* A.I. Connect-Four *

Abe Karplus Science Fair 2010

Abstract

I am using the game Connect-Four to study artificial intelligence, a field in computer science. I wanted to determine the effect of ply depth (the number of plies, which are turns by a single player, that the program looks ahead) and the effect of getting the first move on the chance of winning. To do this, I wrote some computer programs in C to simulate games between computer-controlled players.

I found that increasing the ply depth increases the chance of winning, as does getting the first move. I found that the effect of a single ply-depth increase was greater than the effect of getting the first move. I found that when two identical players faced off, there would be more draws if both had even ply depths.

Table of Contents

Introduction 4
Artificial Intelligence 4
Connect-Four 5
Hypotheses 6
Program Description 7
Experiments 12
Results 13
Conclusions 22
Future Work 22
Acknowledgments 23
References 23
Mentor Statement 23
Appendix 1: Results 24
Appendix 2: Makefile 32
Appendix 3: tcsh 33
Appendix 4: gnuplot 34

Introduction

Artificial intelligence is an important and growing field of study, with practical applications ranging from search and rescue to speech recognition. One good way to study A.I. is through games. These provide a simplified world, so that most of the effort of scientists can be devoted to developing the A.I. and not to constructing robots or simulating the world.

I chose Connect-Four as the game I will study for many reasons. The rules of it are simple, unlike, for example, chess, and so I do not have to devote much effort to the simulation. There are a relatively small number of possible moves at any given point in the game, limiting combinatorial explosion. However, the game still allows a rich depth of strategy, unlike games such as tic-tac-toe.

Artificial Intelligence

Artificial Intelligence, or A.I., is the study of creating intelligent-seeming behavior in computers and robots. Computers excel at fast computation and systematic, repetitive tasks. A.I. researchers make use of this with programs that go through many possible options and select the one that seems best. There are several types of A.I., such as search (which is what this project is concerned with), machine learning, and pattern recognition.

Search attempts to find whichever option fits a certain criterion best. The way I have been implementing search is through the min-max function, which simulates alternating plies where one side selects the maximum value option and the other side selects the minimum. In game algorithms, a ply (plural plies) is one turn by one player, as opposed to a round, which is one turn for each player. A simple min-max algorithm stops looking ahead at a predetermined number of plies, known as the ply depth.

Connect-Four

Connect-Four is a game for two players, where the object of the game is to get four or more pieces of your color in a line vertically, horizontally, or diagonally. The game board is a grid of spaces for pieces, six high and seven wide, as in Figure 1.

Figure 1: The Game board

Pieces are inserted at the top of the game board and fall to the lowest open level in their column. Players attempt to get four pieces in a row while blocking their opponent from doing the same. Whoever gets four of their pieces in a line first wins, but if the board fills, it is a draw.

Perfect Players Exist

One approach to creating a game-playing program is to precompute the best possible move in any given situation and store this information in a hash table. The player then merely looks up in the table what move to make. This creates very fast players that, if a complete table has been precomputed, never make mistakes. This approach only works for fairly simple games, and it is not useful in the real world. If creating an A.I. program for the real world, one does not have the luxury of precomputing all possibilities. Instead, the program has to identify the options, predict what will happen for each potential choice, and identify the best outcome.

The game of Connect-Four has been solved completely, with results that show an advantage for the first player. If the first player moves in the center, they can force a win. If they begin on either adjacent square, the second player can force a draw, and if they begin on any other square the second player can force a win.

Even though perfect players exist for Connect-Four, the game is still useful for studying search algorithms.

Hypotheses

I have several predictions about the outcomes of my experiments. I predict that increasing the ply depth of a recursive search for a given evaluation function will increase the chance of winning. I further predict that going first in a game will give a slight advantage to a player-however, I do not believe that this will be enough to offset a difference in ply depth between players. I hypothesize that fevala will do better than wineval, but not by a large amount.

Program Description

I wrote all the code for this project in C. I chose C for two reasons: I already knew the language, having used it for my science fair project last year, and it is very efficient, so that my experiments would not take too long. All the programs for this project are in the Programs folder.

