
ams 10/10A supplementary notes ucsc

Matlab Basics 2
c© 2009, Yonatan Katznelson

Matrices 2: Reduced echelon form; L-U factorization; eigenvalues and eigenvectors.

matlab is designed to work with matrices, and so it is not surprising that some of the
more sophisticated operations that we do with matrices are programmed in matlab as basic
functions.

(i) Gauss-Jordan elimination: The matlab command rref(A) produces the reduced row
echelon form of the matrix A. E.g., to find the reduced echelon form of

A =

 1 2 3 4
−1 3 0 5

6 0 −1 2

 ,

you enter the matrix and then apply rref to the matrix.

>> A=[1 2 3 4; -1 3 0 5; 6 0 -1 2];

>> rref(A)

ans =

1.0000 0 0 0.3390

0 1.0000 0 1.7797

0 0 1.0000 0.0339

Note: matlab automatically rounds to 4 decimal places which produces round-off
error in many cases, even when the numbers in question are rational numbers. The
matlab command rats() converts the rounded decimal entries of its argument into
ratios of (relatively) small integers. For example, applying rats() to the reduced row
echelon form above yields

>> rats(rref(A))

ans =

1 0 0 20/59

0 1 0 105/59

0 0 1 2/59

The rational numbers produced by rats are usually approximations as well, albeit very
good ones. If the numbers that they are approximating are rational numbers with small
denominators, then rats() generally produces the precise values, as in the example
above.

1



(ii) L-U factorization: In a variety of contexts, it is often convenient to express a given
matrix A as a product of 2 or 3 matrices with special properties. One of the most
commonly used factorizations is the L-U factorization described in section 2.5 of our
textbook.†

To produce the (permuted) lower triangular matrix L and the upper triangular matrix U

satisfying A=L·U, you use the command [L U]= lu(A). As indicated by the parenthet-
ical word ‘permuted’ above, the matrix L that matlab produces is often a permuted
lower triangular matrix — the rows of L need to be permuted (rearranged) to give a
proper lower triangular matrix.‡ This is the case, for example, when the lu() command
is applied to the matrix A from the previous examples.

>> A=[1 2 3 4; -1 3 0 5; 6 0 -1 2];

>> [L U]=lu(A)

L =

0.1667 0.6667 1.0000

-0.1667 1.0000 0

1.0000 0 0

U =

6.0000 0 -1.0000 2.0000

0 3.0000 -0.1667 5.3333

0 0 3.2778 0.1111

Notice that if you swap the first and third rows of L above, the result is a proper lower
triangular matrix.

The format [X Y] = func() is used in matlab when the function func() returns
two distinct objects and you want to store both.§ If you invoke func() by itself, then
matlab returns some combination of the objects and/or omits some of the available
output. E.g, if you invoke the command lu(A) without specifying the names of the
upper and lower triangular factors, then matlab produces a single matrix with the
entries of both the upper and the lower factors — the entries of U on and above the
main diagonal, and the (non-diagonal) entries of L below the main diagonal — but
without the information of how the rows of L should be permuted.

>> lu(A)

ans =

6.0000 0 -1.0000 2.0000

-0.1667 3.0000 -0.1667 5.3333

0.1667 0.6667 3.2778 0.1111

†matlab has functions that produce other commonly used factorizations as well.
‡See the comments in the middle of page 146.
§If func() returns n objects, then you should enter something like [X1 . . . Xn] = func().

2



(iii) Eigenvalues and eigenvectors: To produce the eigenvalues and corresponding eigenvec-
tors of a (square) matrix A,¶ we use the command [E D] = eig(A). The matrix D is a
diagonal matrix with the eigenvalues of A as its diagonal entries, and the columns of the
matrix E are eigenvectors of A, where the jth column of E is an eigenvector corresponding
to the eigenvalue that appears in the jth position of the diagonal of D.

Note that even if the entries of the matrix A are real, the eigenvalues of A may be
complex, and corresponding eigenvectors may have complex entries.

>> A = [1 2 3; 1 1 1; 3 0 2]

A =

1 2 3

1 1 1

3 0 2

>> [E D] = eig(A)

E =

-0.6667 -0.7688 -0.2573

-0.3333 0.0502 -0.7886

-0.6667 0.6375 0.5585

D =

5.0000 0 0

0 -1.6180 0

0 0 0.6180

>> B = [0.4 0.3; -0.3 0.4]

B =

0.4000 0.3000

-0.3000 0.4000

>> [F G] = eig(B)

F =

0.7071 0.7071

0 + 0.7071i 0 - 0.7071i

G =

0.4000 + 0.3000i 0

0 0.4000 - 0.3000i

(iv) Basis for the null space: Given a matrix A, the commands null(A) and null(A,’r’)

return a set of columns that form a basis for the null space of A. The command null(A)

returns an orthonormal basis for null A,‖ and adding the optional argument ’r’

causes matlab to return a ‘rational’ basis for null A — this is the basis that you

¶See chapter 5 in Lay’s book.
‖An orthonormal set is a set of vectors that (a) all have length 1, and (b) are all perpendicular to each

other (‘orthogonal’ means ‘right-angle’). See Chapter 6.

