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Abstract

1 Introduction

In previous CASP experiments, our team has concentrated
on fold-recognition using hidden Markov models (HMMS)
with fairly good results [1, 2, 3]. We have also had some
success using standard neural-net methods to predict sec-
ondary structure [4], as measured by the EVA project [5].
In 2000, we started incorporating secondary structure
prediction in our fold-recognition method for casp4 [3].

We entered two automatic servers in CASP6, both of
which are somewhat old: the SAM-T99 and SAM -
TO02 servers. These servers are essentially the same as
the ones used in CASP5 [6], though the template library
has grown over the past two years. Neither server had
particularly impressive performance in CASP6. Results
for an automatic method were submitted for evaluation
as part of our CASP6 submissions, but the method has
not yet been implemented as a web service, so could not
participate in the evaluation of automatic servers.

For both the automatic and the human-assisted entries
to CAsP6, we relied heavily on our fragment-packing
program, UNDERTAKER, which has undergone substantial
development since CASP5. The same method was used
for all targets, independent of the degree of similarity
to any targets that we found, but we focussed more of
our attention on new-fold and difficult fold-recognition
targets, since these were the targets where we felt we
could make the biggest gains by human intervention.
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One new method for our group in CASP6 was residue-
residue contact prediction. We did not register enough
predictions per target to be evaluated on most of them,
and did only adequately on the few for which there enough
predictions for the assessment method. We will not
discuss contact prediction in this paper, but are preparing
a separate paper explaining our method an analyzing the
results.

According to the CASP6 assessors, our group had good
results in the non-template category, so improvements in
the fragment-packing program, UNDERTAKER, will be the
main focus of this paper.

2 Methods

Although it has become popular to apply different tech-
niques for targets with easily found templates and tar-
gets without templates, we applied the same protocol
to all targets. This protocol consisted of fold recogni-
tion and fragment generation using HMMs followed by
conformation generation and scoring with a stochastic
search program. Human intervention consisted mainly
of adding hand-picked constraints to the cost function of
the stochastic search. There was little human interven-
tion on targets with easily-found templates, as we spent
most of our time working on the hardest targets.

For each target, we submitted one or more of the
fold-recognition results (doing sidechain replacement on a
template backbone with no refinement), a fully automatic
prediction of the complete chain, and a result with some
human intervention. In Section 3, we will examine how
much was gained by the automatic prediction over simple
sidechain replacement, and by human intervention over



the fully automatic procedure.
The SAM-T04 pipeline is very similar to the previous
generation, SAM-T02, used in CASP5 [6].

e finding similar sequences with iterative search (using
SAM-T2K and SAM-T04);

e predicting local structure properties with neural
nets;

e finding possible fold-recognition templates using 2-
track and 3-track HMMs;

e making alignments to the templates;

e building a specific fragment library for the target
(with FRAGFINDER); and

e packing fragments and fold-recognition alignments to
make a 3D structure (with UNDERTAKER).

2.1 Iterative search

The main differences in fold recognition and alignments
were that we used a new iterative search method (SAM-
T04) in addition to the SAM-T2K method that we intro-
duced in 2000, and that we used more multitrack HMMs.

The new iterative search of the nonredundant protein
database NR [7] differs in several minor ways from the
SAM-T2K search. The most notable differences are in
the prefiltering and in the regularizers used for transition
probabilities.

e One of the biggest constraints on the SAM-T2K
search was that all sequences in the final multiple
alignment had to be found in the initial prefiltering
of the database, which was done by setting a large
E-value on a BLAST search [8].

In SAM-T04, prefiltering of the database is done us-
ing one iteration of psi-BLAST [9, 10] at each itera-
tion of the search. This change allows the search to
be much more sensitive, without requiring extremely
loose threhsolds on the prefilter.

The prefilter is set to limit the number of psi-BLAST
hits to 3000—this cutoff is clearly visible in Figure 1.
Occasionally one gets more than 3000 sequences in
the mutiple alignment, because the target sequence

aligns multiple times with repeated domains in pro-
teins (for example, lugnA, one of the alleles of Lirl,
has 8791 sequences in the multiple alignment because
many of the sequences have multiple copies of the do-
main).

