
Find it Fast
Hash Tables and

Collision Resolution

Abe Karplus
Science Fair

11 February 2009

Table of Contents
Abstract � 1
Importance of Fast Retrieval� 2
What is a Hash Table? � 2
Hypothesis � 4
Clustering � 4
Collision Resolution Algorithms � 4

Linear Probing

Linked List

Cellar

Rehashing � 8
Testing Procedures � 9
Procedure � 11
Input Files � 12
Results � 13

Data

Graphs

Conclusions � 17
What I Learned � 17
Acknowledgments � 17
Bibliography � 17
Mentor Statement � 18
Appendix 1: Output Data � 19
Appendix 2: Makefile � 27
Appendix 3: Readword � 29
Appendix 4: Linear Search � 31
Appendix 5: Linear Probing � 35
Appendix 6: Linked List � 40
Appendix 7: Cellar� 45

Abstract
Hash tables are an efficient method for data storage and access. They allow accessing
data without extensive search. When two keys hash to the same location, a collision
resolution algorithm is used to determine where the keys should be placed. I studied
three collision resolution algorithms (CRAs): linear probing, linked list, and cellar. My
hypothesis was that all three hash table CRAs would perform about equally well, and all
much better than a simpler linear search method.

I measured time, memory usage, and number of string comparisons (as a more precise
proxy for time) on 50 different inputs for these three hash methods and for linear search.
As expected, hashing was a hundred times faster than linear search, taking 0.35–0.5
seconds to look up the approximately one million words of the Bible, instead of 45
seconds for linear search.

The cellar and linked list CRAs always performed well. Contrary to my hypothesis, linear
probing sometimes performed poorly when it didn’t rehash until the table was full.
Rehashing when the table was only 70% full allowed linear probing to perform on par
with linked list and cellar.

Abe Karplus Hash Tables

~1~

Importance of Fast Retrieval
People use computers to store large quantities of information and access it quickly. To
understand how this is done, consider the following analogy:

You are writing a dictionary and keeping the words you find on an unsorted set of index
cards. You come across a word and need to look it up. You could look through from the
beginning until you find the word or get to the end. This is called linear searching, and it
could take a while, especially if the set is big. On a computer, the equivalent of this set
of index cards is an array.

What if you put the index cards in pigeonholes and had a method of just looking at the
word and having it tell you in which pigeonhole to look for the index card? This method
is known as a hash table, and the function for converting a word into a pigeonhole
address is known as a hash function. The disadvantage of this method is that the hash
function takes time to compute.

Does the reduced search time offset the time taken to compute the hash function? How
much time is saved? Does it depend on the size of the input?

What is a Hash Table?
A hash table consists of three parts: a hash function, a data structure that includes an
array, and a collision resolution algorithm (CRA). Linear search includes only the data
structure, not the hash function or CRA.

First let’s look at the hash function. This function takes as input a key, usually a word,
and outputs a numeric value, called the hash value of that key. The hash function is a
true function in that the same key as input will always produce the same numeric output.

How does it do this? Figure 1 shows a sample hash function—the one I used in my
code. To understand how it works, you must know how characters are converted into
numbers by the ASCII standard. Each character (letter, number, or punctuation) has a
specific numeric value.In ASCII, uppercase is different from lowercase (A=65, Z=90,
a=97, z=122). I did not want words that were identical except for punctuation being
treated as different words, and so I used the ‘tolower’ function, which converts
uppercase letters into lowercase.

In the function, we have a variable called val that starts at 1. For each character in the
word, that character’s “lowered” value is added to the previous val, and then the whole
value multiplied by a very large prime to become the new val. All computation is done
in 32-bit words, which means that whenever val gets higher than 232, the remainder
when divided by 232 is taken. Figure 2 has an example computation.

Abe Karplus Hash Tables

~2~

#define START 1
#define PRIME 999999137

unsigned long hash1(char* str)
{
 unsigned long val;

 for(val = START; *str != 0; str++)

 {
 val = (val + tolower(*str)) * PRIME;

 }

 return(val);
}

Figure 1. This code in the programming language C for the hash function I used.See
main body for explanation.

� Hash(“d”) � = 2215665029
� Hash(“do”)� = 2008927860
� Hash(“dog”)� = 85621179

� Hash(“god”)� = 1703519611

Figure 2. Here is an example computation for “dog”, and the hash value for “god” to
show that the order of the letters matters.

All the keys are stored in an array. You can think of this array as a set of pigeonholes.
The array gets allocated—memory space is set aside for it—before entering the keys.
The computer knows how large the array is because it has allocated it.

The remainder when dividing the hash value of a word by the size of the array specifies
which pigeonhole, the hash location, to put the key in, together with whatever data is
associated with it—for example, in a dictionary, the definition of the word. When you get
the hash value for a word, you go to that location, and check if it’s already there—after
all, a word can appear more than once in a document. If the word is not already there,
you put it in that location.

A hash function always gives you the same value for the same word, but it can return
the same value for different words. The remainder can be the same, even for different
hash values. When two different keys hash to the same location we call it a collision.
Let’s say you have key A and it hashes to position 79. It would be put there. Then you
have key B and it also hashes to position 79. Since A is already there, you need to find
somewhere else for B to go. To do this, you need a collision resolution algorithm—a
method for determining where colliding keys should be stored. I will be studying three:
linear probing, linked list, and cellar.

Abe Karplus Hash Tables

~3~

It is possible to write perfect hash functions, ones in which different words always
produce different hash values, but to do so, you need to know what keys will be in the
data set you will be hashing, a luxury not often afforded to programmers. I did not study
perfect hash functions for this report.

Hypothesis
I hypothesize that, with any collision resolution algorithm, hashing will be significantly
faster than linear search and that there will be little difference between different collision
resolution algorithms.

Clustering
Collisions result in clustering. There are two types of clustering: Primary clustering,
collisions between keys with the same hash value, and secondary clustering, collisions
between keys with different hash values. Clustering greatly reduces the search
efficiency. If clusters are big enough, then the algorithm can be as slow as linear search.

Primary clustering occurs in all methods and is handled by an algorithm like linear
search, though often by following pointers, rather than stepping through an array.
Pointers are addresses of locations in memory. To follow a pointer means to access the
location it points to. A null pointer has the value zero, which means that it does not point
anywhere. A linked list consists of several objects, each one containing the key,
associated data, and a pointer to the next item in the list. The last item in the list has a
null pointer, as there is no next item. An empty list is just a null pointer.

Secondary clustering occurs in CRAs that use cells in the table to store collinding keys,
like linear probing and cellar, but not linked list. The linear probing example shows how
how secondary clustering occurs.

Collision Resolution Algorithms
A collision resolution algorithm is a method for determining where colliding keys should
be stored. There are several. The three I will be studying are: linear probing, linked list,
and cellar.
Linear Probing

Linear probing is a lot like linear search, but, instead of starting at the beginning, you
start at the hash location of the key and do a linear search from there, checking to see
• if the key is already there, then you can return it;
• if the space is empty, then you can insert the key; or
• if there’s something else there, then you go on to the next space and check again.

In Figure 3, clusters are building up, and secondary clustering occurs.

Abe Karplus Hash Tables

~4~

Figure 3. In the diagram, keys A1, B5, and so on have hash values of 1, 5, and so on. In
the first column, A1, B5, and C7 have each been placed in their respective positions. In
the second column, D1 would go in position 1, but A1 is already there, so it has to go in
position 2. E3 goes in position 3, but F5 collides with B5 and has to go in position 6. In
the third column, G4 goes in position 4, but when H2 attempts to enter, it can’t go in
positions 2 through 7 and so must go in position 8, even though it is the only key with a
hash value of 2.

Abe Karplus Hash Tables

~5~

Linked List

The linked list method of resolving collisions places all the colliding keys for a given
hash value in a sort of chain, or linked list, attached to the corresponding space in the
hash table. The advantage of linked list hashing is that it completely removes secondary
clustering—that is, collisions between keys with different hash values. Primary
clustering, collisions between keys with the same hash value, is handled by something
that amounts to a linear search, but by following pointers, rather than stepping through
an array. Figure 4 shows how collisions are handled in the linked list method.

Figure 4. These pictures show one pigeonhole of a hash array. In the first picture,
nothing has been hashed to that spot, so it has a null pointer. In the second one, “A” has
been hashed there and added to the list. In the third one, “B” is hashed there. Note that
it is added to the beginning of the list. Both “A” and “B” are added in the same way: a
piece of space is allocated, the next pointer of the new thing is set to point to the
beginning of the existing list, then the pigeonhole pointer is set to point at the newly
allocated space.

