AMS 147 Computational Methods and Applications

Use RK4 to solve the initial value problem of van der Pol equation

$$\begin{cases} y'' + \mu (y^2 - 1)y' + y = 0\\ y(0) = 0, \quad y'(0) = 4 \end{cases}$$

We write the second order ODE as a first order ODE system

$$\begin{cases} \frac{d}{dt} \vec{W}(t) = \vec{F}(\vec{W}(t), t) \\ \vec{W}(0) = \vec{W}_{0} \end{cases}$$

where $\vec{W}(t) = (y(t), y'(t))$. The initial value is $\vec{W}(0) = [0, 4]$.

Task 1: Numerical error estimation and selection of a time step For $\mu = 3$, solve for $\vec{W}(t)$ from t = 0 to t = 100.

Run simulations using time steps

$$h = \frac{1}{2^3}, \ \frac{1}{2^4}, \ \dots, \ \frac{1}{2^9}$$

Do numerical error estimations at t = 100 (see Appendix for numerical error estimation)

Plot the 2-norm of estimated error vs. time step h. Use logarithmic scales for both the horizontal axis (time step) and the vertical axis (2-norm of the estimated error).

Select a time step h_c such that

2-norm of estimated error $< 0.5 \times 10^{-4}$

Use the selected time step h_c in all of the simulations below.

Task 2:Study the period of limit cycle

As $t \to +\infty$, the solution $\vec{W}(t) = (y(t), y'(t))$ converges to a steady sate limit cycle.

<u>We assume</u> that $\vec{W}(t) = (y(t), y'(t))$ has already converged to the limit cycle for $t \ge 70$.

The period of the limit cycle is the period of y(t) for $t \ge 70$.

Find the period *T* of the limit cycle based on the numerical solution of y(t) for $70 \le t \le 100$ (which is a set of discrete points).

Carry out the calculations for $\mu = [0.1:0.1:3]$.

Plot $\frac{T}{2\pi}$, the period of the limit cycle normalized by 2π , as a function of μ .

Task 3:Validate the assumption in Task 2

In **Task 2**, we find the period using the numerical solution of y(t) for $70 \le t \le 100$.

Repeat the calculations and plotting in Task 2 using numerical solution of y(t) for

 $120 \le t \le 150$

Do you see any difference in the plot of period vs. μ ?

Do you think the assumption in **Task 2** is valid?

Task 4: Study the convergence of $\vec{W}(t) = (y(t), y'(t))$ onto the limit cycle.

We assume that the trajectory of the limit cycle is described by the numerical solution of $\vec{W}(t) = (y(t), y'(t))$ for $70 \le t \le 100$.

For $0 \le t \le 10$, find the distance from $\vec{W}(t) = (y(t), y'(t))$ to the trajectory of the limit cycle.

*** Important ***:

To speed up the calculation, select only about 100 points from the numerical solutions for $0 \le t \le 10$, and calculate the distance from each point to the trajectory of the limit cycle. If you calculate the distance from every point in the numerical solution for $0 \le t \le 10$, the calculation will be too slow.

Carry out the calculations for $\mu = 0.1, 0.2, 0.3, 0.5, 1.0$

Plot the distance as a function of *t* for these values of μ .

Compare the convergence onto the limit cycle for these values of μ .

Appendix: Numerical error estimation in solving ODE systems

Consider solving the initial value problem

$$\begin{cases} \frac{d}{dt} \vec{W}(t) = \vec{F} \left(\vec{W}(t), t \right) \\ \vec{W}(0) = \vec{W}_0 \end{cases}$$

Let $\tilde{W}(t)$ be the exact solution at *t*.

Let $\vec{W}_N(h)$ be the numerical solution at time = N h, obtained with time step h using RK4. We have

$$\begin{split} \vec{W}_{N}\left(h\right) &= \vec{W}\left(Nh\right) + \vec{E}_{N}\left(h\right) \\ \vec{E}_{N}\left(h\right) &= \vec{C}_{4}h^{4} + o\left(h^{4}\right) \end{split}$$

To estimate the error, we run simulations with *h* and $\frac{h}{2}$.

$$\begin{split} \vec{W}_{N}(h) &= \vec{W}(Nh) + \vec{C}_{4}h^{4} + o(h^{4}) \\ \vec{W}_{2N}\left(\frac{h}{2}\right) &= \vec{W}(Nh) + \frac{1}{2^{4}}\vec{C}_{4}h^{4} + o(h^{4}) \\ = &= \quad \vec{W}_{N}(h) - \vec{W}_{2N}\left(\frac{h}{2}\right) = \left(1 - \frac{1}{2^{4}}\right)\vec{C}_{4}h^{4} + o(h^{4}) \\ = &= \quad \vec{C}_{4}h^{4} = \frac{\vec{W}_{N}(h) - \vec{W}_{2N}\left(\frac{h}{2}\right)}{\left(1 - \frac{1}{2^{4}}\right)} + o(h^{4}) \end{split}$$

Since $\vec{E}_N(h) = \vec{C}_4 h^4 + o(h^4)$, we obtain

$$\vec{E}_{N}(h) \approx \frac{16}{15} \left(\vec{W}_{N}(h) - \vec{W}_{2N}\left(\frac{h}{2}\right) \right)$$

The norm of the estimated error is

$$\left\| \vec{E}_{N}(h) \right\| \approx \frac{16}{15} \left\| \vec{W}_{N}(h) - \vec{W}_{2N}\left(\frac{h}{2}\right) \right\|$$

where $\left\| \vec{W}_N(h) - \vec{W}_{2N}\left(\frac{h}{2}\right) \right\|$ denotes the 2-norm of $\vec{W}_N(h) - \vec{W}_{2N}\left(\frac{h}{2}\right)$.