
* A.I. Connect-Four *

Abe Karplus
Science Fair 2010

Abstract
I am using the game Connect-Four to study artificial intelligence, a field in computer

science. I wanted to determine the effect of ply depth (the number of plies, which are
turns by a single player, that the program looks ahead) and the effect of getting the first
move on the chance of winning. To do this, I wrote some computer programs in C to
simulate games between computer-controlled players.

I found that increasing the ply depth increases the chance of winning, as does getting
the first move. I found that the effect of a single ply-depth increase was greater than the
effect of getting the first move. I found that when two identical players faced off, there
would be more draws if both had even ply depths.

~ 2 of 34 ~

Table of Contents
Introduction 4

Artificial Intelligence 4

Connect-Four 5

Hypotheses 6

Program Description 7

Experiments 12

Results 13

Conclusions 22

Future Work 22

Acknowledgments 23

References 23

Mentor Statement 23

Appendix 1: Results 24

Appendix 2: Makefile 32

Appendix 3: tcsh 33

Appendix 4: gnuplot 34

~ 3 of 34 ~

Introduction
Artificial intelligence is an important and growing field of study, with practical

applications ranging from search and rescue to speech recognition. One good way to
study A.I. is through games. These provide a simplified world, so that most of the effort of
scientists can be devoted to developing the A.I. and not to constructing robots or
simulating the world.

I chose Connect-Four as the game I will study for many reasons. The rules of it are
simple, unlike, for example, chess, and so I do not have to devote much effort to the
simulation. There are a relatively small number of possible moves at any given point in the
game, limiting combinatorial explosion. However, the game still allows a rich depth of
strategy, unlike games such as tic-tac-toe.

Artificial Intelligence
Artificial Intelligence, or A.I., is the study of creating intelligent-seeming behavior in

computers and robots. Computers excel at fast computation and systematic, repetitive
tasks. A.I. researchers make use of this with programs that go through many possible
options and select the one that seems best. There are several types of A.I., such as search
(which is what this project is concerned with), machine learning, and pattern recognition.

Search attempts to find whichever option fits a certain criterion best. The way I have
been implementing search is through the min-max function, which simulates alternating
plies where one side selects the maximum value option and the other side selects the
minimum. In game algorithms, a ply (plural plies) is one turn by one player, as opposed to
a round, which is one turn for each player. A simple min-max algorithm stops looking
ahead at a predetermined number of plies, known as the ply depth.

~ 4 of 34 ~

Connect-Four
Connect-Four is a game for two players, where the object of the game is to get four or

more pieces of your color in a line vertically, horizontally, or diagonally. The game board
is a grid of spaces for pieces, six high and seven wide, as in Figure 1.

Figure 1: The Game board

~ 5 of 34 ~

Pieces are inserted at the top of the game board and fall to the lowest open level in
their column. Players attempt to get four pieces in a row while blocking their opponent
from doing the same. Whoever gets four of their pieces in a line first wins, but if the board
fills, it is a draw.

Perfect Players Exist
One approach to creating a game-playing program is to precompute the best possible

move in any given situation and store this information in a hash table. The player then
merely looks up in the table what move to make. This creates very fast players that, if a
complete table has been precomputed, never make mistakes. This approach only works
for fairly simple games, and it is not useful in the real world. If creating an A.I. program
for the real world, one does not have the luxury of precomputing all possibilities. Instead,
the program has to identify the options, predict what will happen for each potential
choice, and identify the best outcome.

The game of Connect-Four has been solved completely, with results that show an
advantage for the first player. If the first player moves in the center, they can force a win. If
they begin on either adjacent square, the second player can force a draw, and if they
begin on any other square the second player can force a win.

Even though perfect players exist for Connect-Four, the game is still useful for studying
search algorithms.

Hypotheses
I have several predictions about the outcomes of my experiments. I predict that

increasing the ply depth of a recursive search for a given evaluation function will increase
the chance of winning. I further predict that going first in a game will give a slight
advantage to a player—however, I do not believe that this will be enough to offset a
difference in ply depth between players. I hypothesize that fevala will do better than
wineval, but not by a large amount.

~ 6 of 34 ~

Program Description
I wrote all the code for this project in C. I chose C for two reasons: I already knew the

language, having used it for my science fair project last year, and it is very efficient, so
that my experiments would not take too long. All the programs for this project are in the
Programs folder.

The program is divided into several files. The connectfour file deals with running the
game or games, including interfacing with the player functions and processing command-
line arguments. The board-disp file deals with displaying the board for human players.
The boardcontrols file deals with the data representation of the board. The recurse-
player and randperm files contain the skeleton of a player function (recurse_play). All
the players except p-human call the recurse_play function.

recurse-player
The recurse_play function is a min-max algorithm. Given a board, a ply depth, and

an evaluation function, it returns a structure containing which move to make and how
good it considers that move. It tries playing each of the seven possible moves in a random
order provided by the randperm function. For a one-ply search, it calls an evaluation
function on each move and chooses the highest value as the move to return. If the ply
depth is higher, it swaps 'X' and 'O', calls itself recursively (reducing the ply depth by 1)
to simulate the opponent's play, and uses the return values to decide its move.

One early problem with the algorithm was that it did not distinguish between
immediate and distant wins or losses. With wins, this is not a problem, since it will always
take forced wins, if any are available. It did not attempt to delay losses, even though doing
so could give its opponent more chance to make a mistake. I solved this problem by
adding a “decay” to the algorithm, so that it returns 0.95 times the value of the best move
in its return structure, thus favoring quick wins and delayed losses.

Figure 2 is a simplified diagram showing the process of the recurse_play algorithm.
The boxes represent calls to the algorithm and the numbers outside of boxes, the results of
calls to the evaluation function (here wineval). In a box, the first field ('X' or 'O')
displays whose turn is being simulated, the next is the value of the move returned, and the
last field is what moves the function might return. The diagram is simplified to only three
possible moves (A, B, C) instead of the seven of the full game, and it only displays a 3-ply
player.

~ 7 of 34 ~

Figure 2: The recurse_play algorithm

~ 8 of 34 ~

X,
 0

,
B/

C

O,
 0

,
an

y X,
 0

,
an

y

0
 0

0

X,
 0

,
an

y

0
0

 0

X,
 0

,
an

y

0
 0

0

O,
 -

95
00

,
B

10
00

0
X,

 0
,

an
y

0
 0

0

X,
 -

95
00

,
A

0
0

10
00

0

O,
 0

,
A/

C

X,
 0

,
an

y

0
 0

0

X,
 0

,
an

y

0
 0

0

X,
 -

95
00

,
C

10
00

0
0

0

boardcontrols
The boardcontrols file contains many functions, all of which manipulate or inspect

the representation of the board. The game board is currently represented as an array of
columns, each of which is an array of characters. The characters used are 'X', 'O', or
' ' (space). Here is a list of the boardcontrols functions:
>> clearboard removes all pieces from the board.
>> printboard displays the board on the screen. It uses ASCII graphics—the setup

shown in Figure 1 would look like Figure 3. If either player is human, this function is
not used (see board-disp below).

>> playtoboard places a piece for the X player into the lowest
empty space on the given column.

>> unplayboard removes a piece for the X player from the
given column.

>> invertboard, one of the most frequently used, swaps the X
pieces and the O pieces. Almost all the other
boardcontrols functions are simplified by assuming that it
is the X player’s turn.

>> is_boardfull determines if the game is a draw.
>> is_movewin determines if the X player has just won by

playing in the given column.

Player Functions
Each different player function has its own file: p-human, p-random, p-feval-1, and

p-wineval.
The human player takes a number from stdin (standard input) and returns that as its

move. Thus, a person can play by typing numbers.
The random player calls recurse_play with evaluation function randeval (which

returns a constant), so the recursive algorithm is used simply as a random number
generator.

The wineval player calls recurse_play as well. The wineval player provides the
evaluation function wineval, which calls is_movewin to determine whether the move
just made won the game.

Finally, there is the feval class of player functions, which currently includes fevala,
fevalb, and fevalc. Theses players work by looking at each adjacent set of four cells (or
“four”), assigning it a value based on what pieces it contains, and returning the sum of the
values of the “fours”. A four can be blocked (containing pieces from both players), empty,
a win (four X pieces), O1 to O3 (one to three O pieces), or X1 to X3 (one to three X
pieces). The three feval functions differ only in the values they assign to each possibility
(with win causing an immediate return of 10000).

0 1 2 3 4 5 6
^ ^ ^ ^ ^ ^ ^

 O
 X O
^ ^ ^ ^ ^ ^ ^
Figure 3: ASCII graphics

~ 9 of 34 ~

Player Blocked O3 O2 O1 Empty X1 X2 X3

fevala

fevalb

fevalc

0 -3 -2 -1 0 1 2 3

0 -40 -15 -3 0 2 13 22

0 -600 -60 -12 -2 10 50 500
This table shows the values assigned by each function. I came up with the constants

for fevalb and my dad chose those for fevalc.

connectfour
The main program serves as a wrapper allowing the user to control which players play

against each other, for how many games, whether the players alternate first move, and
whether to display the board after each move. It also keeps statistics on wins by each
player, draws, number of moves by each player, and time taken. I wrote it to be controlled
by command-line arguments, so that automating the experiments would be easier.
Automation was done with Makefiles and tcsh scripts; see Appendix 2 for the Makefiles
and Appendix 3 for a sample tcsh script.