Abe Karplus Hash Tables

~6~

Cellar

Like linked list, cellar uses chains of pointers for colliding keys. Like linear probing,
however, the colliding results are stored in the table, not in newly allocated space. The
cellar CRA has a portion of the table walled off (the cellar) and only used for collision
resolution storage.

The advantage of cellar is that it greatly reduces secondary clustering compared to
linear probing. Its advantage over linked list is that reduces the number of times the
memory allocator is called.

If the hash position of a key is empty, you can put the key there. Otherwise look down
the chain of pointers for the key. If it is not on the chain, put it in the lowest empty spot in
the table, and set the pointer at the end of the old chain to point to it. Figure 5 shows
what happens when seven keys are added to a hash table using the cellar CRA.

Figure 5. In the first column, A2, B4, and C6 are hashed to positions 2, 4, and 6,
respectively. In the second column, D7 is hashed to position 7. E4 would go in position
4, but B4 is there, so it is placed in the lowest available slot (9). A pointer from 4 to 9 is
then made. In the third column, F2 collides with A2, and so it is placed in the lowest
available spot (8), and a pointer is made from 2 to 8. G4 collides with B4, so the pointer
is followed to E4. Since this is not a match, and E4 has a null pointer, G4 is put in the
lowest available position (5), and a pointer is made from 9 to 5. There is no secondary
clustering in this example, but if H5 were added, then secondary clustering would occur.

Abe Karplus Hash Tables

~7~

Rehashing
What happens when the table gets too full—when there’s no more space in the table to
put in any more keys? Then you have to rehash. Rehashing consists of allocating space
for a larger array. Then you have to transfer all the keys from the old array into the new
array. Of course, since the table size matters in computing their positions, this requires
going to each key, getting its hash value, and recomputing its hash location. After you’ve
rehashed, new keys can just be hashed into the table as normal, using its new size to
compute the hash location

How does the algorithm know when to rehash? It knows how much space is allocated
for the table, and every time a new key gets added, it increments a counter, so it knows
how much of the space allocated is actually being used.

Rehashing slows things down a bit, because it has to go through the entire table, to get
all the keys to rehash. However, rehashing causes a subsequent speedup, because
clustering has been reduced.

For linked lists, rehashing is not forced, but can improve efficiency. Inside the lists, no
new allocation is required—pointers can simply be changed to make the new chains.

For linear probing, it is often a bad idea to wait until the table is completely full until
rehashing, because mostly full tables have a very large amount of secondary clustering.
Rehashing when the table is only 70–80% full actually speeds the program up on
average, despite the additional time taken for the rehashes. To experiment with how full
the table should be before rehashing, I introduced a parameter (FULLNESS) into the
program, and I tested linear probing rehashing when 70%, 80%, 90%, or 100% full.

Cellar has very little secondary clustering, and so can be rehashed when completely
full. One parameter for cellar that I did not experiment with was what fraction of the table
is reserved for the cellar. I chose a constant 14% as recommended in the PDF of a
lecture by Dr. Hussain.

You don’t need to rehash for linear search when you need more space—you can just
transfer the data as a block, because linear search has no order to the keys and no
gaps.

Abe Karplus Hash Tables

~8~

Testing Procedures
First, I wrote a linear-search C program as a control to see how much hashing helped
compared to the simpler algorithm. Also linear search allowed me to find several bugs n
my hash code, comparing the buggy code’s output to that of linear search. I used
TextEdit v1.3 to create the files, and Gnu C Compiler v3.3 to compile them. All
experiments were performed on a 1.8GHz PowerPC G5 with 512 MB DDR SDRAM,
running Mac OS 10.3.9.

I wrote linear probing, linked list, and cellar collision resolution algorithms in C. I
debugged them by comparing the number of distinct words with that output be the
linear-search program. Most of the bugs I found had to do with rehashing moving things
around or forgetting to adding one to the string length for memory allocation when
copying strings.

Each run of a program outputted number of words, number of distinct words, time,
number of string comparisons, and memory usage in bytes. To reduce errors in time
measurement, all the words were read into an array before timing was started and the
hashing routine called. I used getrusage to find the time used, but getrusage only
returned time to the hundredth of a second, which is too large an increment for some of
the smaller inputs. Time also had a lot of random variability, especially for the small
measurements (see Figure 6), and so in the final analysis I used only string
comparisons and memory usage.

To get more control over the manipulated variables (number of words and number of
distinct words), I wrote a program whose output is all the distinct words in its input.

I used GNU Make version 3.79 to control the compiling and to run the experiment (see
Appendix 2). I then graphed the results using Gnuplot v3.8j, as shown in the Results
section.

Abe Karplus Hash Tables

~9~

Figure 6. This graph shows the relationship between string comparisons divided by time
on the y-axis and words on the x-axis. Linear search has the most string comparisons
per second and the least variability, because it does not have the overhead of hashing.
For inputs over 20,000 words, string comparisons per second is fairly constant. Under
that, the time measurements are unreliable, and so the spread is bigger. Because the
time measurements were so unreliable, I used string comparisons as a proxy in
subsequent graphs.

Abe Karplus Hash Tables

~10~

Procedure
Here are the steps of my project in list form:
1)Write a linear-search program in C as a control.
2)Write linear probing, linked list, and cellar collision resolution algorithms in C. To

reduce errors in time measurement, all the words are read into an array before timing
is started and the hashing routine called.

3)Debug programs by comparing the number of distinct words with that output by the
linear-search program.

4)Write a program which outputs all the distinct words in its input, to get more control
over the manipulated variables (number of words and number of distinct words).

5)Select 6 input files from Project Gutenberg (see Input Files).
6)For each hashing method, do fifty tests: 8 for each of the six files and 2 extra for a

concatenation of all the files. The 8 tests consist of two sets of four. One set consists
of the file, a concatenation of the file with itself, four copies of the file, and eight copies
of the file. The other set consists of all the distinct words in the file, as well as 2, 4,
and 8 copies of all the distinct words. The two extra runs are a concatenation of all the
files and a concatenation of all the distinct word files.

7)Plot results using gnuplot.

The programs for linear search and the three hashing methods are provided in
Appendices 3 through 7.

Abe Karplus Hash Tables

~11~

Input Files
For each hashing method, I did fifty tests: 8 for each of the six files and 2 extra for a
concatenation of all the files. The 8 tests consisted of two sets of four. One set
consisted of the file, a concatenation of the file with itself, four copies of the file, and
eight copies of the file. The other set consisted of all the distinct words in the file, as well
as 2, 4, and 8 copies of all the distinct words. The two extra runs were on a
concatenation of all the files and a concatenation of all the distinct word files.

The purpose of the self concatenations and of the distinct-word files was to get a better
idea of whether it was the number of words or the number of distinct words that was
affecting the results.

File Author Words Distinct Words

The Gift of the Magi O. Henry 2079 758

The Importance of Being Earnest Oscar Wilde 20741 2649

A Christmas Carol Charles Dickens 28856 4342

The Call of the Wild Jack London 32122 4784

A Tale of Two Cities Charles Dickens 137477 9882

Complete Douay-Rheims Bible Anonymous 1029071 18556
Table 1. I used six different data files downloaded from Project Gutenberg. The reason I
wanted several different sizes was to determine how the hashing was affected by
different numbers of words and distinct words.

Abe Karplus Hash Tables

~12~

Results
Data

For each trial, I recorded words, distinct words, time (in seconds), number of string
comparisons, and memory usage (in bytes). In Appendix 1, I have a complete list of all
the data I collected.
Graphs

All of the graphs in this section use a logarithmic scale on both axes, because the data
was spread over such a wide range.

Figure 7 compares linear search with four variants of linear probing. Figure 8 shows
how the number of string comparions is affected by number of distinct words for all
methods. Figure 9 makes the comparison clearer, by plotting string comparisons per
word on the y axis. Figure 10 demonstrates how linear search is dependent on the
product of the number of words and number of distinct words. Figure 11 shows that
linked list and cellar are very similar in speed. Figure 12 shows that memory use, which
is similar for all methods, depends only on distinct words.

