Machine Learning Algorithms for Cancer Diagnosis

Abraham Karplus

Santa Cruz County Science Fair 2012

Contents
Overview

Cancer

Gene Expression Levels

Machine Learning

Testing Methods

Performance Measures,

Algorithms

Majority

Nearest Neighbors

Decision Tree . . .
Best Z-Score

Extension

Python

Breast Cancer

Problem
Results.

Colorectal Cancer

Conclusion

Future Work

Acknowledgements

External software

References

(@4

© o 0o N 3

10

11
11
12

13
13
14

15

16

17

18

19

Overview

Machine learning algorithms are computer programs that try to predict something (behavior,
cancer type, what an image is of, stock market fluctuations, etc.) based on what situations
caused what results in the past. The eventual goal of machine learning in cancer diagnosis is to
have a trained machine learning algorithm that, given the gene expression levels or other data
from a cancer patient, can accurately predict what type and severity of cancer they have, aiding
the doctor in treating it.

This project is a comparison of several different machine learning algorithms, comparing their
performance on diagnosing cancer from gene expression level data. The two datasets that were
used were a breast cancer dataset, classifying cancers into basal and luminal, and a colorectal
cancer dataset, determining if a cancer has a mutation in the p53 gene.

This project compares four different machine learning algorithms: Decision Tree, Majority,
Nearest Neighbors, and Best Z-Score (an algorithm of my own design that is a slight variant
of the Naive Bayes algorithm). Initially, T guessed that the Decision Tree would perform best
simply because it is a very widespread machine learning algorithm.

Cancer

Cancer is not a single disease, but rather many related diseases that all involve uncontrolled
cellular growth and reproduction. Cancer is the leading cause of death in the developed world
and second in the developing world, killing almost 8 million people a year.

Since cancer is many diseases, treating an individual cancer requires knowing what abnormal
behaviors are happening inside the cells. This information can also aid in understanding the
mechanisms behind cancer, which can lead to new treatments.

One very useful set of data is the cells gene expression levels.

Gene Expression Levels

Genes contain the information needed to make proteins (which do much of the work in a
cell), and knowing what proteins a cell is making can tell a lot about how the cell is doing.
However, it is difficult to directly measure the protein levels, so instead biologists measure levels
of mRNA, the “messenger” between the genes and the ribosomes, which are the protein factories
of a cell.

To determine what genes are being expressed, mRNA is extracted from the tissue and copied
to ¢cDNA, which is tagged with a fluorescent dye so that it can be seen. This dyed ¢cDNA is
then put on a DNA microarray or gene chip, which is a chip containing thousands of little spots
of known DNA, which the cDNA binds to. By observing where on the chip there is fluorescent
dye, the cDNA, and hence the gene expression levels, can be determined. One gene chip can
measure expression levels for tens of thousands of genes.

The data for this experiment are the logarithms of these expression levels, since there may
be several orders of magnitude difference between the expression levels of different genes.

Machine Learning

Machine learning is the subfield of computer science that studies programs that generalize
from past experience. This project looks at classification, where an algorithm tries to predict
the label for a sample. A sample is a single set of feature data (here, gene expression levels for a
cancer patient) plus a label, which is what category (for example, basal or luminal) the sample
falls in. The machine learning algorithm takes many of these samples, called the training set,
and builds an internal model. Using this model, it can then predict the labels of other samples,
called the testing set.

Testing Methods

A common problem with machine learning is overfitting—Dbias towards the samples in the
training set. An algorithm may perform well on the training set, but not generalize to other
cases. Therefore, cross-fold validation is used, where the data is partitioned into training and
testing data several different ways (each partition is called a fold), and the performance of the
algorithm is averaged over all of these folds. Which samples are used for training and which for
testing can impact the measured performance, so the cross-fold validation is done many times
with many different folds.

My experiments used 5-fold cross validation: the data was split into 5 equal subsets, each of
which was held out in turn as the testing data while the algorithm was trained on the remaining
4 subsets.

Performance Measures

The simplest measure of machine learning algorithms is accuracy, the proportion of correctly
classified samples. This measure is flawed if the data is unbalanced—in a dataset that was 90%
label A, an algorithm that always guessed A would have an accuracy of 90% but no utility.

Other measures tally the samples of each pairing of actual and predicted labels (called the
confusion matriz). When there are only two possible labels, the cells of the confusion matrix

are named as follows:
Breast Dataset Actually Luminal Actually Basal

Predicted Luminal | True Negatives (TN) | False Negatives (FN)
Predicted Basal | False Positives (FP) | True Positives (TP)

One popular measure is Matthews Correlation Coefficient (MCC):

TP xTN —FP x FN

MCC =
/(TP + FP)(TP+ FN)(TN + FP)(TN + FN)

MCC ranges from -1 for the worst possible prediction to 1 for a perfect prediction. An algorithm
that guesses randomly has MCC = 0. I used a generalization of MCC (Gorodkin 2004) that
works for any number of labels, but reduces to MCC for two labels.