~ 10 of 34 ~

board-disp
At school science fair, I received some complaints about the display of the board. The

computer frequently moved too fast for humans playing against it to easily determine
where it last moved. I decided to have the display highlight where the last move was
made. Unfortunately, using basic ASCII graphics does not permit any “special effects” like
highlighting or color. Therefore, I created a new program for displaying the board using
ncurses. Ncurses (short for “new cursor optimization”) is a programming library that
allows textual graphics with color, bold, italics, some non-ASCII characters, and more
effects. Figure 4 is a screenshot from the display program I wrote using ncurses.

Figure 4: Ncurses display

Due to some problems with screen output by other functions, I wrote the ncurses
program as a separate file, compiled separately and called by the main program in the
connectfour file by means of a system command. The main program will call the
board-disp program if no players are specified in the command line. I also have the
board-disp program set up so that it will ask the player who they want to play against
(another person or one of four difficulty levels on the computer).

~ 11 of 34 ~

Experiments
I did seven experiments in this project. For the first experiment, I looked at the

difference between wineval players with different amounts of lookahead (ply depth). A
short tcsh script ran all players (random and 1ply_wineval through 5ply_wineval)
against all players. Each pair of players played 1000 games, and X and O alternated who
moved first to eliminate any first-move bias.

The second experiment ran each wineval player against every other wineval player
including itself, but with X always going first. This investigated both the effect of first move
on its own (when X and O are the same) and in conjunction with differences in ply depth.
My experiments only went as far as 5 plies of lookahead for two reasons. When I ran the
first experiment, I had only written player functions for 1 through 5 plies. I later changed
the code so that the user can specify up to 9 plies. Also, each additional ply takes 7 times
as long (a phenomenon known as combinatorial explosion), and the experiment took
quite long enough at only 5 plies.

The third experiment was like the first, only for the fevala player.
The fourth experiment was like the second, only for the fevala player.
The fifth experiment ran each fevala player (1 to 5 plies) against each wineval

player, with first move alternating.
The sixth experiment ran each fevala player against each wineval without first move

alternation.
The seventh experiment was a test of fevalb and fevalc. It tested them against each

other, fevala, and wineval, though only with identical ply depths and first move
alternation for 100 games.

~ 12 of 34 ~

Results
See Appendix 1 for a complete set of all data from these experiments.

Wineval: Alternating First Move
The value shown is wins by the X player plus one-half of the draws from 1000 games,

when X and O alternate who moves first.

O X random 1ply 2ply 3ply 4ply 5ply

random

1ply

2ply

3ply

4ply

5ply

498

246 488

58 110.5 501

49.5 101.5 345.5 517

12 24 218.5 287 515

9 21.5 199 260.5 399.5 481
See Figure 5 for a graph.

 0

 100

 200

 300

 400

 500

 600

 0 1 2 3 4 5

W
in

s
by

 X
 p

lu
s

1/
2

dr
aw

s

Difference in Plies (O - X)

Comparing Wineval Functions with Alternating First Moves

Figure 5: The difference in plies makes a large difference in who usually wins—specifically, an
increase in ply depth causes a larger percentage of wins. The curve shown is a logistic function
fitted to the data by gnuplot, see sample script in Appendix 3.

~ 13 of 34 ~

One other phenomenon I noticed in the data was the pattern of draws when the two
players were identical:

1ply 2ply 3ply 4ply 5ply

0 120 28 158 46
It appears that the number of draws alternates with the ply depth, with even ply depth

producing many more draws. This makes sense when we consider what ply depth means.
Looking an odd depth ahead means that the player is better at offense than defense. An
even depth, with equal ability at offense and defense, means that more attempts will be
blocked, causing the board to fill up and increasing the likelihood of a draw.

Wineval: X Moves First
The value shown is wins by the X player plus one-half of the draws from 1000 games,

when X always goes first:

O X random 1ply 2ply 3ply 4ply 5ply

random

1ply

2ply

3ply

4ply

5ply

557 832.5 953.5 973.5 991 987

318.5 595 932.5 925 988.5 987.5

74 151.5 525.5 679.5 792.5 817.5

48.5 113.5 361.5 558.5 759 767

12.5 21.5 233 293.5 537.5 651

16.5 24.5 220.5 296.5 416.5 528.5

The numbers on the main diagonal are always greater than 500, meaning that going first
increases the chance of winning. The cells directly below this show that going first does
not offset the disadvantage of being one ply behind, as all those numbers are substantially
under 500. See Figure 6 for a graph.

~ 14 of 34 ~

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

-5 -4 -3 -2 -1 0 1 2 3 4 5

W
in

s
by

 X
 p

lu
s

1/
2

dr
aw

s

Difference in Plies (O - X)

Comparing Wineval Functions with X Going First

Figure 6: The first player has an advantage, but this advantage is not large enough to offset a
difference in ply depth between players. The curve shown is a logistic function fitted to the data
by gnuplot.

Fevala: Alternating First Move
The value shown is wins by the X player plus one-half of the draws from 1000 games,

when X and O alternate who moves first.

O X random 1ply 2ply 3ply 4ply 5ply

random

1ply

2ply

3ply

4ply

5ply

504.5

27 497

33 216 495

5 208.5 370 517

0 0 379.5 422 488.5

2 406.5 290.5 521 650 482.5
Amazingly, 5ply consistently performs much worse than 3 or 4 ply, and plays worse
against 1ply than 2ply. See Figure 7 for a graph.

~ 15 of 34 ~

 0
 100
 200
 300
 400
 500
 600
 700

 0 1 2 3 4 5

W
in

s
by

 X
 p

lu
s

1/
2

dr
aw

s

Difference in Plies (O - X)

Comparing Fevala Functions with Alternating First Moves

Figure 7: The top line is when the O player is at 5ply, the next line when it is at 4ply, and so on.
Note that the 5ply player loses against both the 4ply and 3ply players.

Fevala: X Moves First
The value shown is wins by the X player plus one-half of the draws from 1000 games,

when X always moves first. Figure 8 shows this data.

O X random 1ply 2ply 3ply 4ply 5ply

random

1ply

2ply

3ply

4ply

5ply

532.5 998 987 1000 999 999

72 561 822 1000 1000 774

58 232 418.5 755.5 505.5 985

13 400.5 489.5 775 736.5 583.5

0 0 287 558.5 538 384.5

6 606.5 609.5 630 669 724

~ 16 of 34 ~

 0

 200

 400

 600

 800

 1000

-5 -4 -3 -2 -1 0 1 2 3 4 5

W
in

s
by

 X
 p

lu
s

1/
2

dr
aw

s

Difference in Plies (O - X)

Comparing Fevala Functions with X Going First

Figure 8: Going first gives fevala an advantage as it does wineval. The advantage is more notable
at higher plies, and 2ply seems to be disadvantaged by going first.

Fevala vs. Wineval: Alternating First Move
The value shown is wins by the X player plus one-half of draws from 1000 games,

when X (fevala) and O (wineval) alternate first move.

O X 1ply 2ply 3ply 4ply 5ply

1ply

2ply

3ply

4ply

5ply

898 933 993 1000 997

710 880.5 960.5 974 967.5

701.5 723 927.5 987.5 956

632.5 679 883 940.5 929

620.5 664.5 885 934.5 898
Fevala is superior to wineval considering win percentage, regardless of the number of

plies for each player. Figure 9 is a graph of this data.

~ 17 of 34 ~

 500
 550
 600
 650
 700
 750
 800
 850
 900
 950

 0 1 2 3 4 5

W
in

s
by

 X
 p

lu
s

1/
2

dr
aw

s

Difference in Plies (O - X)

Fevala (X) vs. Wineval (O) with X and O alternating

Figure 9: This graph shows that, when alternating first move, fevala plays better than wineval for a
difference of less than five plies. The line shown is straight, because the logistic function no longer
fits the data well.

Fevala vs. Wineval: X Moves First
This experiment has two parts. In the first, X is fevala and O wineval, in the second

their evaluation functions are swapped.

O X 1ply fevala 2ply fevala 3ply fevala 4ply fevala 5ply fevala

1ply wineval

2ply wineval

3ply wineval

4ply wineval

5ply wineval

981.5 967 997 999 1000

821 928 981 976.5 981.5

809.5 840.5 968 980.5 979

763.5 812.5 908.5 949.5 955

732.5 809 902.5 951 951.5

~ 18 of 34 ~

O X 1ply wineval 2ply wineval 3ply wineval 4ply wineval 5ply wineval

1ply fevala

2ply fevala

3ply fevala

4ply fevala

5ply fevala

188 378 505 540 508.5

108 181 417.5 468 451

15 44.5 93.5 127.5 150.5

1 28.5 26.5 63.5 86

5 49.5 56.5 121 163

With the added advantage of first move, fevala merely becomes even more likely to
win. If wineval is given the advantage of first move, it can play better than fevala for the
3ply, 4ply, and 5ply wineval against 1ply fevala. Figures 10 and 11 show this data.

 700

 750

 800

 850

 900

 950

 1000

-4 -3 -2 -1 0 1 2 3 4

W
in

s
by

 X
 p

lu
s

1/
2

dr
aw

s

Difference in Plies (O - X)

Fevala (X) vs. Wineval (O) with X Going First

Figure 10: Fevala will beat wineval when wineval is less than 5 plies deeper and fevala goes first.

