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Structural Characterizations  
of Schema-Mapping  
Languages
By Balder ten Cate and Phokion G. Kolaitis

Abstract
Information integration is a key challenge faced by all major 
organizations, business and governmental ones alike. Two 
research facets of this challenge that have received consid-
erable attention in recent years are data exchange and data 
integration. The study of data exchange and data integra-
tion has been facilitated by the systematic use of schema 
mappings, which are high-level specifications that describe 
the relationship between two database schemas. Schema 
mappings are typically expressed in declarative languages 
based on logical formalisms and are chosen with two cri-
teria in mind: (a) expressive power sufficient to specify 
interesting data interoperability tasks and (b) desirable 
structural properties, such as query rewritability and exis-
tence of universal solutions, that, in turn, imply good algo-
rithmic behavior.

Here, we examine these and other fundamental struc-
tural properties of schema mappings from a new perspec-
tive by asking: How widely applicable are these properties? 
Which schema mappings possess these properties and 
which do not? We settle these questions by establishing 
structural characterizations to the effect that a schema 
mapping possesses certain structural properties if and 
only if it can be specified in a particular schema-mapping 
language. More concretely, we obtain structural charac-
terizations of schema-mapping languages such as global-
as-view (GAV) dependencies and local-as-view (LAV) 
dependencies. These results delineate the tools available 
in the study of schema mappings and pinpoint the prop-
erties of schema mappings that one stands to gain or 
lose by switching from one schema-mapping language to 
another.

1. INTRODUCTION
The aim of information integration is to synthesize infor-
mation distributed over multiple heterogeneous sources 
into a single unified format. Information integration has 
been recognized as a key (and costly) challenge faced by 
large organizations today (see Bernstein and Haas3, 12). It is 
also well understood12 that information integration is not 
a single problem but, rather, a collection of interrelated 
problems that include extracting and cleaning data from 
the sources, deriving a unified format for the integrated 
data, transforming data from the sources into data con-
forming with the unified format, and answering queries 

over the unified format. In this article, we focus on rela-
tional information integration, this is to say, we assume 
that the sources are databases over (different) relational 
schemas, called source or local schemas, and also that the 
unified format is some other relational schema, called the 
target or the global schema. A relational schema or simply 
a schema consists of names of relations and names of the 
columns of each relation. A  database instance or simply 
an instance for a given schema is a collection containing, 
for each relation name in the schema, a finite relation (i.e., 
a table of records). An example of a source schema and a 
target schema is given in Figure 1. The source schema 
consists of three relation names that contain information 
about direct orders from a manufacturer together with 
information about retail sales; the target schema consists 
of a single relation name intended to summarize the sales 
records. Figure 1 also depicts a source instance and three 
target instances that will be used later on to illustrate the 
main concepts.

Two important facets of information integration are data 
exchange and data integration. Both these facets deal with 
the attainment of information integration, but they adopt 
distinctly different approaches. Data exchange is the prob-
lem of transforming data residing in different sources into 
data structured under a target schema; in particular, data 
exchange entails the materialization of data, after the data 
have been extracted from the sources and restructured into 
the unified format. In contrast, data integration can be 
described as symbolic or virtual integration: users are pro-
vided with the capability to pose queries and obtain answers 
via the unified format interface, while the data remain in 
the sources and no materialization of the restructured data 
takes place. Figure 2 depicts the data integration and data-
exchange tasks.

In both data exchange and data integration, the relation-
ship between the local schemas and the global schema must 
be spelled out. One way to accomplish this is via programs or 
SQL scripts written by human experts; this, however, can be 
an expensive and error-prone undertaking due to the com-
plexity of the transformations involved. Instead, the research 
community has introduced schema mappings, a higher level 
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of abstraction that makes it possible to separate the speci-
fication of the relationship between the schemas from the 
actual implementation of the transformations. Schema 
mappings are declarative specifications that describe the 
relationship between two database schemas. In recent years, 
schema mappings have been used extensively in specifying 
data interoperability tasks and are regarded as the essential 
building blocks in data exchange and data integration (see, 
e.g., the surveys14, 15). The use of schema mappings helps the 
user understand and reason about the relationship between 
the source schemas and the target schema; furthermore, 
schema mappings can be automatically compiled into exe-
cutable scripts in various languages.

A concrete example of a schema mapping is given in 
Figure 1. The schema mapping is specified by two sentences 
of first-order logic. The first sentence asserts that whenever 
the source relation DirectCustomer contains a triple (v1, v2, v3) 
of values and the source relation DirectOrder contains a 
quadruple (v1, v4, v5, v6) of values so that the values for cust-id 
in these two tuples coincide, then the target relation Sales 
must contain the quadruple (v1, v2, v4, v5). The second sen-
tence asserts that whenever the source relation Retail con-
tains a quadruple (w1, w2, w3, w4) of values, then there must 
exist some value V so that the target relation Sales contains 
the quadruple (w2, V, w3, w4). Clearly, the pair (I,  J1) consisting 
of the source relation I and the target relation J1 satisfies both 
these formulas; the same holds true for the pair (I, J2). In con-
trast, the pair (I, J3) fails to satisfy the first formula because 
the Sales relation does not contain the required quadruple 
(05-01-2009, UCSC, TFT-933SN-Wide, 100).