Another performance measure is information gain, based on the encoding cost of sets of
samples. The encoding cost of a set is a function of the number of each type of label in the set.

5

Using an auxiliary function h(z) = zlog(z), we define encoding cost
H(z,y,..)=h(z+y+...)—h(x)—h(y) —...

Information gain is the difference between the total encoding cost before and after making

predictions:
IG=H(TN+FP,TP+ FN)— (H(TP,FP)+ H(TN,FN))

Information gain ratio is the ratio of information gain to the encoding cost H(T'N + FP,TP +
FN), so ranges from 0 (no improvement) to 1 (perfect separation by label).

I compared MCC and information gain ratio. They appear to measure the same thing. MCC
spreads the results farther apart, though, so I decided to use MCC in the main experiments.

Comparison of performance measures

S 4 b #
= +
© 0.8 t+ .
S
O
2 06} 1
£ 4
=
= 04} * -
3
S
E 02} -
S
5
[a

0 B * 1 1 1 1 1]

0 0.2 0.4 0.6 0.8 1

Information Gain Ratio

Algorithms

In Python, I created an abstract base class for the general idea of a classification algorithm.
Each specific algorithm is then a subclass of this base class, implementing the training and

labeling methods.
Majority

The Majority algorithm is one of the sim-
plest possible. To train, it merely counts the
number of samples with each label. To predict,
it guesses the label that got the most hits in
the training data. This makes it completely
useless for any actual prediction, but Majority
serves well as a baseline or null model to com-
pare other algorithms to.

Nearest Neighbors

— +

The Nearest Neighbors algorithm is based on the idea that samples with similar-valued
features tend to have the same label. To predict a label, the algorithm looks at the k training
samples closest to the test sample, and predicts the most frequent label of the & samples.
Distance is determined by the samples position in the feature space, an n-dimensional space
with each dimension corresponding to a feature. When £ is specified greater than or equal to
the number of training samples, Nearest Neighbors is identical to Majority, and so useless.

+ +4+
—+
+
- —+ _
| J—
+
+ n
+ 4 __—_—
+ + _ T

Some additional refinements are possible to
the algorithm in two main ways. First, the dis-
tance metric used to figure out which samples
are closest can be changed. The standard is
of course Euclidean distance, but other met-
rics may give better results for some data sets.
Second, samples can be weighted based on their
distance from the test sample, so that the la-
bels of the closest samples count for much more.
I have implemented neither of these variations
yet, but plan to.

Decision Tree

The Decision Tree algorithm works by finding the specific features that divide the training
data by label. It goes through all features and all possible cutpoints (cutpoints are values for the
feature—all samples with a value for that feature below the cutpoint go to one side, while the
others go to the other side) for each feature to find the one that best separates the training data
by label. There are many ways to determine which split is best; the one I use is information
gain. Whichever split lowers the encoding cost the most gets selected. If this procedure is only
performed once, the algorithm is a decision stump. To be a true decision tree, it must recursively
try and find a new feature and cutpoint for each of the subsets of data from the previous split,
repeating until the maximum depth is reached or the training data is split perfectly by label.

Best Z-Score

The Best Z-Score algorithm is my own variant of the very popular Naive Bayes algorithm.
The Naive Bayes algorithm uses Bayesian statistics for prediction, making the “naive” assump-
tion that each feature is independent of all others and calculating the Bayesian probability of
the label given the feature. It predicts the label deemed most probable by multiplying together
these conditional probabilities.

Best Z-Score makes the further assumption that the values for each feature for each label are
in an approximately Gaussian distribution. Rather than calculating probabilities, it calculates
the mean and standard deviation for each feature using the training samples with each label in
turn. For prediction, each feature of the test sample is converted for each label to a z-score,
which is a measure of how many standard deviations a value is from the mean.

8

The algorithm then predicts the label that has the lowest total squared z-score summed over
all features. However, as I originally wrote the Best Z-Score algorithm, it had a bug which
resulted in each squared z-score being weighted by the standard deviation for that feature and
label. To fix the bug I generalized the Best Z-Score algorithm so that it took a parameter which
specified what power of standard deviation to weight the z-score by. The intended algorithm
corresponds to a parameter value of 0 and the buggy implementation to a value of 1. T also
tested a parameter value of 2, which is equivalent to using just differences from the means and
ignoring standard deviations.