~ 19 of 34 ~

 0

 100

 200

 300

 400

 500

 600

-4 -3 -2 -1 0 1 2 3 4

W
in

s
by

 X
 p

lu
s

1/
2

dr
aw

s

Difference in Plies (O - X)

Fevala (O) vs. Wineval (X) with X Going First

Figure 11: Wineval can beat fevala if it goes first and has a large advantage in ply depth.

Fevala, Fevalb, Fevalc, and Wineval
This is the only experiment which uses the fevalbv and fevalc functions. In this

experiment, players are matched against others of the same ply depth only. In the table, A,
B, and C represent the three feval functions while W stands for wineval. The value shown
is wins by X plus one-half draws from 100 games.

 X vs. O B vs. C B vs. A A vs. C B vs. W W vs. C

1ply

2ply

3ply

4ply

5ply

19 62.5 36 98 4

25 78 66 94 6.5

42 54.5 87.5 97 13

89 65.5 25.5 96 5

80 75.5 44 98.5 4
At all ply depths, B and C can both beat W. At 1ply, the ordering is simple—C beats B

beats A. At two and three plies, C beats B and B beats A, but A beats C. At four and five
plies, the ordering is again simple—B beats C beats A.

~ 20 of 34 ~

Time Per Move
Here is the time per move in seconds that each player takes when faced against itself.

1ply wineval 2ply wineval 3ply wineval 4ply wineval 5ply wineval

0.000007 0.000052 0.000371 0.002097 0.015018

1ply fevala 2ply fevala 3ply fevala 4ply fevala 5ply fevala

0.000065 0.000430 0.002858 0.012625 0.129163
Note that each increase of one ply takes approximately seven times as long and that

fevala takes about nine times as long as wineval. Figure 12 is a graph of these times.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 2 3 4 5Ti
m

e
pe

r M
ov

e
in

 M
ic

ro
se

co
nd

s

Ply Depth

Time Taken

Fevala
Wineval

Figure 12: Time taken per move (displayed on a log scale).

~ 21 of 34 ~

Conclusions
My results showed that increasing ply depth increases the chance of winning, and that

going first also increases the chance of winning, but usually not by as much as an
increase in ply depth. This all agrees with my hypotheses. One result that I did not expect
was the pattern of increased draws at even ply depths between identical wineval players.

Fevala plays much better than wineval, which is not what I expected. I hypothesized
that it would only be slightly better. The fevalb and fevalc programs played stronger than
fevala on average, though there were some interesting exceptions.

I noted that a 2-ply player performed much better than a 1-ply player without a
noticeable decrease in speed (though theoretically, an extra ply takes 7 times as long). A
5-ply search took much longer than a 4-ply search, but played only slightly better. These
diminishing returns are a common phenomenon with brute-force search programs. At
some point improved performance is only feasible through smarter programs that do not
search as much, such as the feval programs I wrote.

While doing this project, I improved my knowledge of C, learned some tcsh and some
gnuplot, and learned some strategies for winning at Connect-Four. I also found out (again)
how much work it takes to do a good science fair project.

Future Work
I plan to work on smarter evaluation functions. I have written three feval-type

functions, and have one more idea for those. Using multiple regression would allow me
to determine the “optimal” set of constants for a feval function. One other thing to
consider is a more thorough evaluation function that looks at how many moves would be
required to complete a four.

I also want to change the board representation, because it is space-inefficient, and a
more compact version would allow me to implement a faster version of invertboard
using table lookup. A possible alternative representation would change the columns-as-
arrays model to columns-as-bytes, shrinking by a factor of 6. A column byte would begin
with a number of zeros one more than the number of empty cells, followed by a one. The
remaining bits would correspond to the filled cells of the column, with 1s representing
'X's and 0s, 'O's.

~ 22 of 34 ~

Acknowledgments
I wish to thank my father, Kevin Karplus, for mentoring me on this project. (See his

Mentor Statement.) I also wish to thank my mother, Michele Hart, for her support and
patience.

References
The information about a “Perfect Player” for Connect-Four came from
 • The Wikipedia article on Connect-Four at
 http://en.wikipedia.org/wiki/Connect_Four
 • “John’s Connect Four Playground” at
 http://homepages.cwi.nl/~tromp/c4/c4.html
The min-max algorithm came from
 • Problem-Solving Methods in Artificial Intelligence
 by Nils J. Nilson. McGraw-Hill, 1971.
Any other background information in this report I either already knew before beginning
this project or learned from my father.

Mentor Statement
Abe started this project with some facility in C, but without much experience of

recursive programming. He did a little reading on artificial intelligence and discussed with
me how to structure his program. All the code is his own—I provided only minimal
debugging help once or twice when he got stuck. We also designed together the more
compact data structure (using only 7 bytes to represent the board), but he decided to
delay implementing that.

I provided him some direct instruction on using tcsh scripts and gnumake to run his
experiments, but almost all the scripting is his own. I also reminded him how to use
gnuplot and showed him how to get it to produce PDF output.

For the experimental design, I suggested the experiments of comparing players with
different numbers of plies and of determining how valuable the first move is for different
players. The analysis of the results is his own. He also found on his own the result in the
literature that a perfect first player has a forced win.

~ 23 of 34 ~

Appendix 1: Results
Experiment 1 (Wineval Alternating First Move)

Xn
am

e	
	

	
On

am
e	
	

	
Xw

in
	
Ow

in
	
Dr

aw
	
Xm

ov
es

	
Om

ov
es

	
Ga

me
Ti

me
	

Mo
ve

Ti
me

ra
nd

om
	

	
ra

nd
om

	
	

49
7	

50
1	

2	
10

41
4	
	

10
41

5	
	

0.
15

05
23

	
0.

00
00

07
ra

nd
om

	
	

1p
ly

_w
in

ev
al

	
24

6	
75

4	
0	

79
00

	
	

81
54

	
	

0.
09

03
68

	
0.

00
00

06
ra

nd
om

	
	

2p
ly

_w
in

ev
al

	
57

	
94

1	
2	

86
97

	
	

91
39

	
	

0.
54

84
04

	
0.

00
00

31
ra

nd
om

	
	

3p
ly

_w
in

ev
al

	
49

	
95

0	
1	

85
76

	
	

90
26

	
	

3.
52

43
87

	
0.

00
02

00
ra

nd
om

	
	

4p
ly

_w
in

ev
al

	
11

	
98

7	
2	

83
44

	
	

88
32

	
	

23
.1

31
89

3	
0.

00
13

47
ra

nd
om

	
	

5p
ly

_w
in

ev
al

	
7	

98
9	

4	
83

26
	
	

88
17

	
	

15
4.

85
21

91
	0
.0

09
03

3
1p

ly
_w

in
ev

al
	

1p
ly

_w
in

ev
al

	
48

8	
51

2	
0	

69
51

	
	

69
63

	
	

0.
09

29
12

	
0.

00
00

07
1p

ly
_w

in
ev

al
	

2p
ly

_w
in

ev
al

	
11

0	
88

9	
1	

88
40

	
	

92
30

	
	

0.
57

27
90

	
0.

00
00

32
1p

ly
_w

in
ev

al
	

3p
ly

_w
in

ev
al

	
10

0	
89

7	
3	

80
96

	
	

84
95

	
	

3.
35

13
76

	
0.

00
02

02
1p

ly
_w

in
ev

al
	

4p
ly

_w
in

ev
al

	
24

	
97

6	
0	

80
83

	
	

85
59

	
	

22
.5

17
73

3	
0.

00
13

53
1p

ly
_w

in
ev

al
	

5p
ly

_w
in

ev
al

	
21

	
97

8	
1	

81
78

	
	

86
56

	
	

15
2.

46
21

17
	0
.0

09
05

7
2p

ly
_w

in
ev

al
	

2p
ly

_w
in

ev
al

	
44

1	
43

9	
12

0	
14

96
2	
	

14
96

4	
	

1.
56

03
49

	
0.

00
00

52
2p

ly
_w

in
ev

al
	

3p
ly

_w
in

ev
al

	
32

4	
63

3	
43

	
12

42
9	
	

12
58

5	
	

5.
16

46
20

	
0.

00
02

06
2p

ly
_w

in
ev

al
	

4p
ly

_w
in

ev
al

	
17

3	
73

6	
91

	
13

16
4	
	

13
45

2	
	

31
.1

18
80

8	
0.

00
11

69
2p

ly
_w

in
ev

al
	

5p
ly

_w
in

ev
al

	
15

6	
77

8	
66

	
13

10
7	
	

13
42

4	
	

19
9.

39
78

97
	0
.0

07
51

6
3p

ly
_w

in
ev

al
	

3p
ly

_w
in

ev
al

	
50

3	
46

9	
28

	
10

96
4	
	

10
94

8	
	

8.
13

43
13

	
0.

00
03

71
3p

ly
_w

in
ev

al
	

4p
ly

_w
in

ev
al

	
25

1	
67

7	
72

	
12

95
8	
	

13
17

0	
	

34
.7

49
83

1	
0.

00
13

30
3p

ly
_w

in
ev

al
	

5p
ly

_w
in

ev
al

	
22

1	
74

0	
39

	
12

04
4	
	

12
30

5	
	

19
6.

98
10

23
	0
.0

08
09

0
4p

ly
_w

in
ev

al
	

4p
ly

_w
in

ev
al

	
43

6	
40

6	
15

8	
16

49
1	
	

16
46

6	
	

69
.1

23
17

4	
0.

00
20

97
4p

ly
_w

in
ev

al
	

5p
ly

_w
in

ev
al

	
33

9	
54

0	
12

1	
15

12
0	
	

15
21

4	
	

24
8.