This example also unveils some of the main conceptual 
and algorithmic issues arising in data exchange and data 
integration. On the data exchange side, suppose that we 
wish to transform the above source instance I to a target 
instance J according to the schema mapping in Figure  1. 
There are at least two distinct target instances that, 
together the source instance I, satisfy the specification of 
the schema mapping; in fact, it is easy to see that there are 
infinitely many such target instances. So, which one should 
we choose to materialize? What makes one target instance 
a “better” candidate to materialize than another, and how 
can one be computed? As we shall see, universal solutions 
turn out to be the preferred target instances to material-
ize. On the data integration side, suppose that a user poses 
a query over the target schema. Different answers may 
be obtained by evaluating the query on different target 
instances that (together with the given source instance) 
satisfy the schema-mapping specification. So, what is the 
“right” semantics of target queries in data integration? Is 
it possible to rewrite target queries into queries over the 
source schema so that they can be evaluated directly against 
the given source instance? This will lead us to the notions 
of the certain answers and of allowing for query rewriting. 
In the next section, we will introduce some of the most 
commonly used schema-mapping languages, including 
global-as-view (GAV) dependencies and local-as-view (LAV) 
dependencies, and we will find out that schema mappings 
specified in these formalisms indeed admit universal solu-
tions and allow for rewriting of the most frequently asked 

Source database instance I:

DirectCustomer
cust-id name address
c1 UCSC 1156 High St, Santa Cruz, CA 95060

DirectOrder
cust-id date prod quant
c1 05-01-2009 Quadcore-9950-PC 100
c1 05-01-2009 TFT-933SN-Wide 100

Retail
store-id date prod quant
s1 05-03-2009 Quadcore-9950-PC 1

A target database instance J1

Sales
date cust prod quant
05-01-2009 UCSC Quadcore-9950-PC 100
05-01-2009 UCSC TFT-933SN-Wide 100
05-03-2009 N1 Quadcore-9950-PC 1

A second target database instance J2

Sales
date cust prod quant
05-01-2009 UCSC Quadcore-9950-PC 100
05-01-2009 UCSC TFT-933SN-Wide 100
05-03-2009 UCLA Quadcore-9950-PC 1

A third target database instance J3

Sales
date cust prod quant
05-01-2009 UCSC Quadcore-9950-PC 100
05-03-2009 N1 Quadcore-9950-PC 1

Schema mapping

∀x,y,z,u,v,w (DirectCustomer(x,y,z) ∧ DirectOrder(x,u,v,w)
→ Sales(u, y, v, w))

∀x,y,z,v,w (Retail(x, y, v, w) → ∃N Sales(y, N, v, w))

Source database schema S: Target database schema T:

Sales(date, cust, prod, quant)DirectCustomer(cust-id, name, address)
DirectOrder(cust-id, date, prod, quant)
Retail(store-id, date, prod, quant)

Figure 1. An example of a schema mapping.

Figure 2. Data exchange and data integration.
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queries in relational databases (see Figure 2).
A system that makes systematic use of schema mappings 

is Clio, a data-exchange system that started as a research 
prototype at the IBM Almaden Research Center and is now 
part of IBM’s suite of information integration tools.13 The 
architecture of Clio is depicted in Figure 3. The system has 
a schema-matching component, a schema-mapping genera-
tion component, and an executable-script generation com-
ponent. The schema-matching component produces a set 
of correspondences between attributes of relations in a 
source schema and a target schema; these correspondences 
are derived automatically or semi-automatically through an 
interaction with the user and via a graphical user interface 
that allows the user to intervene and make changes. The 
schema-mapping generation component takes as input 
these attribute correspondences and returns a schema map-
ping. In general, there are more than one schema mapping 
that are consistent with a set of attribute correspondences. 
Clio produces just one of these possible schema mappings 
but the user can again intervene and edit the schema map-
ping returned by the system. Finally, the executable-script 
generation component automatically transforms this 
schema mapping into a set of scripts in some language, such 
as SQL or XSLT.

2. SCHEMA MAPPINGS AND LANGUAGES
In this section, we define the basic notions about schema 
mappings and present some of the main schema-mapping 
languages studied by the research community.

2.1. Basic notions
A (relational) schema is a tuple R = (R1, . . . , Rn) of relation sym-
bols each of which has a fixed arity (number of attributes). 
An R-instance is a tuple I = (R1

I, . . . , Rn
I) of finite relations, 

whose arities match those of the relation symbols of R.  
A fact of I is an expression Ri a, where i £ n and a is a tuple of 
values belonging to the relation Ri

I. The active domain of I, 
denoted by adom (I), is the set of all values occurring in the 
relation Ri

I, for 1 £ i £ n. We will be usually working with two 
disjoint schemas, called the source schema S = (S1, . . . , Sn)  
and the target schema T = (T1, . . . , Tm). An S-instance is 
called a source instance and a T-instance is called a target 

instance. Whenever we consider a pair of instances (I, J), it 
is understood that I is a source instance and J is a target 
instance.

As stated earlier, a schema mapping is a declarative 
specification that describes the relationship between 
two  schemas. More precisely, a schema mapping is a tri-
ple M   = (S, T, S), where S is a source schema, T is a tar-
get schema disjoint from S, and S is a set of sentences 
(i.e., formulas with no free variables) in some logical 
formalism. This is the syntactic view of schema map-
pings. There is also a complementary semantic view 
of schema mappings that we present next. Let I be a 
source instance and J a target instance. We say that J 
is a solution for I w.r.t. a schema mapping M = (S, T, S)  
if (I,  J ) |= S, which means that (I, J) satisfies every sentence 
in S. Consequently, from a semantic standpoint, a schema 
mapping M can be thought of as a triple M = (S, T, W), 
where W is the set of all pairs (I,  J) such that J is a solution 
for I w.r.t. M. So, as a semantic object, a schema mapping 
M is triple M = (S, T, W), where S is a source schema, T is 
a target schema disjoint from S, and W is a collection of 
pairs (I, J) with I a source instance and J a target instance.

Let L be a logical language, let S be a set of L-sentences, 
and let M = (S, T, W) be a schema mapping given as a seman-
tic object. We say that M is L-definable by S if for every source 
instance I and every target instance J, we have that (I, J) Î 
W if and only if (I, J) |= S. When we work with schema map-
pings in the sequel, it will be clear from the context if the 
schema mapping at hand is viewed as a syntactic object or 
as a semantic one.