Extension

It is very easy to add additional labeler algorithms to the program, and does not require
modifying any existing files. Here are instructions on how to add a labeler, for a hypothet-
ical algorithm called Foo Bar. Create a file in the main code directory called 1_foobar.py
which contains a class definition for the class FooBar. FooBar must inherit from the abstract
base class BatchLabeler in abstract.py in the code directory. FooBar must implement the
methods learn batch and label_one, and may also implement setup. learn_batch takes two
arguments: a Numpy array of feature data (each row is a sample, each column a feature), and
a Numpy array of labels (one-dimensional). The method must train the algorithm on the given
training data. label _one takes a single argument, a one-dimensional Numpy array containing
the sample to be labeled. It must predict the label for the given test sample. If implemented,
the method setup will be called with any additional arguments to be passed to the labeler on
setup, such as the maximum depth for a decision tree. If needed, the labeler instance contains
an attribute known_labels with a set of all labels seen in the training data.

Python

Python is a popular object-oriented scripting language created by Guido van Rossum that
promotes code reuse, easy object orientation, and quick development. The adjective “Pythonic”
refers to code that is in the style and philosophy of Python, which emphasizes clarity, readability,
and simplicity.

Because Python is an interpreted language, it runs slower than compiled languages. To
alleviate this, I used Pyrex, a program to convert Python code into equivalent C code, for the
information-gain calculation. This optimization sped up Decision Tree several-fold.

Python is dynamically typed, so uses significantly more memory than a statically typed
language. To help with both memory and speed, I used the Numpy package, which provides
compact and fast array data types.

10

Breast Cancer

Problem

Breast cancer is a very common disease, killing almost 40,000 people annually in the United
States alone. It has two major subtypes, known as basal and luminal, after where in the breast
they originate. Luminal breast cancer is the more common and tends to have a better prognosis
and survival rate. Basal cancer tends to be more aggressive and has a higher rate of recurrence.
It can be difficult, however, to distinguish between the two types. Since treatments for these
two types of breast cancer differ, it is vital for doctors to be able to distinguish between them.

One way of distinguishing basal and luminal cancers is to use the gene expression levels from
biopsied tumor cells. I used several machine learning algorithms to predict whether a given
breast cancer was basal or luminal, based solely on its gene expression levels.

11

Results

The breast cancer turned out to be a fairly easy classification problem. All three versions
of the Best Z-Score algorithm did very well and were fast. Nearest Neighbors was only slightly
faster than Best Z-Score. With one or ten neighbors, it performed perfectly; however, as there
were only about 20 samples total in the training set, Nearest Neighbors with 20 to 30 neighbors
was identical to Majority, which performed terribly. All three levels of Decision Tree performed
adequately, but they took quite a bit longer than the others to train. The reason that all three
levels of Decision Tree performed identically is that level 1 Decision Trees were able to separate
the training data completely, and so level 2 and level 3 had nothing to separate.

Breast cancer results

1 r T T T

0.8 t+

0.6 -

PR P

04+

0.2+

Performance (Matthews Correlation)

0_,|@, R . L

1 10 100

Time (seconds)

12

1000

Best Z-Score 0

Best Z-Score 1

Best Z-Score 2
Nearest Neighbors 1
Nearest Neighbors 10
Nearest Neighbors 20
Nearest Neighbors 30
Decision Tree 1
Decision Tree 2
Decision Tree 3
Majority

(IX+O+HOXOO+

Colorectal Cancer

Problem

Colorectal cancer is actually two types of very closely related cancers, colon cancer and rectal
cancer. Colorectal cancer is the second leading cause of cancer deaths that affect both men and
women in the United States, claiming over 50,000 lives per year. In almost half of colorectal
cancers, there is a mutation in the p53 gene which results in over-expression of the p53 protein
and a poorer prognosis and lower survival rate for the patient.

Detecting the p53 mutation is very helpful to doctors in treating colorectal cancer. Since
the p53 mutation is one of the biggest genetic changes in colorectal cancer, knowledge of it is
crucial to the cancer treatment.

Machine learning algorithms can predict p53 mutation from gene expression levels of tumor
cells, and my goal with this project was to determine how well various algorithms could predict
the pb3 mutation.

The colorectal data set came from The Cancer Genome Atlas, which is a project to collect
genomic, expression, and epigenetic data on cancer together with clinical information.

13

Results

The algorithms performed similarly in the colorectal as in the breast cancer dataset, but
with several important differences. As there were many more samples for colorectal, Nearest
Neighbors never dropped to the level of Majority. Somewhat surprisingly, performance decreased
for the higher level Decision Trees. Again, all three variants of Best Z-Score performed best and
here took less time than Nearest Neighbors. In general, the algorithms took over an order of
magnitude longer to run than they did on the breast cancer dataset. The classification for
colorectal was much more difficult, with no algorithm getting a score of 0.5 or above.