74
50

51
	0
.0

08
20

0
5p

ly
_w

in
ev

al
	

5p
ly

_w
in

ev
al

	
45

8	
49

6	
46

	
13

74
1	
	

13
75

9	
	

41
3.

00
46

94
	0
.0

15
01

8

~ 24 of 34 ~

Experiment 2 (Wineval X Going First)
Xn

am
e	
	

	
On

am
e	
	

	
Xw

in
	
Ow

in
	
Dr

aw
	
Xm

ov
es

	
Om

ov
es

	
Ga

me
Ti

me
	

Mo
ve

Ti
me

ra
nd

om
	

	
ra

nd
om

	
	

55
6	

44
2	

2	
10

73
6	
	

10
18

0	
	

0.
16

24
35

	
0.

00
00

08
ra

nd
om

	
	

1p
ly

_w
in

ev
al

	
31

8	
68

1	
1	

85
99

	
	

82
81

	
	

0.
09

45
53

	
0.

00
00

06
ra

nd
om

	
	

2p
ly

_w
in

ev
al

	
74

	
92

6	
0	

95
57

	
	

94
83

	
	

0.
57

32
06

	
0.

00
00

30
ra

nd
om

	
	

3p
ly

_w
in

ev
al

	
48

	
95

1	
1	

92
98

	
	

92
50

	
	

3.
61

33
21

	
0.

00
01

95
ra

nd
om

	
	

4p
ly

_w
in

ev
al

	
12

	
98

7	
1	

91
92

	
	

91
80

	
	

23
.9

26
45

6	
0.

00
13

02
ra

nd
om

	
	

5p
ly

_w
in

ev
al

	
15

	
98

2	
3	

91
51

	
	

91
36

	
	

15
9.

12
15

54
	0
.0

08
70

1
1p

ly
_w

in
ev

al
	

ra
nd

om
	

	
83

2	
16

7	
1	

81
01

	
	

72
69

	
	

0.
08

65
41

	
0.

00
00

06
1p

ly
_w

in
ev

al
	

1p
ly

_w
in

ev
al

	
59

5	
40

5	
0	

72
67

	
	

66
72

	
	

0.
09

31
61

	
0.

00
00

07
1p

ly
_w

in
ev

al
	

2p
ly

_w
in

ev
al

	
15

0	
84

7	
3	

93
20

	
	

91
70

	
	

0.
57

65
78

	
0.

00
00

31
1p

ly
_w

in
ev

al
	

3p
ly

_w
in

ev
al

	
11

2	
88

5	
3	

92
12

	
	

91
00

	
	

3.
57

00
07

	
0.

00
01

95
1p

ly
_w

in
ev

al
	

4p
ly

_w
in

ev
al

	
21

	
97

8	
1	

91
41

	
	

91
20

	
	

24
.0

10
55

9	
0.

00
13

15
1p

ly
_w

in
ev

al
	

5p
ly

_w
in

ev
al

	
23

	
97

4	
3	

90
51

	
	

90
28

	
	

15
7.

10
40

79
	0
.0

08
69

0
2p

ly
_w

in
ev

al
	

ra
nd

om
	

	
95

2	
45

	
3	

89
21

	
	

79
69

	
	

0.
53

01
93

	
0.

00
00

31
2p

ly
_w

in
ev

al
	

1p
ly

_w
in

ev
al

	
93

2	
67

	
1	

87
44

	
	

78
12

	
	

0.
53

85
39

	
0.

00
00

33
2p

ly
_w

in
ev

al
	

2p
ly

_w
in

ev
al

	
48

3	
43

2	
85

	
14

70
7	
	

14
22

4	
	

1.
52

20
27

	
0.

00
00

53
2p

ly
_w

in
ev

al
	

3p
ly

_w
in

ev
al

	
33

1	
60

8	
61

	
12

85
8	
	

12
52

7	
	

5.
15

15
49

	
0.

00
02

03
2p

ly
_w

in
ev

al
	

4p
ly

_w
in

ev
al

	
19

2	
72

6	
82

	
14

27
8	
	

14
08

6	
	

32
.1

66
75

7	
0.

00
11

34
2p

ly
_w

in
ev

al
	

5p
ly

_w
in

ev
al

	
18

9	
74

8	
63

	
13

74
8	
	

13
55

9	
	

19
9.

13
69

33
	0
.0

07
29

3
3p

ly
_w

in
ev

al
	

ra
nd

om
	

	
97

3	
26

	
1	

83
38

	
	

73
65

	
	

3.
28

09
84

	
0.

00
02

09
3p

ly
_w

in
ev

al
	

1p
ly

_w
in

ev
al

	
92

4	
74

	
2	

85
05

	
	

75
81

	
	

3.
34

18
49

	
0.

00
02

08
3p

ly
_w

in
ev

al
	

2p
ly

_w
in

ev
al

	
65

4	
29

5	
51

	
12

55
3	
	

11
89

9	
	

5.
16

14
52

	
0.

00
02

11
3p

ly
_w

in
ev

al
	

3p
ly

_w
in

ev
al

	
55

0	
43

3	
17

	
11

14
8	
	

10
59

8	
	

8.
10

36
75

	
0.

00
03

73
3p

ly
_w

in
ev

al
	

4p
ly

_w
in

ev
al

	
25

9	
67

2	
69

	
13

53
8	
	

13
27

9	
	

35
.3

50
78

4	
0.

00
13

18
3p

ly
_w

in
ev

al
	

5p
ly

_w
in

ev
al

	
26

7	
67

4	
59

	
13

13
4	
	

12
86

7	
	

19
9.

69
15

66
	0
.0

07
68

0
4p

ly
_w

in
ev

al
	

ra
nd

om
	

	
99

1	
9	

0	
83

53
	
	

73
62

	
	

22
.0

13
46

9	
0.

00
14

01
4p

ly
_w

in
ev

al
	

1p
ly

_w
in

ev
al

	
98

8	
11

	
1	

84
72

	
	

74
84

	
	

22
.2

86
57

7	
0.

00
13

97
4p

ly
_w

in
ev

al
	

2p
ly

_w
in

ev
al

	
75

2	
16

7	
81

	
13

30
1	
	

12
54

9	
	

31
.1

08
22

5	
0.

00
12

03
4p

ly
_w

in
ev

al
	

3p
ly

_w
in

ev
al

	
73

1	
21

3	
56

	
12

74
8	
	

12
01

7	
	

34
.0

36
14

4	
0.

00
13

74
4p

ly
_w

in
ev

al
	

4p
ly

_w
in

ev
al

	
44

9	
37

4	
17

7	
16

40
3	
	

15
95

4	
	

68
.4

18
90

2	
0.

00
21

15
4p

ly
_w

in
ev

al
	

5p
ly

_w
in

ev
al

	
36

8	
53

5	
97

	
15

39
1	
	

15
02

3	
	

24
3.

86
19

02
	0
.0

08
01

8
5p

ly
_w

in
ev

al
	

ra
nd

om
	

	
98

4	
10

	
6	

82
91

	
	

73
07

	
	

14
8.

05
40

10
	0
.0

09
49

2
5p

ly
_w

in
ev

al
	

1p
ly

_w
in

ev
al

	
98

7	
12

	
1	

81
95

	
	

72
08

	
	

14
5.

73
60

99
	0
.0

09
46

2
5p

ly
_w

in
ev

al
	

2p
ly

_w
in

ev
al

	
78

5	
15

0	
65

	
13

04
7	
	

12
26

2	
	

19
7.

30
43

45
	0
.0

07
79

6
5p

ly
_w

in
ev

al
	

3p
ly

_w
in

ev
al

	
73

9	
20

5	
56

	
12

44
7	
	

11
70

8	
	

19
8.

03
57

61
	0
.0

08
19

9
5p

ly
_w

in
ev

al
	

4p
ly

_w
in

ev
al

	
60

7	
30

5	
88

	
15

16
2	
	

14
55

5	
	

25
2.

89
75

40
	0
.0

08
51

0
5p

ly
_w

in
ev

al
	

5p
ly

_w
in

ev
al

	
49

9	
44

2	
59

	
14

05
3	
	

13
55

4	
	

41
5.

97
24

00
	0
.0

15
06

8

~ 25 of 34 ~

Expermiment 3 (Fevala Alternating First Move)
Xn

am
e	
	

	
On

am
e	
	

	
Xw

in
	
Ow

in
	
Dr

aw
	
Xm

ov
es

	
Om

ov
es

	
Ga

me
Ti

me
	

	
Mo

ve
Ti

me
ra

nd
om

	
	

ra
nd

om
	

	
50

3	
49

4	
3	

10
42

0	
	

10
41

4	
	

0.
09

19
03

	
	

0.
00

00
04

ra
nd

om
	

	
1p

ly
_f

ev
al

a	
27

	
97

3	
0	

51
75

	
	

56
48

	
	

0.
47

96
70

	
	

0.
00

00
44

ra
nd

om
	

	
2p

ly
_f

ev
al

a	
33

	
96

7	
0	

70
17

	
	

74
84

	
	

4.
77

43
27

	
	

0.
00

03
29

ra
nd

om
	

	
3p

ly
_f

ev
al

a	
5	

99
5	

0	
62

46
	
	

67
41

	
	

29
.7

97
87

2	
	

0.
00

22
94

ra
nd

om
	

	
4p

ly
_f

ev
al

a	
0	

10
00

	
0	

59
59

	
	

64
59

	
	

19
2.