The program is divided into several files. The connectfour file deals with running the game or games, including interfacing with the player functions and processing commandline arguments. The board-disp file deals with displaying the board for human players. The boardcontrols file deals with the data representation of the board. The recurseplayer and randperm files contain the skeleton of a player function (recurse_play). All the players except p-human call the recurse_play function.

recurse-player

The recurse_play function is a min-max algorithm. Given a board, a ply depth, and an evaluation function, it returns a structure containing which move to make and how good it considers that move. It tries playing each of the seven possible moves in a random order provided by the randperm function. For a one-ply search, it calls an evaluation function on each move and chooses the highest value as the move to return. If the ply depth is higher, it swaps ' X ' and ' 0 ', calls itself recursively (reducing the ply depth by 1) to simulate the opponent's play, and uses the return values to decide its move.

One early problem with the algorithm was that it did not distinguish between immediate and distant wins or losses. With wins, this is not a problem, since it will always take forced wins, if any are available. It did not attempt to delay losses, even though doing so could give its opponent more chance to make a mistake. I solved this problem by adding a "decay" to the algorithm, so that it returns 0.95 times the value of the best move in its return structure, thus favoring quick wins and delayed losses.

Figure 2 is a simplified diagram showing the process of the recurse_play algorithm. The boxes represent calls to the algorithm and the numbers outside of boxes, the results of calls to the evaluation function (here wineval). In a box, the first field ('X' or '0') displays whose turn is being simulated, the next is the value of the move returned, and the last field is what moves the function might return. The diagram is simplified to only three possible moves (A, B, C) instead of the seven of the full game, and it only displays a 3-ply player.

Figure 2: The recurse_play algorithm

boardcontrols

The boardcontrols file contains many functions, all of which manipulate or inspect the representation of the board. The game board is currently represented as an array of columns, each of which is an array of characters. The characters used are ' X ', ' 0 ', or
' ' (space). Here is a list of the boardcontrols functions:
>> clearboard removes all pieces from the board.
>> printboard displays the board on the screen. It uses ASCII graphics-the setup shown in Figure 1 would look like Figure 3. If either player is human, this function is not used (see board-disp below).
>> playtoboard places a piece for the X player into the lowest empty space on the given column.
>> unplayboard removes a piece for the X player from the

0123456
^ ^ ^ ^ ^ ^ ^ given column.
>> invertboard, one of the most frequently used, swaps the X
pieces and the O pieces. Almost all the other
boardcontrols functions are simplified by assuming that it is the X player's turn.
>> is_boardfull determines if the game is a draw.
>> is_movewin determines if the X player has just won by playing in the given column.

0

^ ^ ^ ^ ^ ^ ^
Figure 3: ASCII graphics

Player Functions

Each different player function has its own file: p-human, p-random, p-feval-1, and p-wineval.

The human player takes a number from stdin (standard input) and returns that as its move. Thus, a person can play by typing numbers.

The random player calls recurse_play with evaluation function randeval (which returns a constant), so the recursive algorithm is used simply as a random number generator.

The wineval player calls recurse_play as well. The wineval player provides the evaluation function wineval, which calls is_movewin to determine whether the move just made won the game.

Finally, there is the feval class of player functions, which currently includes fevala, fevalb, and fevalc. Theses players work by looking at each adjacent set of four cells (or "four"), assigning it a value based on what pieces it contains, and returning the sum of the values of the "fours". A four can be blocked (containing pieces from both players), empty, a win (four X pieces), O1 to O3 (one to three O pieces), or X1 to X3 (one to three X pieces). The three feval functions differ only in the values they assign to each possibility (with win causing an immediate return of 10000).