Although SAM-T04 is generally more sensitive than
SAM-T2K, sometimes SAM-T04 gets fewer se-
quences. One extreme case is 1wjpA which has 9144
sequences in the SAM-T2K alignment, but only 22
in the SAM-T04 alignment. Except where the re-
duction in size is due to the cap on the prefilter, the
reduction is generally due to tighter thresholds on the
psi-blast filter than on the older blast filter. It has
not yet been determined whether the the reduction
has more effect on false positives or true positives.

e The transition regularizers for SAM-T99 and SAM-
T2K were set to avoid “choppy” alignments that had
frequent insertions and deletions, sweeping the gaps
together in highly variable regions. This multiple
alignments are easier for humans to read, and are
generally preferred by biologists, but information is
lost about residues that really do correspond. In
SAM-T04, a regularizer is used that keeps the costs
of gaps fairly low even in the later iterations of the
iterative search. The resulting multiple alignments
look worse, but seem to work better for predicting
local structure and contacts. (As always during
CASP season, we had to press the method into
service before we had time for extensive testing.)

2.2 Local structure prediction

We continue to use neural networks to predict various lo-
cal structure properties [11, 12]. We are now predicting
five backbone properties (DSSP, STRIDE, STR2, « pseudo-
torsion angle, Bystroff’s partition of the Ramachandran
plot) and two burial properties Cg coordination with a
14 Angstrom radius sphere and a new count we call near-
backbone). We also combine the various predictions to
get an averaged prediction for a traditional three-state
(strand, helix, other) prediction.

Describe str2? Describe near-backbone?

Our neural nets now have 42 inputs for each position: a
one-hot encoding of the amino acid in the target sequence
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Figure 1: This figure plots the number of sequences in the
SAM-T04 multiple alignments versus the number in the
SAM-T2K multiple alignments, for alignments that were
computed using the same version of the non-redundant
protein database.

Note that the SAM-T04 method generally finds more se-
quences to be similar, but is usually capped at 3000 se-
quences by the settings of the psi-blast prefilter. The
SAM-T04 alignments always contain at least two se-
quences, because the seed sequence is included, as is the
indentical sequence found in the non-redundant protein
database.

(20), a probability for each amino acid from a multiple
alignment (20), and probabilities of insertion and deletion
(2). The one-hot encoding of the target sequence is new
and permits slightly more precise predictions when the
target sequence differs from the dominant amino acid in
the multiple alignment.

We have not yet done extensive testing of the new neu-
ral nets to quantify any improvement, but the combina-
tion of using the SAM-T04 multiple alignments, the extra
inputs to the neural nets, and retrained networks appears
to have given slight improvements in prediction of local
structure.

2.3 Fragment generation

One of the most powerful operators in UNDERTAKER. is
fragment replacement, in which portions of the conforma-
tion are replaced by a contiguous piece of protein struc-

ture. This fragment replacement is similar to that used
in Rosetta [13], but includes not just the backbone tor-
sion angles, but full 3D information for all backbone and
sidechain atoms (except hydrogens) in the fragment.

The conformation generator in undertaker uses three
sources of backbone fragments for building the models:

e short, generic fragments. A library of about 1300
protein structures with good resolution is read in,
and every fragment of length < 4 is indexed. These
generic fragments are used as possible replacements
for exactly matching portions of the target chain.

e large fragments and alignments. For each align-
ment to a template found by the fold-recognition
process, sidechain replacement is done and the
resulting incomplete conformation stored.  The
sidechain replacement can be done either quickly by
UNDERTAKER without optimization or by Dunbrack’s
SCWRL 3.0 [14, 15]. The conformation generator
can use the contiguous pieces of this conformation as
fragments or can do replacement of the entire con-
formation as a unit.

e medium-length fragments. Fragments of nine
residues are found using the FRAGFINDER program
of the SAM tool suite. For CASP6, we used three-
track HMMs with amino-acid, str2, and Cg burial
alphabets for finding medium-length fragments.
The fragments are reported as short alignments
to sequences in the template library, and used
by undertaker in exactly the same way as longer
fragments.

The main changes in fragment generation since SAM-
TO02 are that we now use three-track HMMs for finding
the medium-length fragments, and UNDERTAKER filters
the fragments as it reads in the alignments, unalign-
ing residues that would be in improbable parts of the
Ramachandran plot for that residue type. This filter-
ing breaks some of the fragments into smaller ones, but
reduces the number of residues predicted to be in the
wrong conformation. We are hoping to be able to improve
FRAGFINDER so that filtering its output is not necessary.