48
09

56
		

0.
01

55
00

1p
ly

_f
ev

al
a	

1p
ly

_f
ev

al
a	

12
1	

12
7	

75
2	

20
09

6	
	

20
11

2	
	

2.
61

77
23

	
	

0.
00

00
65

1p
ly

_f
ev

al
a	

2p
ly

_f
ev

al
a	

93
	

66
1	

24
6	

16
52

3	
	

16
80

1	
	

8.
49

35
68

	
	

0.
00

02
55

1p
ly

_f
ev

al
a	

3p
ly

_f
ev

al
a	

13
0	

71
3	

15
7	

10
74

9	
	

11
11

9	
	

31
.4

60
77

5	
	

0.
00

14
39

1p
ly

_f
ev

al
a	

4p
ly

_f
ev

al
a	

0	
10

00
	
0	

60
00

	
	

65
00

	
	

16
3.

87
91

37
		

0.
01

31
10

2p
ly

_f
ev

al
a	

2p
ly

_f
ev

al
a	

37
1	

38
1	

24
8	

18
63

2	
	

18
63

7	
	

16
.0

14
54

5	
	

0.
00

04
30

2p
ly

_f
ev

al
a	

3p
ly

_f
ev

al
a	

27
2	

53
2	

19
6	

13
76

9	
	

13
88

2	
	

44
.1

15
63

3	
	

0.
00

15
95

2p
ly

_f
ev

al
a	

4p
ly

_f
ev

al
a	

20
7	

44
8	

34
5	

19
08

1	
	

19
20

7	
	

26
9.

28
30

29
		

0.
00

70
33

3p
ly

_f
ev

al
a	

3p
ly

_f
ev

al
a	

41
9	

38
5	

19
6	

13
62

9	
	

13
61

3	
	

77
.8

51
50

4	
	

0.
00

28
58

3p
ly

_f
ev

al
a	

4p
ly

_f
ev

al
a	

28
0	

43
6	

28
4	

16
71

7	
	

16
88

7	
	

31
0.

89
16

61
		

0.
00

92
52

4p
ly

_f
ev

al
a	

4p
ly

_f
ev

al
a	

17
5	

19
8	

62
7	

20
33

2	
	

20
34

7	
	

51
3.

56
39

80
		

0.
01

26
25

5p
ly

_f
ev

al
a	

ra
nd

om
	

	
99

8	
2	

0	
71

12
	
	

66
14

	
	

14
51

.2
52

62
5	

0.
10

57
30

5p
ly

_f
ev

al
a	

1p
ly

_f
ev

al
a	

53
8	

35
1	

11
1	

13
51

2	
	

13
38

2	
	

14
65

.0
47

08
7	

0.
05

44
75

5p
ly

_f
ev

al
a	

2p
ly

_f
ev

al
a	

69
2	

27
3	

35
	

10
31

6	
	

10
09

0	
	

13
67

.4
60

32
7	

0.
06

70
13

5p
ly

_f
ev

al
a	

3p
ly

_f
ev

al
a	

44
6	

48
8	

66
	

14
66

4	
	

14
68

6	
	

17
70

.6
03

75
9	

0.
06

03
27

5p
ly

_f
ev

al
a	

4p
ly

_f
ev

al
a	

26
3	

56
3	

17
4	

17
00

7	
	

17
16

1	
	

21
93

.7
15

65
8	

0.
06

42
04

5p
ly

_f
ev

al
a	

5p
ly

_f
ev

al
a	

44
6	

50
1	

53
	

14
69

9	
	

14
72

5	
	

38
00

.4
87

83
4	

0.
12

91
63

~ 26 of 34 ~

Experiment 4 (Fevala X Moves First)
Xn

am
e	
	

	
On

am
e	
	

	
Xw

in
	
Ow

in
	
Dr

aw
	
Xm

ov
es

	
Om

ov
es

	
Ga

me
Ti

me
	

	
Mo

ve
Ti

me
ra

nd
om

	
	

ra
nd

om
	

	
53

1	
46

6	
3	

10
68

8	
	

10
15

7	
	

0.
18

37
48

	
	

0.
00

00
09

ra
nd

om
	

	
1p

ly
_f

ev
al

a	
72

	
92

8	
0	

56
06

	
	

55
34

	
	

0.
48

68
93

	
	

0.
00

00
44

ra
nd

om
	

	
2p

ly
_f

ev
al

a	
58

	
94

2	
0	

75
43

	
	

74
85

	
	

4.
78

07
30

	
	

0.
00

03
18

ra
nd

om
	

	
3p

ly
_f

ev
al

a	
3	

98
7	

0	
67

90
	
	

67
77

	
	

30
.2

78
71

7	
	

0.
00

22
32

ra
nd

om
	

	
4p

ly
_f

ev
al

a	
0	

10
00

	
0	

69
33

	
	

69
33

	
	

20
5.

16
03

40
		

0.
01

47
96

ra
nd

om
	

	
5p

ly
_f

ev
al

a	
6	

99
4	

0	
75

27
	
	

75
21

	
	

15
29

.1
64

28
1	

0.
10

16
19

1p
ly

_f
ev

al
a	

ra
nd

om
	

	
99

8	
2	

0	
56

39
	
	

46
41

	
	

0.
46

89
16

	
	

0.
00

00
46

1p
ly

_f
ev

al
a	

1p
ly

_f
ev

al
a	

18
7	

65
	

74
8	

20
17

9	
	

19
99

2	
	

2.
62

11
29

	
	

0.
00

00
65

1p
ly

_f
ev

al
a	

2p
ly

_f
ev

al
a	

12
0	

65
6	

22
4	

17
63

2	
	

17
51

2	
	

8.
41

19
47

	
	

0.
00

02
39

1p
ly

_f
ev

al
a	

3p
ly

_f
ev

al
a	

25
9	

45
8	

28
3	

16
34

8	
	

16
08

9	
	

40
.0

56
50

0	
	

0.
00

12
35

1p
ly

_f
ev

al
a	

4p
ly

_f
ev

al
a	

0	
10

00
	
0	

70
00

	
	

70
00

	
	

17
7.

06
29

22
		

0.
01

26
47

1p
ly

_f
ev

al
a	

5p
ly

_f
ev

al
a	

50
8	

29
5	

19
7	

16
43

3	
	

15
92

5	
	

14
96

.3
92

13
3	

0.
04

62
45

2p
ly

_f
ev

al
a	

ra
nd

om
	

	
98

7	
13

	
0	

77
57

	
	

67
70

	
	

4.
92

26
62

	
	

0.
00

03
39

2p
ly

_f
ev

al
a	

1p
ly

_f
ev

al
a	

70
1	

57
	

24
2	

16
33

3	
	

15
63

2	
	

8.
63

22
81

	
	

0.
00

02
70

2p
ly

_f
ev

al
a	

2p
ly

_f
ev

al
a	

29
1	

45
4	

25
5	

18
74

7	
	

18
45

6	
	

16
.0

63
68

3	
	

0.
00

04
32

2p
ly

_f
ev

al
a	

3p
ly

_f
ev

al
a	

41
0	

43
1	

15
9	

14
25

1	
	

13
84

1	
	

42
.5

22
23

8	
	

0.
00

15
14

2p
ly

_f
ev

al
a	

4p
ly

_f
ev

al
a	

11
1	

53
7	

35
2	

18
79

3	
	

18
68

2	
	

26
6.

51
43

67
		

0.
00

71
12

2p
ly

_f
ev

al
a	

5p
ly

_f
ev

al
a	

57
8	

35
9	

63
	

16
06

0	
	

15
48

2	
	

17
57

.6
20

07
9	

0.
05

57
23

3p
ly

_f
ev

al
a	

ra
nd

om
	

	
10

00
	
0	

0	
63

28
	
	

53
28

	
	

27
.9

83
68

8	
	

0.
00

24
01

3p
ly

_f
ev

al
a	

1p
ly

_f
ev

al
a	

10
00

	
0	

0	
60

00
	
	

50
00

	
	

23
.2

85
30

8	
	

0.
00

21
17

3p
ly

_f
ev

al
a	

2p
ly

_f
ev

al
a	

64
5	

13
4	

22
1	

13
54

0	
	

12
89

5	
	

45
.2

57
28

4	
	

0.
00

17
12

3p
ly

_f
ev

al
a	

3p
ly

_f
ev

al
a	

68
0	

13
0	

19
0	

14
51

7	
	

13
83

7	
	

79
.6

17
37

7	
	

0.
00

28
08

3p
ly

_f
ev

al
a	

4p
ly

_f
ev

al
a	

29
6	

17
9	

52
5	

19
63

0	
	

19
33

4	
	

31
7.

19
62

70
		

0.
00

81
41

3p
ly

_f
ev

al
a	

5p
ly

_f
ev

al
a	

58
0	

32
0	

10
0	

16
27

8	
	

15
69

8	
	

17
16

.8
50

64
5	

0.
05

36
92

4p
ly

_f
ev

al
a	

ra
nd

om
	

	
99

9	
1	

0	
62

34
	
	

52
35

	
	

18
5.

18
47

13
		

0.
01

61
47

4p
ly

_f
ev

al
a	

1p
ly

_f
ev

al
a	

10
00

	
0	

0	
60

00
	
	

50
00

	
	

15
0.

95
18

82
		

0.
01

37
23

4p
ly

_f
ev

al
a	

2p
ly

_f
ev

al
a	

34
9	

33
8	

31
3	

19
83

1	
	

19
48

2	
	

27
5.