Example 2.1. To illustrate these notions, consider the 
schema mapping in Figure 1. In this example, the source 
schema S consists of the relations DirectCustomer, 
DirectOrder, and Retail, while the target schema T con-
sists of the single relation Sales. The relationship between 
source and target is then described by the schema map-
ping M = (S, T, S), where S consists of the two first-order 
sentences listed in Figure 1. As a semantic object, M is 
the triple (S, T, W), where W consists of all pairs (I, J) sat-
isfies the two sentences in S. In particular, the pairs (I, J1) 
and (I, J2) belong to W, but the pair (I, J3) does not. In other 
words,  J1 and J2 are solutions for I w.r.t. to M, but J3 is not.

2.2. Schema-mapping languages
What is a “good” language for specifying schema map-
pings? To address this question, let us reflect on the rela-
tional database model, introduced by E.F. Codd 40 years 
ago.4 One of the reasons for the success of this model is 
that it supports powerful, high-level database query lan-
guages, such as relational algebra and relational calculus, 
that have formed the foundation for SQL. Relational alge-
bra and relational calculus have the same expressive power 
as first-order logic5; in fact, relational calculus is a syntactic 
variant of first-order logic tailored for databases. Thus, at 
first sight, it is natural to ask: can first-order logic also be 
used as a schema-mapping language? It is not hard to show, 
however, that basic algorithmic problems in data integra-
tion and data exchange, such as existence-of-solutions and 

Source data

Source schema S Target schema T

Schema-matching generation

Schema matching (a set of
correspondences between

attributes of relations)

Schema-mapping generation

Schema-mapping

Executable script generation

Executable transformation
script (SQL/XSLT/...)

Figure 3. Architecture of the Clio data-exchange system.



104    communications of the acm    |   january 2010  |   vol.  53  |   no.  1

research highlights 

 

variables among those in x and y.
A full tgd is a tgd with no existential quantifiers in the 
right-hand side, i.e., it is of the form "x(f(x) ® y(x) ).

•	 A source-to-target tuple-generating dependency (s-t tgd) is 
a tgd such that f(x) is a conjunction of atomic formulas 
over a source schema S and y(x, y) is a conjunction of 
atomic formulas over a target schema T.

Informally, s-t tgds assert that if a pattern of facts appears 
in the source, then another pattern of facts must appear in 
the target. They are also known as global-and-local-as-view 
(GLAV) dependencies. In recent years, s-t tgds have been 
studied extensively in the context of data exchange and data 
integration14, 15 because, in spite of their syntactic simplic-
ity, they can express many data interoperability tasks arising 
in applications. Furthermore, s-t tgds have desirable struc-
tural properties that we will discuss in the next section. The 
following two types of dependencies are important special 
cases of s-t tgds.

•	 A GAV dependency is an s-t tgd in which the right-hand 
side of the implication consists of a single atomic 
formula. Thus, a GAV dependency is of the form

"x(f(x) ® U(x¢) )

with f(x) a conjunction of atomic formulas over a 
source schema and U(x¢) an atomic formula over a 
target schema such that the variables in x¢ are among 
those in x.

•	 A LAV dependency is an s-t tgd in which the left-hand 
side of the implication is a single atomic formula. Thus, 
a LAV dependency is of the form

"x(R(x) ® $yy(x, y) )

	 with R(x) an atomic formula over a source schema and  
y (x, y) a conjunction of atomic formulas over a target 
schema.

Consider again the schema mapping in Figure 1. The 
first sentence used to specify that schema mapping is a GAV 
dependency, while the second one is a LAV dependency. Note 
also that the expressions for the Copy and the Projection 
tasks are both GAV and LAV dependencies, the expressions 
for the Augmentation and the Decomposition tasks are LAV 
dependencies, and the expression for the Join task is a GAV 
dependency. The expression for the Decomposition task 
is a full tgd. It is easy to see that every full tgd is logically 
equivalent to finitely many GAV dependencies. For exam-
ple, the full tgd "x, y, z(P(x, y, z) ® U(x, y) Ù V( y, z) ) for the 
Decomposition task is logically equivalent to the set consist-
ing of the GAV dependencies "x, y, z(P(x, y, z) ® U(x, y) ) and 
"x, y, z(P(x, y, z)®V( y, z) ).

Before being used in data exchange and data integra-
tion, tuple-generating dependencies had been investi-
gated in depth in the context of dependency theory during 
the 1970s and the 1980s. Dependency theory is the study 
of integrity constraints in databases; in this context, 

query answering, become undecidable if unrestricted use 
of first-order logic is allowed in specifying the relationship 
between database schemas (intuitively, this is so because 
such tasks involve testing first-order sentences for satisfi-
ability, since they quantify over all solutions of a source 
instance). Consequently, we have to identify proper sublan-
guages of first-order logic that strike a good balance between 
expressive power for data interoperability purposes and 
algorithmic properties. Towards this goal, let us consider 
the following basic tasks that every schema-mapping lan-
guage ought to support.

•	 Copy (Nicknaming): Copy a source relation into a target 
relation and rename it.

•	 Projection (Column Deletion): Form a target rela-
tion  by deleting one or more columns of a source 
relation.

•	 Augmentation (Column Addition): Form a target rela-
tion by adding one or more columns to a source 
relation.

•	 Decomposition: Decompose a source relation into two 
or more target relations.

•	 Join: Form a target relation by joining two or more 
source relations.

•	 Combinations of the above: For example, combine join 
with column augmentation.

These tasks can be easily specified in first-order logic, as 
shown next. For concreteness, we use relations of arities two 
or three.

Copy	 "x, y, z(P (x, y, z) ® T(x, y, z) )
Projection	 "x, y, z(P (x, y, z) ® U(x, y) )
Augmentation	 "x, y(R (x, y) ® $zT(x, y, z) )
Decomposition	 "x, y, z(P (x, y, z) ® U(x, y) Ù V( y, z) )
Joint	 "x, y, z(R (x, z) Ù S(z, y) ® T(x, y, z) )
Combinations	 "x, y, z(R (x, z) Ù S(z, y) ® 
  of the above	        $t (U (x, t) Ù W(x, y, z, t) ) )

Observe that the above formulas have a striking syntac-
tic similarity. As a matter of fact, they all belong to a class of 
first-order formulas called source-to-target tuple generating 
dependencies that we define in what follows.