Figure 7. This figure demonstrates how lowering the FULLNESS parameter on linear
probing causes it to approximate a straight line—a constant number of string
comparisons per word looked up. Note that with FULLNESS=1 (that is, not rehashing
until the table is completely full), linear probing is almost as slow as linear search.

Abe Karplus Hash Tables

~13~

Figure 8. This graph shows that number of string comparisons does not depend very
much on number of distinct words, except for linear probing at FULLNESS 1.0 and
linear search.

Figure 9.This graph shows that for all the CRAs, except linear probing 1.0 and linear
search, string comparisons per word is a constant of about 2.

Abe Karplus Hash Tables

~14~

Figure 10. This graph shows that for linear search the number of string comparisons is
linearly dependent on the number of words multiplied by number of distinct words.

Figure 11. This graph shows that for linked list and cellar, there is a linear relationship
between words and string comparisons.

Abe Karplus Hash Tables

~15~

Figure 12. The graph shows that memory use divided by the number of distinct words is
roughly constant, using about 10 to 20 bytes per distinct word. Linked list and cellar
generally use the most memory per distinct word, due to the pointers.

Abe Karplus Hash Tables

~16~

Conclusions
As hypothesized, hashing was a hundred times faster than linear search, even for small
data sets. The three collision resolution algorithms, linear probe, linked list, and cellar,
were comparable in speed. Of them, linear probing generally took the longest,
particularly if the table was allowed to get too full before rehashing, but also took the
least memory. Cellar and linked list were very similar with respect to string comparisons
and memory usage, but linked list usually used a little less memory.

What I Learned
For this project, I learned how to program in C, particularly concerning pointers, strings,
and memory allocation. I learned how to use Make, a tiny bit of awk, and more about
gnuplot. I learned a lot more on how to debug programs, and I learned how to better
present data in gnuplot. I also learned again that science fair projects always take a lot
longer than I expect.

Acknowledgments
To my father, Kevin Karplus, for helping me understand C and Make, as well as
providing me assistance on the more confusing parts of hashing.
To my mother, Michele Hart, for drawing the arrows on the diagrams in this report.
To the Project Gutenberg website, from which my input files were downloaded.

Bibliography
Cormen, Thomas H., Charles E. Leiserson, and Ronald L. Rivest. Introduction to
� Algorithms (Cambridge, Massachusetts: MIT Press) and (New York: McGraw-Hill
� Book Publishing Company) 1990.
Drozdek, Adam and Donald L. Simon. Data Structures in C (Boston: PWS Publishing
� Company) 1995.
Gookin, Dan. C for Dummies (Hoboken, NJ: Wiley Publications) 2004.
Hussain, Muhammad. Hash Tables
� http://faculty.ksu.edu.sa/mhussain/CSC212/Lecture%20-%20Hashing.pdf
Kernighan, Brian W. and Dennis M. Ritchie. The C Programming Language, Second
� Edition (Englewood Cliffs, NJ: Prentice Hall) 1988.
Project Gutenberg. http://www.gutenberg.org, 2008.
Wikipedia. Hash Function http://en.wikipedia.org/wiki/Hash_function, 2008.

Abe Karplus Hash Tables

~17~

Mentor Statement
When Abe started this project, he knew how to program in a few simple programming
languages, mainly drag-and-drop languages like Scratch and various Lego Mindstorms
tools. His first task was to learn a programming language that allowed arrays and
pointers, so that he could implement hash tables. I chose C for him (rather than Java),
since he had some exposure to NQC for Lego robotics, C is a smaller language to
learn, and I did not want Java garbage collection to add noise to his timing
measurements. The explicit memory allocation in C also makes it easier to see how
much memory is used for different data structures.

He did some initial programming exercises to learn about memory allocation and strings
represented as arrays of characters, then dove into the writing of hash table algorithms.
He chose the collision resolution algorithms himself from his reading, and he did not
need explanations from me. He wrote all the programs himself, but he did need more
debugging help than I would have given to a college student, but not too much more.
The expected problems with C programming (allocating string arrays with one too few
bytes and off-by-one errors in array subscripts) were indeed the most common
problems. I did teach him about using printf statements to determine where things were
failing, but did not provide him with a modern debugging environment.

In addition to teaching him C, I also taught Abe how to use gnu make for controlling
compilation and running his experiments. Much of the makefile he ended up with is my
design, but the amount of help I gave him was comparable to what I give to graduate
students, as the sophisticated use of makefiles is not often taught to undergrads. I
believe that he understands what everything in the makefile does, and he has modified
the makefile as needed, but I don’t think he could create a similarly complex makefile
from scratch.

For the experimental design, I suggested the strategy of reading his entire input file into
an array, so that the timing of the hash tables could be separated from the I/O time, and
using the getrusage function to measure user time. It turned out that getrusage on the
Max OS X system he was using did not have good resolution and was not very
repeatable for the small times he needed to measure. As a proxy for time, I suggested
using the number of string comparisons done by the algorithm (a standard substitution
used in theoretical computer science). I also suggested that he measure memory
usage as well.

Some other aspects of the experimental design that I suggested: measuring both the
number of words and the number of distinct words, checking each algorithm to make
sure it got the same results as the simple linear search, getting text files from the
Gutenberg project to use as inputs, and repeating the same input text multiple times to
get files with the same number of distinct words but different numbers of total words.

I also helped Abe learn to use gnuplot for displaying his results, though he has had
some experience with it from previous projects.

Abe Karplus Hash Tables

~18~

Appendix 1: Output Data
Complete set of results.The first column is words, the second is distinct words, the third
is time in seconds, the fourth is string comparisons, the fifth is memory usage in bytes.
Linear Search
758
 758
 0.010000
 286903
 12400
1516
 758
 0.020000
 574564
 12400
3032
 758
 0.040000
 1149886
 12400
6064
 758
 0.080000
 2300530
 12400
2649
 2649
 0.100000
 3507276
 25200
5298
 2649
 0.220000
 7017201
 25200
10596
 2649
 0.460000
 14037051
 25200
21192
 2649
 0.940000
 28076751
 25200
4342
 4342
 0.320000
 9424311
 50800
8684
 4342
 0.610000
 18852964
 50800
17368
 4342
 1.240000
 37710270
 50800
34736
 4342
 2.490000
 75424882
 50800
4784
 4784
 0.390000
 11440936
 50800
9568
 4784
 0.770000
 22886656
 50800
19136
 4784
 1.510000
 45778096
 50800
38272
 4784
 3.020000
 91560976
 50800
9882
 9882
 1.630000
 48822021
 102000
19764
 9882
 3.230000
 97653924
 102000
39528
 9882
 6.440000
 195317730
 102000
79056
 9882
 13.290000
 390645342
 102000
18556
 18556
 5.880000
 172153290
 204400
37112
 18556
 11.930000
 344325136
 204400
74224
 18556
 23.550000
 688668828
 204400
148448
 18556
 47.260000
 1377356212
 204400
2079
 758
 0.020000
 472308
 12400
4158
 758
 0.020000
 945374
 12400
8316
 758
 0.060000
 1891506
 12400
16632
 758
 0.120000
 3783770
 12400
20741
 2649
 0.320000
 9306567
 25200
41482
 2649
 0.620000
 18615783
 25200
82964
 2649
 1.330000
 37234215
 25200
165928
 2649
 2.420000
 74471079
 25200
28856
 4342
 0.730000
 20872314
 50800
57712
 4342
 1.340000
 41748970
 50800
115424
 4342
 2.640000
 83502282
 50800
230848
 4342
 5.680000
 167008906
 50800
32122
 4784
 0.920000
 27447538
 50800
64244
 4784
 1.810000
 54899860
 50800
128488
 4784
 3.780000
 109804504
 50800
256976
 4784
 7.240000
 219613792
 50800

Abe Karplus Hash Tables

~19~

137477
 9882
 5.740000
 171494208
 102000
274954
 9882
 11.710000
 342998298
 102000
549908
 9882
 23.000000
 686006478
 102000
1099816
 9882
 45.920000
 1372022838
 102000
1029071
 18556
 45.420000
 1337866642
 204400
2058142
 18556
 89.890000
 2675751840
 204400
4116284
 18556
 180.750000
 1056554940
 204400
8232568
 18556
 360.040000
 2113128436
 204400
40971
 25673
 13.590000
 393428946
 409200
1250346
 25673
 111.310000
 3258786725
 409200