24
37

24
		

0.
00

70
01

4p
ly

_f
ev

al
a	

3p
ly

_f
ev

al
a	

67
1	

19
8	

13
1	

15
03

4	
	

14
36

3	
	

30
5.

81
08

67
		

0.
01

04
03

4p
ly

_f
ev

al
a	

4p
ly

_f
ev

al
a	

24
4	

16
8	

58
8	

20
41

9	
	

20
17

5	
	

51
5.

99
68

09
		

0.
01

27
11

4p
ly

_f
ev

al
a	

5p
ly

_f
ev

al
a	

59
6	

25
8	

14
6	

16
73

9	
	

16
14

3	
	

20
99

.6
89

70
2	

0.
06

38
55

5p
ly

_f
ev

al
a	

ra
nd

om
	

	
99

9	
1	

0	
63

17
	
	

53
18

	
	

13
10

.0
94

82
8	

0.
11

25
99

5p
ly

_f
ev

al
a	

1p
ly

_f
ev

al
a	

75
2	

20
4	

44
	

10
98

0	
	

10
22

8	
	

14
38

.9
59

03
5	

0.
06

78
50

5p
ly

_f
ev

al
a	

2p
ly

_f
ev

al
a	

98
4	

14
	

2	
51

04
	
	

41
20

	
	

10
03

.0
86

85
0	

0.
10

87
47

5p
ly

_f
ev

al
a	

3p
ly

_f
ev

al
a	

56
0	

39
3	

47
	

13
57

8	
	

13
01

8	
	

17
99

.4
86

13
8	

0.
06

76
60

5p
ly

_f
ev

al
a	

4p
ly

_f
ev

al
a	

31
1	

54
2	

14
7	

17
56

4	
	

17
25

3	
	

22
41

.6
73

50
7	

0.
06

43
84

5p
ly

_f
ev

al
a	

5p
ly

_f
ev

al
a	

69
4	

24
6	

60
	

15
10

8	
	

14
41

4	
	

37
89

.2
87

76
2	

0.
12

83
55

~ 27 of 34 ~

Experiment 5 (Fevala vs. Wineval Altenating First Move)
Xn

am
e	
	

	
On

am
e	
	

	
Xw

in
	
Ow

in
	
Dr

aw
	
Xm

ov
es

	
Om

ov
es

	
Ga

me
Ti

me
	

	
Mo

ve
Ti

me
1p

ly
_f

ev
al

a	
1p

ly
_w

in
ev

al
	

89
8	

10
2	

0	
55

53
	
	

51
55

	
	

0.
51

96
63

	
	

0.
00

00
49

1p
ly

_f
ev

al
a	

2p
ly

_w
in

ev
al

	
70

0	
28

0	
20

	
12

17
8	
	

11
96

8	
	

1.
50

45
75

	
	

0.
00

00
62

1p
ly

_f
ev

al
a	

3p
ly

_w
in

ev
al

	
67

2	
29

9	
29

	
11

88
1	
	

11
69

6	
	

4.
41

30
46

	
	

0.
00

01
87

1p
ly

_f
ev

al
a	

4p
ly

_w
in

ev
al

	
61

0	
34

5	
45

	
13

12
6	
	

12
99

3	
	

24
.0

35
18

8	
	

0.
00

09
20

1p
ly

_f
ev

al
a	

5p
ly

_w
in

ev
al

	
60

2	
36

1	
37

	
12

83
3	
	

12
71

5	
	

14
0.

31
37

29
		

0.
00

54
92

2p
ly

_f
ev

al
a	

1p
ly

_w
in

ev
al

	
93

3	
67

	
0	

74
49

	
	

70
16

	
	

4.
78

91
70

	
	

0.
00

03
31

2p
ly

_f
ev

al
a	

2p
ly

_w
in

ev
al

	
87

3	
11

2	
15

	
14

29
7	
	

13
91

5	
	

8.
17

46
24

	
	

0.
00

02
90

2p
ly

_f
ev

al
a	

3p
ly

_w
in

ev
al

	
71

7	
27

1	
12

	
12

26
0	
	

12
03

6	
	

10
.1

08
38

4	
	

0.
00

04
16

2p
ly

_f
ev

al
a	

4p
ly

_w
in

ev
al

	
66

9	
31

1	
20

	
13

78
2	
	

13
60

1	
	

30
.9

12
40

9	
	

0.
00

11
29

2p
ly

_f
ev

al
a	

5p
ly

_w
in

ev
al

	
65

3	
32

4	
23

	
13

50
6	
	

13
33

9	
	

15
4.

00
27

24
		

0.
00

57
37

3p
ly

_f
ev

al
a	

1p
ly

_w
in

ev
al

	
99

3	
7	

0	
64

95
	
	

60
02

	
	

28
.8

64
54

5	
	

0.
00

23
10

3p
ly

_f
ev

al
a	

2p
ly

_w
in

ev
al

	
95

8	
37

	
5	

11
71

8	
	

11
25

7	
	

43
.6

98
27

5	
	

0.
00

19
02

3p
ly

_f
ev

al
a	

3p
ly

_w
in

ev
al

	
92

4	
69

	
7	

11
61

5	
	

11
18

7	
	

46
.2

83
53

7	
	

0.
00

20
30

3p
ly

_f
ev

al
a	

4p
ly

_w
in

ev
al

	
87

6	
11

0	
14

	
13

52
9	
	

13
14

6	
	

72
.0

46
51

2	
	

0.
00

27
01

3p
ly

_f
ev

al
a	

5p
ly

_w
in

ev
al

	
87

7	
10

7	
16

	
13

67
5	
	

13
29

0	
	

20
3.

48
71

20
		

0.
00

75
46

4p
ly

_f
ev

al
a	

1p
ly

_w
in

ev
al

	
10

00
	
0	

0	
66

49
	
	

61
49

	
	

19
6.

97
64

01
		

0.
01

53
91

4p
ly

_f
ev

al
a	

2p
ly

_w
in

ev
al

	
96

8	
20

	
12

	
12

01
6	
	

11
53

9	
	

27
9.

23
71

52
		

0.
01

18
55

4p
ly

_f
ev

al
a	

3p
ly

_w
in

ev
al

	
98

3	
8	

9	
12

21
0	
	

11
72

2	
	

28
4.

66
93

61
		

0.
01

18
95

4p
ly

_f
ev

al
a	

4p
ly

_w
in

ev
al

	
92

7	
46

	
27

	
14

67
2	
	

14
23

2	
	

33
6.

88
35

62
		

0.
01

16
55

4p
ly

_f
ev

al
a	

5p
ly

_w
in

ev
al

	
92

5	
56

	
19

	
14

78
1	
	

14
34

3	
	

47
5.

87
55

99
		

0.
01

63
40

5p
ly

_f
ev

al
a	

1p
ly

_w
in

ev
al

	
99

7	
3	

0	
68

64
	
	

63
67

	
	

14
20

.2
74

29
1	

0.
10

73
44

5p
ly

_f
ev

al
a	

2p
ly

_w
in

ev
al

	
96

2	
27

	
11

	
10

71
7	
	

10
24

7	
	

18
02

.3
50

62
8	

0.
08

59
74

5p
ly

_f
ev

al
a	

3p
ly

_w
in

ev
al

	
95

0	
38

	
12

	
10

65
1	
	

10
19

3	
	

18
01

.2
09

46
6	

0.
08

64
14

5p
ly

_f
ev

al
a	

4p
ly

_w
in

ev
al

	
91

9	
61

	
20

	
13

13
2	
	

12
70

3	
	

20
86

.8
36

17
4	

0.
08

07
76

5p
ly

_f
ev

al
a	

5p
ly

_w
in

ev
al

	
89

3	
97

	
10

	
13

08
7	
	

12
68

6	
	

22
33

.2
20

02
7	

0.
08

66
50

~ 28 of 34 ~

Experiment 6 (Fevala vs. Wineval X Moves First)
Xn

am
e	
	

	
On

am
e	
	

	
Xw

in
	
Ow

in
	
Dr

aw
	
Xm

ov
es

	
Om

ov
es

	
Ga

me
Ti

me
	

	
Mo

ve
Ti

me
1p

ly
_f

ev
al

a	
1p

ly
_w

in
ev

al
	

98
1	

18
	

1	
55

95
	
	

46
14

	
	

0.
47

38
65

	
	

0.
00

00
46

1p
ly

_f
ev

al
a	

2p
ly

_w
in

ev
al

	
80

7	
16

5	
28

	
13

47
5	
	

12
66

8	
	

1.
61

34
18

	
	

0.
00

00
62

1p
ly

_f
ev

al
a	

3p
ly

_w
in

ev
al

	
79

4	
17

5	
31

	
13

64
5	
	

12
85

1	
	

4.
73

24
77

	
	

0.
00

01
79

1p
ly

_f
ev

al
a	

4p
ly

_w
in

ev
al

	
74

3	
21

6	
41

	
14

85
3	
	

14
11

0	
	

25
.3

56
43

2	
	

0.
00

08
75

1p
ly

_f
ev

al
a	

5p
ly

_w
in

ev
al

	
70

7	
24

2	
51

	
14

83
5	
	

14
12

8	
	

14
7.