•	 If R = (R1, . . . , Rn) is a relational schema, then an atomic 
formula over R is an expression of the form Ri (x), where 
i £ n and x is a tuple of variables of length equal to the 
arity of Ri.

•	 A tuple-generating dependency (tgd) is a first-order for-
mula of the form

"x(f(x) ® $yy (x, y) ),

where x and y are tuples of variables, f(x) is a con-
junction of atomic formulas with variables in x, each 
variable in x  occurs in at least one conjunct of f(x), 
and y(x, y) is a conjunction of atomic formulas with 
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Figure 4. A universal solution.

tuple-generating dependencies possess desirable algo-
rithmic properties and contain as special cases many 
well-known classes of integrity constraints in databases, 
such as inclusion dependencies, join dependencies, and 
multi-valued dependencies.10 It is also interesting to note 
that tuple-generating dependencies seemed to have first 
appeared (at least in implicit form) a very long time ago. 
Indeed, in a recent article2 presenting a formal system for 
Euclid’s Elements, the authors argue convincingly that the 
theorems in the Elements can be expressed using tuple-
generating dependencies! Intuitively, this is so because 
the typical theorem of Euclidean Geometry states that if a 
certain pattern between geometric objects (points, lines, 
triangles, or circles) exists, then another pattern between 
geometric objects must also exist.

3. PROPERTIES OF SCHEMA MAPPINGS
In this section, we present several structural properties of 
schema mappings, which have been widely used in the liter-
ature on data exchange and data integration. They will turn 
out to play a key role in our characterizations of schema-
mapping languages. Before presenting these properties, 
however, we need to introduce some important notions in 
data exchange and data integration.

Homomorphisms.  A central notion in the study of schema 
mappings is that of a homomorphism. Let K and K¢ be two in-
stances over the same schema R = (R1, . . . , Rn). A homomor-
phism for K to K¢ is a function from the active domain of K 
to the active domain of K¢ such that if (a1, . . . , am) Î Rk

i , then 
(h(a1, . . . , am)) Î R k¢i, for i = 1, . . . , n.

A homomorphism h is said to be constant on a set X 
if h  restricted to X Ç dom (h) is the identity function, i.e.,  
h(x) = x, if x Î X and h(x) is defined. Here, we will consider 
homomorphisms between target instances and we will 
require that they are constant on the active domain of some 
source instance. The rationale behind this requirement is 
as follows. Typically, when data is exchanged from source 
to target, the elements in the active domain of a given 
source instance are “known” values. The schema map-
ping at hand, however, may under-specify the relationship 
between source and target. In turn, this may force using 
“unknown” values, called labeled nulls, to materialize solu-
tions for a given source instance. Thus, target instances 
may have both “known” values, originating from the source 
instance, and “unknown” values, chosen freshly and acting 
as placeholders. An example of labeled null is the value N1 
in the target instance J1 in Figure 1. Homomorphisms are 
required to leave “known” values untouched, but are free 
to replace an “unknown” value by another, “known” or 
“unknown”, value.

Universal Solutions.  Let M = (S, T, S) be a schema map-
ping. Recall that if I is a source instance, then a solution 
for I w.r.t. M is a target instance J such that (I, J) |= S. In 
general, a source instance I may have multiple solutions 
and, in fact, infinitely many; in particular, this holds true 
for schema mappings M specified by s-t tgds because if J 
is a solution for I w.r.t. M, then every instance J¢ contain-

ing J (as a set of facts) is also a solution for I. Which among 
those solutions should one materialize if I is to be trans-
formed into a target instance? To address this question, 
the following concept of a universal solution was intro-
duced in Fagin et al.7

Let M = (S, T, W) be a schema mapping and let I be a 
source instance. A target instance J is a universal solution 
for I if

1.	 J is a solution for I.
2.	 For each target instance J¢ that is a solution for I, 

there is a homomorphism h:  J ® J¢ that is constant 
on adom (I).

The intuition behind this concept, which is illustrated 
in Figure 4, is that a universal solutions is a “most gen-
eral” solution in the sense that it contains no more and no 
less information than that specified by the given schema 
mapping.

Example 3.1. Consider the source instance I in Figure 1. 
One solution for I with respect to the given schema map-
ping is the target instance J1. Note that N1 is a value that does 
not occur in I, and therefore is interpreted as a labeled null. 
Another solution for I is the target instance J2, which is the 
same as J1 except that labeled null value N1 has been replaced 
by UCLA. However, J2 contains information that is not 
implied by the schema mapping, namely, that the customer 
of the order on May 3, 2009 is UCLA, and, consequently, it is 
not a universal solution. Indeed, there is a homomorphism 
from J1 to J2 constant on the active domain of I (N1 is mapped 
to UCLA), but not vice versa.