2.4 Conformation generation

The conformation generation in UNDERTAKER is an adap-
tive genetic algorithm that currently has 35 conformation-
change operators. Three of them are the fragment re-
placement decribed above: InsertFragment for generic
fragments, InsertSpecificFragments for fragments from
fold-recognition and FRAGFINDER alignments, and Inser-
tAlignment for replacing multiple fragments simultane-
ously. Also related is TwoFragment, which picks two frag-
ments at random and replaces both. There is a standard
crossover operation (CrossOver) for combining portions of
different conformations, and a specialized one that does a
fragment replacment at the crossover point (CrossAndIn-
sert). Some operators do fragment replacement to try to
improve specific parts of the cost function: ReduceClash,
ReduceConstraint, ReduceBreak.

Another group of operators is associated with try-
ing to close gaps in the backbone: ReduceBreak, Move-
Gap, CloseGap, HealGap, and HealPeptide (HealPeptide
added after CASP6). Several operators move sidechains
without affecting the backbone: Omnerotamer, Clashin-
gRotamer, and ClusteredRotamer. Some operators do
small rigid-body movements of disconnected portions
of the chain: JiggleSegment, JiggleSubtree, OptSeg-
ment, OptSubtree, OptAllSegments, and TweakMulti-
mer (TweakMultimer added after CASP6). Some opera-
tors make small changes to torsion angles: TweakPhiSeg-
ment, TweakPhiSubtree, TweakPsiSegment, TweakP-
siSubtree, TweakPsiPhiSegment, TweakPsiPhiSubtree,
and TweakPeptide (TweakPeptide added after CASP6).
There are also a few rather specialized operators: In-
sertSSBond, ImproveSSBond, ShiftSegment, and Shift-
Subtree.

The genetic algorithm keeps track of which operators
have made improvements in the conformations and how
big these improvements were, favoring the use of opera-
tors that make large or frequent improvements.

To generate the starting conformations for the genetic
algorithm, we build a random conformation, then repeat-
edly try doing all possible alignment replacements from
our alignment library. For targets for which good tem-
plates and alignments are available, this generally gets
the core of the conformation correct, and the genetic algo-
rithm is mainly working on closing the loops and repack-
ing sidechains, even though no part of the conformation

is frozen.

2.5 Cost function

The generate-and-test method used by UNDERTAKER re-
lies on a cost function to guide the genetic algorithm to-
ward protein-like conformations. The cost function in
UNDERTAKER is not an energy function, as it includes
many non-physical terms. The cost function itself is a lin-
ear combination of any number of terms, selected at run
time. There are currently 38 built-in cost function com-
ponents, plus several parameterizable ones that can be
read in from files. Not all the possible components were
used in CASP6, and both the set used and the weighting
coefficients were modified by hand on each target.

The fully automatic predictions used 14 terms:

e 6 burial terms (wet6.5, near_backbone, way_back,
dry5, dry6.5, dry8, and dryl2), each of which
counted residues (for near_backbone and way_back)
or atoms (for the others) within specific spheres near
each residue. The cost function used negative log-
probability of the observed burial, based on residue-
specific histograms trained on a set of about 1300
good structures. The near_backbone and way_back
burial functions are new—the others were used al-
ready in CASP5.

e 4 hydrogen bond terms. UNDERTAKER has a fairly
sophisticated cost function for evaluating hydrogen
bonds without explicit hydrogens. The cost function
takes into account both distance and geometry, and
uses different parameters for different types of hydro-
gen bonds. The different hydrogen bond terms use
the same underlying cost function, but assign differ-
ent weights to different classes of H-bonds. The four
terms were hbond_geom (for all hydrogen bonds),
hbond_backbone (giving extra weight for backbone-
backbone H-bonds), hbond_geom_beta (giving still
more weight for backbone H-bonds that are not part
of a helix), and hbond_geom_beta_pair (giving even
more weight for H-bonds that form part of a ladder
between beta strands).

e 2 clash terms. Although UNDERTAKER does not
have a Lennard-Jones-style energy function for Van
der Waals interactions, it does have a soft_clashes



function that provides increasing penalties for worse
conflicts between atoms. The definition of what
consitutes a clash can be read from a file, and the
particular clash table used for CASP6 grouped the
atoms into 49 types and had tables for minimum
acceptable distance between pairs of atom types for
the same residue, residues adjacent on the backbone,
and residues with separation of two or more.