Linked list
758
 758
 0.000000
 251
 13484
1516
 758
 0.000000
 1260
 13484
3032
 758
 0.000000
 3278
 13484
6064
 758
 0.000000
 7314
 13484
2649
 2649
 0.000000
 1360
 44952
5298
 2649
 0.000000
 5015
 44952
10596
 2649
 0.010000
 12325
 44952
21192
 2649
 0.020000
 26945
 44952
4342
 4342
 0.000000
 2510
 82820
8684
 4342
 0.010000
 8084
 82820
17368
 4342
 0.020000
 19232
 82820
34736
 4342
 0.020000
 41528
 82820
4784
 4784
 0.010000
 2822
 88124
9568
 4784
 0.010000
 9157
 88124
19136
 4784
 0.000000
 21827
 88124
38272
 4784
 0.030000
 47167
 88124
9882
 9882
 0.020000
 6304
 184404
19764
 9882
 0.030000
 19148
 184404
39528
 9882
 0.020000
 44836
 184404
79056
 9882
 0.050000
 96212
 184404
18556
 18556
 0.040000
 12796
 358700
37112
 18556
 0.050000
 36554
 358700
74224
 18556
 0.060000
 84070
 358700
148448
 18556
 0.110000
 179102
 358700
2079
 758
 0.000000
 1883
 13484
4158
 758
 0.000000
 4705
 13484
8316
 758
 0.000000
 10349
 13484
16632
 758
 0.000000
 21637
 13484
20741
 2649
 0.010000
 25270
 44952
41482
 2649
 0.010000
 55217
 44952
82964
 2649
 0.040000
 115111
 44952
165928
 2649
 0.070000
 234899
 44952
28856
 4342
 0.010000
 36216
 82820
57712
 4342
 0.020000
 78757
 82820

Abe Karplus Hash Tables

~20~

115424
 4342
 0.050000
 163839
 82820
230848
 4342
 0.090000
 334003
 82820
32122
 4784
 0.020000
 39434
 88124
64244
 4784
 0.020000
 84794
 88124
128488
 4784
 0.050000
 175514
 88124
256976
 4784
 0.100000
 356954
 88124
137477
 9882
 0.070000
 186692
 184404
274954
 9882
 0.120000
 368377
 184404
549908
 9882
 0.240000
 731747
 184404
1099816
 9882
 0.470000
 1458487
 184404
1029071
 18556
 0.430000
 1634367
 358700
2058142
 18556
 0.850000
 2965369
 358700
4116284
 18556
 1.630000
 5627373
 358700
8232568
 18556
 3.270000
 10951381
 358700
40971
 25673
 0.050000
 38950
 444104
1250346
 25673
 0.540000
 1751895
 444104

Cellar
758
 758
 0.000000
 326
 13164
1516
 758
 0.000000
 1410
 13164
3032
 758
 0.010000
 3578
 13164
6064
 758
 0.000000
 7914
 13164
2649
 2649
 0.000000
 2217
 39492
5298
 2649
 0.010000
 6306
 39492
10596
 2649
 0.010000
 14484
 39492
21192
 2649
 0.030000
 30840
 39492
4342
 4342
 0.010000
 4272
 92148
8684
 4342
 0.010000
 10326
 92148
17368
 4342
 0.010000
 22434
 92148
34736
 4342
 0.010000
 46650
 92148
4784
 4784
 0.010000
 4714
 92148
9568
 4784
 0.000000
 11404
 92148
19136
 4784
 0.000000
 24784
 92148
38272
 4784
 0.020000
 51544
 92148
9882
 9882
 0.010000
 9479
 197460
19764
 9882
 0.010000
 23289
 197460
39528
 9882
 0.030000
 50909
 197460
79056
 9882
 0.040000
 106149
 197460
18556
 18556
 0.030000
 20190
 408084
37112
 18556
 0.020000
 45327
 408084
74224
 18556
 0.060000
 95601
 408084
148448
 18556
 0.090000
 196149
 408084
2079
 758
 0.000000
 1945
 13164
4158
 758
 0.000000
 4648
 13164
8316
 758
 0.010000
 10054
 13164
16632
 758
 0.000000
 20866
 13164

Abe Karplus Hash Tables

~21~

20741
 2649
 0.010000
 24345
 39492
41482
 2649
 0.010000
 50693
 39492
82964
 2649
 0.030000
 103389
 39492
165928
 2649
 0.050000
 208781
 39492
28856
 4342
 0.020000
 35456
 92148
57712
 4342
 0.030000
 74993
 92148
115424
 4342
 0.040000
 154067
 92148
230848
 4342
 0.090000
 312215
 92148
32122
 4784
 0.010000
 38475
 92148
64244
 4784
 0.030000
 81328
 92148
128488
 4784
 0.050000
 167034
 92148
256976
 4784
 0.100000
 338446
 92148
137477
 9882
 0.050000
 170015
 197460
274954
 9882
 0.110000
 338127
 197460
549908
 9882
 0.210000
 674351
 197460
1099816
 9882
 0.400000
 1346799
 197460
1029071
 18556
 0.340000
 1284897
 408084
2058142
 18556
 0.740000
 2738593
 408084
4116284
 18556
 1.540000
 5645985
 408084
8232568
 18556
 2.880000
 11460769
 408084
40971
 25673
 0.040000
 44679
 408084
1250346
 25673
 0.470000
 1625990
 408084

Linear Probing (0.7)
758
 758
 0.000000
 836
 8776
1516
 758
 0.000000
 2430
 8776
3032
 758
 0.000000
 5618
 8776
6064
 758
 0.000000
 11994
 8776
2649
 2649
 0.010000
 3737
 61432
5298
 2649
 0.020000
 7051
 61432
10596
 2649
 0.010000
 13679
 61432
21192
 2649
 0.030000
 26935
 61432
4342
 4342
 0.010000
 6228
 61432
8684
 4342
 0.020000
 13490
 61432
17368
 4342
 0.010000
 28014
 61432
34736
 4342
 0.030000
 57062
 61432
4784
 4784
 0.010000
 8343
 61432
9568
 4784
 0.000000
 17290
 61432
19136
 4784
 0.010000
 35184
 61432
38272
 4784
 0.020000
 70972
 61432
9882
 9882
 0.030000
 18082
 131640
19764
 9882
 0.030000
 35288
 131640
39528
 9882
 0.030000
 69700
 131640
79056
 9882
 0.060000
 138524
 131640
18556
 18556
 0.040000
 33639
 272056
37112
 18556
 0.040000
 63267
 272056

Abe Karplus Hash Tables

~22~

74224
 18556
 0.080000
 122523
 272056
148448
 18556
 0.100000
 241035
 272056
2079
 758
 0.000000
 2679
 8776
4158
 758
 0.000000
 6116
 8776
8316
 758
 0.000000
 12990
 8776
16632
 758
 0.010000
 26738
 8776
20741
 2649
 0.010000
 25462
 61432
41482
 2649
 0.020000
 48990
 61432
82964
 2649
 0.020000
 96046
 61432
165928
 2649
 0.060000
 190158
 61432
28856
 4342
 0.020000
 36664
 61432
57712
 4342
 0.020000
 73743
 61432
115424
 4342
 0.060000
 147901
 61432
230848
 4342
 0.110000
 296217
 61432
32122
 4784
 0.020000
 41318
 61432
64244
 4784
 0.030000
 83035
 61432
128488
 4784
 0.070000
 166469
 61432
256976
 4784
 0.110000
 333337
 61432
137477
 9882
 0.070000
 173255
 131640
274954
 9882
 0.140000
 343973
 131640
549908
 9882
 0.240000
 685409
 131640
1099816
 9882
 0.460000
 1368281
 131640
1029071
 18556
 0.460000
 1282081
 272056
2058142
 18556
 0.930000
 2522118
 272056
4116284
 18556
 1.750000
 5002192
 272056
8232568
 18556
 3.360000
 9962340
 272056
40971
 25673
 0.120000
 78526
 552888
1250346
 25673
 0.590000
 1660013
 552888

Linear Probing (0.8)
758
 758
 0.000000
 836
 8776
1516
 758
 0.000000
 2430
 8776
3032
 758
 0.000000
 5618
 8776
6064
 758
 0.010000
 11994
 8776
2649
 2649
 0.020000
 6361
 61432
5298
 2649
 0.020000
 9675
 61432
10596
 2649
 0.020000
 16303
 61432
21192
 2649
 0.010000
 29559
 61432
4342
 4342
 0.010000
 9415
 61432
8684
 4342
 0.010000
 16677
 61432
17368
 4342
 0.000000
 31201
 61432
34736
 4342
 0.030000
 60249
 61432
4784
 4784
 0.000000
 12281
 61432
9568
 4784
 0.000000
 21228
 61432
19136
 4784
 0.010000
 39122
 61432
38272
 4784
 0.030000
 74910
 61432