Colorectal cancer results

1F 77 ' ' o Best Z-Score 0+
S Best Z-Score1 (O
= Best Z-Score2 &
E 0.8 i Nearest Neighbors 1~ <
8 Nearest Neighbors 10 []
2 06l | Nearest Neighbors 20
E ' Nearest Neighbors 30 O
E= Decision Tree 1 -+
= 04} @ + X Decision Tree2 ¥
% XE Decision Tree 3 []
S Majority
€ 02¢ .
L
o
[a

0 C 1 1 1 1

1 10 100 1000

Time (seconds)

14

Conclusion

The algorithms that performed best (Best Z-Score and Nearest Neighbors) used all features
in classifying a sample. Decision Tree used only 13 features for classifying a sample and gave
mediocre results. Majority did not look at any features and did worst.

All algorithms except Decision Tree were fast to train and test. Decision Tree was slow,
because it had to look at each feature in turn, calculating the information gain of every possible
choice of cutpoint.

15

Future Work

There are tens of thousands of features (different genes) in both the breast cancer and
colorectal cancer data sets, and anything that reduced this number would speed up training
decision trees. Many other algorithms also suffer from this so-called curse of dimensionality.

One way to reduce dimensionality is feature selection, where the data is preprocessed to
remove features that are unlikely to be useful. Feature selection could also help many algorithms
by removing noise. We could use the mean and standard deviation information from Best Z-
Score to choose features with large differences in z-scores.

Feature selection is one case of dimensionality reduction—another method might do this by
combining correlated features, rather than eliminating features. Omne popular dimensionality
reduction technique is principal components analysis, which creates components that are linear
combinations of associated features.

In addition to dimensionality reduction, I also want to implement several more algorithms:
Random Forest, Support Vector Machine, Naive Bayes, and Neural Net. For some of these
algorithms, such as Random Forest, which creates many decision trees, dimensionality reduction
is essential for training in a reasonable time frame.

So far, I have only tested the algorithms on two datasets, but there are many more available
from TCGA and other sources, and the more datasets I test on, the more complete a picture I
have of algorithm performance. Some of these datasets have features other than gene expression
levels, such as copy number variation and methylation of the genome. It would be a fairly small
modification for my code to handle multiple feature sets.

Eventually, I hope that the algorithms I have implemented, tested, and even developed may
aid in the treatment and diagnosis of cancer in clinical situations and possibly even save lives.

16

Acknowledgements

I would like to thank my father, Kevin Karplus, for the inspiration for this project as well as
for connecting me with the Cancer Machine Learning Group at UCSC. In the Cancer Machine
Learning Group, I would specifically like to thank Josh Stewart, Artem Sokolov, Dan Carlin,
and Sam Ng for providing me with the datasets, suggesting possible algorithms and directions to
take the project in, and providing feedback on my work. I would also like to thank Rina Natkin
and my mother, Michele Hart, for providing support with the writing and time management for
this project.

17

External software

All programs were written and run with Python version 2.7, incorporating Pyrex version
0.9.9 and Numpy version 1.6.1. GNU Make 3.81 was used to automate the experiments. Data
was kept in RDB format, using the RDB package version 2.9. All the plots in this poster were
created with gnuplot version 4.4. The poster was prepared using Pages version 4.1. and the
report with LaTeX (pdflatex version 3.1415926-1.40.11-2.2). The diagrams were made with
Asymptote version 1.66 on the Art of Problem Solving website (artofproblemsolving.com).

18

References

Centers for Disease Control and Prevention. Frequently Asked Questions about Colorectal Can-
cer. 2012. http://www.cdc.gov/cancer/colorectal/basic_info/faq.htm

Gorodkin, Jan. “Comparing two K-category assignments by a K-category correlation coeffi-
cient.” Computational Biology and Chemistry vol. 28, no. 5-6, pp. 367-374. 2004.

lacopetta, Barry. “TP53 Mutation in Colorectal Cancer”. Human Mutation vol. 21, no. 3, pp.
271-276. 2003.

Susan G. Komen for the Cure. Molecular Subtypes of Breast Cancer. 2011. http://ww5.komen.
org/BreastCancer/SubtypesofBreastCancer.html

Wikipedia. Cancer. http://en.wikipedia.org/wiki/Cancer

. Matthews Correlation Coefficient.

http://en.wikipedia.org/wiki/Matthews_correlation_coefficient

Witten, Tan H. and Frank, Eibe. Data Mining: Practical Machine Learning Tools and Tech-
niques, 2nd edition. Morgan Kaufman, San Francisco. 2005.

19