96
75

13
		

0.
00

51
09

2p
ly

_f
ev

al
a	

1p
ly

_w
in

ev
al

	
96

7	
33

	
0	

75
93

	
	

66
26

	
	

4.
82

61
72

	
	

0.
00

03
39

2p
ly

_f
ev

al
a	

2p
ly

_w
in

ev
al

	
92

6	
70

	
4	

15
01

2	
	

14
08

6	
	

8.
45

17
64

	
	

0.
00

02
90

2p
ly

_f
ev

al
a	

3p
ly

_w
in

ev
al

	
83

5	
15

4	
11

	
14

05
3	
	

13
21

8	
	

11
.1

33
15

3	
	

0.
00

04
08

2p
ly

_f
ev

al
a	

4p
ly

_w
in

ev
al

	
80

5	
18

0	
15

	
15

70
1	
	

14
89

6	
	

32
.9

59
81

6	
	

0.
00

10
77

2p
ly

_f
ev

al
a	

5p
ly

_w
in

ev
al

	
79

8	
18

0	
22

	
15

69
1	
	

14
89

3	
	

16
1.

23
99

78
		

0.
00

52
72

3p
ly

_f
ev

al
a	

1p
ly

_w
in

ev
al

	
99

7	
3	

0	
63

98
	
	

54
01

	
	

28
.0

81
14

0	
	

0.
00

23
80

3p
ly

_f
ev

al
a	

2p
ly

_w
in

ev
al

	
97

9	
17

	
4	

11
34

6	
	

10
36

7	
	

42
.6

04
06

4	
	

0.
00

19
62

3p
ly

_f
ev

al
a	

3p
ly

_w
in

ev
al

	
96

6	
30

	
4	

11
39

7	
	

10
43

1	
	

45
.5

80
10

1	
	

0.
00

20
88

3p
ly

_f
ev

al
a	

4p
ly

_w
in

ev
al

	
90

2	
85

	
13

	
13

69
6	
	

12
79

4	
	

71
.8

27
19

9	
	

0.
00

27
11

3p
ly

_f
ev

al
a	

5p
ly

_w
in

ev
al

	
89

7	
92

	
11

	
13

75
0	
	

12
85

3	
	

19
6.

83
79

21
		

0.
00

73
99

4p
ly

_f
ev

al
a	

1p
ly

_w
in

ev
al

	
99

9	
1	

0	
62

55
	
	

52
56

	
	

18
4.

98
86

48
		

0.
01

60
71

4p
ly

_f
ev

al
a	

2p
ly

_w
in

ev
al

	
97

0	
17

	
13

	
11

50
1	
	

10
53

1	
	

27
0.

33
79

63
		

0.
01

22
70

4p
ly

_f
ev

al
a	

3p
ly

_w
in

ev
al

	
97

6	
15

	
9	

11
69

0	
	

10
71

4	
	

27
5.

40
62

97
		

0.
01

22
93

4p
ly

_f
ev

al
a	

4p
ly

_w
in

ev
al

	
93

8	
39

	
23

	
14

92
2	
	

13
98

4	
	

33
9.

88
66

66
		

0.
01

17
58

4p
ly

_f
ev

al
a	

5p
ly

_w
in

ev
al

	
94

2	
40

	
18

	
14

65
8	
	

13
71

6	
	

46
6.

42
38

95
		

0.
01

64
38

5p
ly

_f
ev

al
a	

1p
ly

_w
in

ev
al

	
10

00
	
0	

0	
63

69
	
	

53
69

	
	

13
13

.6
46

75
7	

0.
11

19
14

5p
ly

_f
ev

al
a	

2p
ly

_w
in

ev
al

	
97

8	
15

	
7	

93
41

	
	

83
63

	
	

16
27

.8
18

52
3	

0.
09

19
46

5p
ly

_f
ev

al
a	

3p
ly

_w
in

ev
al

	
97

6	
18

	
6	

93
24

	
	

83
48

	
	

16
42

.0
75

40
7	

0.
09

29
20

5p
ly

_f
ev

al
a	

4p
ly

_w
in

ev
al

	
94

9	
39

	
12

	
12

71
7	
	

11
76

8	
	

20
53

.9
58

25
7	

0.
08

38
86

5p
ly

_f
ev

al
a	

5p
ly

_w
in

ev
al

	
94

8	
45

	
7	

12
82

1	
	

11
87

3	
	

21
92

.9
54

57
2	

0.
08

88
05

 Continued...

~ 29 of 34 ~

Experiment 6 (Continued)
Xn

am
e	
	

	
On

am
e	
	

	
Xw

in
	
Ow

in
	
Dr

aw
	
Xm

ov
es

	
Om

ov
es

	
Ga

me
Ti

me
	

	
Mo

ve
Ti

me
1p

ly
_w

in
ev

al
	

1p
ly

_f
ev

al
a	

18
8	

81
2	

0	
54

33
	
	

52
45

	
	

0.
45

70
42

	
	

0.
00

00
43

2p
ly

_w
in

ev
al

	
1p

ly
_f

ev
al

a	
36

5	
60

9	
26

	
11

87
2	
	

11
50

7	
	

1.
44

64
80

	
	

0.
00

00
62

3p
ly

_w
in

ev
al

	
1p

ly
_f

ev
al

a	
49

4	
48

4	
22

	
10

36
5	
	

98
71

	
	

3.
96

44
99

	
	

0.
00

01
96

4p
ly

_w
in

ev
al

	
1p

ly
_f

ev
al

a	
52

2	
44

2	
36

	
11

31
3	
	

10
79

1	
	

22
.0

22
44

0	
	

0.
00

09
96

5p
ly

_w
in

ev
al

	
1p

ly
_f

ev
al

a	
49

2	
47

5	
33

	
11

74
4	
	

11
25

2	
	

13
9.

31
16

43
		

0.
00

60
58

1p
ly

_w
in

ev
al

	
2p

ly
_f

ev
al

a	
10

8	
89

2	
0	

73
15

	
	

72
07

	
	

4.
62

34
64

	
	

0.
00

03
18

2p
ly

_w
in

ev
al

	
2p

ly
_f

ev
al

a	
17

2	
81

0	
18

	
13

75
8	
	

13
58

6	
	

7.
90

70
85

	
	

0.
00

02
89

3p
ly

_w
in

ev
al

	
2p

ly
_f

ev
al

a	
40

8	
57

3	
19

	
11

27
8	
	

10
87

0	
	

9.
30

24
68

	
	

0.
00

04
20

4p
ly

_w
in

ev
al

	
2p

ly
_f

ev
al

a	
46

0	
52

4	
16

	
11

96
1	
	

11
50

1	
	

28
.4

53
09

2	
	

0.
00

12
13

5p
ly

_w
in

ev
al

	
2p

ly
_f

ev
al

a	
43

9	
53

7	
24

	
12

20
9	
	

11
77

0	
	

14
9.

28
86

71
		

0.
00

62
26

1p
ly

_w
in

ev
al

	
3p

ly
_f

ev
al

a	
15

	
98

5	
0	

69
93

	
	

69
78

	
	

31
.0

03
62

0	
	

0.
00

22
19

2p
ly

_w
in

ev
al

	
3p

ly
_f

ev
al

a	
43

	
95

4	
3	

12
08

3	
	

12
04

0	
	

45
.2

46
22

1	
	

0.
00

18
76

3p
ly

_w
in

ev
al

	
3p

ly
_f

ev
al

a	
88

	
90

1	
11

	
11

66
5	
	

11
57

7	
	

46
.8

52
03

0	
	

0.
00

20
16

4p
ly

_w
in

ev
al

	
3p

ly
_f

ev
al

a	
11

9	
86

4	
17

	
13

47
6	
	

13
35

7	
	

72
.4

20
12

8	
	

0.
00

26
99

5p
ly

_w
in

ev
al

	
3p

ly
_f

ev
al

a	
14

4	
84

3	
13

	
13

35
5	
	

13
21

1	
	

20
8.

24
61

30
		

0.
00

78
39

1p
ly

_w
in

ev
al

	
4p

ly
_f

ev
al

a	
1	

99
9	

0	
70

73
	
	

70
72

	
	

20
8.

41
75

07
		

0.
01

47
34

2p
ly

_w
in

ev
al

	
4p

ly
_f

ev
al

a	
24

	
96

7	
9	

12
75

9	
	

12
73

5	
	

29
3.

62
34

74
		

0.
01

15
17

3p
ly

_w
in

ev
al

	
4p

ly
_f

ev
al

a	
17

	
97

0	
13

	
12

57
5	
	

12
55

8	
	

29
6.

84
70

63
		

0.
01

18
11

4p
ly

_w
in

ev
al

	
4p

ly
_f

ev
al

a	
51

	
92

4	
25

	
14

89
7	
	

14
84

6	
	

33
9.

68
89

16
		

0.
01

14
21

5p
ly

_w
in

ev
al

	
4p

ly
_f

ev
al

a	
70

	
89

8	
32

	
14

78
0	
	

14
71

0	
	

48
1.