Abe Karplus Hash Tables

~23~

9882
 9882
 0.010000
 28349
 131640
19764
 9882
 0.030000
 45555
 131640
39528
 9882
 0.030000
 79967
 131640
79056
 9882
 0.040000
 148791
 131640
18556
 18556
 0.050000
 54298
 272056
37112
 18556
 0.060000
 83926
 272056
74224
 18556
 0.090000
 143182
 272056
148448
 18556
 0.130000
 261694
 272056
2079
 758
 0.010000
 2679
 8776
4158
 758
 0.000000
 6116
 8776
8316
 758
 0.000000
 12990
 8776
16632
 758
 0.000000
 26738
 8776
20741
 2649
 0.010000
 29255
 61432
41482
 2649
 0.000000
 53675
 61432
82964
 2649
 0.040000
 102515
 61432
165928
 2649
 0.060000
 200195
 61432
28856
 4342
 0.020000
 41271
 61432
57712
 4342
 0.030000
 79496
 61432
115424
 4342
 0.050000
 155946
 61432
230848
 4342
 0.080000
 308846
 61432
32122
 4784
 0.020000
 47784
 61432
64244
 4784
 0.030000
 90014
 61432
128488
 4784
 0.050000
 174474
 61432
256976
 4784
 0.110000
 343394
 61432
137477
 9882
 0.080000
 190733
 131640
274954
 9882
 0.130000
 364345
 131640
549908
 9882
 0.260000
 711569
 131640
1099816
 9882
 0.480000
 1406017
 131640
1029071
 18556
 0.500000
 1357820
 272056
2058142
 18556
 0.890000
 2631869
 272056
4116284
 18556
 1.810000
 5179967
 272056
8232568
 18556
 3.500000
 10276163
 272056
40971
 25673
 0.050000
 105566
 272056
1250346
 25673
 0.580000
 1754548
 272056

Linear Probing (0.9)
758
 758
 0.000000
 836
 8776
1516
 758
 0.000000
 2430
 8776
3032
 758
 0.010000
 5618
 8776
6064
 758
 0.000000
 11994
 8776
2649
 2649
 0.000000
 8262
 26328
5298
 2649
 0.010000
 15218
 26328
10596
 2649
 0.010000
 29130
 26328
21192
 2649
 0.010000
 56954
 26328
4342
 4342
 0.000000
 19620
 61432
8684
 4342
 0.020000
 26882
 61432

Abe Karplus Hash Tables

~24~

17368
 4342
 0.020000
 41406
 61432
34736
 4342
 0.020000
 70454
 61432
4784
 4784
 0.010000
 28291
 61432
9568
 4784
 0.010000
 37238
 61432
19136
 4784
 0.020000
 55132
 61432
38272
 4784
 0.030000
 90920
 61432
9882
 9882
 0.020000
 65549
 131640
19764
 9882
 0.020000
 82755
 131640
39528
 9882
 0.050000
 117167
 131640
79056
 9882
 0.060000
 185991
 131640
18556
 18556
 0.050000
 123210
 272056
37112
 18556
 0.060000
 152838
 272056
74224
 18556
 0.080000
 212094
 272056
148448
 18556
 0.130000
 330606
 272056
2079
 758
 0.000000
 2679
 8776
4158
 758
 0.000000
 6116
 8776
8316
 758
 0.000000
 12990
 8776
16632
 758
 0.010000
 26738
 8776
20741
 2649
 0.010000
 32636
 26328
41482
 2649
 0.020000
 61146
 26328
82964
 2649
 0.030000
 118166
 26328
165928
 2649
 0.060000
 232206
 26328
28856
 4342
 0.020000
 55842
 61432
57712
 4342
 0.030000
 95084
 61432
115424
 4342
 0.060000
 173568
 61432
230848
 4342
 0.090000
 330536
 61432
32122
 4784
 0.020000
 67436
 61432
64244
 4784
 0.040000
 109959
 61432
128488
 4784
 0.020000
 195005
 61432
256976
 4784
 0.110000
 365097
 61432
137477
 9882
 0.070000
 248697
 131640
274954
 9882
 0.140000
 424364
 131640
549908
 9882
 0.210000
 775698
 131640
1099816
 9882
 0.440000
 1478366
 131640
1029071
 18556
 0.480000
 1538098
 272056
2058142
 18556
 0.940000
 2851647
 272056
4116284
 18556
 1.810000
 5478745
 272056
8232568
 18556
 3.590000
 10732941
 272056
40971
 25673
 0.070000
 176360
 272056
1250346
 25673
 0.630000
 1934315
 272056

Linear Probing (1.0)
758
 758
 0.000000
 836
 8776
1516
 758
 0.000000
 2430
 8776
3032
 758
 0.000000
 5618
 8776
6064
 758
 0.010000
 11994
 8776

Abe Karplus Hash Tables

~25~

2649
 2649
 0.000000
 35477
 26328
5298
 2649
 0.010000
 42433
 26328
10596
 2649
 0.010000
 56345
 26328
21192
 2649
 0.020000
 84169
 26328
4342
 4342
 0.030000
 226520
 61432
8684
 4342
 0.030000
 233782
 61432
17368
 4342
 0.030000
 248306
 61432
34736
 4342
 0.040000
 277354
 61432
4784
 4784
 0.030000
 286756
 61432
9568
 4784
 0.040000
 295703
 61432
19136
 4784
 0.030000
 313597
 61432
38272
 4784
 0.030000
 349385
 61432
9882
 9882
 0.050000
 530966
 131640
19764
 9882
 0.060000
 548172
 131640
39528
 9882
 0.080000
 582584
 131640
79056
 9882
 0.100000
 651408
 131640
18556
 18556
 0.170000
 1626892
 272056
37112
 18556
 0.200000
 1656520
 272056
74224
 18556
 0.220000
 1715776
 272056
148448
 18556
 0.240000
 1834288
 272056
2079
 758
 0.010000
 2679
 8776
4158
 758
 0.000000
 6116
 8776
8316
 758
 0.000000
 12990
 8776
16632
 758
 0.010000
 26738
 8776
20741
 2649
 0.010000
 51447
 26328
41482
 2649
 0.010000
 80003
 26328
82964
 2649
 0.040000
 137115
 26328
165928
 2649
 0.080000
 251339
 26328
28856
 4342
 0.040000
 278809
 61432
57712
 4342
 0.030000
 319364
 61432
115424
 4342
 0.080000
 400474
 61432
230848
 4342
 0.120000
 562694
 61432
32122
 4784
 0.040000
 365951
 61432
64244
 4784
 0.060000
 409512
 61432
128488
 4784
 0.070000
 496634
 61432
256976
 4784
 0.150000
 670878
 61432
137477
 9882
 0.100000
 1020312
 131640
274954
 9882
 0.220000
 1201862
 131640
549908
 9882
 0.270000
 1564962
 131640
1099816
 9882
 0.530000
 2291162
 131640
1029071
 18556
 0.700000
 4269098
 272056
2058142
 18556
 1.170000
 5793292
 272056
4116284
 18556
 2.030000
 8841680
 272056
8232568
 18556
 3.890000
 14938456
 272056
40971
 25673
 0.230000
 2228186
 272056
1250346
 25673
 0.910000
 5853193
 272056

Abe Karplus Hash Tables

~26~

Appendix 2: Makefile
Each line in the makefile with a colon is a rule, which gives instructions on how to make
a specific file (the final name is given before the colon) from other files (listed after the
colon). The indented lines below the rule provide the actual instructions for making the
file. The shell command “make out_linked” checks to make sure that the executable
program “test_linked” is up-to-date, then runs it for all 50 data sets.