3



would construct by finding the parametric description of the solution set of Ax = 0,
using the free columns of rref(A).

>> A=[1 1 2 3 5; 2 0 1 0 2; 1 2 1 3 1];

>> null(A)

ans =

0.2105 0.2065

-0.7938 0.1071

-0.0481 -0.9333

0.5372 0.0841

-0.1864 0.2601

>> null(A,’r’)

ans =

0.6000 0.6000

-1.2000 0.8000

-1.2000 -3.2000

1.0000 0

0 1.0000

Simple programs 1.

While we have been using matlab primarily as a fancy (graphing) calculator so far,
the software goes well beyond that, offering among other things, the possibility of writing
programs (‘scripts’) and functions to handle the repetitive tasks associated with computation
and problem solving.

M-files and scripts. Any sequence of commands that you enter on the command line in
matlab can be entered in a file, called an ‘m-file’, which you save with an (appropriate)
name and the suffix ‘.m’. After the file is saved, typing its name (without the ‘.m’) on the
command line tells matlab to perform the sequence of commands listed in the file. Such a
sequence of commands is often called a ‘script’.

To create an m-file, you type edit on the command line, which opens an editing window
where you can enter the commands. When you are done, save the file. If you want to edit
an existing m-file (called ‘file-name’), you type edit file-name.

Functions. Often, the sequence of operations that you want to do are being done to a
variable of one kind or another. In this case, you want to be able to tell matlab something
like ‘do these operations to the matrix A’. One way to handle this, is to write a script in
which the commands make reference to a variable with a given name. Consider, for example,
the sequence of commands below, saved in an m-file called ‘lastcol.m’.

x=size(A);

A(1:x(1),x(2))

4



If you enter a matrix A and then enter the command lastcol, matlab returns the last
column of the matrix A. On the other hand, if you did not save a matrix with the variable
name A before you enter the command lastcol, then matlab returns an error message.

A somewhat cleaner approach is to create a function. A function is special kind of script
that returns one of more variables of output, and typically (though not always) has one or
more variables of input. An m-file that defines a function must begin with a line that tells
matlab that this m-file is a function. The syntax of this first line is

function [out1...outk] = name(in1,...,inm)

where out1 through outk (separated by spaces in square brackets) are the output variables,
and in1 through inm (separated by commas in parentheses) are the input variables on which
the function acts. The function should be saved as name.m. For example, the function below,
saved as ‘lastcolfunc.m’, does the same thing as the script above, but has the advantage that
it can be invoked more easily, for example as a command in another script or function, and
applied to any matrix. The function assigns the input to a temporary variable called A,
which it uses to produce the output.

function lastcol = lastcolfunc(A)

x=size(A);

lastcol=A(1:x(1),x(2));

Entering the command lastcolfunc(X), where X is any matrix, produces the the last
column of X. The command c = lastcolfunc(X), stores the output in the vector c.

Comments: When there is only one output variable, the square brackets may be omitted
in the first line of the function. Note also that each of the declared output variables must be
assigned a value in the body of the function. Finally, other variables declared in the body
of the function, e.g., the size variable x, above, are not visible outside the function. E.g., if
after entering c=lastcolfunc(X), you enter x, matlab will either return an error message
(‘variable x undefined’) or, if the variable x had been previously defined before invoking the
function, matlab will display that value. This applies to the named output variables too.
In other words, if you want to save the function’s output to specific variables, then you need
to enter a command like [y1 ... yk] = name(x1,...,xm).

More to the point: if a function has more than one output and you don’t save each one
to a designated variable — you just type function-name on the command line — then
matlab will typically just display the first listed output variable. I.e., matlab will display
out1, if the first line of the function is function [out1...outk] = name(in1,...,inm).∗∗

Loops. Frequently, a certain operation needs to be repeated many times. For example, if
you want to create a vector whose entries are the powers of 1.1 from 0 to 3, you can simply
type vec=[1 1.1 1.21 1.331]. On the other hand, if you want a vector whose entries are
the powers of 1.1 from 0 to 20, this approach would be time-consuming to say the least. Using
a loop, you can have matlab do the work for you. There are several commands sequences
that produce loops, and the simplest one is the for loop. The syntax for a for-loop is

∗∗You can define more sophisticated functions that tell matlab what to display in case the function is
called by itself, as for example in the case of the function lu.