Player \downarrow	Blocked	O3	O2	O1	Empty	X1	X2	X3
fevala	0	-3	-2	-1	0	1	2	3
fevalb	0	-40	-15	-3	0	2	13	22
fevalc	0	-600	-60	-12	-2	10	50	500

This table shows the values assigned by each function. I came up with the constants for fevalb and my dad chose those for fevalc.

connectfour

The main program serves as a wrapper allowing the user to control which players play against each other, for how many games, whether the players alternate first move, and whether to display the board after each move. It also keeps statistics on wins by each player, draws, number of moves by each player, and time taken. I wrote it to be controlled by command-line arguments, so that automating the experiments would be easier. Automation was done with Makefiles and tcsh scripts; see Appendix 2 for the Makefiles and Appendix 3 for a sample tcsh script.

board-disp

At school science fair, I received some complaints about the display of the board. The computer frequently moved too fast for humans playing against it to easily determine where it last moved. I decided to have the display highlight where the last move was made. Unfortunately, using basic ASCII graphics does not permit any "special effects" like highlighting or color. Therefore, I created a new program for displaying the board using ncurses. Ncurses (short for "new cursor optimization") is a programming library that allows textual graphics with color, bold, italics, some non-ASCII characters, and more effects. Figure 4 is a screenshot from the display program I wrote using ncurses.

Connect-Four


```
    @12 3 4 5 6
Player 有, it is your move.
```


To enter your move, type the number of the column where you wish to play.

Figure 4: Ncurses display
Due to some problems with screen output by other functions, I wrote the ncurses program as a separate file, compiled separately and called by the main program in the connectfour file by means of a system command. The main program will call the board-disp program if no players are specified in the command line. I also have the board-disp program set up so that it will ask the player who they want to play against (another person or one of four difficulty levels on the computer).

Experiments

I did seven experiments in this project. For the first experiment, I looked at the difference between wineval players with different amounts of lookahead (ply depth). A short tcsh script ran all players (random and 1ply_wineval through 5ply_wineval) against all players. Each pair of players played 1000 games, and X and O alternated who moved first to eliminate any first-move bias.

The second experiment ran each wineval player against every other wineval player including itself, but with X always going first. This investigated both the effect of first move on its own (when X and O are the same) and in conjunction with differences in ply depth. My experiments only went as far as 5 plies of lookahead for two reasons. When I ran the first experiment, I had only written player functions for 1 through 5 plies. I later changed the code so that the user can specify up to 9 plies. Also, each additional ply takes 7 times as long (a phenomenon known as combinatorial explosion), and the experiment took quite long enough at only 5 plies.

The third experiment was like the first, only for the fevala player.
The fourth experiment was like the second, only for the fevala player.
The fifth experiment ran each fevala player (1 to 5 plies) against each wineval player, with first move alternating.

The sixth experiment ran each fevala player against each wineval without first move alternation.

The seventh experiment was a test of fevalb and fevalc. It tested them against each other, fevala, and wineval, though only with identical ply depths and first move alternation for 100 games.

Results

See Appendix 1 for a complete set of all data from these experiments.
Wineval: Alternating First Move
The value shown is wins by the X player plus one-half of the draws from 1000 games, when X and O alternate who moves first.

O \downarrow X \rightarrow	random	1ply	2ply	3ply	4ply	5ply
random	498					
1ply	246	488				
2ply	58	110.5	501			
3ply	49.5	101.5	345.5	517		
4ply	12	24	218.5	287	515	
5ply	9	21.5	199	260.5	399.5	481

See Figure 5 for a graph.
Comparing Wineval Functions with Alternating First Moves

Figure 5: The difference in plies makes a large difference in who usually wins-specifically, an increase in ply depth causes a larger percentage of wins. The curve shown is a logistic function fitted to the data by gnuplot, see sample script in Appendix 3.

One other phenomenon I noticed in the data was the pattern of draws when the two players were identical:

1ply	2ply	3ply	4ply	5ply
0	120	28	158	46

It appears that the number of draws alternates with the ply depth, with even ply depth producing many more draws. This makes sense when we consider what ply depth means. Looking an odd depth ahead means that the player is better at offense than defense. An even depth, with equal ability at offense and defense, means that more attempts will be blocked, causing the board to fill up and increasing the likelihood of a draw.
Wineval: X Moves First
The value shown is wins by the X player plus one-half of the draws from 1000 games, when X always goes first:

O $\downarrow \mathrm{X} \rightarrow$	random	1ply	2ply	3ply	4ply	5ply
random	557	832.5	953.5	973.5	991	987
1ply	318.5	595	932.5	925	988.5	987.5
2ply	74	151.5	525.5	679.5	792.5	817.5
3ply	48.5	113.5	361.5	558.5	759	767
4ply	12.5	21.5	233	293.5	537.5	651
5ply	16.5	24.5	220.5	296.5	416.5	528.5

The numbers on the main diagonal are always greater than 500, meaning that going first increases the chance of winning. The cells directly below this show that going first does not offset the disadvantage of being one ply behind, as all those numbers are substantially under 500. See Figure 6 for a graph.