The soft_clashes cost function does not distinguish
between bonded and non-bonded atoms, so includes
a check for bonds that are too short. UNDERTAKER
does not have any other checks on bond lengths,
in particular, it does not check for bonds that are
too long. Since all bond lengths are copied from
PDB files, the assumption is that they are all essen-
tially good. This assumption is probabl wrong, and
UNDERTAKER may need more extensive bond-length
scoring.

In addition to the soft_clashes term, we used a back-
bone_clashes term which simply counted the number
of pairs of backbone atoms that were closer than the
minimum acceptable distance in the clash table.

break cost One of the non-physical terms was a
penalty for breaks in the backbone. The cost is
proportional to the distance, not to distance squared,
to avoid the potential problem of introducing many
small gaps to break up a large one.

constraints Another non-physical term is distance
constraints between atoms. The user of undertaker
can specify specific hydrogen bonds, disulfide bonds,
or arbitrary atom-atom constraints. To simplify con-
structing the constraints, there are also commands
for specifying that a particular region of the back-
bone is in a helix or a strand, and that a pair of
regions are adjacent strands of a beta sheet, with
the program producing appropriate hydrogen-bond,
Cq, and Cp constraints.

For the automatic method, helix and strand con-
straints were generated from the confident parts of
the secondary structure predictions. Much of the
human intervention consisted of adding sheet con-
straints to get appropriate pairing of beta strands.

e predicted « torsion angle

In addition to the helix and strand constraints, we
used the local structure predictions for the « torsion
angle (Cy(—1),C(0),C(1),Cy(2)) as part of the
cost function. The discrete probability vector from
the neural net output was combined with histograms
of « values to produce a nearly continuous probabil-
ity distribution for each position in the chain. The
negative log probability was used as a component of
the cost function.

Two components were used, based on a predictions
from both SAM-T2k and SAM-T04 multiple align-
ments.

hydrophobic radius of gyration

To reward conformations that were appropriately
compact, with the hydrophobic residues near the cen-
ter, we included a term that was based on the radius
of gyration, with atoms weighted by a hydrophobic-
ity index for the residues. The particular hydropho-
bicity index used was one by Cid et al. [16]. We
normalized the radius of gyration by the cube root
of the length of the protein, then fit the distribution
of normalized radii in our training set with a Gum-
bel distribution. The term of the cost function was
a negative log probability of the normalized radius
with this distribution.

sidechain quality

UNDERTAKER uses a different approach to scoring
rotamers than other new-fold programs. We do
not use Dunbrack’s backbone-dependent rotamer li-
brary [14], nor do we compute the sidechain torsion
angles. We look instead at the positions of three
atoms for each residue: C,(—1), Cy(+1), and the
distal atom on the sidechain. These are put in a
standard frame of reference based on the backbone
atoms for the residue N(0),C,(0),C(0). A mix-
ture of Gaussian distributions for the 9-dimensional
vector is used for each residue, and the negative
log probability is used as a cost function. Note
that this cost function gives the joint probability of
the sidechain and backbone conformations for the
residue, rather than a conditional probability, as is
done in the backbone-dependent rotamer libraries.

This rather crude cost function, which represents the
sidechain as a single point, seems to work as well as



the more complex rotamer libraries used in SCWRL
and Rosetta on the CASP6 targets. This test may not
be meaningful, as the backbones were usually wrong
enough that one would not expect optimal sidechains
to match the experimental structures. We have not
done any testing to see how the different rotamer
representations work on backbones with only small
errors.

e bond angle at C,,

Nornally, the bond angles in UNDERTAKER conforma-
tions are copied from PDB files, and so are usually
good. One conformation-change operator, HealGap,
inserts peptide planes between adjacent C, atoms,
without paying attention to the backbone band an-
gle at the C,, atom. We added a cost function based
on the squared difference between the cosine of the
bond angle and the cosine of the ideal bond angle,
to penalize insertion of peptide planes that created
bad bond angles. If the UNDERTAKER cost function
is to be used for scoring conformations build by other
programs, it may be necessary to add a general term
that checks all bond angles, and not just the N-C,-C
angle.

e Ramachandran plot (bys) residue propensity ...
We sometimes added to the hand predictions terms for

disulfide bonds.

2.6 Human intervention
3 Results and Discussion

3.1 Smooth GDT measure
3.2 Automatic vs. alignment

3.3 Human intervention vs. automatic
4 Conclusion
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