17
58

29
		

0.
01

63
17

1p
ly

_w
in

ev
al

	
5p

ly
_f

ev
al

a	
5	

99
5	

0	
74

92
	
	

74
87

	
	

15
28

.0
14

25
4	

0.
10

20
10

2p
ly

_w
in

ev
al

	
5p

ly
_f

ev
al

a	
45

	
94

6	
9	

11
76

4	
	

11
71

9	
	

19
50

.0
94

71
0	

0.
08

30
43

3p
ly

_w
in

ev
al

	
5p

ly
_f

ev
al

a	
48

	
93

5	
17

	
11

58
9	
	

11
54

1	
	

19
33

.4
60

90
8	

0.
08

35
91

4p
ly

_w
in

ev
al

	
5p

ly
_f

ev
al

a	
11

2	
87

0	
18

	
13

66
8	
	

13
55

6	
	

21
27

.0
88

87
1	

0.
07

81
33

5p
ly

_w
in

ev
al

	
5p

ly
_f

ev
al

a	
15

6	
83

0	
14

	
13

55
9	
	

13
40

3	
	

22
74

.4
12

56
6	

0.
08

43
56

~ 30 of 34 ~

Experiment 7 (Fevalb & Fevalc Alternating First Move)
Xn

am
e	
	

	
On

am
e	
	

	
Xw

in
	
Ow

in
	
Dr

aw
	
Xm

ov
es

	
Om

ov
es

	
Ga

me
Ti

me
	

Mo
ve

Ti
me

1p
ly

_f
ev

al
b	

1p
ly

_f
ev

al
c	

19
	

81
	

0	
93

6	
	

96
7	

	
0.

16
82

12
	

0.
00

00
88

1p
ly

_f
ev

al
b	

1p
ly

_f
ev

al
a	

54
	

29
	

17
	

11
94

	
	

11
73

	
	

0.
16

51
93

	
0.

00
00

70
1p

ly
_f

ev
al

a	
1p

ly
_f

ev
al

c	
36

	
64

	
0	

71
4	

	
72

8	
	

0.
11

65
01

	
0.

00
00

81
1p

ly
_f

ev
al

b	
1p

ly
_w

in
ev

al
	

98
	

2	
0	

57
6	

	
52

8	
	

0.
05

09
18

	
0.

00
00

46
1p

ly
_w

in
ev

al
	

1p
ly

_f
ev

al
c	

4	
96

	
0	

48
1	

	
52

7	
	

0.
04

66
51

	
0.

00
00

46
2p

ly
_f

ev
al

b	
2p

ly
_f

ev
al

c	
0	

50
	

50
	

20
00

	
	

20
50

	
	

1.
64

37
05

	
0.

00
04

06
2p

ly
_f

ev
al

b	
2p

ly
_f

ev
al

a	
75

	
19

	
6	

16
24

	
	

15
97

	
	

1.
38

30
97

	
0.

00
04

29
2p

ly
_f

ev
al

a	
2p

ly
_f

ev
al

c	
58

	
26

	
16

	
17

65
	
	

17
48

	
	

1.
51

02
94

	
0.

00
04

30
2p

ly
_f

ev
al

b	
2p

ly
_w

in
ev

al
	

94
	

6	
0	

12
15

	
	

11
71

	
	

0.
72

99
80

	
0.

00
03

06
2p

ly
_w

in
ev

al
	

2p
ly

_f
ev

al
c	

6	
93

	
1	

12
35

	
	

12
79

	
	

0.
77

60
53

	
0.

00
03

09
3p

ly
_f

ev
al

b	
3p

ly
_f

ev
al

c	
42

	
58

	
0	

15
31

	
	

15
39

	
	

11
.7

34
06

1	
0.

00
38

22
3p

ly
_f

ev
al

b	
3p

ly
_f

ev
al

a	
41

	
32

	
27

	
16

14
	
	

16
12

	
	

9.
30

43
19

	
0.

00
28

84
3p

ly
_f

ev
al

a	
3p

ly
_f

ev
al

c	
84

	
9	

7	
15

23
	
	

14
82

	
	

9.
09

71
50

	
0.

00
30

27
3p

ly
_f

ev
al

b	
3p

ly
_w

in
ev

al
	

96
	

2	
2	

10
16

	
	

97
0	

	
4.

40
92

85
	

0.
00

22
20

3p
ly

_w
in

ev
al

	
3p

ly
_f

ev
al

c	
10

	
84

	
6	

10
33

	
	

10
70

	
	

4.
72

40
47

	
0.

00
22

46
4p

ly
_f

ev
al

b	
4p

ly
_f

ev
al

c	
89

	
11

	
0	

17
23

	
	

16
84

	
	

68
.8

13
28

9	
0.

02
01

98
4p

ly
_f

ev
al

b	
4p

ly
_f

ev
al

a	
65

	
34

	
1	

18
08

	
	

17
92

	
	

59
.8

16
33

5	
0.

01
66

16
4p

ly
_f

ev
al

a	
4p

ly
_f

ev
al

c	
24

	
73

	
3	

15
77

	
	

16
03

	
	

67
.0

19
09

2	
0.

02
10

75
4p

ly
_f

ev
al

b	
4p

ly
_w

in
ev

al
	

96
	

4	
0	

13
02

	
	

12
56

	
	

35
.1

09
53

4	
0.

01
37

25
4p

ly
_w

in
ev

al
	

4p
ly

_f
ev

al
c	

3	
93

	
4	

13
37

	
	

13
80

	
	

36
.8

11
84

9	
0.

01
35

49
5p

ly
_f

ev
al

b	
5p

ly
_f

ev
al

c	
76

	
16

	
8	

16
59

	
	

16
33

	
	

42
1.

63
28

98
	0
.1

28
07

8
5p

ly
_f

ev
al

b	
5p

ly
_f

ev
al

a	
67

	
16

	
17

	
15

70
	
	

15
41

	
	

39
5.

06
47

45
	0
.1

26
99

0
5p

ly
_f

ev
al

a	
5p

ly
_f

ev
al

c	
41

	
53

	
6	

15
51

	
	

15
57

	
	

40
5.

25
32

65
	0
.1

30
39

0
5p

ly
_f

ev
al

b	
5p

ly
_w

in
ev

al
	

98
	

1	
1	

12
06

	
	

11
58

	
	

21
6.

24
68

34
	0
.0

91
47

5
5p

ly
_w

in
ev

al
	

5p
ly

_f
ev

al
c	

3	
95

	
2	

11
58

	
	

12
03

	
	

22
2.

00
71

94
	0
.0

94
03

1

~ 31 of 34 ~

Appendix 2: Makefile
Main program
connectfour:	 boardcontrols.o connectfour-ncurses.o p-human.o
randperm.o recurse-player.o p-random.o p-wineval.o p-fevala.o
	 gcc -g -o $@ $^ -lncurses

%.o:	%.c
	 gcc -g -c $^

%.pdf:	 %.gplot
	 gnuplot $^ > $@

Ncurses
board-disp: board-disp.o ../p-random.o ../p-wineval.o ../
boardcontrols.o ../recurse-player.o ../randperm.o
	 gcc -o $@ $^ -lncurses

~ 32 of 34 ~

Appendix 3: tcsh
Experiment 1 Runner

#!
/b

in
/t

cs
h

fo
re

ac
h

o
(r

an
do

m
1p

ly
_w

in
ev

al
 2

pl
y_

wi
ne

va
l

3p
ly

_w
in

ev
al

 4
pl

y_
wi

ne
va

l
5p

ly
_w

in
ev

al
)

	
co
nn
ec
tf
ou
r
-n
 1
00
0
-a
 -
d
-X
 r

an
do

m
-O

 $
o

-t
en

d

fo
re

ac
h

o
(1

pl
y_

wi
ne

va
l

2p
ly

_w
in

ev
al

 3
pl

y_
wi

ne
va

l
4p

ly
_w

in
ev

al
 5

pl
y_

wi
ne

va
l)

	
co
nn
ec
tf
ou
r
-n
 1
00
0
-a
 -
d
-X
 1

pl
y_

wi
ne

va
l

-O
 $

o
-t

en
d

fo
re

ac
h

o
(2

pl
y_

wi
ne

va
l

3p
ly

_w
in

ev
al

 4
pl

y_
wi

ne
va

l
5p

ly
_w

in
ev

al
)

	
co
nn
ec
tf
ou
r
-n
 1
00
0
-a
 -
d
-X
 2

pl
y_

wi
ne

va
l

-O
 $

o
-t

en
d

fo
re

ac
h

o
(3

pl
y_

wi
ne

va
l

4p
ly

_w
in

ev
al

 5
pl

y_
wi

ne
va

l)
	

co
nn
ec
tf
ou
r
-n
 1
00
0
-a
 -
d
-X
 3

pl
y_

wi
ne

va
l

-O
 $

o
-t

en
d

fo
re

ac
h

o
(4

pl
y_

wi
ne

va
l

5p
ly

_w
in

ev
al

)
	

co
nn
ec
tf
ou
r
-n
 1
00
0
-a
 -
d
-X
 4

pl
y_

wi
ne

va
l

-O
 $

o
-t

en
d

fo
re

ac
h

o
(5

pl
y_

wi
ne

va
l)

	
co
nn
ec
tf
ou
r
-n
 1
00
0
-a
 -
d
-X
 5

pl
y_

wi
ne

va
l

-O
 $

o
-t

en
d

~ 33 of 34 ~

Appendix 4: gnuplot
Experiment 1
set terminal pdf fsize 12
set xrange [-0.1:5.1]
set ylabel "Wins by X plus 1/2 draws"
set xlabel "Difference in Plies"
set title "Comparing Wineval Functions with Alternating First Moves"
unset key
f(x,a)=1000*exp(a*x)/(1+exp(a*x))
fit f(x,a) 'exp1-run2-fgp.txt' using ($5-$2):($12+($16*.5)) via a
 # ply_diff:xwin+.5*draw
plot 'exp1-run2-fgp.txt' using ($5-$2):($12+($16*.5)) w p pt 5, f(x,a) w l lw 5

~ 34 of 34 ~