Makefile: Abe Karplus 1-29-2009

test_l_probe_%:
 c17+_hasher1_2_v2_%.o readword.o hash1_2.o

 gcc -o $@ $^
c17+_hasher1_2_v2_%.o: c17+_hasher1_2_v2.c

 gcc -o $@ -c -D FULLNESS=$* $^
test_linear:
 c15_word_store_search_v2.o readword.o linear_search.o

 gcc -o $@ $^
test_linked:
 c18_hasher2_v2.o readword.o hash2.o

 gcc -o $@ $^
test_cellar:
 c19_hasher3_v2.o readword.o hash3.o

 gcc -o $@ $^
test_distinct:
 c20_distinct_words.o hash3.o readword.o

 gcc -o $@ $^
all.% : test_%

 cat input/magi.txt input/cities.txt input/carol.txt input/
wild.txt\

 input/bible.txt | test_$* >> output/all_$*.txt
%.l_probe: test_l_probe

 test_l_probe < input/$*.txt >> output/$*_l_probe.txt
%.linear: test_linear

 test_linear < input/$*.txt >> output/$*_linear.txt
%.linked: test_linked

 test_linked < input/$*.txt >> output/$*_linked.txt
%.cellar: test_cellar

 test_cellar < input/$*.txt >> output/$*_cellar.txt

INPUTS = magi earnest carol wild cities bible

run needs two arguments: the first is the CRA type,
the second is an input file.
Note: this macro designed by Kevin Karplus.
define run

 test_$(1) < $(2) >> output/$(1).txt

 cat $(foreach x,1 2, $(2)) | test_$(1) >> output/$(1).txt

 cat $(foreach x,1 2 3 4, $(2)) | test_$(1) >> output/$(1).txt

 cat $(foreach x,1 2 3 4 5 6 7 8, $(2)) | test_$(1) >> output/

Abe Karplus Hash Tables

~27~

$(1).txt

endef

out_%:

 make output/$*.txt output/$*_grid.txt
output/%.txt: test_%

 echo '# $*' > $@

 $(foreach x,${INPUTS}, $(call run,$*,input/${x}_distinct.txt))

 $(foreach x,${INPUTS}, $(call run,$*,input/${x}.txt))

 cat $(foreach x,${INPUTS}, input/${x}_distinct.txt) | test_$* >>
$@

 cat $(foreach x,${INPUTS}, input/${x}.txt) | test_$* >> $@
%_distinct.txt: %.txt test_distinct

 test_distinct < $*.txt > $@
%_grid.txt: %.txt

 sort -n -k 2 -k 1 < $^ \

 | awk -f grid.awk \

 > $@

Abe Karplus Hash Tables

~28~

Appendix 3: Readword
The readword routine is used in all the programs.
readword.h
/*Abe Karplus 12-21-2008*/

/*readword.h*/

/******************************
Readword gets the next word from stdin.
(A word is any sequence of characters containing
no spaces or other punctuation than apostrophes.)
The function returns 0 for EOF or a pointer to a
newly allocated string containing the word if one exists.
******************************/

#ifndef READWORD_H
#define READWORD_H
char* readword();
#endif

readword.c
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

/*Abe Karplus 12-21-2008*/

/******************************
Readword gets the next word from stdin.
(A word is any sequence of characters containing
no spaces or other punctuation than apostrophes.)
The function returns 0 for EOF or a pointer to a
newly allocated string containing the word if one exists.
******************************/

char* readword()
{
#define ISFRWO (isalpha(nexc) || (nexc == '\''))

 char nexc;

 char buffer[50];

 short i;

 char* word;

 for(nexc = getc(stdin); !ISFRWO; nexc = getc(stdin))

 {

Abe Karplus Hash Tables

~29~

 if(nexc == EOF)

 {

 return(0);

 }

 }

 for(i = 0; ISFRWO; nexc = getc(stdin))

 {

 buffer[i] = nexc;

 i++;

 }

 buffer[i] = 0;

 word = calloc(strlen(buffer) + 1, 1);

 strcpy(word, buffer);

 return(word);
}

Abe Karplus Hash Tables

~30~

Appendix 4: Linear Search
.h file
/*Abe Karplus 12-23-2008*/

/*linear_search.h*/

/**********************
Linear Search. Given a pointer to a string, this function
will check its dynamically allocated array for the string.
If the array contains the string, the function returns a
pointer to a struct containing: a) a pointer to the string,
and b) an int called occur. If the string is not in the
table it will be added and a similar struct pointer returned.
**********************/

#ifndef LINEAR_H
#define LINEAR_H
struct data_pair
{

 char* word;

 int occur;
};
struct dyn_table
{

 struct data_pair* words;

 int n_used;

 int n_alloc;
};

struct data_pair* find_create(char* data);

extern struct dyn_table freq_words;
extern unsigned long comps;
#endif

.c file
#include <string.h>
#include <stdlib.h>
#include "linear_search.h"

/*Abe Karplus 12-23-2008*/

/**********************
Linear Search. Given a pointer to a string, this function will check its
dynamically allocated array

Abe Karplus Hash Tables

~31~

for the string. If the array contains the string, the function returns a
pointer to a struct
containing: a) a pointer to the string, and b) an int called occur. If the
string is not in the
table it will be added and a similar struct pointer returned.
**********************/

struct dyn_table freq_words = {0, 0, 0};
unsigned long comps = 0;

struct data_pair* find_create(char* data)
{

 int i;

 for(i = 0; i < freq_words.n_used; i++)

 {

 if(comps++, !strcasecmp(freq_words.words[i].word,
data))

 {

 return &(freq_words.words[i]);

 }

 }

 if(freq_words.n_used >= freq_words.n_alloc)

 {

 freq_words.n_alloc *= 2;

 freq_words.n_alloc += 50;

 freq_words.words = realloc(freq_words.words,
freq_words.n_alloc * sizeof(struct data_pair));

 }

 freq_words.words[freq_words.n_used].occur = 0;

 freq_words.words[freq_words.n_used].word = calloc(strlen(data) +
1, 1);

 strcpy(freq_words.words[freq_words.n_used].word, data);

 return &(freq_words.words[freq_words.n_used++]);
}

main program
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sys/time.h>
#include <sys/resource.h>
#include "readword.h"
#include "linear_search.h"

Abe Karplus Hash Tables

~32~

/*Abe Karplus 12-24-2008*/

struct dyn_array
{

 char** words;

 int n_used;

 int n_alloc;
};

double gettime();

main()
{

 char* word;

 struct dyn_array all_words;

 int i;

 struct data_pair* found;

 double old_time;

 double new_time;

 all_words.n_alloc = 5;

 all_words.words = calloc(all_words.n_alloc, sizeof(char*));

 all_words.n_used = 0;

 while(1)

 {

 word = readword(); /*Initial input*/

 if(word == 0)

 break;

 if(all_words.n_used >= all_words.n_alloc)

 {

 all_words.n_alloc *= 2;

 all_words.words =
realloc(all_words.words, all_words.n_alloc * sizeof(char*));

 }

 all_words.words[all_words.n_used++] = word;

 }

 printf("%d\t", all_words.n_used); /*words*/

 old_time = gettime(); /*timing*/

 for(i = 0; i < all_words.n_used; i++)

 {

 find_create(all_words.words[i]) -> occur++; /*linear
search*/

 }

 new_time = gettime(); /*timing*/

 printf("%d\t", freq_words.n_used); /*distinct*/

 /*

Abe Karplus Hash Tables

~33~

 found = find_create("the");

 printf("The word \"the\" occured %d times.\n", found
-> occur);

 */

 printf("%f\t", (new_time - old_time)); /*time*/

 printf("%lu\t", comps); /*strcmps*/

 printf("%u\n", freq_words.n_alloc * sizeof(struct data_pair)); /
memuse/

 return(0);
}

double gettime()
{

 struct rusage elap;

 getrusage(0, &elap);

 return((elap.ru_utime.tv_sec)+1.e-06*(elap.ru_utime.tv_usec));
}

Abe Karplus Hash Tables

~34~

Appendix 5: Linear Probing
.h file
/*Abe Karplus 12-31-2008*/

/*hash1_2.h*/

#ifndef HASH1_2_H
#define HASH1_2_H
struct data_pair
{

 char* word;

 int occur;
};
struct dyn_table
{

 struct data_pair* words;

 int n_used;

 int n_alloc;
};

struct data_pair* find_create(char* data, double fullness);

extern struct dyn_table freq_words;
extern long comps;
#endif

.c file
#include <string.h>
#include <stdlib.h>
#include "hash1_2.h"