Queries and Certain Answers. Informally, a query is a 
question that a user poses against a database. More for-
mally, a query q takes as input an instance K and returns as 
output a relation q(K) of fixed arity with values from the ac-
tive domain of K. Suppose now that we have a schema map-
ping between a source schema and target schema. Suppose 
also that a query q over the target schema is posed and that 
a source instance I is given. What does answering q using 
the source instance I mean? As seen earlier, there may be 
infinitely many solutions J for a given source instance I; fur-
thermore, if q is evaluated on different solutions J for I, it is 
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Example 3.2. Returning to the example schema mapping 
M and source instance I from Figure 1, consider the con-
junctive query q over the target schema given by

q(x, y) = $name,date,n,m(Sales(name,date,x,n) Ù  
Sales(name,date,y,m) )

It asks for all pairs of products (x, y), such that some cus-
tomer bought x and y (in some quantities) on the same 
date. It is not hard to see that, for every solution J of I with 
respect to M, the pair (Quadcore-9950-PC,TFT-933SN-Wide) 
belongs to q( J). In other words, this tuple belongs to the cer-
tain answers of q in I with respect to M. It turns out that the 
certain answers of q on a source instance I are precisely the 
answers to q¢(I), where q¢ is the following union of conjunc-
tive queries over the source schema:

q¢(x,y) = ($cid1,cid2,name,addr1,addr2,date,n,m
(DirectOrder(cid1,date,x,n) Ù DirectOrder(cid2,date,y,m) Ù

DirectCustomer(cid1,name,addr1) Ù
DirectCustomer(cid2,name,addr2) ))

Ú (x = y Ù $sid,date,n Retail(sid,date,x,n) )

Note that the Retail relation does not provide information 
about the name of the buyer, and therefore, can only con-
tribute identity pairs to the certain answers of q.

Alternatively, the certain answers of q on I can be com-
puted by evaluating q on the universal solution J1 of I that 
we discussed in Example 3.1, and keeping only those tuples 
that contain only values from the active domain of I.

Structural Properties of Schema Mappings. Recall that a 
schema mapping M can be viewed as a syntactic object or 
as a semantic one. As a syntactic object, M is given by a 
triple (S, T, S), where S is a set of sentences in some logi-
cal formalism; as a semantic object, M is given by a tri-
ple (S, T, W), where W is a set of pairs (I, J) with I a source 
instance and J a target instance. In what follows, when-
ever we write that (I, J) Î M, we mean that (I, J) |= S or that  
(I, J) Î W depending on whether M is given as a syntactic 
object or a semantic one.

We are now ready to present the structural properties 
of schema mappings that will play a key role in our char-
acterization results. We begin with three such properties 
that have been widely used in both data exchange and data 
integration.

Definition 3.3. Let M be a schema mapping.

•	 Closure under target homomorphisms: We say that 
M is closed under target homomorphisms if for all 
(I, J) Î M and for all homomorphisms h: J ® J¢ that are 
constant on adom(I), we have that (I, J¢) Î M. (see 
Figure 5a).

•	 Admitting universal solutions: We say that M admits 
universal solutions if for each source instance I there is a 
universal solution J for I w.r.t. M.

•	 Allowing for conjunctive query rewriting: We say that 
M allows for conjunctive query rewriting if for each 
union q of conjunctive queries over the target schema, the 

possible that different answers are obtained each time. This 
ambiguity raises the conceptual problem of giving precise 
semantics to query answering in data exchange and data in-
tegration. The approach taken by the research community 
is to adopt the certain answers semantics, a semantics that 
originated in the study of incomplete databases (see van der 
Meyden19).

Let M = (S, T, S) be a schema mapping and q a query over 
the target schema T. If I is source instance, then the certain 
answers of q on I with respect to M, denoted certain

M
(q)(I), is 

the set 

certain
M

 (q)(I) = {q( J): J is a solution for I w.r.t. M}.

The certain answers semantics provides the guarantee 
that if a tuple t belongs to certain

M
(q)(I), then t belongs to 

the result q( J) of q on every solution J for I. It is easy to see 
that every tuple in certain

M
(q)(I) is a tuple of values from I. 

Thus, every schema mapping M induces a (semantic) trans-
formation certain

M
 from queries over the target schema to 

queries over the source schema, so that if q is query over the 
target schema, then this transformation associates to it the 
query certain

M
 (q) over the source schema that has the same 

arity as q and is defined by certain
M

(q)(I) = {q( J): J is a solu-
tion for I w.r.t. M}.

On the face of it, the certain answers semantics is non-
effective, since evaluating certain

M
(q)(I) may entail com-

puting the intersection of infinitely many sets. For many 
frequently asked queries, however, efficient algorithms for 
evaluating their certain answers exist.

A conjunctive query is a first-order formula of the form 
$wc(x, w), where c(x, w) is a conjunction of atoms and/or 
equalities. Conjunctive queries are the most frequently 
asked queries in relational databases. They are also known 
as project select-join (SPJ) queries because they are precisely 
the queries that are expressible in relational algebra using 
the selection, projection, and join operations; in particu-
lar, conjunctive queries are easily expressible in SQL using 
the SELECT FROM WHERE construct. A union of conjunc-
tive queries is a finite disjunction of conjunctive queries; 
equivalently, they are the queries expressible in relational 
algebra using the selection, projection, join, and union 
operations.

In information integration, the main approach to com-
puting the certain answers is to try to rewrite queries over 
the target to queries over the source. In data exchange, one 
would like to take advantage of the materialized solution 
and use it to obtain the certain answers of target queries. 
Both approaches give rise to polynomial-time algorithms 
for computing the certain answers of unions of conjunctive 
queries. In particular, as shown in Fagin et al.,7 the certain 
answers of unions of conjunctive queries can be obtained 
using universal solutions. Specifically, let M = (S, T, S) be a 
schema mapping such that S is a finite set of s-t tgds and 
let q be a union of conjunctive queries over T. If I is a source 
instance and J is a universal solution for I, then certain

M

(q)(I) = q( J)¯, where q( J)¯ is the result obtained by first com-
puting q( J) and then keeping only those tuples that contain 
values from the active domain of I only.
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certain answers query certain
M

(q) is definable by a union 
of conjunctive queries over the source schema. In other 
words, there is a union q¢ of conjunctive queries over the 
source schema such that certain

M
(q)(I) = q¢(I), for every 

source instance I.

