AMS 147 Computational Methods and Applications

Use RK4 to solve the initial value problem of van der Pol equation

$$
\left\{\begin{array}{l}
y^{\prime \prime}+\mu\left(y^{2}-1\right) y^{\prime}+y=0 \\
y(0)=0, \quad y^{\prime}(0)=4
\end{array}\right.
$$

We write the second order ODE as a first order ODE system

$$
\left\{\begin{array}{l}
\frac{d}{d t} \vec{W}(t)=\vec{F}(\vec{W}(t), t) \\
\vec{W}(0)=\vec{W}_{0}
\end{array}\right.
$$

where $\vec{W}(t)=\left(y(t), y^{\prime}(t)\right)$. The initial value is $\vec{W}(0)=[0,4]$.

Task 1: Numerical error estimation and selection of a time step
For $\mu=3$, solve for $\vec{W}(t)$ from $t=0$ to $t=100$.
Run simulations using time steps

$$
h=\frac{1}{2^{3}}, \frac{1}{2^{4}}, \ldots, \frac{1}{2^{9}}
$$

Do numerical error estimations at $t=100$ (see Appendix for numerical error estimation)
Plot the 2-norm of estimated error vs. time step h. Use logarithmic scales for both the horizontal axis (time step) and the vertical axis (2-norm of the estimated error).

Select a time step h_{c} such that

$$
\text { 2-norm of estimated error }<0.5 \times 10^{-4}
$$

Use the selected time step $\boldsymbol{h}_{\mathrm{c}}$ in all of the simulations below.

Task 2: Study the period of limit cycle
As $t \rightarrow+\infty$, the solution $\vec{W}(t)=\left(y(t), y^{\prime}(t)\right)$ converges to a steady sate limit cycle.
We assume that $\vec{W}(t)=\left(y(t), y^{\prime}(t)\right)$ has already converged to the limit cycle for $t \geq 70$.
The period of the limit cycle is the period of $y(t)$ for $t \geq 70$.
Find the period T of the limit cycle based on the numerical solution of $y(t)$ for $70 \leq t \leq 100$ (which is a set of discrete points).
Carry out the calculations for $\mu=[0.1: 0.1: 3]$.

Plot $\frac{T}{2 \pi}$, the period of the limit cycle normalized by 2π, as a function of μ.

Task 3: Validate the assumption in Task 2
In Task 2, we find the period using the numerical solution of $y(t)$ for $70 \leq t \leq 100$.
Repeat the calculations and plotting in Task 2 using numerical solution of $y(t)$ for

$$
120 \leq t \leq 150
$$

Do you see any difference in the plot of period vs. μ ?
Do you think the assumption in Task 2 is valid?

Task 4: \quad Study the convergence of $\vec{W}(t)=\left(y(t), y^{\prime}(t)\right)$ onto the limit cycle.
We assume that the trajectory of the limit cycle is described by the numerical solution of $\vec{W}(t)=\left(y(t), y^{\prime}(t)\right)$ for $70 \leq t \leq 100$.

For $0 \leq t \leq 10$, find the distance from $\vec{W}(t)=\left(y(t), y^{\prime}(t)\right)$ to the trajectory of the limit cycle.

Important ***:

To speed up the calculation, select only about 100 points from the numerical solutions for $0 \leq$ $t \leq 10$, and calculate the distance from each point to the trajectory of the limit cycle. If you calculate the distance from every point in the numerical solution for $0 \leq t \leq 10$, the calculation will be too slow.

Carry out the calculations for $\mu=0.1,0.2,0.3,0.5,1.0$
Plot the distance as a function of t for these values of μ.
Compare the convergence onto the limit cycle for these values of μ.

Appendix: Numerical error estimation in solving ODE systems
Consider solving the initial value problem

$$
\left\{\begin{array}{l}
\frac{d}{d t} \vec{W}(t)=\vec{F}(\vec{W}(t), t) \\
\vec{W}(0)=\vec{W}_{0}
\end{array}\right.
$$

Let $\vec{W}(t)$ be the exact solution at t.

Let $\vec{W}_{N}(h)$ be the numerical solution at time $=N h$, obtained with time step h using RK4.
We have

$$
\begin{aligned}
& \vec{W}_{N}(h)=\vec{W}(N h)+\vec{E}_{N}(h) \\
& \vec{E}_{N}(h)=\vec{C}_{4} h^{4}+o\left(h^{4}\right)
\end{aligned}
$$

To estimate the error, we run simulations with h and $\frac{h}{2}$.

$$
\begin{aligned}
& \vec{W}_{N}(h)=\vec{W}(N h)+\vec{C}_{4} h^{4}+o\left(h^{4}\right) \\
& \vec{W}_{2 N}\left(\frac{h}{2}\right)=\vec{W}(N h)+\frac{1}{2^{4}} \vec{C}_{4} h^{4}+o\left(h^{4}\right) \\
& \Rightarrow \Rightarrow \quad \vec{W}_{N}(h)-\vec{W}_{2 N}\left(\frac{h}{2}\right)=\left(1-\frac{1}{2^{4}}\right) \vec{C}_{4} h^{4}+o\left(h^{4}\right) \\
&=\Rightarrow \quad \vec{C}_{4} h^{4}=\frac{\vec{W}_{N}(h)-\vec{W}_{2 N}\left(\frac{h}{2}\right)}{\left(1-\frac{1}{2^{4}}\right)}+o\left(h^{4}\right)
\end{aligned}
$$

Since $\vec{E}_{N}(h)=\vec{C}_{4} h^{4}+o\left(h^{4}\right)$, we obtain

$$
\vec{E}_{N}(h) \approx \frac{16}{15}\left(\vec{W}_{N}(h)-\vec{W}_{2 N}\left(\frac{h}{2}\right)\right)
$$

The norm of the estimated error is

$$
\left\|\vec{E}_{N}(h)\right\| \approx \frac{16}{15}\left\|\vec{W}_{N}(h)-\vec{W}_{2 N}\left(\frac{h}{2}\right)\right\|
$$

where $\left\|\vec{W}_{N}(h)-\vec{W}_{2 N}\left(\frac{h}{2}\right)\right\|$ denotes the 2-norm of $\vec{W}_{N}(h)-\vec{W}_{2 N}\left(\frac{h}{2}\right)$.