5



for j=1:n

command 1

command 2

...

command k

end

As the counter j runs through the designated values (1 through n in the example above),
matlab loops through the commands that appear between the line ‘for j=1:n’ and the
line ‘end’. Usually, some or all of the commands depend on the value of the counter. Thus,
for example, the simple loop

for j=0:20

x(j+1)=1.1∧∧∧j;

end

produces the vector of powers of 1.1 described above. Note that vectors in matlab have
indices that must be positive integers, so the 0th power of 1.1 is stored in x(1), the first
power of 1.1 is stored in x(2), etc. For loops may be entered directly on the command line,
or used in the definition of scripts and functions.

The function in the example below takes as inputs two vectors c and x and returns a
vector y defined by the property

y(j)=c(m)x(j)∧∧∧(m-1)+c(m)x(j)∧∧∧(m-2)+· · · +c(2)x(j)+c(1)
for each 1 ≤ j ≤ n, where n is the length of the vector x. Your job is to understand how it
works (and see if you can guess what it’s good for).
Comment: In an m-file, anything in a line that follows a percent sign (%) is ignored by
matlab . This allows us to insert documentation that explains what’s going on.

6



function y = poly(x,c)

n=length(c); % determine the number of coefficients in the vector c.

m=length(x); % determine the size of the vector x.

y=zeros(1,m); % initiate the vector y as a row of 0’s.

for j=1:n

y=y+c(j)*x.∧∧∧(n-j);

end

Plotting 2: Three-dimensional plots.
matlab has a range of plotting functions for three-dimensional plots: plot3(), surf(),

mesh() and their variants. To plot lines and curves in three dimensions we use plot3 and to
plot surfaces we use mesh or surf. The command mesh produces a mesh, or grid, while surf

fills in the grid to give the appearance of a continuous surface. All of these commands need
to be invoked with matrix or vector arguments, as described below, and all of them have a
variety of optional arguments. I will only describe the most basic versions of the commands
— please see the matlab help files or documentation files for more information.

(i) plot3(): This command is used to plot lines and curves in three dimensions. If x, y

and z are vectors with the same number of entries, then plot3(x,y,z) plots the line
(or curve) that passes through the points (x(j),y(j),z(j)) for every j between 1 and
n, where n is the number of entries in the three vectors.

The sequence of commands below are used to plot the graph of the helix in Figure 1.

>> t=0:0.05:6*pi; x=sin(t); y=cos(t); z=t;

>> plot3(x,y,z)

The plotting options described for two-dimensional plots carry over to the three-
dimensional setting. E.g., you can choose different markers for the points in the plot,
different line styles, whether or not to include a grid, etc.

(ii) surf(x,y,Z): This command is used to plot surfaces in three dimensions. The argu-
ments x and y are vectors of length n and m respectively, and Z is an m×n matrix. The
coordinates of the surface patches (as they are called) are given by (x(j), y(i), Z(i, j)).
The surface is colored according to the height, Z(i, j).

The sequence of commands below is used to plot the graph of z = x2− y2 that appears
in Figure 2. Notice how I used a nested pair of for-loops to fill in the matrix Z.

7



−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
0

2

4

6

8

10

12

14

16

18

20

Figure 1: The graph of the parametric curve F (t) = (sin(t), cos(t), t).

>> x=-2:0.1:2; y=-2:0.1:2;

>> for j=1:41

for i=1:41

Z(i,j)=x(j)∧∧∧2-y(i)∧∧∧2;

end

end;

>> surf(x,y,Z)

(iii) mesh(x,y,Z): This command works just like surf(), except that matlab produces
a mesh instead of a continuous surface. I.e., the patches between the points that are
plotted are not filled in. Replacing the command surf(x,y,Z) by mesh(x,y,Z) in the
sequence of commands above produces the graph in Figure 3.

Other options: Both surf and mesh have other variations. In particular, both com-
mands can take arguments (X,Y,Z) that are all matrices (rather than two vectors and
a matrix). This form can be used to plot parametric surfaces. See the matlab help
index for more information.

8



−2
−1

0
1

2

−2

−1

0

1

2
−4

−3

−2

−1

0

1

2

3

4

Figure 2: The graph of z = x2 − y2.

−2
−1

0
1

2

−2

−1

0

1

2
−4

−2

0

2

4

6

Figure 3: The graph of z = x2 − y2, in mesh form.

9