The first two conditions of closure under target homo-
morphisms and admitting universal solutions go very well 
together. As was observed in Fagin et al.,7 if a schema map-
ping is closed under target homomorphisms and admits 
universal solutions, then, for every source instance I, the 
(typically infinite) space of all solutions of I w.r.t. M can 
be completely described by just a single target instance J, 
namely, by any universal solution J for I. This is so because 
if J is universal for I and M is closed under target homo-
morphisms, then for every target instance J¢, we have that 
J¢ is a solution for I if and only if there is a homomorphism  
h: J ® J¢ that is constant on adom(I). We mention in passing 
that these two conditions together also imply the existence 
of core universal solutions, which are the smallest univer-
sal solutions (see Fagin et al.8). Thus, these two conditions 
lie at the foundation of data exchange. The third condition 
of allowing for conjunctive query rewriting is important in 
the context of data integration, since it implies that the cer-
tain answers of unions of conjunctive queries over the tar-
get are computable in polynomial time (in the sense of data 
complexity).

It is well known that all three conditions of closure 
under target homomorphisms, admitting universal 
solutions, and allowing for conjunctive query rewriting 
are possessed by every schema mapping M definable by 
a finite set of s-t tgds. Closure under homomorphisms 
follows easily from the definitions; admitting univer-
sal solutions was shown in Fagin et al.7 using the chase 
procedure. In the case of GAV dependencies, a union of 
conjunctive queries over the target is easily transformed 
to a union of conjunctive queries over the source by sim-
ply replacing each target relation symbol P by a union of 
conjunctive queries over the source that defines P. In the 
case of arbitrary s-t tgds, allowing for conjunctive query 
rewriting is proved by first “decomposing” the given s-t 
tgds into GAV dependencies and to LAV dependencies, 

and then applying results from Abiteboul and Duschka1 
and Duschka and Genesereth.6 We collect these results 
into one theorem.

Theorem 3.4. Every schema mapping definable by a 
finite set of s-t tgds is closed under target homomorphisms, 
admits universal solutions, and allows for conjunctive query 
rewriting.

Next, we define three additional properties of schema 
mappings.

Definition 3.5. Let M be a schema mapping.

•	 Closure Under Target Intersection: We say that M is 
closed under target intersection if for all source instances 
I and all target instances J1, J2 if (I, J1) Î M and  
(I, J2) Î M, then also (I, J1 Ç J2) Î M. (See Figure 5b.)

•	 Closure Under Union: We say that M is closed under 
union if (0/, 0/) Î M, and for all (I1, J1) Î M, and (I2, J2)  
Î M, we have that also (I1È I2, J1È J2) Î M. (See  
Figure 5c.)

•	 n-Modularity: Let n be a positive integer. We say that M is 
n-modular if whenever a pair (I, J) does not belong to M, 
there is a sub-instance I' Í I such that |adom (I¢)| £ n and 
(I¢,  J) does not belong to M.

Intuitively, a schema mapping is closed under union if 
solutions can be constructed in a “modular” fashion, i.e., on 
a tuple-by-tuple basis. Similarly, n-modularity asserts that if 
(I, J) Ï M, then there is a concise explanation for this fact; 
this property can also be viewed as a relaxation of closure 
under union.

We now give several useful propositions about the prop-
erties we just introduced.

Proposition 3.6. Let M be a schema mapping.

•	 If M is definable by a finite set of GAV dependencies, then 
M is closed under target intersection.

•	 If M is definable by a finite set of LAV dependencies, then 
M is closed under union.

•	 If M is definable by a finite set of s-t tgds, then M is  
n-modular for some n ≥ 1.

Proof. The first two parts follow easily from the defi-
nitions. For the third part, assume that M is a schema 
mapping definable by a finite set S of s-t tgds. Let n be the 
maximum number of variables occurring in the left-hand 
side of the s-t tgds in S. We claim that M is n-modular. 
Assume that (I, J) Ï M. Then there is some s-t tgd "x(f(x) ® 
$yy (x, y) ) from S and a tuple a of values from adom(I) such 
that (I, J) |= f(a) Ù Ø$yy(a, y). Now, let I¢ be the sub-instance 
of I containing only the values a. Then, it is still the case that 
(I¢,  J) |= f (a) Ù Ø$yy(a, y), and hence (I¢,  J) Ï M.� ❑

4. LANGUAGE CHARACTERIZATIONS
This section contains the main technical results of the 
paper, which yield structural characterizations of the vari-
ous schema-mapping languages considered in earlier sec-
tions. We begin with schema mappings specified by LAV 

Figure 5. Closure properties of schema mappings.
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Theorem 4.2. For all schema mappings M, the following are 
equivalent:

1.	M is definable by a finite set of GAV dependencies.
2.	M is closed under target homomorphisms, admits uni-

versal solutions, allows for conjunctive query rewriting, 
and is closed under target intersection.

Proof. (Hint) The implication (1) Þ (2) follows from 
Theorem 3.4 and Proposition 3.6. For the implication (2) 
Þ (1), we first show that every schema mapping M sat-
isfying (2) is n-modular for some n > 0. For each target 
relation R, let qR = certain

M
(Ry), where y is a sequence of 

distinct fresh variables of appropriate length. Note that, 
since M allows for conjunctive query rewriting, qR can 
be written as a union of conjunctive queries. Now, let n 
be the maximum of the number of variables occurring in 
each qR. Using the hypothesis that M admits universal 
solutions, is closed under target homomorphisms, and is 
closed under target intersection, it can be shown that M 
is n-modular.

After this, the implication (2) Þ (1) is established along 
the same lines as the proof of Theorem 4.1. Instead of 
considering all source instances consisting of one tuple, 
we consider all source instances I with |adom(I)| £ n. 
There are only finitely many such source instances up to 
isomorphism. Moreover, it can be shown, using closure 
under intersection, that each has a null-free universal solu-
tion, and hence only full s-t tgds are needed to describe 
them.� ❑

We now focus on schema mappings specified by arbitrary 
s-t tgds. As seen in Theorem 3.4, every schema mapping 
defined by a finite set of s-t tgds is closed under target homo-
morphisms, admits universal solutions, and allows for con-
junctive query rewriting. The next result asserts that any 
schema mapping satisfying these conditions is definable by 
an infinite set of s-t tgds.

