook established the
existence of “hardest” problems in NP
by showing that Boolean Satisfiability, a
fundamental problem in propositional
logic, is NP-complete. This implies that
P = NP if and only if there is an efficient
algorithm for telling whether or not a
given Boolean formula has a satisfying
truth assignment.

Soon after Cook’s seminal discovery,
R. Fagin found an even tighter connec-
tion between logic and NP by showing
that NP coincides with the class of all al-
gorithmic problems that can be speci-
fied using a logical formalism known as
existential second-order logic or, in short,
ESO. To illustrate this result, consider

3-Colorability, another prominent NP-
complete problem, which asks whether
or not a given graph G (that is, a set of
nodes V and a set of edges E) can be col-
ored by assigning one of three colors,
say blue, red, and yellow, to each of its
nodes, so that no two nodes joined by
an edge have the same color. This prob-
lem can be specified by the ESO-formu-
la shown at the bottom of the page.

Intuitively, this formula asserts that
the set V of nodes can be partitioned into
three subsets (color classes) B, R, and Y
such that if two nodes x and y are joined
by an edge E(x, y), then x and y cannot
be in the same color class. Fagin’s result
reinforces the unity between compu-
tation and logic by providing a logic-
based, machine-free characterization of
NP that makes no mention of computa-
tional resources (time) or bounds (poly-
nomial) on such resources.

Is there a logic for P? In other words,
is there a logical formalism L on the
class of all graphs such P coincides with
the class of all algorithmic problems
on graphs that can be specified in L?
This problem was raised by Y. Gurevich
in 1984, who actually conjectured that
there is no logic for P. A related (and
essentially equivalent) problem had
been raised in 1982 by A. Chandra and
D. Harel, who asked: is there is an algo-
rithm that enumerates all polynomial-
time computable properties of graphs?
Having a logic L for P will make it pos-
sible to recast the P vs. NP problem as
a problem of pure logic, namely, as the
problem of whether or not ESO and L
have the same expressive power on the
collection of all graphs. Furthermore,
a logic L for P will serve as a high-level
specification language for expressing
precisely those algorithmic problems
about graphs whose solutions can be
efficiently computed.

The quest for a logic for P on the

class of all graphs has been going on for
the past 30 years. While the problem
remains unresolved to date, the quest
has given rise to a fascinating journey
that has brought together several dif-
ferent strands of research. The follow-
ing paper by Martin Grohe contains an
account of one of the most sophisti-
cated and beautiful results obtained to
date in the quest for a logic for P on the
class of all graphs. In a nutshell, Grohe
shows there is indeed a logic for P for
many large classes of graphs of algo-
rithmic interest and mathematical sig-
nificance. More precisely, his result as-
serts that there is a logic for P for every
class of graphs consisting of all graphs
that exclude some fixed graph as a mi-
nor, that is, as a graph obtained by edge
contractions on a subgraph. This result
vastly generalizes earlier work showing
that a logic for P exists for large classes
of graphs, including the class of all pla-
nar graphs.

The logic used in Grohe’s result is
fixed-point logic with counting, a natu-
ral extension of first-order logic with a
recursion and a cardinality-counting
mechanism that has found many ap-
plications in other areas of computer
science and, in particular in databases.
From a technical viewpoint, Grohe’s
proof is a real tour de force that requires
the development of deep graph-theo-
retic machinery that uncovers new in-
sights into the structure of graphs with
excluded minors. Furthermore, the in-
terplay between logic and graph theory
yields another bonus, namely, for every
class of graphs with excluded minors,
the graph isomorphism problem can
be solved in polynomial time via a sim-
ple combinatorial algorithm. Whether
a polynomial-time algorithm exists for
the graph isomorphism problem on the
class of all graphs is yet another major
open problem in computer science.

References
1. Fortnow, l. the status of the P versus nP problem.

Commun. ACM 52, 9 (sept. 2009), 78–86.

Phokion G. Kolaitis (kolaitis@cs.ucsc.edu) is a professor
of computer science at the university of California santa
Cruz and a research staff member at IbM research—
almaden.

© 2011 aCM 0001-0782/11/06 $10.00

Technical Perspective
The Quest for a Logic for
Polynomial-Time Computation
By Phokion G. Kolaitis

research�highlights�

Doi:10.1145/1953122.1953149

∃ B ∃ R ∃ Y ∀x ((B(x) ∨ R (x) ∨ Y (x)) ∧ (∀y) (E(x, y) → ¬ (B (x) ∧ B (y)) ∧ ¬ (R (x) ∧ R (y)) ∧ ¬ (Y (x) ∧ Y (y))))