#define START 1
#define PRIME 999999137

/*Abe Karplus 12-31-2008*/

struct dyn_table freq_words = {0, 0, 0};
long comps = 0;

void rehash();
struct data_pair* find_create_nocpy(char* data);
unsigned long hash1(char* str);

struct data_pair* find_create(char* data, double fullness)
{

Abe Karplus Hash Tables

~35~

 int i;
 int at;

 unsigned long start_at = hash1(data);

 char* temp_data;

 /*printf("DEBUG: Looking for %s.\n", data);*/

 for(i = 0; i < freq_words.n_alloc; i++)

 {

 at = (start_at + i) % freq_words.n_alloc;

 if(freq_words.words[at].word == 0)

 {

 break;

 }

 if(comps++, !strcasecmp(freq_words.words[at].word,
data))

 {

 /*printf("DEBUG: Found %s.\n", data);*/

 return &(freq_words.words[at]);

 }

 }

 if(freq_words.n_used >= freq_words.n_alloc * fullness)

 {

 rehash();

 temp_data = data; /*because at doesn't work after
rehash*/

 return(find_create_nocpy(temp_data)); /*ditto*/

 }

 freq_words.n_used++;

 /*printf("DEBUG: at == %d.\n", at);*/

 freq_words.words[at].occur = 0;

 freq_words.words[at].word = calloc(strlen(data) + 1, 1);

 strcpy(freq_words.words[at].word, data);

 /*printf("DEBUG: About to return %s.\n",
freq_words.words[at].word);*/

 return &(freq_words.words[at]);
}

struct data_pair* find_create_nocpy(char* data)
{

 int i;
 int at;

 unsigned long start_at = hash1(data);

 /*printf("DEBUG: Looking for %s.\n", data);*/

 for(i = 0; i < freq_words.n_alloc; i++)

 {

Abe Karplus Hash Tables

~36~

 at = (start_at + i) % freq_words.n_alloc;

 if(freq_words.words[at].word == 0)

 {

 break;

 }
/***
DON'T NEED STRCASECMP, SINCE data ALWAYS NEW */

 if(comps++, !strcasecmp(freq_words.words[at].word,
data))

 {

 /*printf("DEBUG: Found %s.\n", data);*/

 return &(freq_words.words[at]);

 }

 }

 freq_words.n_used++;

 /*printf("DEBUG: at == %d.\n", at);*/

 freq_words.words[at].occur = 0;

 freq_words.words[at].word = calloc(strlen(data) + 1, 1);

 freq_words.words[at].word = data;

 /*printf("DEBUG: About to return %s.\n",
freq_words.words[at].word);*/

 return &(freq_words.words[at]);
}

unsigned long hash1(char* str)
{

 unsigned long val;

 for(val = START; *str != 0; str++)

 {

 val = (val + tolower(*str)) * PRIME;

 }

 return(val);
}

void rehash()
{

 int i;

 struct dyn_table old_table;

 old_table = freq_words;

 freq_words.n_alloc *= 2;

 freq_words.n_alloc += 1097;

 freq_words.words = calloc(freq_words.n_alloc, sizeof(struct
data_pair));

 freq_words.n_used = 0;

Abe Karplus Hash Tables

~37~

 for(i = 0; i < old_table.n_alloc; i++)

 {

 if(old_table.words[i].word != 0)

 {

 find_create_nocpy(old_table.words[i].word) -> occur =
old_table.words[i].occur;

 }

 }

 if (old_table.words)

 {

 free(old_table.words);

 }

 /*printf("DEBUG: Rehashing done.\n");*/
}

main program
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sys/time.h>
#include <sys/resource.h>
#include "readword.h"
#include "hash1_2.h"

/*Abe Karplus 12-31-2008*/

struct dyn_array
{

 char** words;

 int n_used;

 int n_alloc;
};

double gettime();

main()
{

 char* word;

 struct dyn_array all_words;

 int i;

 struct data_pair* found;

 double old_time;

 double new_time;

 all_words.n_alloc = 5;

Abe Karplus Hash Tables

~38~

 all_words.words = calloc(all_words.n_alloc, sizeof(char*));

 all_words.n_used = 0;

 while(1)

 {

 word = readword();

 if(word == 0)

 break;

 if(all_words.n_used >= all_words.n_alloc)

 {

 all_words.n_alloc *= 2;

 all_words.words =
realloc(all_words.words, all_words.n_alloc * sizeof(char*));

 }

 all_words.words[all_words.n_used++] = word;

 }

 printf("%d\t", all_words.n_used); /*words*/

 old_time = gettime();

 for(i = 0; i < all_words.n_used; i++)

 {

 found = find_create(all_words.words[i], FULLNESS);

 /*printf("DEBUG: found -> word = %s.\n", found ->
word);*/

 found -> occur++;

 }

 new_time = gettime();

 printf("%d\t", freq_words.n_used); /*distinct*/

 printf("%f\t", (new_time - old_time)); /*time*/

 printf("%ld\t", comps); /*strcmps*/

 printf("%u\n", freq_words.n_alloc * sizeof(struct data_pair)); /
memuse/

 /*printf("FULLNESS = %lf\n", FULLNESS);*/

 return(0);
}

double gettime()
{

 struct rusage elap;

 getrusage(0, &elap);

 return((elap.ru_utime.tv_sec)+1.e-06*(elap.ru_utime.tv_usec));
}

Abe Karplus Hash Tables

~39~

Appendix 6: Linked List
.h file
/*Abe Karplus 12-29-2008*/

/*hash2.h*/

#ifndef HASH2_H
#define HASH2_H
struct data_pair
{

 char* word;

 int occur;

 struct data_pair* next;
};
struct dyn_table
{

 struct data_pair** words;

 int n_used;

 int n_alloc;
};

struct data_pair* find_create(char* data);

extern struct dyn_table freq_words;
extern long comps;
#endif

.c file
#include <string.h>
#include <stdlib.h>
#include "hash2.h"

#define START 1
#define PRIME 999999137

/*Abe Karplus 12-30-2008*/

struct dyn_table freq_words = {0, 0, 0};
long comps = 0;

void rehash();
unsigned long hash1(char* str);

struct data_pair* find_create(char* data) /*15*/
{

Abe Karplus Hash Tables

~40~

 int i;
 unsigned long at;

 struct data_pair* cur_ptr;

 /*printf("DEBUG: Looking for %s.\n", data);*/

 if(freq_words.n_alloc)

 {

 at = hash1(data) % freq_words.n_alloc;

 for(cur_ptr = freq_words.words[at]; cur_ptr; cur_ptr
= cur_ptr -> next)

 {

 if(comps++, !strcasecmp(cur_ptr -> word,
data))

 {

 /*printf("DEBUG: Found
%s.\n", data);*/

 return (cur_ptr);

 }

 }

 }

 if(freq_words.n_used >= freq_words.n_alloc)

 {

 rehash();

 at = hash1(data) % freq_words.n_alloc; /*because at
doesn't work after rehash*/

 }

 freq_words.n_used++;

 /*printf("DEBUG: at == %d.\n", at);*/

 cur_ptr = calloc(1, sizeof(struct data_pair));

 cur_ptr -> next = freq_words.words[at];

 freq_words.words[at] = cur_ptr;

 cur_ptr -> word = calloc(strlen(data) + 1, 1);

 strcpy(cur_ptr -> word, data);

 /*printf("DEBUG: About to return %s.\n", data);*/

 return (cur_ptr);
}

unsigned long hash1(char* str)
{

 unsigned long val;

 for(val = START; *str != 0; str++)

 {

 val = (val + tolower(*str)) * PRIME;

 }

 return(val);

Abe Karplus Hash Tables

~41~

}

void rehash()
{

 int i;

 unsigned long hashed;

 struct data_pair* current;

 struct data_pair* save;

 struct dyn_table old_table;

 old_table = freq_words;

 freq_words.n_alloc *= 2;

 freq_words.n_alloc += 1097;

 freq_words.words = calloc(freq_words.n_alloc, sizeof(struct
data_pair*));

 for(i = 0; i < old_table.n_alloc; i++)

 {

 for(current = old_table.words[i]; current; current =
save)

 {

 save = current -> next;

 hashed = hash1(current -> word) %
freq_words.n_alloc;

 current -> next =
freq_words.words[hashed];

 freq_words.words[hashed] = current;

 }

 }

 free(old_table.words);
}

main program
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sys/time.h>
#include <sys/resource.h>
#include "readword.h"
#include "hash2.h"

/*Abe Karplus 12-30-2008*/

struct dyn_array
{

 char** words;

 int n_used;