Proposition 4.3. If a schema mapping M is closed under tar-
get homomorphisms, admits universal solutions, and allows for 
conjunctive query rewriting, then M is definable by an infinite 
set of s-t tgds.

Proof. (Hint) Assume that M satisfies the listed prop-
erties. Consider a source instance I and a target instance 
J such that J is a universal solution for I with respect to 
M. For each element of adom(I), introduce a distinct vari-
able xi, and for each element of adom(  J ) \ adom(I), intro-
duce a distinct variable yj. Define PosDiagI(x) to be the 
conjunction of all atomic formulas in x true in I (under 
the chosen assignment) and define PosDiagI(x, y) like-
wise. Finally, let S be the set of all s-t tgds fI, J of the form  
"x(PosDiagI(x) ® $y PosDiagJ(x,y) ), where I is a source 
instance and J is a universal solution for I w.r.t. M. Using 
an argument analogous to the one used in the proof of 
Theorem 4.1, it can be shown that S defines M.� ❑

Can Proposition 4.3 be strengthened to a characteriza-
tion of schema mappings specified by a finite set of s-t tgds? 
The next result, which was proved in Fagin et al.,9 shows that 
this is not possible.

dependencies.

Theorem 4.1. For all schema mappings M, the following are 
equivalent:

1.	M is definable by a finite set of LAV dependencies.
2.	M is closed under target homomorphisms, admits uni-

versal solutions, allows for conjunctive query rewriting, 
and is closed under union.

Proof. The implication (1) Þ (2) follows from Theorem 
3.4 and Proposition 3.6. We now prove the implication  
(2) Þ (1). The idea behind the proof is that, since M is closed 
under union, universal solutions for source instances I 
can be constructed out of universal solutions for parts of 
I. This implies that, in defining our schema mapping, we 
only need to take into account of finite number of source 
instances up to isomorphism, namely, those that contain 
precisely one tuple. In what follows, we will make this idea 
precise.

Suppose that M satisfies the listed conditions. Let  
R1, . . . , Rn be the relations of the source schema, and let 
D be a set consisting of k distinct values, with k = maxi £ n 
arity(Ri). Let facts be the set of all possible facts, of the 
form Ri (d1, . . . , dℓ ) with i £ n, ℓ = arity(Ri), and d1, . . . , dℓ Î D. 
For each a Î facts, let Ia be a the source instance contain-
ing only the fact a, and let Ja be a universal solution for Ia. 
Let PosDiagIa

 (x) be the positive diagram of Ia, i.e., the con-
junction of all facts true in I (which consists of precisely 
one fact) and let PosDiagJa

 (x, y) be the positive diagram 
of Ja where x are as many variables as there are elements of 
adom(Ia) and y as many variables as there are elements  
of adom(  Ja) \ adom(Ia). Let fa be the following LAV depen-
dency: "x(PosDiagIa

(x) ® $yPosDiagJa
(x, y) ). Finally, let  

S = {fa|a Î facts}. We claim that S defines M.
First, we prove soundness: every (I, J) Î M satisfies S. 

Suppose (I, J) Î M, and take any fa Î S. Furthermore, sup-
pose that the antecedent of fa is satisfied in (I, J) under 
some variable assignment h. In other words, h is a homo-
morphism from Ia to I. Let q be the certain answer query 
of the conjunctive query $yPosDiagJa

(x, y). Since M allows 
for conjunctive query rewriting, q is definable by a union 
of conjunctive queries. Moreover, since $yPosDiagJa

(x, y) 
is satisfied in Ja, which is a universal solution of Ia, it is 
satisfied in all solutions of Ia. In other words, q is satisfied 
in Ia, and hence, in I under the assignment h. Hence, (I, J) 
satisfies fa.

Next, we prove completeness: every pair (I, J) satisfy-
ing S belongs to M. Suppose (I, J) satisfies S. Write I as  
I = I1 È . . .  È In where each Ii contains only a single fact. 
Then each (Ii, J) still satisfies S. Since Ii contains a single 
fact, it must be isomorphic to Ia for some a Î facts. Using 
the fact that (Ii,  J) satisfies fa, we can show that there is a 
homomorphism from a universal solution of Ii to J, con-
stant on adom(Ii), hence, by closure under target homo-
morphisms, (Ii, J) Î M. It follows by closure under union 
that (I, J) Î M.� ❑

Our next result characterizes schema mappings specified 
by GAV dependencies.
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Proposition 4.4. The schema mapping defined by the first-
order sentence "x$y"z(Rxz ® Syz) is closed under target 
homomorphisms, admits universal solutions, and allows for 
conjunctive query rewriting, but is not definable by any finite 
set of s-t tgds.

Can Proposition 4.3 be turned to a characterization of 
schema mappings specified by an infinite set of s-t tgds? The 
next observation shows that this is not possible.

Proposition 4.5. The schema mapping defined by the 
following infinite set of s-t tgds does not admit universal 
solutions:

{"x(Px ® $y1
 . . . yn(Rxy1 Ù Ry1y2 Ù  . . .  Ù Ryn−1yn) ) | n ³ 0}

Proof. (Hint) It is easy to see that no solution for I = {Pa} 
can be universal. Here, the assumption that all instances 
(hence all solutions) are finite is of the essence.� ❑

Proposition 4.4 implies that additional properties must 
be considered in order to characterize the schema map-
pings that are definable by a finite set of s-t tgds. It turns out 
that the addition of n-modularity, for some n > 0, yields such 
a characterization.

Theorem 4.6. For all schema mappings M, the following are 
equivalent:

1.	M is definable by a finite set of s-t tgds.
2.	M is closed under target homomorphisms, admits uni-

versal solutions, allows for conjunctive query rewriting, 
and is n-modular for some n > 0.