Comparing Wineval Functions with X Going First

Figure 6: The first player has an advantage, but this advantage is not large enough to offset a difference in ply depth between players. The curve shown is a logistic function fitted to the data by gnuplot.

Fevala: Alternating First Move

The value shown is wins by the X player plus one-half of the draws from 1000 games, when X and O alternate who moves first.

O $\downarrow ~ X ~$	random	1ply	2ply	3ply	4ply	5ply
random	504.5					
1ply	27	497				
2ply	33	216	495			
3ply	5	208.5	370	517		
4ply	0	0	379.5	422	488.5	
5ply	2	406.5	290.5	521	650	482.5

Amazingly, 5ply consistently performs much worse than 3 or 4 ply, and plays worse against 1 ply than 2 ply. See Figure 7 for a graph.

Comparing Fevala Functions with Alternating First Moves

Figure 7: The top line is when the O player is at $5 p l y$, the next line when it is at $4 p l y$, and so on. Note that the 5ply player loses against both the 4ply and 3ply players.
Fevala: X Moves First
The value shown is wins by the X player plus one-half of the draws from 1000 games, when X always moves first. Figure 8 shows this data.

O $\downarrow \mathrm{X} \rightarrow$	random	1ply	2ply	3ply	4ply	5ply
random	532.5	998	987	1000	999	999
1ply	72	561	822	1000	1000	774
2ply	58	232	418.5	755.5	505.5	985
3ply	13	400.5	489.5	775	736.5	583.5
4ply	0	0	287	558.5	538	384.5
5ply	6	606.5	609.5	630	669	724

Comparing Fevala Functions with X Going First

Figure 8: Going first gives fevala an advantage as it does wineval. The advantage is more notable at higher plies, and $2 p l y$ seems to be disadvantaged by going first.
Fevala vs. Wineval: Alternating First Move
The value shown is wins by the X player plus one-half of draws from 1000 games, when X (fevala) and O (wineval) alternate first move.

O \downarrow X \rightarrow	1ply	2ply	3ply	4ply	5ply
1ply	898	933	993	1000	997
2ply	710	880.5	960.5	974	967.5
3ply	701.5	723	927.5	987.5	956
4ply	632.5	679	883	940.5	929
5ply	620.5	664.5	885	934.5	898

Fevala is superior to wineval considering win percentage, regardless of the number of plies for each player. Figure 9 is a graph of this data.

Fevala (X) vs. Wineval (O) with X and O alternating

Figure 9: This graph shows that, when alternating first move, fevala plays better than wineval for a difference of less than five plies. The line shown is straight, because the logistic function no longer fits the data well.

Fevala vs. Wineval: X Moves First

This experiment has two parts. In the first, X is fevala and O wineval, in the second their evaluation functions are swapped.

O $\downarrow \rightarrow$	1ply fevala	2ply fevala	3ply fevala	4ply fevala	5ply fevala
1ply wineval	981.5	967	997	999	1000
2ply wineval	821	928	981	976.5	981.5
3ply wineval	809.5	840.5	968	980.5	979
4ply wineval	763.5	812.5	908.5	949.5	955
5ply wineval	732.5	809	902.5	951	951.5

O $\downarrow \rightarrow$	1ply wineval	2ply wineval	3ply wineval	4ply wineval	5ply wineval
1ply fevala	188	378	505	540	508.5
2ply fevala	108	181	417.5	468	451
3ply fevala	15	44.5	93.5	127.5	150.5
4ply fevala	1	28.5	26.5	63.5	86
5ply fevala	5	49.5	56.5	121	163

With the added advantage of first move, fevala merely becomes even more likely to win. If wineval is given the advantage of first move, it can play better than fevala for the 3 ply, 4ply, and 5ply wineval against 1 ply fevala. Figures 10 and 11 show this data.

