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the iNteractioN BetWeeN computation 
and logic goes back to the early begin-
nings of computer science with the 
development of computability theory 
in the 1930s by A. Turing, K. Gödel, A. 
Church, S. Kleene, and the other great 
logicians of that era. In more recent de-
cades, the interaction between compu-
tation and logic has spanned the entire 
spectrum of computer science, from 
programming languages to artificial 
intelligence and from computational 
complexity to database systems. Con-
sider, for example, the P vs. NP problem, 
which is justly regarded to be the cen-
tral open problem in theoretical com-
puter science.1 Formally, the P vs. NP 
problem asks whether or not the class 
NP of all algorithmic problems solvable 
by a non-deterministic Turing machine 
in polynomial time coincides with the 
class P of all algorithmic problems solv-
able by a deterministic Turing machine 
in polynomial time. Informally, the P 
vs. NP problem asks whether every algo-
rithmic problem whose solutions can 
be efficiently verified has the property 
that its solutions can also be efficiently 
computed. Logic has played a key role 
in the investigation of this problem. In-
deed, in 1971, S. Cook established the 
existence of “hardest” problems in NP 
by showing that Boolean Satisfiability, a 
fundamental problem in propositional 
logic, is NP-complete. This implies that 
P = NP if and only if there is an efficient 
algorithm for telling whether or not a 
given Boolean formula has a satisfying 
truth assignment.

Soon after Cook’s seminal discovery, 
R. Fagin found an even tighter connec-
tion between logic and NP by showing 
that NP coincides with the class of all al-
gorithmic problems that can be speci-
fied using a logical formalism known as 
existential second-order logic or, in short, 
ESO. To illustrate this result, consider 

3-Colorability, another prominent NP-
complete problem, which asks whether 
or not a given graph G (that is, a set of 
nodes V and a set of edges E) can be col-
ored by assigning one of three colors, 
say blue, red, and yellow, to each of its 
nodes, so that no two nodes joined by 
an edge have the same color. This prob-
lem can be specified by the ESO-formu-
la shown at the bottom of the page.  

Intuitively, this formula asserts that 
the set V of nodes can be partitioned into 
three subsets (color classes) B, R, and Y 
such that if two nodes x and y are joined 
by an edge E(x, y), then x and y cannot 
be in the same color class. Fagin’s result 
reinforces the unity between compu-
tation and logic by providing a logic-
based, machine-free characterization of 
NP that makes no mention of computa-
tional resources (time) or bounds (poly-
nomial) on such resources.

Is there a logic for P? In other words, 
is there a logical formalism L on the 
class of all graphs such P coincides with 
the class of all algorithmic problems 
on graphs that can be specified in L? 
This problem was raised by Y. Gurevich 
in 1984, who actually conjectured that 
there is no logic for P. A related (and 
essentially equivalent) problem had 
been raised in 1982 by A. Chandra and 
D. Harel, who asked: is there is an algo-
rithm that enumerates all polynomial-
time computable properties of graphs? 
Having a logic L for P will make it pos-
sible to recast the P vs. NP problem as 
a problem of pure logic, namely, as the 
problem of whether or not ESO and L 
have the same expressive power on the 
collection of all graphs. Furthermore, 
a logic L for P will serve as a high-level 
specification language for expressing 
precisely those algorithmic problems 
about graphs whose solutions can be 
efficiently computed.

The quest for a logic for P on the 

class of all graphs has been going on for 
the past 30 years. While the problem 
remains unresolved to date, the quest 
has given rise to a fascinating journey 
that has brought together several dif-
ferent strands of research. The follow-
ing paper by Martin Grohe contains an 
account of one of the most sophisti-
cated and beautiful results obtained to 
date in the quest for a logic for P on the 
class of all graphs. In a nutshell, Grohe 
shows there is indeed a logic for P for 
many large classes of graphs of algo-
rithmic interest and mathematical sig-
nificance. More precisely, his result as-
serts that there is a logic for P for every 
class of graphs consisting of all graphs 
that exclude some fixed graph as a mi-
nor, that is, as a graph obtained by edge 
contractions on a subgraph. This result 
vastly generalizes earlier work showing 
that a logic for P exists for large classes 
of graphs, including the class of all pla-
nar graphs. 

The logic used in Grohe’s result is 
fixed-point logic with counting, a natu-
ral extension of first-order logic with a 
recursion and a cardinality-counting 
mechanism that has found many ap-
plications in other areas of computer 
science and, in particular in databases. 
From a technical viewpoint, Grohe’s 
proof is a real tour de force that requires 
the development of deep graph-theo-
retic machinery that uncovers new in-
sights into the structure of graphs with 
excluded minors. Furthermore, the in-
terplay between logic and graph theory 
yields another bonus, namely, for every 
class of graphs with excluded minors, 
the graph isomorphism problem can 
be solved in polynomial time via a sim-
ple combinatorial algorithm. Whether 
a polynomial-time algorithm exists for 
the graph isomorphism problem on the 
class of all graphs is yet another major 
open problem in computer science. 
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∃ B ∃ R ∃ Y ∀x ((B(x) ∨ R (x) ∨ Y (x)) ∧ (∀y) (E(x, y) → ¬ (B (x) ∧ B (y)) ∧ ¬ (R (x) ∧ R (y)) ∧ ¬ (Y (x) ∧ Y (y))))