We conclude this section by commenting briefly on 
additional characterizations presented in the previous 
version of this paper.17 Observe that the condition of 
allowing for conjunctive query rewriting differs in nature 
from the other structural conditions: while the latter are 
model-theoretic conditions, the former refers to a certain 
syntactically defined class of queries. Thus, it is natu-
ral to ask: can the condition of allowing for conjunctive 
query rewriting be replaced by a condition of model-the-
oretic character? To this effect, we consider the notion of 
reflecting source homomorphisms, which states, roughly, 
that every homomorphism between source instances I, I¢ 
extends to a homomorphism from any universal solution 
of I to any universal solution of I¢. We show that the struc-
tural characterizations of LAV dependencies in Theorem 
4.1 and of s-t tgds in Theorem 4.6 hold with the condi-
tion of allowing for conjunctive query rewriting replaced 
by that of reflecting source homomorphisms. Further, 
we pursue characterizations where one assumes that the 
schema mapping is first-order definable to start with. We 
establish that, for all schema mappings M definable by 
a first order sentence, M is definable by a finite set of 
GAV dependencies if and only if M is closed under tar-
get homomorphisms, admits universal solutions, reflects 
source homomorphisms, and is closed under target inter-
section. The proof makes essential use of the sophisti-
cated machinery developed by Rossman16 for proving 

the preservation-under-homomorphisms theorem in the 
finite.

5. COMPLEXITY OF DEFINABILITY
Our characterizations provide tools for testing whether 
a schema mapping defined in one language can also be 
defined in another language. For example, our results 
imply that a schema mapping defined by a finite set of s-t 
tgds is definable by a finite set of GAV dependencies if and 
only if it is closed under target intersection: furthermore, it 
is definable by a finite set of LAV dependencies if and only 
if it is closed under union. Here, we pinpoint the compu-
tational complexity of testing definability in the different 
languages.

First, assume that the input to the problem is a finite 
set of s-t tgds. The results are summarized in the following 
table.

Input schema 
mapping

Desired schema 
mapping

Complexity of 
definability

s-t tgds GAV dependencies NP-complete
s-t tgds LAV dependencies NP-complete
GAV dependencies LAV dependencies PTIME
LAV dependencies GAV dependencies NP-complete

The proofs also yield effective methods for construct-
ing an equivalent schema mapping in the smaller language 
whenever it exists. Our proofs are based on reductions from 
definability problems to the entailment problem for s-t tgds; 
given two schema mappings M1, M2, specified by a finite 
set of s-t tgds, is it the case that whenever (I, J) Î M1 also  
(I, J) Î M2? We show that the latter problem in NP-complete; 
moreover, it is in PTIME if M1 is specified by LAV dependen-
cies and M2 by GAV dependencies.

It is also natural to consider the problem of testing 
whether a schema mapping specified by a first-order 
sentence is definable in one of the schema-mapping 
languages studied here. This problem, however, turns 
out to be undecidable no matter what schema-mapping 
language we consider (s-t tgds, GAV dependencies, or 
LAV dependencies). This can be easily proved using the 
undecidability of satisfiability for first-order sentences in 
the finite.18

6. DISCUSSION AND OPEN PROBLEMS
The work presented here has methodological implica-
tions for the study of schema mappings. Concretely, our 
structural characterizations delineate the exact set of tools 
available in the study of schema mappings specified in 
particular languages. For example, consider the language 
of LAV dependencies. A perusal of the literature reveals 
that earlier results about schema mappings specified by 
a finite set of LAV dependencies made systematic use of 
the fact that such schema mappings are closed under tar-
get homomorphisms, admit universal solutions, allow for 
conjunctive query rewriting, and are closed under union. 
The structural characterization given in Theorem 4.1, 
in effect, turns the tables around and asserts that these 
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four properties are the only properties one needs to use 
in reasoning about schema mappings specified by LAV 
dependencies. On the computational side, the complex-
ity-theoretic results in Section 5 quantify in precise terms 
the difficulty of determining whether a schema mapping 
specified in one language can also be specified in a differ-
ent language.

There has also been an extensive study of schema map-
pings specified using languages richer than the language 
of s-t tgds. Consider, for instance, schema mappings 
specified by s-t tgds and target tgds, which were studied 
in Fagin et al.,7 or schema mappings specified by second-
order tgds (SO tgds), which arise when composing schema 
mappings specified by s-t tgds.9 These languages are 
known to be strictly more expressive than the language of 
s-t tgds. Our results then predict that these languages lack 
at least one of the structural properties considered here. 
Indeed, schema mappings specified by s-t tgds and target 
tgds are closed under target homomorphisms and admit 
universal solutions, but need not allow for conjunctive 
query rewriting. Likewise, schema mappings specified by 
SO tgds admit universal solutions and allow for conjunc-
tive query rewriting, but need not be closed under target 
homomorphisms. It remains an open problem to estab-
lish structural characterizations for such richer languages 
of dependencies. A particularly interesting question is 
whether there is a natural way to characterize weakly acy-
clic sets of target tgds,7 a class of target dependencies that 
is of central importance in data exchange, as they guaran-
tee termination of the chase procedure within a polyno-
mial number of steps.

Among the properties of schema mappings considered 
here, closure under target homomorphisms, admitting 
universal solutions, and allowing for conjunctive query 
rewriting are arguably the most fundamental ones for data 
exchange and data integration. Proposition 4.4 tells that 
there are schema mappings satisfying these properties that 
cannot be defined by any finite set of s-t tgds. Is there a natu-
ral extension of the language of s-t tgds that is characterized 
by these three properties? In order to express transforma-
tions involving grouping and data merging, a proper exten-
sion of the language of s-t tgds, called nested s-t tgds, was 
proposed in Fuxman et al.11 In the previous version of this 
paper,17 we showed that schema mappings specified by a 
finite set of nested s-t tgds are closed under target homo-
morphisms, admit universal solutions, allow for conjunctive 
query rewriting (but may not be n-modular for any n > 0). It 
is an open problem to determine whether all schema map-
pings satisfying these properties can be defined by nested 
s-t tgds.
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