Fevala (X) vs. Wineval (O) with X Going First

Figure 10: Fevala will beat wineval when wineval is less than 5 plies deeper and fevala goes first.

Fevala (O) vs. Wineval (X) with X Going First

Figure 11: Wineval can beat fevala if it goes first and has a large advantage in ply depth.

Fevala, Fevalb, Fevalc, and Wineval

This is the only experiment which uses the fevalbv and fevalc functions. In this experiment, players are matched against others of the same ply depth only. In the table, A, B, and C represent the three feval functions while W stands for wineval. The value shown is wins by X plus one-half draws from 100 games.

X vs. O	B vs. \mathbf{C}	B vs. A	A vs. C	B vs. W	W vs. C
1ply	19	62.5	36	98	4
2ply	25	78	66	94	6.5
3ply	42	54.5	87.5	97	13
4ply	89	65.5	25.5	96	5
5ply	80	75.5	44	98.5	4

At all ply depths, B and C can both beat W. At 1ply, the ordering is simple- C beats B beats A. At two and three plies, C beats B and B beats A, but A beats C. At four and five plies, the ordering is again simple- B beats C beats A.

Time Per Move
Here is the time per move in seconds that each player takes when faced against itself.

1ply wineval	2ply wineval	3ply wineval	4ply wineval	5ply wineval
0.000007	0.000052	0.000371	0.002097	0.015018
1ply fevala	2ply fevala	3ply fevala	4ply fevala	5ply fevala
0.000065	0.000430	0.002858	0.012625	0.129163

Note that each increase of one ply takes approximately seven times as long and that fevala takes about nine times as long as wineval. Figure 12 is a graph of these times.

Figure 12: Time taken per move (displayed on a log scale).

Conclusions

My results showed that increasing ply depth increases the chance of winning, and that going first also increases the chance of winning, but usually not by as much as an increase in ply depth. This all agrees with my hypotheses. One result that I did not expect was the pattern of increased draws at even ply depths between identical wineval players.

Fevala plays much better than wineval, which is not what I expected. I hypothesized that it would only be slightly better. The fevalb and fevalc programs played stronger than fevala on average, though there were some interesting exceptions.

I noted that a 2-ply player performed much better than a 1-ply player without a noticeable decrease in speed (though theoretically, an extra ply takes 7 times as long). A 5-ply search took much longer than a 4-ply search, but played only slightly better. These diminishing returns are a common phenomenon with brute-force search programs. At some point improved performance is only feasible through smarter programs that do not search as much, such as the feval programs I wrote.

While doing this project, I improved my knowledge of C, learned some tcsh and some gnuplot, and learned some strategies for winning at Connect-Four. I also found out (again) how much work it takes to do a good science fair project.

Future Work

I plan to work on smarter evaluation functions. I have written three feval-type functions, and have one more idea for those. Using multiple regression would allow me to determine the "optimal" set of constants for a feval function. One other thing to consider is a more thorough evaluation function that looks at how many moves would be required to complete a four.

I also want to change the board representation, because it is space-inefficient, and a more compact version would allow me to implement a faster version of invertboard using table lookup. A possible alternative representation would change the columns-asarrays model to columns-as-bytes, shrinking by a factor of 6 . A column byte would begin with a number of zeros one more than the number of empty cells, followed by a one. The remaining bits would correspond to the filled cells of the column, with 1 s representing ' X 's and 0s, '0's.

Acknowledgments

I wish to thank my father, Kevin Karplus, for mentoring me on this project. (See his Mentor Statement.) I also wish to thank my mother, Michele Hart, for her support and patience.

References

The information about a "Perfect Player" for Connect-Four came from

- The Wikipedia article on Connect-Four at http://en.wikipedia.org/wiki/Connect_Four
- "John's Connect Four Playground" at http://homepages.cwi.nl/~tromp/c4/c4.html
The min-max algorithm came from
- Problem-Solving Methods in Artificial Intelligence by Nils J. Nilson. McGraw-Hill, 1971.
Any other background information in this report I either already knew before beginning this project or learned from my father.