Abe Karplus Hash Tables

~42~

 int n_alloc;
};

double gettime();

main()
{

 char* word;

 struct dyn_array all_words;

 int i;

 struct data_pair* found;

 double old_time;

 double new_time;

 all_words.n_alloc = 5;

 all_words.words = calloc(all_words.n_alloc, sizeof(char*));

 all_words.n_used = 0;

 while(1)

 {

 word = readword();

 if(word == 0)

 break;

 if(all_words.n_used >= all_words.n_alloc)

 {

 all_words.n_alloc *= 2;

 all_words.words =
realloc(all_words.words, all_words.n_alloc * sizeof(char*));

 }

 all_words.words[all_words.n_used++] = word;

 }

 printf("%d\t", all_words.n_used); /*words*/

 old_time = gettime();

 for(i = 0; i < all_words.n_used; i++)

 {

 found = find_create(all_words.words[i]);

 /*printf("DEBUG: found -> word = %s.\n", found ->
word);*/

 found -> occur++;

 }

 new_time = gettime();

 printf("%d\t", freq_words.n_used); /*distinct*/

 /*

 found = find_create("the");

 printf("The word \"the\" occured %d times.\n", found
-> occur);

 */

Abe Karplus Hash Tables

~43~

 printf("%f\t", (new_time - old_time)); /*time*/

 printf("%ld\t", comps); /*strcmps*/

 printf("%u\n", sizeof(struct data_pair*) * freq_words.n_alloc +
sizeof(struct data_pair) * freq_words.n_used); /*memuse*/

 return(0);
}

double gettime()
{

 struct rusage elap;

 getrusage(0, &elap);

 return((elap.ru_utime.tv_sec)+1.e-06*(elap.ru_utime.tv_usec));
}

Abe Karplus Hash Tables

~44~

Appendix 7: Cellar
.h file
/*Abe Karplus 1-9-2009*/

/*hash3.h*/

#ifndef HASH3_H
#define HASH3_H
struct dyn_house
{

 struct data_pair* every;

 int n_used;

 int n_alloc;

 struct data_pair* try_here;

 unsigned mod_by;
};
struct data_pair
{

 char* word;

 int occur;

 struct data_pair* follow;
};

struct data_pair* find_create(char* data);

extern struct dyn_house freq_words;
extern long comps;
#endif

.c file
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include "hash3.h"

/*Abe Karplus 1-9-2009*/

#define START 1
#define PRIME 999999137

struct dyn_house freq_words = {0, 0, 0, 0, 0};
long comps = 0;

unsigned long hash1(char* str);
void rehash();

Abe Karplus Hash Tables

~45~

struct data_pair* find_create(char* data) /* 16 */
{

 struct data_pair* next;

 struct data_pair* prev;

 /* printf("DEBUG: Looking for %s.\n", data); */

 /* fflush(stdout); */

 if(!freq_words.n_alloc) rehash();

 /* printf("DEBUG: hash1(data)=%lu freq_words.mod_by=%u.\n",
hash1(data),freq_words.mod_by); */

 /* fflush(stdout); */

 for(next = prev = &freq_words.every[(hash1(data) %
freq_words.mod_by)]; next; prev = next, next = prev -> follow)

 {

 if(!next -> word)

 {

 freq_words.n_used++;

 next -> word = calloc(strlen(data) + 1,
1);

 strcpy(next -> word, data);

 return(next);

 }

 comps++;

 if(!strcasecmp(data, next -> word))

 {

 /* printf("DEBUG: Found %s.\n", data); */

 return(next);

 }

 }

 if(freq_words.n_used >= freq_words.n_alloc)

 {

 rehash();

 return(find_create(data));

 }

 freq_words.n_used++;

 /* printf("DEBUG: entering try_here loop, n_used=%d
n_alloc=%d\n", freq_words.n_used, freq_words.n_alloc); */

 /* fflush(stdout); */

 for(; freq_words.try_here -> word; freq_words.try_here--);

 prev -> follow = freq_words.try_here--;

 prev -> follow -> word = calloc(strlen(data) + 1, 1);

 strcpy(prev -> follow -> word, data);

 /* printf("DEBUG: About to return %s.\n", prev -> follow ->
word); */

Abe Karplus Hash Tables

~46~

 return(prev -> follow);
}

struct data_pair* find_create_nocpy(char* data)
{

 struct data_pair* next;

 struct data_pair* prev;

 if(!freq_words.n_alloc) rehash();

 for(next = prev = &freq_words.every[(hash1(data) %
freq_words.mod_by)]; next; prev = next, next = prev -> follow)

 {

 if(!next -> word)

 {

 freq_words.n_used++;

 next -> word = data;

 return(next);

 }

 }

 freq_words.n_used++;

 for(; freq_words.try_here -> word; freq_words.try_here--);

 prev -> follow = freq_words.try_here--;

 prev -> follow -> word = data;

 return(prev -> follow);
}

void rehash()
{

 int i;

 struct dyn_house old_table;

 /*printf("DEBUG: starting rehash\n");*/

 /*fflush(stdout);*/

 old_table = freq_words;

 freq_words.n_alloc *= 2;

 freq_words.n_alloc += 1097;

 freq_words.every = calloc(freq_words.n_alloc, sizeof(struct
data_pair));

 freq_words.n_used = 0;

 /* printf("DEBUG: new calloc done\n"); */

 /* fflush(stdout); */

 freq_words.try_here = &freq_words.every[freq_words.n_alloc - 1];

 freq_words.mod_by = (76 * freq_words.n_alloc) / 100;

 /* printf("DEBUG: before for loop in rehash\n"); */

 /* fflush(stdout); */

Abe Karplus Hash Tables

~47~

 if (old_table.every)

 {
 for(i = 0; i < old_table.n_alloc; i++)

 {

 if(old_table.every[i].word != 0)

 {

 find_create_nocpy(old_table.every[i].word) -> occur =
old_table.every[i].occur;

 /* printf("DEBUG: In for loop
of rehash. Word is %s\n", old_table.every[i].word); */

 }

 }

 free(old_table.every);

 /*printf("DEBUG: old n_used=%d, new n_used=%d\n",
old_table.n_used, freq_words.n_used);*/

 /*fflush(stdout);*/

 }
}

unsigned long hash1(char* str)
{

 unsigned long val;

 for(val = START; *str != 0; str++)

 {

 val = (val + tolower(*str)) * PRIME;

 }

 return(val);
}

main program
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sys/time.h>
#include <sys/resource.h>
#include "readword.h"
#include "hash3.h"

/*Abe Karplus 1-8-2009*/

struct dyn_array
{

 char** words;

 int n_used;

Abe Karplus Hash Tables

~48~

 int n_alloc;
};

double gettime();

main()
{

 char* word;

 struct dyn_array all_words;

 int i;

 struct data_pair* found;

 double old_time;

 double new_time;

 all_words.n_alloc = 5;

 all_words.words = calloc(all_words.n_alloc, sizeof(char*));

 all_words.n_used = 0;

 while(1)

 {

 word = readword();

 if(word == 0)

 break;

 if(all_words.n_used >= all_words.n_alloc)

 {

 all_words.n_alloc *= 2;

 all_words.words =
realloc(all_words.words, all_words.n_alloc * sizeof(char*));

 }

 all_words.words[all_words.n_used++] = word;

 }

 printf("%d\t", all_words.n_used); /*words*/

 fflush(stdout);

 old_time = gettime();

 for(i = 0; i < all_words.n_used; i++)

 {

 found = find_create(all_words.words[i]);

 /* printf("DEBUG: found -> word = %s.\n", found ->
word); */

 /* fflush(stdout); */

 found -> occur++;

 }

 new_time = gettime();

 printf("%d\t", freq_words.n_used); /*distinct*/

 /*

 found = find_create("the");

 printf("The word \"the\" occured %d times.\n", found

Abe Karplus Hash Tables

~49~

-> occur);

 */

 printf("%f\t", (new_time - old_time)); /*time*/

 printf("%ld\t", comps); /*strcmps*/

 printf("%u\n", freq_words.n_alloc * sizeof(struct data_pair)); /
memuse/

 return(0);
}

double gettime()
{

 struct rusage elap;

 getrusage(0, &elap);

 return((elap.ru_utime.tv_sec)+1.e-06*(elap.ru_utime.tv_usec));
}

Abe Karplus Hash Tables

~50~