Mentor Statement

Abe started this project with some facility in C, but without much experience of recursive programming. He did a little reading on artificial intelligence and discussed with me how to structure his program. All the code is his own-I provided only minimal debugging help once or twice when he got stuck. We also designed together the more compact data structure (using only 7 bytes to represent the board), but he decided to delay implementing that.

I provided him some direct instruction on using tcsh scripts and gnumake to run his experiments, but almost all the scripting is his own. I also reminded him how to use gnuplot and showed him how to get it to produce PDF output.

For the experimental design, I suggested the experiments of comparing players with different numbers of plies and of determining how valuable the first move is for different players. The analysis of the results is his own. He also found on his own the result in the literature that a perfect first player has a forced win.

Appendix 1: Results

Experiment 1 (Wineval Alternating First Move)

Xname

 random random 둥 randomrandom
1ply_wineval 1ply_wineval 1ply_wineval
 1ply_wineval 2ply_wineval 2ply_wineval 2ply_wineval 2ply_wineval 3ply_wineval 3ply_wineval $3 p l y _w i n e v a l$
$4 p l y$ wineval

Experiment 2 (Wineval X Going First)

Expermiment 3 (Fevala Alternating First Move)

 .

Experiment 4 (Fevala X Moves First)

Experiment 5 (Fevala vs. Wineval Altenating First Move)

Experiment 6 (Fevala vs. Wineval X Moves First)

Experiment 6 (Continued)

 .

Experiment 7 (Fevalb \& Fevalc Alternating First Move)

 .

Appendix 2: Makefile

Main program
connectfour: boardcontrols.o connectfour-ncurses.o p-human.o randperm.o recurse-player.o p-random.o p-wineval.o p-fevala.o gcc -g -o \$@ \$^ -lncurses
\%.о: \%.c
gcc -g -c \$^
\%.pdf: \%.gplot gnuplot \$^ > \$@

Ncurses

board-disp: board-disp.o ../p-random.o ../p-wineval.o ../ boardcontrols.o ../recurse-player.o ../randperm.o gcc -o \$@ \$^ -lncurses

Appendix 3: tcsh

Experiment 1 Runner
\#!/bin/tcsh
foreach o (random 1ply_wineval 2ply_wineval 3ply_wineval 4ply_wineval
5ply_wineval)
connectfour -n $1000-a-d-X$ random -0 \$o -t
end
foreach o (1ply_wineval 2ply_wineval 3ply_wineval 4ply_wineval 5ply_wineval)
connectfour -n $1000-a-d-X$ 1ply_wineval -0 \$o -t
end
foreach o (2ply_wineval 3ply_wineval 4ply_wineval 5ply_wineval)
connectfour -n $1000-a-d-X$ 2ply_wineval -0 \$o -t
end
foreach o (3ply_wineval 4ply_wineval 5ply_wineval)
connectfour -n $1000-a-d-X$ 3ply_wineval -0 \$o -t
end
foreach o (4ply_wineval 5ply_wineval)
connectfour -n $1000-a-d-X 4 p l y _w i n e v a l ~-0 ~ \$ 0-t$
end
connectfour -n 1000 -a -d -X 5ply_wineval -0 \$0 -t
foreach o (5ply_wineval)

Appendix 4: gnuplot

```
Experiment }
set terminal pdf fsize 12
set xrange [-0.1:5.1]
set ylabel "Wins by X plus 1/2 draws"
set xlabel "Difference in Plies"
set title "Comparing Wineval Functions with Alternating First Moves"
unset key
f(x,a)=1000* exp(a*x)/(1+exp(a*x))
fit f(x,a) 'exp1-run2-fgp.txt' using ($5-$2):($12+($16*.5)) via a
# ply_diff:xwin+.5*draw
plot 'exp1-run2-fgp.txt' using ($5-$2):($12+($16*.5)) w p pt 5, f(x,a) w l lw 5
```

